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SOLUTIONS TO CHAPTER 10

10.0 INTRODUCTION

10.0.1 (a) The line integral of the electric field along C} is from Faraday’s law:

E-dl=0 (1)
G

because no flux is linked (see Fig. S10.0.1a). Therefore
-v+itR=0

because the voltage drop across the resistor is : R. Hence

v=1iR (2)
R
n=== ()
+ f [
l
v I ®l zr @
— ! :
I
R

Figure S10.0.1s,b

The line integral along C, is
dd,

4R = W (3)
which leads to 4
iR=(—7)/4 (4)
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Solutions to Chapter 10
Therefore, we find for the voltage across the voltmeter

e .
(b) With the voltmeter connected to 2, (1) becomes

v=2R
Using (2),

P 1LY

= led
and similarly for the other modes

o1 _ or1d®x
v(3) = 3[tR] = 3[4 &t
Caip a1 1d®aq _ d®a
11(4)—-41}2—4[4 T |= h
For a transformer with a one turn secondary (see Fig. $10.0.1b),

a d
v—f-cE'dl—E;/B'da—EQ,\

10.0.2 Given the following one-turn inductor (Figs. S10.0.2a and S10.0.2b), we want
to find (a) vz and (b) vy. The current per unit length (surface current) flowing
along the sheet is K = ¢/d. The tangential component of the magnetic field has to
have the discontinuity K. A magnetic field (the gradient of a Laplacian potential)

H,

ﬁ inside
0

(1)
outside

has the proper discontinuity. This is the field in a single turn “coil” of infinite width
d and finite K = ¢/d. It serves here as an approximation.

(a) vz can be found by applying Faraday’s law to the contour Co,
E.ds= _4 B -da
Cs dt Js,

Using (1), and the constitutive relation B = u,H,

(8) (4) d
f E-ds+ f E-ds=—
(4)C (

i(¢)
- o——dzd 2
0, gt |, Pomd 45 (2)
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Since the inductor walls are perfectly conducting, E = 0 for the second integral
on the left in (2). Therefore,

d i(t)
—vo = ——(slu, L
va =~ (slmo=7")
or,
slp, di(t)
= vy = —
2= Td T
one-turn {
inductor / D s
/d -— D r T
/ surface current, K,
K =1i(t)/d V3 flows through.
( )/_ 1Yy ' _ inductor walls
Va2 () —_— By —= W
+ )/ >z +
{
flows
through

this surface

,‘.——--—(-—-——-—-—-—-'—f_— Py

@da C,

ta)

Figure S10.0.2
(b) Now, v; can be found by a similar method. Writing Faraday’s law on Cj,

d
E-ds=—— B.da 3
C]. dt Sl ( )

Since C) does not link any flux, (3) can be written

d
—o=—2(0)=0
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10.1 MAGNETOQUASISTATIC ELECTRIC FIELDS IN
SYSTEMS OF PERFECT CONDUCTORS
10.1.1 The magnetic field intensity from Problem 8.4.1 is

i R? 1 1, .. 1 2.
H= 7[2cos€(§ - b_s)l' +sm0(-’3 + zs)la]

The E-field induced by Faraday’s law has lines that link the dipole field and uniform
field. By symmetry they are ¢-directed. Using the integral law of Faraday’s law using
a spherical cap bounded by the contour r = constant, # = constant, we have

p o
fE ~ds = 2xrsinbfEy = —%/ boHp27r sin Ordf
()

di xR? [° , 1 1
_FOETW__/; 21rr22sm0cos0d0(ﬁ - b—s)
di 7R? 1 1, ..
= —uod—t?rrz(r—s- - 6—3)28111 6

Thus:
R? r B3, , di
By =pogz (35— 3)sint

10.1.2 (a) The H-field is similar to that of Prob. 10.0.2 with K specified. It is z-directed
and uniform

_ [ K inside
H, = {0 outside (1)

Indeed, it is the gradient of a Laplacian potential and has the proper discon-
tinuity at the sheet.

(b) The particular solution does not need to satisfy all the boundary conditions.
Suppose we look for one that satisfies the boundary conditions at y = 0,z = 0,
and y = a. If we set

E, = ixEqzp(y, t) (2)

with E;,(0,t) = 0 we have satisfied all three boundary conditions. Now, from
Faraday’s law,
0E,, 8H, dK
3y Moy THy ®)

Integration gives

dK
Ezp = yl‘oFt' (4)
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a
g E‘P

Figure S10.1.2a,b

The total field has to satisfy the boundary condition at y = —I. There, the field
has to vanish for almost all 0 < z < a, except for the short gap at the center of the
interval. Thus the E,-field must consist of a large field gE‘,p, over the gap g, and
zero field elsewhere. The homogeneous solution must have an E,-field that looks
as shown in Fig. $10.1.2a, or a potential that looks as shown in Fig. S10.1.2b. The
homogeneous solution is derivable from a Laplacian potential &;

nmw nw
o, = Ay sin (—z) sinh (—

h Z sin ( . z) sinh ( . y) (5)
which obeys all the boundary conditions, except at y = —I. Denote the potential
®, at y= —l by

