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SOLUTIONS TO CHAPTER 11

11.0 INTRODUCTION

11.0.1 The Kirchhoff voltage law gives
v=uc+L§—:-+Ri (1)
where i
. Ve
1= C—(E (2)
Multiplying (1) by ¢ we get the power flowing into circuit
. - - d 1 .2 .2
m—vcz+dt(2Lz ) + Ri (3)
But d d 1
. v
v = C’—Etﬁuc = E(—z-Cvz) (4)
and thus we have shown 4
vt = aw + iR (5)
where 1 1

Since w is under a total time derivative it integrates to zero, when the excitation 2
starts from zero and ends at zero. This indicates storage, since the energy supplied
by the excitation is extracted after deexcitation. The term 2R is positive definite
and indicates power consumption.

11.1 INTEGRAL AND DIFFERENTIAL CONSERVATION
STATEMENTS

11.1.1 (a) If § = S;ix, then there is no power flow through surfaces with normals per-
pendicular to z. The surface integral

fS-da
s

[Sz(21) — Sz(z2)]A

gives (z1 > z2)
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because S, is independent of y and =.

(b) Because W and P; are also independent of y and z, the integrations transverse
to the z-axis are simply multiplications by A. Hence from (11.1.1)

A5 (1) - Safea)] = AS / Wdz + A / Pudz

When z; — z3 = Az,

dz '%2

Suls1) = Salzs) + 52| As

JWdz = WAz, [ Pydz = P4Az and we get

We have to use partial time derivatives, because W is also a function of z.

(c) The time rate of change of energy and the power dissipated must be equal to
the net power flow, which is equal to the difference of the power flowing in
and the power flowing out.

11.2 POYNTING’S THEOREM

11.2.1 (a) The power flow is

ExH=-E.H,4i, (1)
1"
iy
Vd | { [}
_.I.. o
y=-b

Figure S11.2.1
The EQS field is

Va
5 =L (2
9H,  OE,

3y - <ot (3)
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and thus

dE,
ot

since H; = 0 at y = 0. From (1), (2}, and (4)

H; = yeo

Vad V4

ExH=—yye,2 2 (%) = , Yooy, &V

@
(b) The power input is:
- / ExH-da

over the cross-section at y = —b where da = —i, and therefore,

beo Ve d,1,
/ExH da= 220wy, 22 = 2 (Lovp)

with
€bw

a

C =
(c) The time rate of change of the electric energy is

%chdv= ifleoEzdv 4 1eo(Vd) abuw]

= 3 (lebwygy
dt‘2 a

= (Ecvf) QED

(d) The magnetic energy is

1, 1 ° .
W = —MOH dv = g HoOW Hidy
-b

d V42
2uoaw [eo ]

Now 4 v
Yd

dtVd T

where 7 is the time of interest. Therefore,

_ I;AL,,eob2 1 bw
Wi = 6 12 Vd E °a Vi

1 potob? 1 b2
3 2 3c22

11-3

(4)

(5)

(6)

(7

(8)
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11.2.2  (a)
H, = "é’ (1)
w
From Faraday’s law
9B, ___ 8H, @)
dy Bo"5¢
and therefore i
p .
= — 3
Ee = —poy7, () (3)
S =Ex H=-EH,{, = -1, £ ‘:’,yrdﬂ
ix
iy

—

14(t)
Figure S11.2.2

(b) The input power is — [ S-da, integrated over the cross-section at y = —b with
da || —iy. The result is

_Bob dl, dl
/s da=TFawgali= g3l
with
L=poab
w

(c) The magnetic energy is

/W dv—/dv —uoH* = -;-abwpo% = %Llﬁ

with the same L as defined above. Thus the magnetic energy by itself balances
the conservation equation.

(d) The electric energy storage is

1 1 p? (dl\*8®
/ Wedv = / geoEldn = Zeote (—d-ti) S

=% bnlﬁ_ﬁg 15°"°” /W dv

2 wr



Solutions to Chapter 11 11-5

where dIg/dt ~ I;/r, with 7 equal to the characteristic time over which I
changes appreciably. Thus,

/chu</Wmdv

Leopod® 1 b2
3@ gap <!

as long as

11.3 OHMIC CONDUCTORS WITH LINEAR POLARIZATION

AND MAGNETIZATION

(a) The electric field of a dipole current source is

_ tpd
" 4nord
The H-field is given by Ampére’s law

[2 cos 6, + sin 6i5) (1)

VxH=J=0E (2)

Now, by symmetry it appears that H must be ¢ directed

H=1,H, (3)
and thus 1 8 19
VXH=i,m%(H¢Sln0) —ia;a(fﬂ}) (4)

By inspection of the f-component of (4), with the aid of (1) and (2), one finds

= tpd
*” 4ne2

sin 4 (5)
The same result is obtained by comparing r components. Therefore,
ExH= (ﬁ)zll[—zcososin 8ip + sin? fi,| (6)
4 ] ord
The density of dissipated power is
Pi=E-J=0E’= (""—d

4ir
= (42 1 o2
_(41r ar6[1+3c°s 0]

1
)20—;3[4 cos? § + sin? 4]

(7)
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(c) Poynting’s theorem requires
V-8+P;=0 (8)
Now V - 8 in spherical coordinate is

12

19,, .
V.-8= r—25-;(r S) + ~ind 30 (Se sin 6)
Now .
tpd 2 1 2 2 =2
V. (E xH) = (£-)"—[-8sin? § — 4cos® § + 25in? 4]
4x’ or® 9)
(%2 L 2
= (41) 6r6[1+3cos 6]
Thus, (8) is indeed satisfied according to (7) and (9).
(d) L eons
— 1p@ CO80
=i,

V.-(®J)= (i”—:)2V . ;1'3[2cos2 83, + sin 0 cos Oy
= (%3 1 g 20— 2cos?d + sin?
= (41‘_) ar6[6cos  — 2cos® 6 + sin® 0]
= (22 L 29| =V .
(47) ar6[1+3cos =V (E x H)

(e} We need not form the cross-product to obtain flow density. The power flow
density is the current density weighted by local potential .

