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SOLUTIONS TO CHAPTER 9

9.1 MAGNETIZATION DENSITY

9.2 LAWS AND CONTINUITY CONDITIONS WITH
MAGNETIZATION

9.2.1

9.2.2

M = M, cos fz(ix + iy)

The volume charge density

Pm =~V - uoM = poM,sin fz

Om =1 - po(M® — M?)

and thus there is positive surface charge density on top

Om = PoM, cos Bz y=d
and a charge density of opposite sign at the bottom, y = —d.

(a) The magnetization is uniform, with the orientation shown in Fig. P9.2.1. Thus,
it is solenoidal and the right hand side of (9.2.2) is zero and therefore equal
to the left hand side, which is zero because H = 0. Certainly a zero H field
is irrotational, so Ampére’s law is also satisfied. Associated with M inside
is a magnetic surface charge density. However, this is cancelled by a surface
charge density of opposite sign induced in the infinitely permeable wall so as
to prevent there being an H outside the cylinder.

(b) In view of the direction defined as positive for the wire, the flux linked by the
coil is
A=B iy2Rd = poMy2Rd = p,2RdM, cos v (1)

Thus, with the terminus of the right wire defined as the + terminal and
~ = (¢, the voltage is

v= % = —u,2RAM, Qsin 1t 2)
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9.2.3 (a) From Ampére’s law

H‘da=/J-da
c s

fH-ds=0

because there is no J present. This means that H = —VV and V¥ is a scalar
potential that satisfies Laplace’s equations, since H is divergence-free. The
only possible solution to this problem, subject to ¥ = const at y = 0 and
y = a, is ¥ = const; and hence H = 0.

(b) Since

we find

B = u,(H + M) (1)

we have
B =iypu,M,cos f(z — Ut) (2)

The flux linked by the turn is

x=d
A= pol M, cos B(z — Ut)dz
r=—d
sin(Ad — BUt) + sin(8d + fU?)
Bd gd
_ “OldMO{sm Bd cos Ut — cos fdsin fUt
Bd
sin Bdcos UL + cos Bdsin fULt
+
Bd
sin Ad

= 2“0ldMOW [o0}] ﬂUt

= I"’oldMo{

The voltage is
_dx sin Ad
v= = 28U po ldM, Bd

sin fUt

9.3 PERMANENT MAGNETIZATION

9.3.1 The given answer is the result of using (4.5.24) twice. First, the result is
written with the identification of variables
o M,
Zo ,BoZer i=am=-ay—y—b (1)

€o Mo
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representing the upper magnetic surface charge. Second, representing the potential
of the lower magnetic surface charge,
o
u—o—»—Mo; Ty =a,52=—a,y—y+b (2)
(2]

The sum of these two results is the given answer.
In the upper half-space, where there is the given magnetization density, the
magnetic charge density is
P =—-V - pM = p,M,acos fze~*¥ (1)
while at the interface there is the surface magnetic charge density
Om = —poM,(y =0) = —uoM, cos Sz (2)

In the upper region, a particular solution is needed to balance the source term, (1)
introduced into the magnetic potential Poisson’s equation

V2¥, = —M,a cos fze~ Y (3)

given the constant coefficient nature of the Laplacian on the left, it is natural to

look for a product solution having the same z and y dependence as what is on the
right. Thus, if
¥, = Fcos fze” ¥ (4)

then (3) requires that
F[-B% + o®| = ~Moa = F = M,a/(B% - o?) (5)
Thus, to satisfy the boundary conditions at y =0

ave vt
v = o ~Ho gy + oy = —poM, cos Bz (8)
we take the solution in the upper region to be a superposition of (5) and a suitable
solution to Laplace’s equation that goes to zero at y — oco and has the same z
dependence.

M,
Ue = [Ac_ﬁy + (,T_'%e_ay] cos fz (M
Similarly, in the lower region where there is no source,
Ul = CePY cos Bz (8)
Substitution of these solutions into the two boundary conditions of (6) gives
M,
A= —— 9
2a- ) )
M,
C= ———2 _
2(a+ ) (10)

and hence the given solution.
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9.3.3 We have
V poH = —p, V3V = -V - uoM = —p,BM, cos fz exp oy
This is Poisson’s equation for ¥ with the particular solution:

= ——ﬂyg——cosﬁzex a
P az_ﬂz P y

The homogeneous solution has to take care of the fact that at y = 0 the magnetic
charge density stops. We have the following solutions of Laplace’s equation