Oply=—1)= aExpf(x) (6)

so that the jump of f(z) at z = a/2 is normalized to unity. Using the orthogonality
properties of the sine function, we have

—sginh (%l) gAm =aE,p /io f(z) sin (ﬂ;—rz) dz (7

It is clear that all odd orders integrate to zero, only even order terms remain. For
an even order, except m = 0,

a af
/mo f(z) sin (Ta—"z) = 2/ ’ Z sin (T2 5) ds

=0 @ a

2a mm/2
= / u sin udu
u

(mm)? Ju=o (8)
mm/2
= -(r:—:)z[—ucosulgm/2+/(; cosudu]
— i(_l)’%"ﬂ

Therefore

2aE, _1\m/2 _
A, = { mm sinh (-‘?;lli ( 1) m-even (9)
0

m-odd


http:SlO.1.2a
http:SlO.1.2b
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The total field is

dK m/28inh & - mn
E=po— at {lx[ —122( 1) A ——a > hmvr"l/ os(——z)]

even

-t Y 2o e i ()|

even

(10)

10.1.3 (a) The magnetic field is uniform and z-directed
H=i,K(t)

(b) The electric field is best analyzed in terms of a particular solution that satisfies

the boundary conditions at ¢ = 0 and ¢ = o, and a homogeneous solution

that obeys the last boundary condition at r = a. The particular solution is ¢-
directed and is identical with the field encircling an axially symmetric uniform

H-field il
2nrEg, = —mrip, dt’ (1)
and thus dK
r
The homogeneous solution is composed of the gradients of solutions to Laplace’s
equation
@ = Z'.:A,.(r/a)”"/“ sin ("mqu (3)

At r = a, these solutions must cancel the field along the boundary, except at
and around ¢ = /2. Because § <« a, we approximate the field Ey, at r = a
as composed of a unit impulse function at ¢ = a/2 of content

a dK
akyp = Tg%HeT (4)
and a constant field
. = &, 9K
¢h = 2[‘0 dt
over the rest of the interval as shown in Fig. $10.1.3. From (3)
139, 1 nwd
Egnl,_, = 296 " a zn:(mr/a)A.. cos (T) (5)
‘ oF
/ ép
é

(IRIR08REI0A VRURNIININ/]

¢=0 = T"EM

Figure S10.1.3
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Here we take an alternative approach to that of 10.1.2. We do not have to worry
about the part of the field over 0 < ¢ < «, excluding the unit impulse function,
because the line integral of Ey) from ¢ = 0 to ¢ = « is assured to be zero (conser-
vative field). Thus we need solely to expand the unit impulse at ¢ = a/2 in a series
of cos (""" ¢) By integrating

—%(m')r/a)Am% = cos(mn [2)aEy, (6)

where the right hand side is the integral through the unit impulse function. Thus,

= [-22(-1)"/2aEy, for m even
Am {0 for m odd (M
Therefore

b= Y 1), K ooyl in (T ) (®)
and

B=-udEe{ls Z 2(-1)™/2(r/a)

meeven (9)

) +igoos(ZH)| |

[.-sm(

10.1.4 (a) The coil current produces an equivalent surface current K = Ni/d and hence,
because the coil is long
Ni
B~ i.poT (1)

(b) The (semi-) conductor is cylindrical and uniform. Thus E must be axisym-

metric and, by symmetry, ¢-directed. From Faraday’s law applied to a circular
contour of radius r inside the coil

_ 4B, ,

2rrEy = TR

and N di

r 3

Be=gtTa

(c) The induced H-field is due to the circulating current density:

Jp=0cFEy = wﬂuo-l-v—l'sinwt
27°d
where we have set

t(t) = I coswt
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(a)

(b)

Solutions to Chapter 10

The H field will be axial, z- and #-independent, by symmetry. (The z-“inde-
pendence” follows from the fact that d 3> b.) From Ampére’s law

VxH=J
we have
e
and thus PO
H inguced = ~wo—rpo—r Isinwt

For H, inducea <« H, imposed forr<b

whoob?
1 <1
From Faraday’s law
a
v =——
x Ep atB (1)
and thus SE N ds
ow _ _, XD
3z '°ddt ()
Therefore,
N b, di
Eyp = _”07 T — E 'd—t' (3)

We must maintain E-n = 0 inside the material. Thus, adding the homogeneous
solution, a gradient of a scalar potential ®, we must leave E; =0 at 2 =0
and z = b. Further, we must eliminate E, at y = 0 and y = a. We need an

infinite series
&y, = Z A, cos ( z) sinh (—y) (4)
with the electric field
E, = ; A,,(ﬁbzr-) [sin (-’%r-z) sinh (%Ey)i cos( z) cosh ( y)i ] (5)
At y = +a/2

V""_EA"( )cos( z)c h(b2

E( bd’
FASENEYFT

(6)
= —Eyp = Mo
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J(z) ==z}
<[> b/2 /
— -
~b/2
1 z (a)
. G’
> / \
L N
- ) \ 1]
= \_
E, y E, E
Set —p, '7'% positive number