11.8.2 (a) The potential is a solution of Laplace’s equation

v
o= —l—;%ln(r/a) (1)

_ v iy
E= @ ()

ov i,
VXH_J—UE—W_; (3)
from Amplre’s law. By symmetry

H=i,Hy (4)

and
0Hy  ov 1

"8z In(afb)r (5)
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and thus
ov =z

e = “inaft)

N

2=l

Figure S11.3.2a

(b) The Poynting vector is

0'1)2 r4

=K H:—.B-——————
S=Ex 2 (alt) 2

(c) The Poynting flux is

fS-da=—/ - S.2nrdr
r=b

(d) The dissipated power is

2 2xr
dvP, = | dvoE? = AL
/ vy / vo. /z__l/‘_b lnz(a/b rdz

2wl ,

= In(a/b)"

(e} The alternate form for the power flow density is

v2

S=8J = —amln(r/a)f

7{5 -da = —[S,(r = b) — Sy(r = a)|2xbl

__2mal o2
In(a/b)

This is indeed equal to the negative of (9).

ek
il

11-7

(6)

(8)

(9)
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ExH ®J
= NN
— freir
Figure S11.3.2b
(f) See Fig. 511.3.2h.
(g) At z=—I,

2xoly .

fﬂ'ds—i;('a—'/l,S:t (12)
Thus
. 2q0l ,
vi= In(a/b) v* Q.E.D. (13)
11.83.3 (a) The electric field is
v,
E= 21. (1)
From Ampére’s law:
ﬁ z
T %% o z=d
|
v : %é r !
I 4/ | z2=0
Figure S11.3.3

fH-ds=/(J+eaa—?)-da (2)



Solutions to Chapter 11 11-9

_fx [.07': + e-(%(v/d)] forr<b
2rrHy = {rb’[a% + e (v/d)] + x(r® — b2)eo % (v/d) forb<r<a (8)
and thus

2[0 +e ‘(,,/d)] for;'<b
Hy = { [ab.,_:ebz 4 (v/d) + (r* - b¥)eo & (v/d)] forb<r<a @

The Poynting flux density

E XH=i. Xi¢EsH¢
~i,5(0% +ed(v/d)} forr<b (5)
= -—i..-;—r{%[ebz+€o(rz—52)]%(0)+!3"'0}% forb<r<a

®) d
—/ExH-da=—/ i -E x Hdz27nr
{ w12 (0% + e (v/d))v r<b (6)
w{1[eb® + eo(r? — b2)] % (v/d) + £ v}v b<r<a
For r <b,

/—dv+/Pddu - _/;_0 /—o 2€d —t(v/d)z%rdrdz
+ f i f _ o(v/d)2mrdrdz (7a)

d 2 v 4
—ev:ﬁ(v/d)vrr +o—rnr

Forb<r<a:
b 1.4d 2
—dv+ Pydv = —e—(v/d)*2xrdrdz
=0 Jr=0 2 dt
—€ v/d)*2xrdrdz
[ et

+ / / o(v/d)?2rrdrdz
=0 Jr=0
2 — 33 2
= 1r{ %—v + Eo(r2 3 b )u] %(u) + %02} Q.E.D.

(76)

S=2(J+ eaE (8)
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The potential ® is given by

=—5(z—4)
and ] 4y
J+€§E= i-("g'*".nd) forr<b ©)
at iseo s forb<r<a
Therefore,
S = ~1(ZL+5%¢)(z-d)y forr<b (10)
—ia %% (z-d)y forb<r<a
(d) The integral is
- f S.da= f 2nrdrlS, (z = 0) — S, (2 = d)] (11)
0
For r < b: , 4 4
ov  edv gu  edv
- /o 2rrdrd(Z+ §30) % = w2 (T 4+ S20)0 (124)
Fora <r <b:
b
_ ov edv,v eoﬂg
= / 21rrdrd( d %) d +/ 27rdrd 1 dtd (126)
2( oY _e_@ _ 12760 Y
—rb( + )u+1r(r b)ddt
Equations (12) agree with (6).
(e) The power input at r = a is from (12b)
o0V  €dv 2 _nedv .
b( +ddt)v+1r(a b)ddt =ut (13)

where
t = xb? [— tem (v/d)] + x(a? - b’)eo & (v/d)

which is the sum of the dlsplacement current and convection current between
the two plates.

