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SOLUTIONS TO CHAPTER 12 

12.1 ELECTRODYNAMIC FIELDS AND POTENTIALS 

12.1.1 The particular part of the E-field obeys 

Hwe set 

then 

or 

Because of (2), 

a 
v x Ep = -atB (1) 

v .EoEp = 0 (2) 

B=VxA (3) 

v x (Ep + aa~) = 0 (4) 

Ep = 
a 

- atA ­ V.p (5) 

a 2at v .A + V .p = 0 (6) 

But, because we use the Coulomb gauge, 

V·A=O (7) 

and thus 
V2 • p = 0 (8) 

There is no source for the scalar potential of the particular solution. Further 

(9) 

Conversely, 
(10) 

and 
v X E,. = 0 (11) 

Therefore, 
E,. = -V.,. (12) 

and from (10) 

(13) 

Thus (9) and (13) look like the inhomogeneous wave equation with a2 jat2 terms 
omitted. 
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12-2 Solutions to Chapter 12

12.1.2 %t22 A is of order l/r2A, V2A is of order A/£2. Thus, J1.f.%t
2
2 A is of order '!f£2

compared with V 2A. It is negligible if J1.f.£2 /r2 = £2 /c2r2 ~ 1. The same approach
shows that J1.f.(a2/at2)cp can be neglected compared with V 2 CP if £2 /c2r2 ~ 1.

12.2 ELECTRODYNAMIC FIELDS OF SOURCE
SINGULARITIES

12.2.1 The time dependence of q(t) is the same as that of Fig. 12.2.5, except that it
now extends over one full period.

t = 1'/2

t T r
q( - - -)

-- 2 0 t .T r--, q(---)
-,- - / 2 0

~ , ­" ,
/' ......... "

-,
\
\

\ ,
" "

t = l'

,
" '

'---~ ql(T-~)
o

/ "l-(---"I'l"
_ ," I I 1\

---r

E-Iine.

~

/
/

/

'"

E-Iine.

Figure S12.2.1a

Plot of Electric Dipole Field. Any set of field lines that close upon themselves
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12-3 Solutions to Chapter 12 

may be considered to be lines of equal height of a potential. The potential does not 
necessarily reproduce the field intensity at every point. i.e. 

........-...

E = - (i<l> X V~). f(r,9) (1) 

The "underbrace" gives the pattern. The "overbrace" is the multiplier. It does not 
change the direction of the field. Take 

II [ r/ ]'I .. + + 2r/ sm ll'ul8E= -d{2 3"q + 2 [ _qq +""2q"]. } (2)cos u 
411"E r cr r cr c r 

where 
q = q(t - .!:.)

2 

IT one defines 

(3) 

Then 

V~ = (~) [2 sin 9( - !r-3/ 2 - q' !r-1/ 2 + !r/!r1/ 2 _ r/' r- 1/ 2)i.. 
411"E 2 c 2 C c2 

(4) 
+ ie2 cos 9(qr-3

/ 
2 + ~ r- 1

/ 
2

) ] 

One constructs a vector perpendicular to V~, i<l> X V~, by interchanging the 9 and 
r components and reversing the sign of one of them 

Thus if we choose f(r, 9) = r-3/ 2 , we reproduce the E-field ofthe dipole by expres­
sion (1). 

We can sketch the function ~ for 9 = 11"/2. 



12-4 Solutions to Chapter 12

t=2T

(J

,.-- .....
'" ... -/ "."<"

" , '.... '.- "' ...

/P-t,
/( I I 1,

.... - -,' I I I
I I I
I I I
I I I
I I I

I

Figure SU.J.lb

12.2.2 Interchange E - H, H - -E and 1'0 - Eo. From (23)

di = iwqd - iwqmd = iWlJom (l)

where qm is the magnetic charge. We obtain

Ok.. 0" -;1cr1 1wIJom • lieE4> = - smu-- (2)
411" r

T r
q'(---)

2 c

-r



Solutions to Chapter 12 12-5 

and from (24) 

QED (3) 

12.2.3	 Because Io'om(t) = qmd - qd in the electric dipole case, the time dependence 
of q(t)d and Io'om(t) correspond to each other. With E - H and H - -E we must 
obtain mutually corresponding field patterns. 