(b)
Figure S10.1.8

We must expand the functlon shown in Fig. $10.1.5a into a cosine series. Thus,
multiplying (6) by cos Z* z and integrating from z = 0 to z = b, we obtain

mnr b N ds mnr
__b—-z—A,,, cosh (2% 25 T4) = po 1T / (=- —) cos ——zdz -
= {"‘I‘o d dt2(m1r) m - odd
0 m - even
Solving for A, , .
46% /( ) i
Ap = { conh(m':: 2b I‘o%% m - even (8)
o m - odd
The E-field is
_ Ndi by, 4b/(mn)?
E== ddt {(z 2)1’ _Z:d cosh(mma/2b)
[sm (—z) sinh ( y)i (9)

~— cos (—-—-z) cosh ( )1,] }

(c) See Fig. S10.1.5b.
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10.2 NATURE OF FIELDS INDUCED IN FINITE

10.2.1

10.2.2

CONDUCTORS
The approximate resistance of the disk is
_1zmal
T o 2 aA

where we have taken half of the circumference as the length. The flux through the
disk is [compare (10.2.15)]

%
A= /yoH -da = poéﬂiaraz

Mot2o
A==
2

This is caused by the current i3 so the inductance of the disk Ly, is (using N = 1):

The time constant is
Laa  poaocA  poalio

m="R T2 T« 2r

This is roughly the same as (10.2.17).

Live bone is fairly “wet” and hence conducting like the surrounding flesh.
Current lines have to close on themselves. Thus, if one mounts a coil with its axis
perpendicular to the arm and centered with the arm as shown in Fig. $10.2.2, circu-
lating currents are set up. If perfect symmetry prevailed and the bone were precisely
at center, then no current would flow along its axis. However, such symmetry does
not exist and thus longitudinal currents are set up with the bone off center.

()

Figure S10.2.2
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The field of coil (1) is, according to (10.2.8)
_ Ny,
H = 27a (1)
The net field is
Hy + Hing

with H;nq = Ky where Ky is the ¢ directed current in the shell. The E-field is
from Faraday’s law, using symmetry

2xrEy = —po-:—t(Ho + Hipg)wr? (2)
But
Eyl,eo = UEK = % (3)
and thus, forr =a
I%%Z;: + %Hirsd = _%Ho (4)

In the sinusoidal steady state, using complex notation

H, = Re H,e/"* etc. (5)
and
o J9Tm
thd ]'(I)Tm + IHo (6)
where
.= poolAa
mT o2
At small values of wr,
|Hind| = “’TmIHol (7)

10.3 DIFFUSION OF AXTAL MAGNETIC FIELDS THROUGH

THIN CONDUCTORS
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10-12 Solutions to Chapter 10

The circulating current K(t) produces an approximately uniform axial field
H, = K() (1

As the field varies with time, there is an induced E-field obeying Faraday’s law

fE-ds=—i/uoH-da (2)
c dt Js

The E-field drives the surface current
K = AcE (3)

that must be constant along the circumference. Hence E must be constant. From
(1)1 (Z)s and (3)

_,. K _d 2
4aF = 4aAo_ = dt;;oKa (4)
and thus d .
;i_tK+ ﬂodAaK =0 (5)
Thus
K(t) = Koe~t/™m (6)
with A
_ HoolAa
(a) This problem is completely analogous to 10.3.1. One has
H,=K (t) (1)
and, because K = AcE must be constant along the surface, so that E must
be constant
d d?
(2d+ V2d)E = — gl () ()
Therefore K 4 p
(2+\/5)K; = - oK)z (3)
* dK K
W + '1; =0 (4)
with
booAd

Tm = m (5)
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The solution for J = K/A is
J = Joet/™m (6)

(b) Since

E-ds=0 (7)
C1

and the line integral along the surface is /2dE, we have

v+1v2dE =0 (8)
= —v2i& - _ e tirm
v= ﬁAa = 2 - e (9)
(c) Again from Faraday’s law

E-ds=-v= "il‘ong'z' = _l‘ojd:ﬂ

; atlo 2 dt
’ 142 Jod (10)

= po———AJe7t™ = (24 V2) et/
Tm 2 c

10.3.3 (a) We set up the boundary conditions for the three uniform axial fields, in the
regions r < b,b < r < a,r > a (see Fig. $10.3.3).

Ho(t) - H, (t) = —Kout (t) = =JoutA = —0FE A (1)
Hl(t) - Hz(t) = —Kin(t) = —=JinA = —0Eiz A (2)
H,(t)

[ (ol .5

Kin
YAl

4

positive
direction —-/
of K

Figure S10.3.3
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From the integral form of Faraday’s law:

2naEoy = —po% [H1(t))m(a? — b) + Hy(t)nb?)

d
2rbEyy = —poEE[Hg(t)arbz]

We can solve for E,,¢ and E;, and substitute into (1) and {2)
oA [ - ¥ dH(t) | V2 dHa(t)

Ho(t) Hl(t) = Wo—(

2 a dt a
oAb ng(t)
Hl(t) H2(t) = o 2 dt
We obtain from (6)
dH,(t
T —— 2( ) + Hy(t) — Hy(t) =0
where
.= BooAb
T2

From (5), after some rearrangement, we obtain:

:Tmz m( b)dHl(t)

(b) We introduce complex notation

H, = H,, coswt = Re {H,,e’"t}

+ H,(t) = H,(t)

3)
(4)

(5)

(6)

(7)

(8)

(9

Similarly H; and H; are replaced by H; 3 = Re [fﬁ,ge"“"]. We obtain two

equations for the two unknowns H, and

-2+ 1+ jwrm )z =0

. a b|a b . 2
[1 +]wrm(3 - ;)]Hl + ;]wrmﬂg =Hp

They can be solved in the usual way

14 jwry,
i = | Hm %J'w"'m _ (14 jwrm)Hp
1 Det - Det
- 0
g= 1tem(-0) Hn| Hn

Det " Det

where Det is the determinant.

b
Det = —{[1 +jwr,,,(-§ - ;)](1 + Jwry,) + jwrm%}
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10.8.4 (a) To the left of the sheet (see Fig. 5$10.3.4),

H = K,i, (1)
To the right of the sheet
H = Ki, (2)
Along the contour Cy, use Faraday’s law
f E-ds=-i/B-da (3)
G dtJs
L4 b
|
K, pe—a
- T
W K- K Oo
, o C =0
K, :‘ / ¥ ? 1+acos i
f - > T

Figure S10.3.4

Along the three perfectly conducting sides of the conductor E = 0. In the sheet the
current K — K, is constant so that

V.-J=0=V-(0E)=0 (4)
* (K-K dK
E-ds=/ ( o)d = —poab— 5
o, yo \ Ac )W T TPy (5)
K—-K, [* Y _ dK
Aow oo (1+acos A )dy——poab p (8)

The integral yields b and thus

", K ___K
dt ' poalo, po.ala,

(7)

From (7) we can find K as a function of time for a given K,(t).

(b) The y-component of the electric field at z = —a has a uniform part and a
y-dependent part according to (5). The y-dependent part integrates to zero
and hence is part of a conservative field. The uniform part is

K- K, dK

Ewb = - Aao b= poabﬁ (8)
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This is the particular solution of Faraday’s law

OE,, 8H, dK

e T )
with the integral K
Eyp = _MOIE (10)
and indeed, at z = —a, we obtain (8). There remains
_ K-K, Yy
Eyn = 2o, acos ( 5 ) (11)

It is clear that this field can be found from the gradient of the Laplacian
potential

@ = Asin () sinh () (12)
that satisfies the boundary conditions on the perfect conductors. At z = —a
%

O T fcos ™k (%) = K Ko, g 7Y
3y |z=_a = bAcos 5 sinh ( 5 )= Ao, Cco8y (13)
and thus b (K- K.)
—_ @ - o
4= Ao, sinh(ra/b) (14)

10.4 DIFFUSION OF TRANSVERSE MAGNETIC FIELDS
THROUGH THIN CONDUCTORS

10.4.1 (a) Let us consider an expanded view of the conductor (Fig. $10.4.1). At y = A,
the boundary condition on the normal component of B gives

i, -[B® - B%| =0 (1)

) ¥
(a)

(c) A (‘79 Il')

(b)

Figure S10.4.1
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Therefore

Blyen ~ Biles =0 @

y=A =4

Aty=0

=0 (3)

B!clly=0 - Bll;ly:O -

Since the thickness, A, of the sheet is very small, we can assume that B is uniform

across the sheet so that,
C Cc
B!IIy:A = By|y=0 (4)

Using (3) and (4) in (2),
By —Bb=0 ()

From the continuity condition associated with Ampére’s law
nx [H*-H|=K

Since
K = Kgi., n= i,,

~-H:+H =K, (8)

The current density J in the sheet is

=3 7
And so, from Ohm’s law
E=* ()
Finally from Faraday’s law
VxE= —‘;—‘: ©)

Since only By, matters (only time rate of change of flux normal to the sheet will
induce circulating E-fields) and E only has a z-component,

_3E, _ 2B,

oz ot

From (8) therefore,
2Ky _95,
dz'Ac' ~ 8t

and finally, from (6),
a a _ by — _ Qﬂ_
3510z — Hal = —bo—; (10)
(b) Att =0 we are given K = i, K, sin 8z. Everywhere except within the current
sheet, we have J =0
=>H=-VV¥



10-18 Solutions to Chapter 10
So from V - o, H = 0, we have
V¥ =0

Boundary conditions are given by (5) and (10) and by the requirement that the
potential mut decay as y — *oo. Since H, will match the sin fz dependence
of the current, pick solutions with cos Sz dependence

w(2) = A(t) cos fze=PY (11a)
¥(®) = C(t) cos fze? (110)
H(® = A(t) sin fze~ i, + BA(t) cos fze~ V1, (124)
HO® = BC(t) sin fzePVi, — BC(t) cos fzePViy (128)
From (5),
poBA(t) cos fzePY ly=0 + #oPC(t) cos fze?? ly=o =0
Therefore,
A(t) = —C(t) (13)
From (10),
éa_z [BA(t) sin ﬂze'ﬁy|y=o — BC(t) sin fzef¥ |y=0]
= —Adp,f cos Bre PY |y=0 d:‘i—it)
Using (13)

282 A(t) cos fz = —Aou,p cos ﬂz%ﬁt)

The cosines cancel and

dA(t) 28 _
3 + —Ao'll-o At)=0 (14)
The solution is A
AR =A@ =B 7 (15)

So the surface current, proportional to H, according to (6), decays similarly
as

. . - A
K = i, K, sin fze~t/" T = “;—ﬂa
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10.4.2 (a) If the sheet acts like a perfect conductor (see Fig. 510.4.2), the component of
H perpendicular to the sheet must be zero.

