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SOLUTIONS TO CHAPTER 12

12.1 ELECTRODYNAMIC FIELDS AND POTENTIALS

12.1.1 The particular part of the E-field obeys
VxE,=-2B (1)
Pt
V.E,=0 (2)
If we set
B=VxA (3)
then aA
VX(Ep'i'E):o (4)
or 3
E, = _EA -V, (5)
Because of (2),
3 2
But, because we use the Coulomb gauge,
V-A=0 (7)
and thus
V3, =0 (8)
There is no source for the scalar potential of the particular solution. Further
VA =—p,J, (9)
Conversely,
V- 6Bh = pu (10)
and
VXE,=0 (11)
Therefore,
E,=-Vd, (12)
and from (10)
v2g, = -2 (13)

€o

Thus (9) and (13) look like the inhomogeneous wave equation with 32/9¢2 terms
omitted.
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g—:,A is of order 1/72A, VZ2A is of order A/Lz. Thus, MG%A is of order £5 L?
compared with VZA. It is negligible if ue L2 /r2 = L% /%272 <« 1. The same approach
shows that ue(32/9t?)® can be neglected compared with V29 if L?/c%7? < 1.

SINGULARITIES

The time dependence of g(t) is the same as that of Fig. 12.2.5, except that it

now extends over one full period.

Solutions to Chapter 12

12.2 ELECTRODYNAMIC FIELDS OF SOURCE
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Figure S12.2.1a
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may be considered to be lines of equal height of a potential. The potential does not
necessarily reproduce the field intensity at every point. i.e.

——
E = - (is x V@) - f(r,6) (1)
N, et

The “underbrace” gives the pattern. The “overbrace” is the multiplier. It does not
change the direction of the field. Take

_d g ¢1. g , & 4"V 4
E—4w€{2cosﬁ[r—s+m]l..+ [r3+cr2+E sin 01y (2)
where r
0=t =)
If one defines d
P = (—)2sin€(qr“1/2 + irllz) (3)
4dre c
Then
[
Vo= (-i—) 2sin 6( — s q'lr_l/2 + lq'lrll2 - ir—l/z)i,.
4me 2 c 2% ¢ c2 (4)
+ ig2cos G(qr_a/2 + %—lr'l/z)]

One constructs a vector perpendicular to V®, iy x V®, by interchanging the ¢ and
r components and reversing the sign of one of them

2
—iy X VO = (i%)r_s/z{2coso(q + Eq’)ir +sind(g+ fq’ + f;q")io} (5)

Thus if we choose f(r,d) = r~3/2, we reproduce the E-field of the dipole by expres-
sion (1).
We can sketch the function @ for § = x/2.
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Figure S132.2.1b

12.2.2 Interchange E — H, H — —E and p, — ¢,. From (23)

di = jw§d — jwimd = Jwpoth (1)

where g,, is the magnetic charge. We obtain

N jkjwpoth . e Tkr
Ey=-— 0
23 ar s1n r

(2)
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12.24

12.3

12.4

12.4.1
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and from (24)

Hy=—[2F4= —%—sinﬂ QED (3)

Because pu,m(t) = g,d — ¢d in the electric dipole case, the time dependence
of g(t)d and p,m(t) correspond to each other. With E — H and H — —E we must
obtain mutually corresponding field patterns.

We can use the field sketch of Problem 12.2.1 with proper interchange of
variables.

SUPERPOSITION INTEGRAL FOR ELECTRODYNAMIC
FIELDS

ANTENNAE RADIATION FIELDS IN THE SINUSOIDAL
STEADY STATE

From (4)

0

sin 1 .
— —jk(1—cos @)l __
T jhcosf =) ¢ 1} ()
sin § 2 ki ;
— (200 —3k{1—cos 0)l/2
I H1=cosd) sin [ 2 (1—cosb)]e

The radiation pattern is

4sin® 0 sin® & (1 — cos 6)
k22(1 — cos §)?