U, — AcosfBze™PY y>0
h BcosfBzePY y<0

There is no magnetic surface charge density. At the boundary, ¥ and 8¥/dy must
be continuous
BM,

_az—ﬂ2+B=A
and oM

(o4 )

A

Solving, we find

Q

BZ“E(?M—"W(”E)

and
— _L (1 — E)
2(a+p) B
9.3.4 The magnetic volume charge density is
19 19
==V oM = —po = 2 (rM,) — po-—
p . K rar(rM) . rc':hﬁjud>
M, - M, -
= —no—p(r/R)*" cos p(¢ — ) + po—=p(r/ R)" " cos p(¢ — )

=0
There is no magnetic volume charge density. All the charge density is on the surface
Om = ,qur|r=R = poM,cosp(¢ —v)
This magnetic surface charge density produces p,H just like o, produces ¢, E

(EQS). We set
v = {A(R/r)”cosp(:ﬁ—'y) r>R
B(r/R)Pcosp(¢ —7) r<R
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Because there is no current present, ¥ is continuous at r = R and thus

A=B

On the surface

We find

(b)

(c)

v v
-”03,."':-:1:... + ""37'1-:12_ = 0om = poM,cos p(¢p — )
A R
ZPE = Mo A= EMO

The radial field at r=d+ R is

M, R \**!
poHy (r = d+ R) = po—* cos p(¢ ~ 7) (__—R — d)
The flux linkage is

poN3M, +1 n
_ 2 = o P — -
A= u,N“H,al = 3 l(R T d) cosp(2 ﬂt)
The voltage is
d) _ pQu.N?M,al p+1
&= 2 (R Ta)  cospllt
If p is high, then
p+1
(71 va) <!

unless d is made very small.

9.4 MAGNETIZATION CONSTITUTIVE LAWS

9.4.1

(a)

(b)

With the understanding that B and H are collinear, the magnitude of B is
related to that of H by the constitutive law

B = po[H + M, tanh(aH)] (1)

For small argument, the tanh function is approximately its argument. Thus,
like the saturation law of Fig. 9.4.4, in the neighborhood of the origin, for
aH < 1, the curve is a straight line with slope uo(1 + aM,). In the range of
aH s 1 the curve makes a transition to a lesser slope pu,.

It follows from (9.4.1) and (1) that

N1 C!Nﬂ.
B=uo[2R+Mt h( )] (2)
and in turn from (9.4.2) that
aw?Nop, [ N1t aNi:
Ag = _—4—[2”12 M, tanh (5 1 )] (3)

Thus, the voltage is v = dA2/dt, the given expression.
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9.4.2 The flux linkage is according to (9.4.2)
Tw?
da=——N,B (1)

The field intensity is according to (9.4.1)
Nlt
¢~ 27R

Therefore
dAg rw? N dB

dt 4 dt
where we need the dispersion diagram to relate Hy (i.e. ¢) to B (see Fig. $9.4.2).

; P

AN AN
L]

Figure S9.4.2

9.5 FIELDS IN THE PRESENCE OF MAGNETICALLY
LINEAR INSULATING MATERIALS

9.5.1 The postulated uniform H field satisfies (9.5.1) and (9.5.2) everywhere inside
the regions of uniform permeability. It also satisfies the contm\nty conditions, (9.5.3)
and (9.5.4). Finally, with no H outside the conductors, (9.5.3) is satisfied. The only
way in which the permeable materials can alter the uniform field that exists in
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9.5.8
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their absence is by having a component collinear with the permeability gradient.
As shown by (9.5.21), only then is there induced the magnetic charge necessary
to altering the distribution of H. Here, such a component would be perpendicular
to the interface between permeable materials, where it would produce a surface
magnetic charge in accordance with (9.5.22). Because H is simply 7/w throughout,
the total flux linking the one turn circuit is simply

A= / ueHda +/ poHda = (pgAq + poAu)H = (paha + toAs)i/w (1)
a Ab

and hence, because A = Lz, the inductance is as given.

From Ampere’s law applied to a circular contour around the inner cylinder,
anywhere within the region b < r < a, one finds

)
Hy = —
*~ 2

where i, points in the clock-wise direction, and z along the axis of the cylinder.
The flux densities are )
#a

Eot
d By=—
27r an ¢

By = 2nr

in the two media. The flux linkage is

R - a .