.
A

S——{)— 02020200 —RP—& z

p— 0 K(t) = i, K(t) cos f=

Figure S10.4.2

At y = 0 the magnetic field experiences a jump of the tangential component
nx(H1—H2)=K (1)

with n || iy and Hz =0,
H, = —K(t)cos fz (2)

The field in the space 0 < y < d is the gradient of a Laplacian potential
¥ = Asgin Bz cosh f(y — d) (3)
The cosh is chosen so that H,, is zero at y = d:
H = — ApB|cos Bz cosh B(y — d)i, + sin Bz sinh By — d)iy] (4)

Satisfying the boundary. condition at y = 0

—ApP cos Bz cosh d = —K (t) cos Bz (5)
Therefore K(t)
~ Pcosh Ad (©)
_ K(t)sin Bz cosh f(y — d)
¥= A cosh fd (")

(b) For K(t) slowly varying, the magnetic field diffuses straight through so the
sheet acts as if it were not there. The field “sees® u — co material and,
therefore, has no tangential H

¥ = Asin Szsinh B(y — d) (8)
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which satisfies the condition H; = 0 at y = d. Indeed,
H = —ApP|cos fzsinh B(y — d)ix + sin fz cosh By — d)iy]

Matching the boundary condition at y = 0, we obtain

___K()
~ " Bsinh Bd ©)
_ K (t) sin Bz sinh By — d)
¥=- Bsinh Ad (10)

() Now solving for the general time dependence, we can use the previous results
as a clue. Initially, the sheet acts like a perfect conductor and the solution
(7) must apply. As t — oo, the sheet does not conduct, and the solution
(10) must apply. In between, we must have a transition between these two
solutions. Thus, postulate that the current i, K, (t) cos 8z is flowing in the top
sheet. We have '

K,(t) cos fz = 0AE, (11)
Postulate the potential

gin Az cosh By — d) sin Az sinh B(y — d)

V=CO—Ffomps — PO psmpd (12)
The boundary condition at y =0 is
v
"5;|y=o = Hzly:o = —K(t) cos fz (13)
= —C(t) cos Bz — D(t) cos fz

Therefore
C+D=K (14)

Aty=d

av cos fz

_E|y=d = H’Iy:d = K’ (t) cosﬂz = _C(t) cosh ﬁd (15)

The current in the sheet is driven by the E-field induced by Faraday’s law
and is z-directed by symmetry

8E, 0 _ . cosfzcosh By — d) dC
dy at"°H’ e cosh Ad dt 16
_ . cosfzsinh f(y — d) dD (16)
Ho ™ ginh Ad dt
Therefore,
E. = bocos Pz sinh By — d) dC _ . cosfzcosh B(y — d) dD 17)
s = Bcosh fd dt M7 Bsinhpd dt (
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(a)

Aty=d
1 dD K,cosfz
B = —bopiahpd "% = on (18)
Hence, combining (14), (15), and (18)
cosh dK, = —C(t) = —-K + D = —"";A coth ﬂd% (19)
resulting in the differential equation
Boo A dD
—~—cothfd— + D =K
5 coth g 7t + (20)
With K a step function
D=K,[1-et™] (21)
where A
Tn = "°; coth Ad (22)
and
C = Koe—‘/”"

Att =0, D = 0 and at t = o0, C = 0. This checks with the previously
obtained solutions.

If the shell (Fig. S10.4.3) is thin enough it acts as a surface of discontinuity

at which the usual boundary conditions are obeyed. From the continuity of
the normal component of B,

B*-Bt=0 (1)

Figure S10.4.3



10-22 Solutions to Chapter 10

the continuity condition associated with Ampére’s law

nx[H*-H|=K (2)
use of Ohm’s law 7 K
results in
H} —H) = Ky = AcEy (4)
The electric field obeys Faraday’s law
JB
xB=—%¢ (5)
Only flux normal to the shell induces E in the sheet. By symmetry, E is ¢-directed
1 _ 0B,
(VxE), = Y, (E¢ gin §) = 5t (6)
And thus, at the boundary
1 by _ dH,
Roind 30 [sm 0[HF — Hg] = —polo 5 (\4)
(b) Set .
H,(t) = Re { Hoe™* }[cos i, — sin 6is] (8)
The H-field outside and inside the shell must be the gradient of a scalar
potential
¥, =- orcosﬂ+Ai:so (9)
Wy = Crcos (10)
A? = —H,sinf + %sinﬂ (11)
A} = Gsing (12)
24
A% = H,cos0 + —g cosf (13)
A? = —Ccosb (14)
From (1)
a b 24 A
B,=B,.=>Ho+ﬁ=—0 (15)