12.2.4	 We can use the field sketch of Problem 12.2.1 with proper interchange of 
variables. 

12.3	 SUPERPOSITION INTEGRAL FOR ELECTRODYNAMIC 
FIELDS 

12.4:	 ANTENNAE RADIATION FIELDS IN THE SINUSOIDAL 
STEADY STATE 

12.4.1 From (4) 

tPo(O) = sin 
0 (' e-jlc.' ,:ilc.' cOIBdz' 

l 10 
= sin 0 1 {e-jlc(1-co8B)' _ I} (I) 

I jk(cos 0 - 1) 

= sinO 2 . [kl(l_ n)] -jlc(1-co8B)'/2 
l k(I-cosun) sm

2 
cos u e 

The radiation pattern is 

(2) 

With kl = 271" 
.T.(n) _ sin

2
0 (. 2 2 . 2 0)... u = Sln 7I"sm-	 (3)

471"2 sin4 (Oj2) 2 

The radiation pattern peaks near 0 = 60°. 
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1jJ(O) 

Figure 812.4.1 

12.4.2	 By analogy with (3) one replaces H<f> - E<f>, IJ +-+ f and i(z')dz' = jw(qz)dz' ­
J'w(qmd) dz' = J'wIJIJ(z')dz' where we interpret qd and qmd as assigned to unit 
length. Thus, from (2) of Prob. 12.2.2, with IJo - IJ, fo - f, 

2 jkr I¥! ., E<f> = -sinO--k e- - M(z')eJkr'lrdz'
4'11' r f 

2 jkr 
= k I . ~e- M ejOl.°f (0)

4'11' V~ 4 0 0 

where 

12.4.3 

tPo(O) = _sinO (' sin~(z' -I) ejkz'cos8dz'

I Jo sm {3I


= _ si~O {' ~{(ej~(z'-I) _ e-j~(z'-I))ejkzlcOs8d({3z') 
{3lsm{3I Jo 2J 

sinO 1 {ej (IJ+kCOS8)1 -1 _. I e-j (IJ-kcos8)1 -1 
e3IJ

. ,}
= - - e J~ ­

(3lsin{3I2j j(l+~cosO) -j(l-~cosO) 

sin 0 2 {{3I' . {3I k jk cos 81}
= {31' {3I k 2 cos + J sm -(3 cos 0 - e 

sm 1- "ji'i cos2 0 

12.4.4 (a) From (12), and with an = n~ix, 

tPa = L3 
ejka".lrei(OI.,,-OI.o) 

(1)n=O 

= 1 + ej(f cos <f> sin 8+01.1-01. 0 ) + ej (7I' cos <f>sin 8+01.2-01. 0 ) 



12-7 Solutions to Chapter 12 

(b)	 Since tPo = sin 0, and Qi = 0 

ItPolltPal = 11 + 2 cos (i cos e; sin 0) IsinO (2) 

(c) 
tPa	 = 1 + ejf(C08~8iD9+1) + ejll'(Co8~8in9+1) 

= ejf(Co8~8in9+1){e-jf(c08~8iD9+1) + 1+ ejf(C08~8iD9+1)} (3) 

= ejf(Co8~8in 9+1) [2 cos i(cos e; sin 0+ 1) + 1] 

12.4.5 (a) 

tPa(O) = L1 

ejlc....lrej(a .. -ao) = 1+ e j [lI'co8/1+al- a o] (1) 
n=O 

(b) 
(2) 

(c) 
G = 411"cos2 (~cosO) sin2 0 

I; dO 1:11' de; sin 0cos2 (~cos 0) sin2 0 
(3) 

Define 
cosO = u (4) 

r dO sin3 0cos2 (~cos 0) = j1 du(I- u2 ) cos2 (~u) (5)Jo 2 -1 2 

Now consider integral 

I d 2 2 1 ( 1. 2 ) 2 z3 2z 1 . 
zz	 cos "z = '2 z + '2 sm z z - 3" + "8 cos 2z - 8" sm 2% (6) 