= Lalid Hat
A l{/,; 27rrdr+/,z 2xr r}
l .
= E;[p.bln(R/b) + paln(a/R))e

The inductance is A I
L= : = ﬂ[ubln(R/b) + l‘aln(a/R)]

For the reasons given in the solution to Prob. 9.5.1, the H field is simply
(¢/w)is. Thus, the magnetic flux density is

B =uHl =—(%3%) 1

and the total flux linked by the one turn is

o _ .
,\=/ B,dydz:d/ (ThmZy 2 gy Bmld, (2)
S -1

l w 2w

By definition, A = Lz, so it follows that L is as given.
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9.5.4 The magnetic field does not change from that of Prob. 9.5.2. The flux linkage
is
@ % a—b\.
A= l/b pm(r/b)%dr-— pml( ; )‘l
The inductance is
a—b
L= [lml—b—-

9.5.5 (a) The postulated fields have the r dependence of the H produced by a line
current ¢ on the z axis, as can be seen using Ampére’s integral law (Fig. 1.4.4).
Direct substitution into (9.5.1) and (9.5.2) written in polar coordinates also
shows that fields in this form satisfy Ampére’s law and the continuity condition
everywhere in the regions of uniform permeability.

(b) Using the postulated fields, (9.5.4) requires that

Bad _ mC | o M, (1)
r r B

(c) For a contour that encloses the interior conductor, which carries the total
current 4, Ampére’s integral law requires that (8 = 2x — )

f Hyrdr=i=ar® +5rC = aa+ go (2)
c r r
Thus, from (1),
. Ra %
= Ba A=—" .
imAlrp) a+ phs’
C = (l‘a/”'b)" (3)

o+ ple

(d) The inductance follows by integrating the flux density over the gap. Note
that the same answer must be obtained from integrating over the gap region
occupied by either of the permeable materials. Integration over a surface in
region a gives

A=l /,: * “‘:_A dr = lpg Aln(a/b) = a+ (l:;lj(:)/(lz:/ Kb “

Because A = Li, it follows that the inductance of the shorted coaxial section

is as given.

(e) Since the field inside the volume of the inner conductor is zero, it follows from
Ampere’s continuity condition, (9.5.3), that

A/b=i/b[a+ﬂﬁ ; region (a)

Homfo =z em {C/b=i(ﬂa/nb)/b(°‘+ pua)i region (8) 7
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Note that these surface current densities are not equal, but are consistent with
having the total current in the inner conductor equal to .

., A (o] ta t(pa/ )P
= —(ab)+ —~pb = 6
=T A e “
9.5.6 The H-field changes as one proceeds from medium g, to the medium y;. For

the contour shown, Ampére’s law gives (see Fig. 59.5.6):

Hla+ Hi(w—a) =34

i
el
7y

Figure S9.5.6

The flux continuity gives
paHE = po HY
Therefore u
Hila+Z(w—a)] =14
2o+ 2w -]

and the flux linkage is

a padl
A=dluH = ———cmo——
* a+ Le(w—a)
and the inductance is
L= é _ dl
- i - ﬁ + w“—ba

9.6 FIELDS IN PIECE-WISE UNIFORM MAGNETICALLY
LINEAR MATERIALS
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(a)

(b)

Solutions to Chapter 9

At the interface, Ampére’s law and flux continuity require the boundary con-

ditions aus oyt
a _ b S 2z =
H: - H; 22 " 9s K, cos fz (1)
ove avwd
poHg — pHY = —p,o oy TFay =0 (2)

The z dependence of the surface current density in (1) suggests that the
magnetic potential be taken as the solutions to Laplace’s equation

_JA —By & B
v= { C;ep” si:lnﬂzz (3)

Substitution of these relations into (1) and (2) gives

- A K,
[#«5" #ﬂﬂ] [C] N [ 0 ] ®
and hence .K
=_-8__"o . = _He
T B+ E] =% )

Thus, the magnetic potential is as given.

In the limit where the lower region is infinitely permeable, the boundary
condition at y = 0 for the upper region becomes

ave
0z

H(y=0)=-— (y = 0) = K,cos Sz ()

This suggests a solution in the form of (3a). Substitution gives
A= —Ko/ ﬁ (7)

which is the same as the limit u/u, — oo of (5a).

Given the solution in the upper region, flux continuity determines the field in
the lower region. In the lower region, the condition at y = 0 is

vt

O oy B0 oy Feg
ay (y_o)_ b ay (y—o)— "Kosulﬂz (8)

and it follows that

BCsin Bz = %Kosin Bz=C = %Ko/ﬂ (9)

which agrees with (5) in the limit where p/u, > 1.
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9-11

(a) The H-field is the gradient of a Laplacian potential to the left and right of

(b)

the current sheet. Because n X H =0 at y = +d, ¥ = const.