¥(0) = |vo(0)]* =

= -—ﬂ— sin? (kl sin? -0—) @
k212 sin* (9/2) 2
With kl = 2« 2
sin 0 . 2 . 2 @
=07 (gin?2 =
(9) yo sin4(0/2)(sm 7 sin 2) (3)

The radiation pattern peaks near § = 60°.
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Figure S12.4.1

12.4.2 By analogy with (3) one replaces Hy — Ey, p « € and i(z')dz' = jw(qz)d2' —
jw(gmd)dz' = jwpp(z')dz' where we interpret gd and g,,d as assigned to unit
length. Thus, from (2) of Prob. 12.2.2, with u, — p, €, — ¢,

2 —Jkr o
E, = :—Wsinﬁe . \/g/M(z')e”"' deds!
k21 W e-jkr ja
= mf: 7 Mo ell)

where - My
Yo(0) = %/—A({_r_).cj(h‘"ir—ao)dzr
12.4.3
= sin ¢ ’ sinﬂ(z’ — l) 7kz' cos® 3 1
'»bo(o) - = 1 / ain ﬂl e dz
Sing I 1 iB(z' — —58(2' - 'kz' cos
= _ﬂlsinﬂl [) E;{(elﬁ( l) —e Jﬂ( l))eJk co 0d(ﬂz')
i i cosB)I —~3(B—k cos 8)l
- ;‘f‘g li{ﬁ’f”** i A S :.(B k . ) _161.[”}
Blsin fl 25 | j(1+ % cosf) —5(1 = & cosf)
sin 6 2

k .
= - : cos Bl + 9sin Bl— § — elkcosdl
ﬁlsmﬂll_%:_c%za{ B ]smﬁﬂcos e }

12.4.4 (a) From (12), and with a,, = n2i,,
3

Yo = ejka,,,~i,ei(an-ao)
% 0

=14 eJ(5 cosainf+ar—a,) + gJ(mcos $sinb+as—a,)
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(b) Since 4, =sind, and a; =0
|%oll¥al = |1 + 2cos (% cos ¢ sin §) | siné

(c)

Ya=1+ el §(cospsin0+1) + e,1'1r(cou¢lin0+1)

= ej}(cosdnin9+1){e—j§(cos¢sin0+1) +1+4 ej{(cos¢lin0+1)}

= ej-}(cosdbain 0+1) [ZCOS g(cosdwinﬂ + 1) + 1]

[%0||%a] = ‘[1 + 2cos g(coscﬁsinﬂ + 1)] sinf

12.45 (a)
1

1/;6(0) = Z eikan-ir Jlan—ao) — 1 + eIlmcosf+ar—ay|
n=0
(b)

[%a|?|¢0|® = 4 cos? (12{ cos6) sin? 4

(c)

47 cos? (Z cos6) sin®
fo’r df foz'r d¢ sin 0 cos? (% cos §) sinZ 4

Define
cosf=u

" . Lt 1 T
/; df sin> 0 cos? (E cosf) = /_1 du(1 — u?) cos? (-2—u)

Now consider integral

1 3
/dzzzcosz'z= §(z+ %sin2a:):l:2 - % + z?zcosh:— —l-sinZ:c

The integral is

1
/;1 du(1 — u?) cos? %u =1- (%)3{%(2 + %sin 2z)z?
3 2z 1. x/2
-3 + —é—cOSZa:-— §sm2:c}_’r/2

_2 12y
"3+2(w)

12-7

(2)

(3)

(4)

(1)

(2)

(3)

(4)
(5)

(6)

(7)



12-8 Solutions to Chapter 12

The gain is ( ) )
_ 47 cos? 5 cosf)sin” f
G= 27('{2 2 (8)
(d) We find for ¥(6) of array
(8) = {I%a(6)11%1(8)1192(6) 1} (9)
with
¢2 (0) =1-= ejka.sinacos¢ (10)