The integral is 
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The gain is 
411'" cos2 (~ cos 0) sin2 0

G - ---7~-;:;''-;:--	 (8) 
- 211'"U + ;2} 

(d)	 We find for '11(0) of array 

'11(0) = {I1/10(0) I11/11(0)111/12(0)1}2 (9) 

with 
1/12(0) = 1- eikasinOcos'" (10) 

In order to get maximum superposition in the direction 4> = 0, one needs 
ka = 11'" or a = >../2. Thus 

11/12(0) I= 12 sin (~sin 0 cos 4» I 

12.5	 COMPLEX POYNTING'S THEOREM AND RADIATION 
RESISTANCE 

12.5.1 The radiation field Poynting vector of the antenna is from 12.4.2, 3.4.5 

~(EoH;) = ~ ((:~): filloI2(1/Io(0))2	 (1) 

where 1/10(0) is from 12.4.28 

_ 1 cos ( 3;) - cos (3; cos 0) 
1/10(0) - e1\') . e1\') . 0""2 sm ""2 sm (2) 

~ cos (~cosO) 
311'" sin 0


The radiated power is


2	 ~1 1\' 121\' 1 ~-110 1Rrad = dO sin 0 d4>-EoH;
2 10 0 2 

_ ! (311'")2. ~/ II 12(~)2 11\' cos
2
(~cosO) . (3)- 2 (4 )2 V J.Lo/ fa a 3 211'" . 2 sm OdO11'" 11'"	 0 sm 11 

= !II 12 VJ.Lo/fo( )l1\'dO' cos
2 e; cosO)

a 2 211'" smO 2 
2 411'" 0 sin 0


Therefore

VJ.LO/fO11\' . cos2(3; cos 0)

Rrad = 2 dO sm 0 . 2 
11'" 0 sm 0 

_ 1 11 cos2(321\' x)	 (4)- -VJ.Lo/fo dx	 2
211'" -1 1- x 

= 1040 
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12.5.2 The scalar potential of the spherical coil is (see Eq. 8.5.17) 

(1) 

This identifies 

(2) 

We have for the 0 component of the H-field 

(3) 

and thus the radiation field is 

k2 A 

A m
Ho ~ ---sinO 

411"r 
(4) 

The power radiated is 

(5) 

Therefore, 

Rrad = ~; VlLo/foN 2 (kR)4 (6) 

The inductance of the coil is from (8.5.20) 

(7) 

and therefore 

(8) 

12.6 PERIODIC SHEET-SOURCE FIELDS: UNIFORM AND 
NONUNIFORM PLANE WAVES 
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12.6.1 (a) From continuity: 

ak:c . A 0 az + 3wO'. =


Taking into account the z-dependence:


(2) 

and therefore 
(3) 

and 

(b)	 The boundary condition on the tangential B is: 

nil I)' 

Since 
B II i. (4) 

and thus 
b: - b: = k:c	 (5) 

H. is antisymmetric, of opposite sign on the two sides of current sheet. 

(6) 

and thus 

(7) 

From (12.6.6) and (12.6.7) 

E = Re[ix ( - f30'0) + i)'( ± 0'0 )]e'Fillllei(wt-k.,:c) (8) 
2Eok:c 2Eo 

(c)	 As in Problem 12.2.1, a plot of a divergence-free field can be done by defining 
a potential. and obtaining the field 

(9) 

Now, it is clear that the potential necessary to produce (8) is 



12-11 Solutions to Chapter 12 

Then 
• ~;o,. • 8q, • 8q, 

-I" X v 'li' = Ix 8y - I)' 8x 

and is found to be equal to (8) with f(x, y) equal to unity. By visualizing the 
potential, one may plot E lines. 

k y imaginary: H-lines E-lines 

lines of equal 
height of ~ 

Figure S12.6.1a


At wt = 0, the potential is


k y real:


E-line


../ H-line 

L 

Figure S12.6.1b 

x 
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At wt = 0, the potential is 

12.6.2 (a) The E-field will be z-directed, the H-field is in the z - y plane 

t. = Asin(kzz)e'fi1c1l1l (1) 