At the sheet .
' nx (H*-H%) =K

and thus sus gyt
-——87 + —— 3y = K, sin (
From flux density continuity we obtain
o _ ow
Bo 3z $o 3z

From (2) we see that ¥ and ¥® o cos(ry/2d) and thus

U* = Acos (%)c_"/“

¥® = Bcos (-;E%)e’"’/“
This satisfies ¥ = const at y = +d. We have from (3)

~2a4 = 2P
and from (2)
x x
giving K
A=-B=_--2
(x/d)
Therefore

Us = Ko cos( )e:F"'“/“

(x/d)

Boundary conditions at r = R are

e _ b _ _— ==

H-Hy=—p 35 *Ros ~2R"
avs oy

By = Br = —ugr oy =0

18v* 18¥*® Ni .
in ¢

(1)

(2)-

(3)

(4a)
(4)

(1)

(2)

To satisfy these, it is appropriate to choose as solutions to Laplace’s equation

outeide and inside the winding

{(A/r) cos¢; R<r
Crcos ¢; r<R

3)
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(b)

(a)

Solutions to Chapter 9

Substitution of these relations in (1) and (2) shows that the coefficients are

_ NR ., uA
~ 201+ (/po)’

=-£Z 4
and substitution of these into (3) results in the given expressions for the
magnetic potential.

The magnetic field intensity inside is uniform and z directed. Thus, the in-
tegration over the area of the loop amounts to a multiplication by the area.
The component normal to the loop is H, cosa, H, = —C. Therefore,

A = npoH, cos a(2al) = —np,C cos a(2al) (5)

With no current in the rotating loop, the flux linkage-current relation reduces
to A = L1, 80 the desired mutual inductance multiplies ¢ in (5).

It is best to find the H-field first, then determine the vector potential. The
vector potential can then be used to find the flux according to 8.6.5. Look at
stator field first (r = a). The scalar potential of the stator that vanishes at

r=>bis ;
P = Acos¢(§ - ;) (1)
On surface of stator
nxH' =K (2)
where n = —i,.
K =1i,i,N, sing (3)
where the stator wire density N, is
M
*" 2a

with N; the total number of turns. Since

N NELLA —1Asin¢(5 - f)i.
a b a

r 8¢ 'r=¢
We find N b
A
A= —711m ()
The H field due to stator windings is:
Nity a b2 . B2, ..
B = . 23 [(1 + r_2) cos i, — (1 - r_n) sin ¢1¢] (6)

The rotor potential is

¥ = Beos(¢ — 0)(Z - 2) (7
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(b)

We find similarly,
N, . ab

P S hw—a )

The H-field is

_ Npiz b

=2 b0 Dy (= 0)ie - (1- L) sine - 0] (9)

Fluxes linking the windings can be obtained by evaluating f s B -da or by use
of the vector potential A,. Here we use A,. The vector potential is z-directed
and is related to the B field by

104,, 94,

VxA=B=uoH=;a¢1,— 3, 14 (10)
From the r-components of H we find by inspection
Ni2 ab r b, .
A, = ,U'o'-l“l"—ﬁ(— + —) sin ¢
2 a?2-b2% r (11)
Ng’l:g ba

( + %) sin(¢ - 6)

Bomg a2 —p2 '
Of course, the ¢ component gives the same result.

The inductances follow from evaluation of the flux linkages. The flux of one
stator turn, extending from ¢ = —¢, to ¢ =7 — ¢, is

N (¢o) = l[A: (7" - ¢o) - A:(_‘i’o”r:a

Nigy ab o by, . (12)
= pol 5 27 bz(z + ;)ZquSo
The inductance is obtained by computing the flux linkage
™ N1<I>f\a(¢o) 2. a2 +b2
The inductance is 5 2, g2
11 2@ +
Lll—T— olNl 2 _ 52 (14)
In a similar way we find
)\22 2 02 -+ b2
L22 = ; = OlNZ a2 b2 (15)

The mutual inductance is evaluated from ®7°, the flux due to the field pro-
duced by the stator, passing a turn of the rotor extending from —¢, + 4 to
T—¢o+0

O = A3 (m ~ do+0) — AL (—40o +6)]r=p

= PolNlil Z—b sin(¢o - 0)

a (16)
a2 — b2
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9.6.5 (a)

Solutions to Chapter 9
The mutual flux linkage is

L] N

A
21 = .m0 2b

—=9%bd¢, = uolN1Naiy ;—% cosd (17)