In order to get maximum superposition in the direction ¢ = 0, one needs
ka = 7 or a = A/2. Thus

|$2(9)| = |2sin (% sin 6 cos §)|

12.5 COMPLEX POYNTING’S THEOREM AND RADIATION

RESISTANCE
12.5.1 The radiation field Poynting vector of the antenna is from 12.4.2, 3.4.5
1 (k! Ko
(Botty) = b [P L a0y (1
where 9,(0) is from 12.4.28
1 cos (22) — cos (3 cos
¢o(0) — (3" - T ( 2 ) _ ( 2 )
) sin () sinf 2)
2 cos (32" cos 0)
3 sin §

The radiated power is

2r
1 LI?Raq = d0 sin 4 d¢ EaH
2 o ¢

=10 \/_ Tl ()% /(—6’1)-%0 (5

2 (47)2 sin
_ _lI 2 uo/eo (2 )/ 40 sin cos cosﬁ)
2°° sin? 4

Therefore
Rows = \/uo/ea/ 40 si cos 2T o8 0)

sm 0

W / o (2 o

= 10402
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12.5.2 The scalar potential of the spherical coil is (see Eq. 8.5.17)
NI,R? m
V= o Co8 f = = cosf (1)

This identifies
NI,R? (2)

- We have for the § component of the H-field

~

~ m

- . . . 2
Hy = s 0[1 + jkr + (5kr)?] (3)

and thus the radiation field is

™
in 6 4
— sin (4)

The power radiated is

2
—%//E,,,H;rz sin §dfdp = %m%\/uo/eo(i—:)z

2" ()
= §'|Io|2Rrad
Therefore,
2x
Riaa = EV ;J.C,/e,,N2 (k:R)4 (6)
The inductance of the coil is from (8.5.20)
L= ?glpoﬁm (7)
and therefore
1
Reaa = EwL(kR)a (8)

12.6 PERIODIC SHEET-SOURCE FIELDS: UNIFORM AND
NONUNIFORM PLANE WAVES
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12.6.1 (a) From continuity:

R, . .
3:: +jwd, =0
Taking into account the z-dependence:
—jks Ky + jws, = 0 (2)
and therefore w ]
R.= E—a.,e""“"= (3)
T

and

Jksz .
K, = Re (‘10__) Gt
Kz

(b) The boundary condition on the tangential H is:

nx (H*-H)=K n|i,

Since
H| i, O
and thus R .
- =k, (5)
H, is antisymmetric, of opposite sign on the two sides of current sheet.
2A% = R, (6)
and thus
(3 W00 =iy flwtoh
A% =iRe[x ok eFIPY I (w =z)] (7)
From (12.6.6) and (12.6.7)
ﬂao . Oo ] j(wt—kex
E = Re[ix( - 2—65) +i, (£ Ee-;)]e:”p”c’( t—ksz) (8)

(c) Asin Problem 12.2.1, a plot of a divergence-free field can be done by defining
a potential ¢ and obtaining the field

E=—i,x VQf(zs y) (9)

Now, it is clear that the potential necessary to produce (8) is

— 4.1 (90 xipy j(wt—k.z)
o= ijk (2€o)c e
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12-11
Then

—i, ><V<I>=ix@ i, 92

dy _”35

and is found to be equal to (8) with f(z,y) equal to unity. By visualizing the
potential, one may plot E lines.

ky imaginary: H-lines E-lines

lines of equal
height of ®

Figure S12.6.1a
At wt = 0, the potential is

e — _l_&e?-jﬂye—jkzx = . 9o
7ks 2€,

sin(k,z)eTIPlY
€o

T

ky real:

E-line

. H-line

Figure S12.6.1b
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At wt = 0, the potential is

O .
Zeke gin(k;z + kyy)

12.6.2 (a) The E-field will be 2-directed, the H-field is in the z — y plane
E, = Asin(kzz)eT*w (1)

From (12.6.29)
1 3E,

~ jwu By Jwp

ky) A sin k,z 2)

z =
The discontinuity of tangential H gives:
nx (H*-H’) =K (3)

in z — z plane. And thus, combining (2) and (3)

k
iA sink,z = —K,sink,z (4)
and therefore K
wWpito
A=— (5)
2ky
From (2) and (5)
A, = ;% sin(k, z)e¥ kW )
and from (12.6.30)
A, = _1:—'£- cos(k, z)e Tk (7