From (12.6.29) 

I'r 1 8E. 1 ( ·k)A· kn z = --.--- = --.- T' SIB zZ (2)
'WIJ 8y ,wIJ II 

The discontinuity of tangential H gives: 

D X (DB - Db) = K (3) 

in z - z plane. And thus, combining (2) and (3) 

(4) 

and therefore 
A=_wIJKo (5)

2lell 

From (2) and (5) 

(6) 

and from (12.6.30) 

II 
II 

= ,.le
k 
z K

2 
o cos(k

z 
z)e'fi1c1l1l (7) 

II 

(b) Again we can use a potential ~ to which the H lines are lines of equal height. 
IT we postulate 

Then 

~ = (~) Ko sink ze'fi1c1l1likll 2 z 

• VA;. • 8~ Ko kz k 
-I. X '* = Ix 8y T ik cos zZ 

ll 

• 8~ • K o • k • Ko kz 
-I)" 8z = TlxT SIB zZ -I)" T ik cos 

ll 

The potential hill at wt = 0 is 

Re[~J = T~o sin kzz sin klly 

(8) 

(9) 

k 
zZ 

(10) 
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wt = 0

o 0 0

o

o H-Iine

E-Iine

12-13

o
o

(c) We may write (1)

o 0 0

Figure Sn.6.2

and for (6) and (7)

:H: =i Ko { ± ix(eik.."'=fikYI/ _ e-ik.."'=fikyl/)
4

+ :'" ill (eik .."'=fikYI/ + e-ik.. "'=fikyl/)}
1/

(11)

(12)

12.6.3 (a) At first it is best to find the field E z due to a single current sheet at y = O.
We have

From (12.6.29)

(1)

(2)



12-14 Solutions to Chapter 12 

From the boundary condition 

(3) 

we get 

2LAe-:iksf/ll = _Ke-:iksf/ll 
WI-' 

and thus 
A = _ wI-'K (4)

2fJ 

Now we can add the fields due to each source 

(5) 

(b)	 When 

(6) 

Then 
K b = -Kae-j(ltl (7) 

there is cancellation at 11 < -d/2 
(c) 

(8) 

(d)	 In order to produce maximum radiation we want the endfire array situation 
of fJd = 'If/2. (Indeed, sin fJd = 1 in this case.) Because 

(9) 

we have

1 [ ] 1/2
w=-Viii ~_(~)2	 (10) 

f/Il 2d 

The direction is 
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12.6.4- (a) If we want cancellations, we again want (compare P12.6.3) 

Ub = -ua.e-;klld (1) 

(b) A single sheet at y = d/2 gives 

H. = ±Ae-;k..ze'F;k ll (lI- t)	 (2) 

Now,

akz .,.

--+JW(T=O	 (3)az 

gives 
k 

z = kW,.
(Ta. (4) 

z 

and 

2h;I II=0+ = ~ (Ta (5) 

Therefore 
A 

= 2k
W,.

(To. (6) 
z 

and the field of both sheets is 

H. = j~ua.e-;k"Ze-;kll(lI+t) sinkzd	 (7)
kz 

(c)	 klld = 11'/2. Therefore, as in P12.6.3,


W = _1_[k2 _ (.!.)2] 1/2

..;iiE	 z 2d 

(8) 

12.7	 ELECTRODYNAMIC FIELDS IN THE PRESENCE OF 
PERFECT CONDUCTORS 

12.7.1	 The field of the antenna is that of a current distribution Icoskzl. We may 
treat it in terms of an array factor of three antennae spaced >../2 apart along the 
z-axis. From 12.4.12 

3 

l,pa(O)1 = 1L:e'kt COB91 = 11+eiJrcoB9 +e2;JfCOB91 
,=0 (1) 

= le-;JfCOB9 + 1 + e;JfCoB91 

= 1+ 2cos (11' cos 0)


The function ,polO) follows from 12.4.8 with kl =11'


,polO) = ! cos (~cos 0)/ sin 0	 (2)
11' 2


Combining (1) and (2) we complete the proof.
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12.7.2	 The current distribution, with image, is proportional to Isin kz I. The point at 
which the current is fed into the antenna calls for sero current. Since the radiated 
power is finite, Rrad is infinite. In practice, because of the finite losses, it is not 
infinite but much larger than VIl-o/Eo. 