11.3.4 (a) From the potentials (7.5.4) and (7.5.5) we find the E-field

E=-Vd= i,.EocosqS(l + (ﬁrz_)zg%)
b a

—i¢Eosin¢(1— (g)zu) r<R

op + 0,

(1a)
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and
20,

op+ 0,

E,(ir cos ¢ — iy sin ¢) r<R (18)

1y

Figure S11.3.4

The H-field is z-directed by symmetry and can be found from Ampére’s law using
a contour in a z — z plane, symmetrically located around the z-axis and of unit
width in z-direction. If the contour is picked as shown in Fig. S11.3.4, then

¢
fH~ds=/J-da=2Hz=2/ Jrrdd
c s 0

2
2raansin¢(1+ (5)2‘-’-"——‘") forr> R (2)

— r opt+o,
2’%&;,%‘;: sin ¢ forr< R
The Poynting vector is
. . . 2 . 2 Risfop—o0, 2
Ex H = E4H,i, — E H,ig = —i,r0,E2sin* ¢|1 - (7) o
2 . R.2f0p— 04 2
—iyro EZsingcos ¢ 1+(7) obF 00 r>R
20 2
— s E2 gin? a
irrop ES sin” ¢ <—0a T O'b)

2
20
—1i E?sin 4 <R
sTos K ¢cos¢(aa+ab> r

(b) The alternate power flow vector S = ®J follows from (7.5.4)-(7.5.5) and (1)

2
dJ = —i,.aaE'Zrcos2 ¢ [1 - (E)4 (M) ]

4 Op + Oqg

. R —0,]?
+i¢0'aE§rsm¢cos¢|:1 — (—)zu] r>R
r’ op+og
2o \? (4)
= —i.op E2 2 ——2—
rObEor cos ¢<0b+0a

2
20,
+i40pE2rsin ¢ cos <R
v0sEprsin ¢ ¢(ab+aa) r
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(c) The power dissipation density Py is

2
P;=0E? = o-aEz cos? ¢[1 + (E)ZM]

. 20 — O,
+a,,Egsm2¢[1—(T) ab+a:] r>R
20, 2
= g, E? = R 5b
7% Oat+0p r< ( )

(d) We must now evaluate V - (E x H) and V - ®J and show that they yield —Py.

2
V-S=%M+}-%=—2%E‘zsm ¢[1+( )¢ (—"") ]

or a¢ %o
2
— 04 E(cos® ¢ — sin® ¢)[1+( ) (o‘ +ZG)]
BN (6a)
ooty (352)
2
— 04 E2 cos? ¢[1+( ) (cn,_+0'_)]
forr > R,
V.8 = 20 Bin? ¢ (2%
- 8§ = ~20,E2 sin ¢(m)
2
~ (cost ¢ —an onB? (25 ) “
20 2
= g3 2e)
Oq+0p

for r < R. Comparison of (5) and (6) shows that the Poynting theorem is
obeyed. Now take the other form of power flow. The analysis is simplified if
we note that V-J = 0. Thus

_ _7.9 10 5 _ g2
V-dJ=3J V@—J,.ar<1>+J¢ a¢<I>— oE
2
20p — Ogq
= ~eaB o g 1+ (1) %) (7a)
2 9 — 2
— g E, gin ¢[ (—)] r>R
Op+ 0q
and
2 20’4 2
V. -9J = -0, E; (0'4+0'b) r<R (7b)

Q.E.D.
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11.4 ENERGY STORAGE

v

11.4.1 From (8.5.14)-(8.5.15) we find the H-fields. Integrating the energy density we

find
- 1 g2_1 " 2 /"- /2" Niy2
w—/dvzpoH = 2/10/0 rédr A sin 0dé A d¢(3R)

=) L 2m :
+ lp..,/ rzdr/ sinﬂdﬁ/ dd)(-]\ﬁ—)z(—Ri)6(4cosz0-i-sin2 9)
2 R 0 0 6R r

1 47R® Niy2 1 Niyz2 1 4
= Euo——é——(é—ﬁ) +§“°2”X4(§E) x R

12aN2%u,R ,
= -
2 9

where we have used

/ sin §d6 (4 cos? 6 + sin® ) = ——/ d(cos8)(3cos® 6 + 1)
0 0

1
=/ dz(3z% + 1) = (2° +z)|1_1 =4

Because

we find that

Q.E.D.

11.4.2 The scalar potential of P9.6.3 is

_Nicos¢ (R/r r>R
21+ A |

E

The field is

- icos¢{(i,.cos¢+i¢sin¢)(R/7')2; r>R
+

N
2R 1 £ 2 (ircos ¢ — ig sin ¢); r<R
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The energy is
=1 / —poH2rdrdd + 1 / —szrdrqu
= N: l‘/“o
“°"Rzl(2R 1+ J‘—)
1
+ = 1(2R1+-’L) / ( )rdr
2 2,2
L TS 0 WO
4(1+£)? 4(1+£)?
1 pniN? , 1 _,
=" 3 ==Is
2(1+£) 2
11.4.3 The vector potential is from (8.6.32)
_ _BolNipirya 7y
A= 3 [(a) (a)]sm¢i. r<a (1)
poH=V x A
. Ni, . g r .
=—i, X VA, = 320 X [Z(r/a) - 1] sin @i, + (; - 1) cos iy
= ""N' [(— — 1) cos ¢i, - (2— -1) sm¢x¢]
The energy is
N | o, Nity2a [© r 2 r 2
l/(; '/(; —2-poH2rdrd¢ = ?l(-:;) w[) rdr[(; - 1) + (2; - 1) ]
= Boy Niyar 1,5
=T =3k
Therefore,
=T 2
L= 36uolN
1144 The energy differential is
dwy, = t1dA; +12d)A2 (1)

The coenergy is

dw'm = d(tlkl) + d(iglg) — dwy, = A1diy + Aadia (2)
= (L1181 + L1gt3)diy + (L2181 + Lastz)dia
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with
L21 = L12 (3)