Introducing (11), (12), and (13) into (7) we find

"

A

1 a{sm 0( Ho+—

2Acos€
Rsind 80 _C)} = “leloAO'{H cos+—— }

(16)
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1044 (a)

(b)

from which we find A, using (15) to eliminate C.

s JwpoAcRYH,
4= 2(jwp,AcR + 3) (17)
A provides the dipole term
M . —jwp,AcR*H,
ar 4= 2(jwpo,AcR + 3) (18)
and thus a
. __1wr(21r1.23) o) (19)
(1+ jwr)
with
,e BpoocAR
3
In the limit wr — oo, we find
th — —2xH,R®
as in Example 8.44.
The field is that of a dipole of dipole moment m = ia
ta
U= 203 08 6 (1)

The normal component has to vanish on the shell. We add a uniform field
ta
= 6 + —— cosf
¥ = Arcosf + yrcil (2)

The normal component of H at r = R is

ov 1a
_E-—lf‘=R =0= —(A — 24"}23) cosf
and thus
_ 2ta
= 4xR3 (3)
and .
ta r R
\I’ = mcoso(zﬁ + F)

(see Fig. S10.4.4).
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Figure S10.4.4

(c) There is now also an outgide field. For r < R

ia
V= e, cos 8 + A(t)rcosf (5)
For r > R, p
cos
=0 Q
The #-components of H are
Ho= % gin0+ Asin; r<R (7a)
b= g5 oin sind; r
and c
H9=§sin0; r>R (7b)

The normal component at r = R is

2ia
r = (41rR3 — A) cos (8a)
and >
H, = B cosfd (8b)
With the boundary condition (7) of Prob. 10.4.3, we have
. C ia 2u,Ac dc
— 2 — — -_— = - ° —
Zemios | @ w4 w0 ©)

From the continuity of the normal component of B, we find

2ta C
wr AT (19)
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The equation for C becomes

1 3
R4sind 30

sin a(c-—— 20 - — cos§——
ir

2za) _ 2u.Ac dC
= R3 dt

or c .
fa
with 7, = p,0AR/3. If we consider the steady state, then
C = Re [Ce™]
1 i
T (14 jwr,) 4x
" 2ta _ E 2ia  JwTy,
T 4xR® T R® T R 1+ JWTm
Jointly with (5) and (6), this determines V.

10-25

(11)

(12)

(13)

(14)

(18)

(d) When wr,,, — oo, we have € — 0, no outside field and 4 = 2ia/47R3 which
checks with (3). When wr,, — 0, we have no shield and A — 0. The shell

behaves as if it were infinitely conducting in the limit wr,, — oco.

10.4.5 (a) If the current density varies so rapidly that the sheet is a perfect conductor,

then it imposes the boundary condition (see Fig. 510.4.5),

n-uH=0 at r=5>

K = K(t) sin 2¢i,

Figure $10.4.5
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Inside the high u material H = 0 to keep B finite. So at r = a,
nxH=K

Therefore
—igHy = K(t)sin 2¢i,

Thus, the potential has to obey the boundary conditions

v
3; 0 at r=% (1)

~———=—K(t)sin2¢ at r=a (2)

In order to satisfy (2), we must pick a cos 2¢ dependence for ¥. To satisfy (1), one
picks a [(r/b)2 + (b/ 7)2] cos 2¢ type solution. Guess

¥ = A[(r/b)? + (b/r)?] cos 2¢

Indeed,
‘;‘f A[:; 2"2] cos2¢=0 at r=b
3 =~ AlC/H + b/rP12sin2g
From (2),
%{(a/b)z + (b/a)?]25in 26 = —K(t) sin 24
Therefore,

_ KOs [/ + 0/
V2T o @

(b) Now the current induced in the sheet is negligible, so all the field diffuses
straight through. The sheet behaves as if it were not there at all. But at r =%
we have g — oo material, so H = 0 inside. Also, since now there is no K at
r = b, we must have

Hy=0 at r=b%
It is clear that the following potential obeys the boundary condition at r = &
¥ = A[(r/b)? — (b/r)?] cos 24

13¢ A .
Hd,:_;-‘57 = —[( /b)2 — (b/r)%]2sin2¢ =0 at r=5

Again, applying (2)

21(o/8)? - (b/a)|26in26 = ~ K (t)sin 24



Solutions to Chapter 10 10-27

Thus,

K(t)a [(r/b)? = (b/r)?]
v=- 08 2 4
2 [(e/b) — (b/aP] % “
(c) At the sheet, the normal B is continuous assuming that A is small. Also, from
Faraday’s law, B

VXE——d—t (5)

Since only a time varying field normal to the sheet will induce currents, we
are only interested in (V x E),

18E, OJE dB,
(228 2Ry

r 3¢ dt
By symmetry there is only a z-component of E
14 _ 0B,
FEF S (©)

One should note, however, that there are some subtleties involve in the deter-
mination of the E-field. We do not attempt to match the boundary conditions
on the coil surface. Such matching would require the addition of the gradient
of a solution of La.pla.ce 8 equation to Ep = i E;. Such a field would induce
surface charges in the conductmg sheet, but otherwise not affect its current
distribution. Remember that in MQS ¢,2E is ignored which means that the
charging currents responsible for the bulﬁ-up of charge are negligible com-
pared to the MQS currents flowing in the systems.