12.7.3 (a) We have a surface current k z 

akz ... 
az + 1WO'. = 0 (1) 

Therefore 
.. jw. (1l"Z)
Kz = -TO'o SID -	 (2)'II'" a a 

The H-field is z-directed and antisymmetric with respect to y. 

.. ('II'"z) '/I:HM = ±Asin -. e~' IIY	 (3)
a 

From the boundary condition 

n x (ila - ilb) = it. (4) 

with n II ir-
A . (z) jw .	 (z)2 SID	 - = --O'oSID - (5)

a	 'II'"/a a 

jw
A= ---0'	 (6)

2'11'"/a 0 

The E-field is from (12.6.6) 

t 1 all. 1 ( iw ) . . (z) '/I:z = -.--- = ±-,-	 - --0'0 (=f1k ) SID - e~' IIY 
1WEo ay 1WEo 2'11'"/a Y a 

jkyO'o . ('II'"z) ~j/l: y 
(7) 

= Sln-e	 II 
Eo(2'11'"/a) a 

and from 12.6.7 

E 1 all. ( 1)( iWO'o) 'II'" ('ll") '/I:y = --.--- = - -,- =f -- -cos -z e~' II" 
1WEo az 1WEo 2('II'"/a) a a (8) 
0'0 () '/I:=±-cos -z e~' II"

2100	 a 

(b)	 On the plate at z = -a/2


... t I jk"O'o ~'/I:

0'. = Eo	 z z=-a/2 = - 2'11'"/a e ' II" (9) 
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At z = a/2 it is of opposite sign. The surface current is

~ Ii I - iwuo Tile y
A y = - II 11.=-0./2 - ±-/-e 1/2'11" a

and is the negative of that at z = a/2.
(c)

k2 k2 2
II. + y = W /-&oEo

and thus

12-17

(10)

(11)

(12)ky = VW2 /-&oEo _ {~)2

Again we may identify a potential whose lines of equal height give E. Indeed,

(13)

gives

(14)

(d) For kg imaginary and wt = 0

wt =0 wt = rr/2

displacement
current density

Flsure 812.7'.3.
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For kv real, wt = 0 

Re[.J ==f sin cr:l:) cos kv!lto/)
Eo 211' a a 

wt = 0 wt = 71" /7. 

disphu:ement 

convection 
current 

displacement 
ftux \Ins 

Figure S12.f.lb 

12.1.4 (a) We now have a TE field with 

(1) 

From (12.6.29) 

18E16 1 (. (1I':I:)'F'/oIia: = --.--- = --.- =f1k )Acos - e IIV:J 
1w~ 8y 1w~ 11 a 

(2) 
= ± k1l A cos (11':1:) e'Fj/ollv 

w~ a 
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and the boundary condition

we obtain relation for A:

k" '11":& '11":&
-2-Acos - = Kocos-

wp a a

12-19

(3)

(4)

or

and thus

From (12.6.60)

A= _ wpKo

2k"
(5)

(6)

(7)

(b) Since the E-field is z-directed, it vanishes at the walls and there is no surface
charge density. On wall at :& = -a/2

and thus

Flsure SlJ.T.(a

k - .'II"/a K 'fi"~"
II - 3 2k oe

"
On the other wall, the current is opposite.

(8)

(9)

(c)
k" = JW2poEo - ('II"/a)2 (10)

since kill: = 'II"/a. Again we have a potential~, the lines of equal height of which
give B.

1 Ko ('11":&)",""
~ = --cos - e" ~"

jk" 2 a
(11)
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(d) For ky imaginary:

wt = 0

Solutions to Chapter 12

wt = 1r/2

,_--..-- H-lield

o ~---r- E-field

00G
x

000

o

Figure SU.f.4b

for ky real:
o

E
o 0 ~
000

o

00(;)
(;) 0 0

o

Figure SU.f.4.:

H

wt =0