(b) Again we can use a potential ® to which the H lines are lines of equal height.
If we postulate

1 .K, . ;
d = (m)—z"—sm kyzeTikvy (8)
Then 38 K, k,
—1.xV<I>—i,‘a 2 7k, cosk,z 9)
.aq)_.Ko. .Kokm
—iy 5 = Fi, 2 sinkzz — iy 2 Ecosk,z

The potential hill at wt =0 is

Re[®]=F E- gin k,z sin k,y (10)
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wt =0
® © o
®
O L— H-line
®
6o & o1 E-line
— — o o - — +
@ @ ®
®
®
®© o ©
Figure S12.6.2
(c) We may write (1)
K, 1, . . . .
E, = _%ﬁy{eﬂzaﬁﬂcyy - C-szZ:FJkyy} (11)
y 4]

and for (6) and (7)

ﬁ =.7'£42{ + iy (ejk""’:':jkvy — e—J'kz:z:ijyy)
+ —1ig (esza::FJkyy + e—;k,x:;:_,kyy)}
Y

12.6.3 (a) At first it is best to find the field E, due to a single current sheet at y = 0.
We have

E, = Ae~7k=2,FiBy (1)

From (12.6.29)

i, = -1 9E

1

Jwp Ay Jwp

(:Fjﬂ)Ae‘szze:Fjﬁy (2)
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From the boundary condition

nx (H* - H®) =K (3)
we get
2L ggmites = _ it
wp
and thus K
wp
= —— 4
28 (4)

Now we can add the fields due to each source

cjp(y"%)

5
e—iB(y+4$) (5)
+ Rbe k22 { —iB(y+4)

w ' e—i8ly—%)
) - Eg[}?"e""” IB(v—1%)

eIB(y+$)
(b) When
Rae=7P% + Rye?d =0 (6)
Then
.kb = _kae—jﬁd (7)
there is cancellation at y < —d/2
()
ES = —%[Rac_jkize—jp(y—g) -— Kac—jkszc—jp(”+ ,ﬁ‘)]
-Wl‘f(a — ke _.p( _‘) R _.pd (8)
=—J-—ﬂ—c IFeZe=IP\V™3) gin Bde~7

(d) In order to produce maximum radiation we want the endfire array situation
of Bd = n/2. (Indeed, sin fd = 1 in this case.) Because

B=+Vwiue— k2 (9)
we have /
1 x < g]t/2

Y= e [ki - (ﬁ)z] (10)

The direction is -
k = k. iy + fiy = kaix + ﬁi,
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12.8.4 (a) If we want cancellations, we again want (compare P12.6.3)

8p = —Gqe Tkvd (1)
(b) A single sheet at y = d/2 gives
H, = +Ae—TkazFiky(y- ) (2)
Now,
% +jwé =0 (3)
gives
R, = 70"’:&,, (4)
and
282, = 1t (5)
Therefore w
A= m&a (6)

and the field of both sheets is
H, = jkia,,e-f"ﬂe'f"v(”?) sin kd (7)
¢

(¢) kyd = x/2. Therefore, as in P12.6.3,

w= 7=l - (3" (®)

12.7 ELECTRODYNAMIC FIELDS IN THE PRESENCE OF
PERFECT CONDUCTORS

12.7.1 The field of the antenna is that of a current distribution |cos kz|. We may
treat it in terms of an array factor of three antennae spaced A/2 apart along the
z-axis. From 12.4.12

3
I';ba(o)l — lzeik% cosol = ll +e_1'1rc059 +82j1rcosal

=0
= le—jncosa +14 ejncosol (1)

=1+ 2cos(7 cosf)
The function ¥,(f) follows from 12.4.8 with ki = =
¥o(0) = -12; cos (-12E cos f)/sin (2)

Combining (1) and (2) we complete the proof.
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The current distribution, with image, is proportional to |sin kz|. The point at
which the current is fed into the antenna calls for gero current. Since the radiated
power is finite, R..q is infinite. In practice, because of the finite losses, it is not

infinite but much larger than \/po/é€,.