From Ohm’s law, J = oE. But, J = K/A.

10 K, 4B,
r 3¢ Ao Bt ™

Applying the boundary conditions from Ampére’s law,

n X [Heap|,_py — Huwoo] = K14
Hd’l,.:b = Kz
Soatr=5»% 18 H oH
104 _ r
XY el (8)

Now guess a solution for ¥ in the gap. Since we have two current sources (the
windings at r = a and the sheet at r = b) and we do not necessarily know
that they are in phase, we need to use superposition. This involves setting up
the field due to each of the two sources individually

- {401 (1o = /) + 0O - 611 }eonzs )
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Here, A represents the field due to the current at r = b, and C is produced
by the current at r = a. Apply the boundary condition (2), at r = a. We find
from the tangential H-field

208 {a/p)2 - (b/a)7] = ~K(0)

Thus, @
—aK(t
) = 3fteriy - a7 oo
The normal and tangential components of H at r = b are
H, = —{A(t)[:—: + %2] + C(t)%} cos 2¢ (11)
Hy = {28 (4/0)? — (a/5)"]}20in2¢ (12)
From (8)
p_za'—bacﬁ Al) —-2[(b/a)*—(a/b)?|25sin 2¢] = {(2+%§- i%@+-:—-‘i—ct}-}cos 24
Using (10),
dA(t) 2 [(a/b)? — (b/a)?]
it T AB 3RS (/07 T (b/a)7]
_ a dK(t)
[(a/8) + (5/a)?][(a/b)? — (b/a)?] dt
Simplifying,

d:tiit) + Ast) dI:t(t) (13)

_ HobAa [(a/b)? + (b/a)?]

2 |(a/6) — (b/a)"]

D= fermE T fara/ny = /ey (15)

dK/dt is a unit impulse function in time. The homogeneous solution for A is

(14)

Alt) x e~t/" (16)
and the solution that has the proper discontinuity at t =0is

A= DK, (17)
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Using (10) and (17) in (9}, we obtain,
ek, l(r/a)? = (&/r) —ps _ (/812 = (/7Y
¥ = a7 = /] {[(a/b)= T 6/ 2 } 2

First consider the early time ¢ — 0%

_ K, [(r/a)? = (a/r?] _ (r/0) ~ (/12
v= [(a/b)Z—(b/a)=1{l(a/b)2+(b/a)21 2 } 2%
Therefore _uK (r/b)’ +(b/r)2

T [(a/b)2+(b/a)=]°°’2"’

It is the same as if the surface currents spontaneously arose to buck out the
field. At t — o0, e7t/* =0

—aK, [ (r/b)? — (b/r)?

2 (a5 = (5/a] <>
This is when the field has enough time to diffuse through the shell so it is as
if no surface currents were present.

¥ =

10.4.6 (a) When w is very high, the sheet behaves as a perfect conductor, and (see Fig.

$10.4.6)
U= bK———————[(r/az + S‘a/r)] cos ¢ (1)
[2+%]
Then, indeed, 3¥/3r =0 at r = a, and —%%g— accounts for the surface current
K.

o : L K() = K(t)sing

Figure S10.4.6
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(b) When w is very low, then 8V /8¢ =0 at r = a and

y=pxll/ el 4 2)
[a -2l
(c) As before in Prob. 10.4.5, we superimpose the field caused by the two current
distributions b
v = {4012 -2+ 0 - 21} eons (3
The r- and ¢-components of the field are:
1= {4012 + 51+ O + 51} cor @
A C byl ..
PETCI  E
At r =1,
Hy = K,(t)sin ¢ (6)
and thus (1)
Al)=5—¢ (7)
a b
At r=a,
_H¢|r=a = K,

where K, is the current in the sheet. From (7) of the preceding problem
solution, we have at r = a

15 H, _ 8H,
Tadpbo Mo (8)
Thus, using (4) and (5) in (8):
Clt)ra by _ 2dA(t)  dC(t) 1 b
2 L a]‘"“°A"“{a it T a 5t a (9)
Replacing A through (7) we obtain
dc ¢_2lc(t) 2b dK,(t) (10)
&+ pohoals 8] - @0 - GJaF dt
Thus i C(t) .dK
=t P (11)
with .
T = poalo (8 + ] (12)

r——
1]
|
fle
Red
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2b
D= GrE=/ap

The solution for a step of K,(t) is
C = DK,e™*/

C(t) = DK,e~t/" = 2bK,

Combining all the expressions gives the final answer:

o -

For very short times t/7 < 1, one has

r b
_ Keb [r _a 5~ &
V= — [;—;—2:+h]coa¢—b

(a/8)2 — (62"

( + )cos¢
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(13)

which is the same as (1). For very long times exp —t/7 = 0 and one obtains

(2).