. 21,122
t2

—_—
3!
Figure S11.4.4

If we integrate this expression along a conveniently chosen path in the ¢; — 2 plane
as shown in Fig S11.4.4, we get

t1 ‘.2
/ . Lyit1diy +/ 1m0 (L21%1 + Lagig)diz
l1= 3g=

ig=0 iy =conat

1 . .. 1 .
= §L111f + La1ty22 + ELzzig

2 (4)
= E(Lnif + Ligi192 + La1tat; + Lo2i2)
1 . .. .
= 5L,,(Nfzf + 2Ny Npigip + N2i2)
when the last expression is written symmetrically, using (3).
11.4.5 If the gap is small (a — b) < a, the field is radial and can be evaluated using
Ampére’s law with the contour shown in Fig. S11.4.5. It is simplest to evaluate the

field of stator and rotor separately and then to add. The field vanishes at ¢ = /2
and thus

}(CH .ds = —(a — b)H,(4) (1)

length ! along
2 contour

Figure S11.4.5
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For the stator field, the integral of the current density is

*/2 . .
/J-da=—f Nty i gadg = — N3 o4 (2)
S ¢ 2(1 2

where Nj is the total number of terms of the stator winding. Therefore, the stator
field is given by

g _s N
H~iH, = l'2(a 5 cos ¢ (3)

The rotor coil gives the field

Nz

H = 20— cos(¢ — 1) (4)

where N; is the total number of turns of the rotor winding. In a linear system,
coenergy is equal to energy, only the independent variables have to be chosen prop-
erly, i.e. the energy expressed in terms of the currents, is coenergy. When expressed
in terms of fluxes, it is energy. The coenergy density is

1
W:n = El‘on (5)

The coenergy is

1 2
W = ghole—b)l | Hlads |
(6
_ 1 ol . ) o
=2 4,(‘: a1r) [(N151)® + (Nai3)? + 2Ny Ngiy iz cos 6]
We find
e fin Lo xpoal N” o
113 ( — b)
and
Lyp= Ly = ﬂ“oal N1N3 cosf

4(a-1)

ay
D=|——=+6¢6]E
<\/1+02E2+e>

The coenergy density in the nonlinear medium is [note E - dE = d(1E?]

W! = /D dE = / ( 1+aE2+€°)dEa
V1+ axE?

1+ azE? + EeoE’
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In the linear material L
2
wl = EGOE

Integrating the densities over the respective volumes one finds (E? = v?/a?)

y e v2 1 o2 1 2
w, = [&—2—\/ 1+ a3 + 22 Eca + Eeoa—z(b — €)ca

(a) H = i,¢/w in both regions. Therefore,

Q.E.D.

B =igu.t/w

. (23} .
B= o+ —————
ig (u Py 2)z/w

in region (b). The coenergy densities are

in region (a)

%p.og,- in region (a)

W' = . — .\
m %(uo;—i+2%’;\/1+ag'%i;) in region (b)

The coenergy is

1 42 1 oy | 12\ 42
' - ot 21 LA D
wm—wAa2uow2+wA52<uo+2a2 1+a2w2)w2

11.5 ELECTROMAGNETIC DISSIPATION

11.5.1

From (7.9.16) we find an equation for the complex amplitude E,:
o Jwep + op 5 (1)
(Jwea + 04)b + (Jwep + ob)a
and since . .
ab, +bE, =% . (2)
we find .
By=__Jato ®)

(Jweq + 0a)b + (Jwep + ob)a

(Another way of finding Ey from (1) is to note that Ea and Eb are related to each
other by an interchange of a and b and of the subspcripts.) The time average power
dissipation is

1 1
(pd) = EUaIEaizaA + EoblEblsz
_ Aaga(w?e] + 0}) + boy(w?e] + oF)
B 2 (baa -+ an)2 + w? (b€a =+ aeb)2

lof?
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11.5.2 (a) The electric field follows from (7.9.36)

£ 2 . . N Oq t+ jwea
= — = —_ H lb
Ey = ~V® = 3E(cos fi, — sin iy) 20u T 08 + j0(2es T )’ r<R (1b)
Therefore
1 A 2 9 2 0' + w
= - = - 2b
(Pa) = 00| Bb" = 3| Egl" o0 (204 + )2 +w2(2e Ty T<E (26)

The electric field in region (a) is

E, = p{irc080[1 — 9+ gulea - e”))(R/r)s]

(20,, +0p) + ]w(Zea + €

(204 + 03) + jw(Zea + e

If we denote by
0o — 0p + Jjw(eq — €p)

A -
(204 + ob) + Jw(2eq + €)

we obtain
(Pa) ——a'a|E |2 = |E,|?{ cos? 8[1 — 4(R/r)°Re A + 4(R/r)®|A|?]
+sin?0[1 + 2(R/r)*Re 4 + (R/r)%|A|?]}

(b) The power dissipated is
41rR3

(Pa) (3)

(pa) =
where (Py) is taken from (2b).