(a) We have a surface current R,

oz
Therefore

g, = -39
Ka = 7/a

0o 8in (—

3K
—= + jwé, =0

1I’$)

The H-field is z-directed and antisymmetric with respect to y.

8, = £ Asin (KE)oiw

From the boundary condition

nx (A -A% =
with n || iy
Jw T
2Asm( ) = —maosm —=)
—_dv
4= 21r/ao°
The E-field is from (12.6.6)
1 afl,
E. = jweo 3y ( - ‘70) (Fiky) sm( )C;ka
= JkyTo o (TE\ ik,
" €o(27/a) sm( a )e '

and from 12.6.7

(b) On the plate at z = —a/2

G, = eoEz Ia;=—-a./2 =-

Jk!l% eTikyy
21r/a

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(©)
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At z = a2 it is of opposite sign. The surface current is

JWO, .
H |z—-a/2 = :I:2 /a eTikyy
and is the negative of that at z = a/2.
(<)
lc: + k3 = wzp.oeo
and thus

ky= ‘/wzuoeo - (%)2

12-17

(10)

(11)

(12)

Again we may identify a potential whose lines of equal height give E. Indeed,

— % gin (EE)eFikwy
:F€o(2ﬂ'/a) sin ( ” )eFiky
gives
ad oo
~i, x VO =i,— *3y l’az
nz
me?" k| jlyls sm( )— —lycos( )]

(d) For k, imaginary and wt =0

wt=10 wt=m/2
displacement
H "~ current density
@
~ \ »
@\ / (o]
® @\ /0 ®
) o” \\s ®
i ° \®
” ~
L~ ~d
@ ®
Figure S12.7.3a
Re[®] = sin ( )e:’:l""ly

*e (2 /a)

(13)

(14)
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For ky real, wt =0

Re[®] = :Fe_o(—;;/j gin (Eaf) cos kyy

wt=10 wt=n/2
e
E
I ‘jj ‘\k- | E @ displacement
|
' ® 0 ® 9, /
! © 0 L) 1
I ! ’
i 9 @ i © convection
\ R P +f ( Q—@ 1" current
\ o @
| I \
® o] @
I | *
1 ® © 0 I 7
| @ ® @ 0 1
® C] ‘B\ displacement
| | flux lines
lp @
le ®
+ + '
® ® \8
+ +
©®0 ® e
@0 ® ®
©
© 6
Figure S132.7.3b
(a) We now have a TE field with
E,= Acos (%)e’”"v" (1)
From (12.6.29)
1 aE‘, 1 T .
= ~———— = ———(Fjky) A cos (—)eTFikw¥
7 jwp 9y jwp (F7k) ( a ) @)

k .
= :t—lA cos (W_z.)c;.’kvy
wp a
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and the boundary condition

nx (H* - 8% =K (3)
we obtain relation for A:
—ZEA cos = = K, cos — (4)
wy a a
or K
WHhito
A= —— 5
= (%)
and thus K
Hz = :FTO cos (-1-I:2£)¢=F-"'ky!l . (6)

From (12.6.60)

g - L 9B _ xfa,. (E),w‘kyy
Jjwp Oz Jwp

= -5 21/0 K, sm( )c:F’k"”

a,=

(7)

(b) Since the E-field is z-directed, it vanishes at the walls and there is no surface
charge density. On wall at z = —a/2

R, =18, . (8)

Figure S12.7.4a

and thus

K, = 11—;1{;—:K06:ij”y (9)

On the other wall, the current is opposite.

(<)

= Vwpoeo — (n/a)?2 (10)

since k; = w/a. Again we have a potential @, the lines of equal height of which
give H.

1 K,
Iky 2

cos ( )e:F’k"” (11) '
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(d) For ky imaginary:
wt=0 wt =7 /2

o1 E-field

[ONONO)
(ONONO]
0]
Figure S12.7.4b
for ky real: ® .
o © o
e @ 0 wt=0
®
— H
®
®® %
T T eee
®
®
® 6 0
o 0 ©
®

Figure S13.7.4¢c