10.5 MAGNETIC DIFFUSION LAWS

10.5.1 (a) We first list the five equations (10.5.1)-(10.5.5)
VxH=1J
J=0E
3
VxE=-—uH
V.-uH=0
V-I=0
Take the curl of (10.5.3) and use the identity
Vx(VXxF)=VV.F-V?F

also note that
V- I=V.0E=0V-E=0

because ¢ is uniform. Therefore,

3
— 2 — e —
VE = -2V x uH

(10.5.1)
(10.5.2)

(10.5.3)

(10.5.4)
(10.5.5)

(1)
(2)

(3)
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or
—_ 2 -_——
V@/o) = -u3 (4
(b) Since J = i,J,, equation (b) follows immediately from (4). We now use
(10.5.3) ,
V x (J/O') = —a[lH
But 3
Vx(J/o)= —V x (isJx(z,y)) = —(lx — iy 8zJ )
and thus

oH a2 ,J;

at ay(ap) é):c(a'p)ly

10.6 MAGNETIC DIFFUSION TRANSIENT RESPONSE

10.6.1

10.6.2

The expressions for H, and Jy obey the diffusion equation, no matter what
signs are assigned to the coefficients. The summations cancel the field —K,z/b and
current density K, /b respectively, at t = 0 and eventually decay. If one turns off a
drive from a steady state, the current density is initially uniform, equal to K, /b and
the field is equal to —K,z/b and then decays. But, the symmations with reversed
signs have precisely that behavior.

(a) The magnetic field is
H=i.H,=K, (1)

and there is no E-field, nor J within the block.

(b) When the current-source is suddenly turned off, the H-field cannot disappear
instantaneously; the current returns through the conducting block, but still
circulates in the perfect conductor around the block. For this boundary value
problem we must change the eigenfunctions. At z = 0, the field remains finite,
because there is a circulation current terminating it. Thus we have, instead

of (10.6.15),
Z Cr cos (——z)e“/"‘ : (2)
n—odd
with the decay times
_ 4pob?
Tn = (nﬂ_)z (3)

Initially, H, is uniform, and thus, using orthogonality

2b mnr

/ H, cos —:cdz Kl’m sin = %Cm (4)
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and thus 4
Cm = (-1) " (—)Kp; modd (5)

H, = E (- 1)_-—K cos (—z et/
n—odd
The current density is

oH,
oz

Jy=— = %—2(—1)2;—1K,, gin (%—:-z)e—'/"

If we pick a new origin at ' = z + b, then

sin( z)—-sm Ez'—ﬁz’—r = cosElzsm(

= —(-1)"7" cos (%{-z’) for n odd

ﬂﬂ')

Interestingly, we find

= —ZI& Z cos ( ')e"*/""
n—odd
At t = 0 this is the expansion of a unit impulse function at z' = 0 of content
—2K,. All the current now flows through a thin sheet at the end of the block.
The factor of 2 comes in because the problem has been solved as a symmetric

problem at z/ = 0, and thus half of the current “flows® in the “imagined”
other half.

10.7 SKIN EFFECT

10.7.1 (a) In order to find the impedance, we need to know the volta.ge v, the complex
current being R,. The voltage is (see Fig. 10.7.2)

v=akE, (1)
and, from Faraday’s law

Y = —juull, )
From (2) and (10.7.10)

_ jups (eQt)E 4 O+ .
¥ ([147) ((0NF -k e 3)
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and thus the impedance is at z = —b
7= GEy _ ]awuﬂ ¢(1+J')'z' -+ e_(1+.1')% (4)
dR, d(1+7)(1+)% _ —(1+9)}

But the factor in front is

jawps  a(l+7)
di+7) dob (5)

(b) When b < §, we can expand the exponentials and obtain

_a(l+4)1+(1+9)E+1-(1+4)3
do§ 14 (1+7)2-1+(1+7)2
_a(l+5) -1 a

(6)

dob (1+7)2 dobd

(c) When b >> &, then we need retain only the exponential exp[(1 + 7)b/6] with

the result: ( |
a(l+7
= _TJ) 7
dob (7)
so that a
Re(Z) = s

This looks like (6) with b replaced by §.

10.7.2 (a) When the block is shorted, we have to add the two solutions exp+(1 + 5) %
so that they add at the termination. Indeed, if we set

H, = Ale"01)E 4 (141 (1)
then the E-field is, from
3E Coa
= —juul, (2)

and thus through integration

jWwé 4 ] ,
B, = 29K Al-0+i)% _ 1+ 3
V= S Al | (5
and is indeed zero at z = 0. In order to obtain H, = K, at z = —b we adjust

A s0 that
_& el1+) ¥ 4 o~ (1+5) %

A, *e(1+9)} 4 -1+ ®
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(b) The high frequency distribution is governed by the exp —(1 + 7} %(z < 0) and
thus
-(1+3) § -
e - z=b
B~ R gy = R0 (5
This is the same expression as the one obtained from (10.7.10) by neglecting
exp—(1 +5) % and exp(1 + 5)b/6.

(c) The impedance is obtained from (3) and (4)

ok, a(1+ ) e(+B/5 _ o—(1+1)b/5
dK, z=—b= T do5  c(1+36/6 4 ¢~ (1F9)5/6