11.5.3 (a) The magnetic field is 2-directed and equal to the surface current in the sheet.
In region (b)

H = Hb%, (1)
in region (a) it is
H=iK (2)

The field at the sheet is, from Faraday’s integral law

b
E, = byodH at z=-b (3)

The field at the source is

dK dH®
Ey =apo,—— ” +bpo—— & (4)
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The power dissipated in the sheet is, using (3)

dH®

2
P = / aEzdv = kodbzp,g(T) (5)

The stored energy is
1
/ Wdv = 1;A(,(H“)zadw + = po( H®)?bdw
v 2 2
= %m,dt‘u[b(Hb)2 + aK?|

(b) The integral of the Poynting vector gives

dH®
?{E xH da=~E,H,wd = (a,uoddlt( + buo— - )Kwd (7
Now dH
Hy=K-E, A=K — bpodbA (8)
When we introduce this into (7) we get
dHbY2
f.EXH da——{ —apowd—— 2{ + buowd 7 }
iy (9)
- abzwdug(w)za/l

But the last term is py; and the term in wavy brackets is the time rate of
change of the magnetic energy.

11.5.4 Solving (10.4.13) for 2, under sinusoidal, steady state conditions, gives
A ! W Ty + - %‘Q T | a2 H,
= —| — 9w
(Jwrm + 1) J4Tm polAoa ™ ° 1)
1 . B—lo| 2
= | — JwTm + a“H
(Jwrm+1)[ 74Tm u+uo] ’
From (10.4.11), we obtain C
n 2po
A Ho A utp
C=-—(H+ <) =~—"""""H, 2
7 ( ° a,z) 1+ jwr,  ° (2)

The discontinuity of the tangential magnetic field gives the current flowing in the
cylinder. From (10.4.10)

Ay =—(H, - a%)simﬁ— Csing

B~ Ho 2p0 H,sin ¢ (3)
Btpo ptic 14w,

—[1 + JWTm + JWTm —

= ——ZL—sm ¢H, = K,
14+ jwry,
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Note the dependence of the current upon w: when wr, > 1, then the current is
just large enough (—2H,sin @) to cancel the field internal to the cylinder. When
wTy — 0, of course, the current goes to zero. The jump of Hy is equal to K. The
power dissipated is, per unit axial length:

2r
pa=3 [olBPdv = Joa [ 8,144 @)
2 2 o
But
O'EtA = K, (5)
and thus .
1 |K| _Ta 2w?T,
Y

(a) The applied field is in the direction normal to the paper, and is equal to
H,coswt = Ni,coswt/d (1)
The internal field is H, + K where K is the current flowing in the cylinder.
From Faraday’s law in complex form

f E.ds = —jwp(H, + K)b? (2)

Because K must be a constant, £ tangential to the surface of the cylindrical
shell must be constant. The path length is 4b. We have

R=oa= 228 g 4 p) 3)
and solving for K )
. __J¥Tm
k= 1+ jwrm, H, (4)
where Ab
Tm = “——"4 (5)

The surface current cancels H, in the high frequency limit wr,, — oco. In the
low frequency limit, it approaches zero as wr, approa.ches zero. Thus

_ l 2 14bAd0' 512 _ 2 2 W2T2
P = /0'|E| dv 2 o2A2 K" = AdN °1+ w?r? (6)

{(b) The time average Poynting flux is
—Re f ExH-da=—Re %4de£{*

= —Re {2bdH}(—jwrm)(H, + K)}
= Re Zbdjw‘rmﬂ;ff 7)
_ 2bd_ W13
oA 14+ w?r?
which is the same as above.

I o|2 — 2b wz'r,":, 2.2
cAd 1+ w372
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(a)

(b)

(c)

When the volume current density is zero, then Ampére’s law in the MQS limit
becomes
VxH=0 (1)
and Faraday’s law is
2]
VXE= —Euo(H+M) (2)

If we introduce complex notation to describe the sinusoidal steady state E =
Re B(r)e?“T etc., then we get from the above

VxH=0 (3)
V x B = —jwu,(H + M) (4)
If M is linearly related to A we may write

M=%.H (8)

where %,, is, in general, a function of w, we may define

B =po(l+ %m) (6)
and write for (4)
VxB=- jwﬁ (M
with . R
B=iH (8)
Because V - uo(H + M) = 0, we have
V-B=0 (9)
The magnetic dipole moment is, according to (20) of the solution to P10.4.3.
X Jwr
h= 21rR3ﬂ',,1 7ot (10)

with 7 = p,0 AR/3. As wr,, — oo, this reduces to the result (9.5.16). The
susceptibility is found from (5):

N JwT
Zm = —2n(R/ s)sm

where 1/s% is the density of the dipoles.

The magnetic field at £ = —l is

H=i K (14)
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The electric field follows from Faraday’s law: applied to a contour along the
perfect conductor and current generator

—aBy(~1l) = —jwpH,al (15)

and thus
E, = jwplH, (16)

The power dissipated is

d (17)

|1:=——la

1 A A
= SRe £, ;
1 "
= ERe jwi| K adl

Introducing (12) and (13) we find

w3r 5
Pd = W(R/S):s,uomll{lzadl (18)

From (10.7.15) we find

z+b
)

H, = K,exp—(1 + 7)( 5

(1)

so that H, = K, at the surface at z = —b. The current density is

- N . 0H, . (1+7) Nz +b
J~VxH=-i, a;:xy 5 K, exp—(1+ 5)( 3 ) (2)
The power dissipation density is
14,2
Py==-"*
4= 5 (3)

and thus the power dissipated per unit area is

z=0 5 A

R [ 2 2

/ Pydz ~ [ / exp — (z+4) dz = | K| watts/m>
z=—b c Jz=—b ) 206
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11.5.8 (a) From (10.7.10) we find H, everywhere. The current density is

OH, _ (1+47) » e~ (1+F 4 (14913
oz 5 P e(1+)} _ o~(1+5)%

J=(VxH), =-

The density of dissipated power is:

P _1|f|2_ 1,5 |26_23/6+2cos""‘7’”+ez"/‘s
4= 9 - *1e26/6 _9cos 2t 4 g~ 20/0

s — oK

_ LI N |2C°s}1 2’ ~+ cos 261

62 cosh 2" — cos 26”

The total dissipated power is

0 h 0
pd=ad/ Pddz—ad [K ]25u“_6_

2b 2%
——b 2cosh 22 —cos 2 |_, (3)
|&, | sinh 2 + sin 26”
206 cosh 2 — cos 2

(b) Take the limit § < b. Then sinh 2 & cosh 28 = 1¢2%/% and the sines and
cosines are negligible.
ad | 4
pa= H<I|K.[? (4)

which is consistent with P11.5.7. When 2b/6 < 1, then
2b 2b 1,2b2 1,2b,2
o () —cos ) w1433 - (1-33D7) - ©

2b

2b 4b
sinh (=) + sin ( )~ — (6)
§ §
and thus £
_ 1 42 5 _ adl 3 I
Pa=ado bRy = =3 (7)
The total current is ) )
1= K,d (8)
The resistance is
obd (
and .
Lo IRP
Pl B =ad5 (10)

Q.E.D.
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The constitutive law

Solutions to Chapter 11

oM
= = 1
o =™ @
gives for complex vector amplitudes
jwM = +H (2)
and thus
fm = (3)
m j'w
and
. ﬁ=/"o(1+£m) =I‘o(1+3%) (4)
The flux is
B=iH=yp,(1+)H ()
The induced voltage is
dx N
v= 0= Jwl (6)
and
2
~ Tw A
S=NM-—5, (7)
But
~ Nt
and thus
. N2y2,
A=p=2
ry” (9)
and thus
a . a NZw?. YN2uw?s . N
= Jwl = jwp, 81R t + to 81R = (jwL + Rp)s (10)
Thus
N2w? Y N2w?
L=p, 1% R,, = &A1Y (11)

8R 8R
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11.5.10 (a) The peak H field is

N]_ipe,k N1 2H¢21I'R

Hoesk = =5 R =2:r N, 22 (1)
Thus (see Fig. S11.5.10a).
B, P
' Q
—ZH‘; : } 2HC
T S
& " H
Figure S11.5.10a
(b) The terminal voltage is
2
v= —éN1 ™ B« 4B (2)

The B field jumps suddenly, when H = H,. This is shown in Fig. S11.5.10b.
The voltage is impulse like with content equal to the flux discontinuity:

2N, =22 B,.

(c) The time average power input is [ vidt integrated over one period. Contribu-
tions come only at impulses of voltage and are equal to

/mdt =2 X 2N1 B. -1(to) (3)
But
p = He (4)
and thus

f vidt = 4N, T B,H,_.Z;R (21rR——)4B H, (5)
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B

_>H

_— e ———

IMPULSE

—

H(t)

IMPULSE

-l

‘A
Figure S11.5.10b

(d) The energy fed into the magnetizable material per unit volume within time
dt is

dtH-%uo(H+M)=dtH-%B=H-dB (©)
As one goes through a full cycle,
f H . dB = area of hysteresis loop (7
This is 4H.B,. Thus the total energy fed into the material in one cycle is
volume fﬂ -dB = (21RE':—2)4B,HC (8)

11.6 ELECTRICAL FORCES ON MACROSCOPIC MEDIA

11.{.1 The capacitance of the system is
C= eo(b - f)d

The force is
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v

11.6.2 The capacitance per unit length is from (4.6.27)
Teo

In(£ ++/(/R)? -

where the distance between the two cylinders is 2. Thus replacing I by £/2, we can
find the force per unit length on one cylinder by the other from

(1)

f — 10219 1 2 d TeEo
T2 de 2 delin[h + VIERRY -1
Loy ¢ 1 (2)
— __luz ME, 2R ' (2R)? \/(5/23)2 1
2 n2[(¢/2R) + V(§/2R)? - 1] 5 +V(é/2R)? -

This expression can be written in a form, in which it is more recognizable. Using
the fact that A; = Cv we may write

A 1+ (¢/2R)/V/(¢/2R)? —1

fre R o +/(E2R) -

fo= - (3)

When £/2R > 1, and the cylinder radii are much smaller than their separation,
the above becomes

Al
= — 4
fe 2me, 26 (4)
This is the force on a line charge ); in the field A;/(2me,2¢).
Vv
11.6.3 The capacitance is made up of two capacitors connected in parallel.

2meo(l — €) 2rweé

C =
In(a/b) + In(a/b)
(a) The force is
1 ,dC gw(e—¢,)
fe= E”z_g = In(a/b)

(b) The electric circuit is shown in Fig. $11.6.3. Since R is very small, the output
voltage is
v, =1R

ng

Figure S11.6.3
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From Kirchoff’s voltage law

tR+V =v
Now
g=0Cv
and
i=i— (Cv) d—c’v+6'i‘i

dt dt

If R is small, then v is still almost equal to V and dv/dt is much smaller than
(vdC/dt)/C. Then

—t 3 V%
and dg
v, = Ri = —27RV (e - eo)ﬁ/ln(a/b)
The capacitance is determined by the region containing the electric field
" In(a/b)
(a) The force is
_1.,,dC 7 V2
fe= 2V d¢ ln(a/b)
B q= 21rc,l A D .
q ln(a/b) ¢
I
C -
A D M B C
I/o —TE
o 2 -—
In(a/b) ° ¢=1

Figure S11.6.4

(b) See Fig. S11.6.4. When ¢ = 0, then the value of capacitance is maximum.
Going from A to B in the f — £ plane changes the force from O to a finite
negative value by application of a voltage. Travel from B to C maintains the
force while £ is increasing. Thus ¢ increases at constant voltage. The motion
from C to D is done at constant £ by decreasing to voltage from a finite
value to zero. Finally as one returns from D to A the inner cylinder is pushed
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back in. In the ¢ — v plane, the point A is one of zero voltage and maximum
capacitance. As the voltage is increased to V,, the charge increases to
2me,l
= C = —
? °~ In(a/b) °
The trajectory from B to C keeps the voltage fixed while increasing £, de-
creasing the capacitance. Thus the charge decreases. As one moves from C to
D at constant ¢ decreasing the voltage to zero, one moves back to the origin.

Changing £ to zero at zero voltage does not change the charge so that D and
A coincide in the ¢ — v plane.

(c) The energy input is evaluated as the areas in the ¢ — v plane and the £ — f
plane. The area in the £ — f plane is

meol o
In(a/b) °

and the area in the v — ¢ plane is

1 2me,l o

2in(a/b) °
which is the same.
11.6.5 Using the coenergy value obtained in P11.4.6, we find the force is
dw! a a?v? 1 v 1,02
fe— aE |v-—|:;—2-( 1+ az —1)+§eo;5]ca—§ [
11.7 MACROSCOPIC MAGNETIC FORCES
11.7.1 The magnetic coenergy is
1 . .. .
wﬁn = '2‘(L111,§ + 2L19t182 + Lzztg)
The force is
_ Bw'm _ 1 dL]_]_ .2 dL12 .. dL22 2
fm = oz I"lv"ﬁ - 2( dz ! +2 dz 12 dz 2
1 dL, . dL, . . dL, .
= -2‘(]v12 1 ‘l.? + 2N1N2E221$2 + Ngﬁzg)
Since
_ _awp,
°oa(1+))
we have

1 . .. . awy,
=—=(N2:2 + 2N, N. N22y 2 _
fm 2( 121+ 1 2'1.1’1.2+ 212 z2(1+%)
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The inductance of the coil is, according to the solution to (9.7.6)

P _ladl_ 1, poN? 1
= = —

2 dz 2 xq?

2 [E"*’ 2rad

We first compute the inductance of the circuit. The two gaps are in series so
that Ampére’s law for the electric field gives

y(H]_ + Hg) =ns (1)

where H; is the field on the left, H; is the field on the right. Flux conservation
gives

H;(a - z)d = szd (2)
Thus .
H =12
ya
The flux is

o, = M(u)zd
y a

The inductance is
pon? zd(a — z)

L=nd, =
y a
The force is
8L aL 1 ,pu0n%d [ (a — 22) z(a — z)
2 _ 12k
Ampere’s law applied to the fields H, and H at the inner radius in the media

Ko and u, respectively, gives

H, bdr—H/ -dr = N§ (1)
» T
and thus Ni
t
Ho=H=p ng (2)
The flux is composed of the two individual fluxes
Ni
O =275 po(l - &) + u¢] (3)
b
The inductance is
— . 2
L=N&/fi= i G /b)N {ué+po(i- &)} (4)
The force is 1 2dL ( )
w 0
16,€) = e (5)

2’ de “in(a/bt)
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11.7.5 The H-field in the two gaps follows from Ampére’s integral law
2HA = 2N3 (1)
The flux is
®) = poHd(2a — )R = uo,Nid(2a — )R/A (2)
and the inductance IN® dR(2 9)
= 2072 _gN2, T2 7Y)
L=——>=2N",—— (3)
The torque is
_1ladL 2,2
=l = podRN42[A (4)

\V 4
11.7.6 The coenergy is

W', = / Dadia + Asdis + Ardis]

1_ . 1_ . 1. 1
= EL,‘!?, + EL,:? + EL,‘I? ( )

+ M cosfigt, + M sin 01,1,

where we have taken advantage of the fact that the integral is independent of path.
We went from t, = tp = 1, = 0 first to 1,, then raised ; to its final value and then
%, to its final value.

(b) The torque is

!
T= Q:T"‘ = i, (~M sin 6i5 + M cos 04)

(c) The two coil currents i, and 3; produce effective z-directed surface currents

with the spatial distributions sin ¢ and sin(¢ — Z) = —cos ¢ respectively. If

they are phased as indicated, the effective surface current is proportional to
cos(wt) sin ¢ — sin wt cos ¢ = sin(¢ — wt)

Thus the rate of change of the maximum of the current density is d¢/dt = w.
(d) The torque is
7= I[-M sin(Qt — 4)I coswt + M cos(Qlt — ) I'sinwi]
= LI(—Msin(Qt — v — wt)

But if 1 = w, then
r=I1,IMsinqy
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11.8 FORCES ON MACROSCOPIC ELECTRIC AND
MAGNETIC DIPOLES

11.8.1 (a) The potential obeys Laplace’s equation and must vanish for y — co. Thus the
solution is of the form e—#¥ cos fz. The voltage distribution of y = 0 picks the
amplitude as V,. The E field is

E = BV, (sin Bzix + cos fziy)eP¥
(b) The force on a dipole is
f=p-VE=dre,R*E - V)E
It behooves us to compute (E - V)E. We first construct the operator

E-V =gV, ? (sin pz% + cos ﬂzaiy)

Thus
E-VE = Ve~ % {sin ﬂz%[ﬂVo(sin Bzix + cos Bziy)e™PY]
+ cos ﬂzaiy [BV(sin Bzl + cos Bziy)e™PY]

= B2V2p|(sin Bz cos Bzix — sin? Pziy)e ™AV
— (cos Bz sin fziy + cos® Bziy)e Y]
= —B2V2Biye P

and thus
f = —4xe, R3(BV,)?Biy e PV

11.8.2 Again we compute, as in P11.8.1,

(E-V)E

in spherical coordinates

Q

= 4qe,r2 I 1)

and the gradient operator is

a2 .10 . 1 43
V=g o T e 5g )2)
Thus,
__Q 3
E-V= 4me,r? Or (3)
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and Q 20 207
. = — = — 4
E-VE 4dre,r? dme,r3 (4me,)?r® (4)
and the force is
2Q2 2Q2R3
— . —_ _ 3 = —
f=p VE dmeoR (47meo)?r® 47e,rsd (5)

Note that the computation was simple, because (3/3r)i, = 0. In general, derivatives
of the unit vectors in spherical coordinates are not zero.

The magnetic potential ¥ is of the form
V= Acosfze P y>0
Acosfzef?!  y<0

At y = 0, the potential has to be continuous and the normal component of u,H
has to be discontinuous to account for the magnetic surface charge density

pm =V - pM = p,M, cos fz
Thus

v = 12\'1_; cos fzePY
This is of the same form as ® of P11.8.1 with the correspondence
Vo & Mo/2ﬂ

The infinitely permeable particle must have H = 0 inside. Thus, in a uniform field
H,i,, the potential around the particle is (We use, temporarily, the conventional
orientation of the spherical coordinate, § = 0 axis as along z. Later we shall identify
it with the orientation of the dipole moment.)

¥ =-H,R cosﬂ[é - (R/")z]

The particle produces a dipole field

H,R
)

m

3
(2 cosfi, + sin bip) = pp

(2 cos fi, + sin 6ig)

Thus the magnetic dipole is
pom = 4mpo Ho R
This is analogous to the electric dipole with the correspondence
P < pom
H,~ E,
Bo +* €

Since the force is
f=p,m-VH

we find perfect correspondence.
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The field of a magnetic dipole u,m || i, is

= 4:;:':3 (2 cos b + sin fig)

The image dipole is at distance —Z below the plane and has the same orientation.
According to P11.8.3, we must compute

f=pym-VH=pu,m- V (2 cos 6i, + sin fiy)

rS

where we identify
r=227

after the differentiation. Now

pom -V = I‘oma

i. and ip are independent of r and thus

since § = 0. But

and thus

11.9 MACROSCOPIC FORCE DENSITIES

11.9.1

Starting with (11.9.14) we note that J = 0 and thus

=/de= —/—;—HZVpdv (1)

The gradient of u of the plunger is directed to the right, is singular (unit impulse-
like) and of content 21— p,. The only contribution is from the flat end of the plunger
(of radius a). We take advantage of the fact that uH is constant as it passes from
the outside into the inside of the plunger. Denote the position just outside by z_,
that just inside by z,.

z4
—/ lH"’V;uiu = —ix1ra2/ sz—#dz
2 o dz

] (2)
~—f. 2|+ —H?
i 2 Hl /ledx]
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where we have integrated by parts. The integrand in the second term can be written

d dH
bl =l (5)
and the integral is
o+ dH
[ eBG = wBH] = ok, (4)

where we have taken into account that uH is z-independent and that H(z4) = 0.
Combining (2), (3), and (4), we find

2
f= —i,% poH? (5)
Using the H-field of Prob. 9.7.6, we find

2 2,2
. ©)
( + 21rad)

This is the same as found in Prob. 11.7.2.

(a) From (11.9.14) we have
F=JxB (1)

Now B varies from uo,H, to u,H; in a linear way, whereas J is constant

at+A at+A
iT, = f J x Bdr = / drJpoH (ig X is)
a

° H+H) @

= lrl‘oK(

where
at+A
/ drJ =K (3)

Now, both J and H; are functions of time. We have from (10.3.11)-(10.3.12)

T, = —i, %uaHoe"/’"'[H,, + Hy(1—étl™m)] = —i,%poHZ(z — e~t/rm)e=t/m
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11.9.8 (a) Here the first step is analogous to the first three equations of P11.9.2. Because
J is constant and H varies linearly

1T, = poK @(i- X ig) (1)
(b) If we introduce the time dependence of A from (10.4.16), with u = u,,
A=— maze_t/r"‘ (2)
and of K, from (19)
K,=Hj— H, = 2:;2 sin ¢ = —2H,,, sin gt/ (3)
Further note that H} = 0 at ¢ = 0. Therefore from (3) and (2)
Hf=-2Hpysing at t=0 (4)
Att=o00
¢ =—Hmsing (5)
because the field has fully penetrated. Thus
HS = —Hpsing[1+e7t/™) (6)
From (6) and (3) we find
H = —Hpsing[1— e7t/™) (7)

Thus we find from (1), (3), (6), and (7)
T = i R () - ()
= —ir%Hi sin? ¢[(1 + e—t/rm)z -(1- e—t/rm)z]

= —i,2uoH?2 sin® ge~t/™

/
Sasl
:

Figure S11.9.2

The force is inward, peaks at ¢ = 0 and then decays. This shows that the cylinder
will get crushed when a magnetic field is applied suddenly (Fig. S11.9.2).