2ab
Lz]_ = }lolNlsz cos f

A similar analysis gives L;3 which is found equal to L2;. From energy argu-
ments presented in Chap. 11, it can be proven that L3 = L3; is a necessity.
Note that

L3, = L1aLa; < Lyy Lo
The vector potential of the wire carrying a current I is

= -Lelin(2) M
where
Y

and a is a reference radius. If we mount an image of magnitude i, at the
position z = 0,y = —h, we have

_ _I‘oib r2
As = 2 In( a ) @

where
ra =V(y+h)? +22

The field in the u-material is represented by the vector potential

4, = -Helep (1) (3)

where %, is to be determined. We find for the B = uH field

_ _;. 04, _, 94,
poH=V x A =i, 3y —iy 3z
" \/(y — h)? +2? \/(y DR
—1,( ); y>0
\/**’(y Ry + 22 \/—“(y+h)2+z2
I‘o‘a .
uH = {ix(y - B) —iyz}; y<o0 (4b)

2% /(' y. ._—h)"’ 3
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At y = 0 we match H, and uH, obtaining

I—iy = Eole (5)
7
I+ib=ia (6)

By adding the two equations we obtain:

21
i = (7)
1+ ‘ff
and thus
1-
. _ 8

(b) When g > u,, then Hy,,, ~ 0 on the interface. We need an image that cancels
the tangential magnetic field, i.e.

ip=1
{(c) We have a normal flux as found in (4a) for i, = I

x

VT 2

This normal flux must be continuous. It can be produced by a fictitious source
at y = h of magnitude i, = 21. The field is (compare (4b))

poH, = ’2‘—;21

o I 1 . .
H=-F =] {IX(y—h)“‘vz}

N

(d) When p > p,, we find from (2) and (8)

1q = 21

ibzI

in concordance with the above!
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Solutions to Chapter 9

The field in the upper region can be taken as the sum of the field due to

the wire, a particular solution, and the field of an image current at the position

y=

—h,z = 0, a homogeneous solution. The polarity of this latter current is

determined by which of the two physical situations is of interest.

(a)

(b)

(a)

(b)

If the material is perfectly conducting, there is no flux density normal to its
surface in the upper region. In this case, the image current must be in the —z
direction 8o that its y directed field is in the opposite direction to that of the
actual current in the plane y = 0. The field at y = h,z = 0 due to this image
current is .
Bot .

P = ) ) W
and therefore the force per unit length is as given. The wire is repelled by a
perfectly conducting wall.

In this case, there is no tangential magnetic field intensity at the interface, so
the image current is in the same direction as the actual current. As a result,
the field intensity of the image current, evaluated at the position of the actual
current, is the negative of that given by (1). The resulting force is also the
negative of that for the perfect conductor, as given. The wire is attracted by
a permeable wall.

In this version of an “inside-outside” problem, the “inside” region is the highly
permeable one. The field intensity must be H, iz in that region and have no
tangential component in the plane z = 0. The latter condition is satisfied by
taking the configuration as being that of a spherical cavity centered at the
origin with the surrounding highly permeable material extending to infinity
in the 2z directions. At the surface where r = a, the normal flux density in
the highly permeable material tends to be zero. Thus, the approximate field

takes the form

V= —H,rcosf + Acosﬂ

(1)

. r2
where the coefficient A is adjusted to make
ave
or

Substitution of (1) into (2) gives A = —a®H,/2 and hence the given magnetic
potential.

n-Bl_ =0=> (r=a)=0 (2)

Because there is no surface current density at r = A, the magnetic potential
(the tangential field intensity) is continuous there. Thus, for the field inside

V(r = a) = ¥*(r = a) = —3H,a/2 (3)

To satisfy this condition, the interior magnetic scalar potential is taken to
have the form

U = Crcosf = Cz (4)

Substitution of this expression into (3) to evaluate C = —3H,/2 results in the
given expression.
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The perfectly permeable walls force the boundary condition ¥ = O on the
surfaces. The bottom magnetic surface charge density is neutralized by the im-
age charges in the wall (see Fig. $9.6.8). The top magnetic surface charge density
produces a magnetic potential ¥ that is

¥ = Asinh f(y —a)cos fz  y > d/2 (1a)
and d
¥ = Bsinh f(y + 5) cosfz y<df2 (1)
At the interface at y = d/2, ¥ is continuous
Asinh ﬂ(g —a) = Bsinh fd (2)
and thus hﬂ( )
ginh f(a —
B=-A—mnpa ®)
The magnetic surface charge density at y = d/2 is
m = oM, cos Bz (4)
It forces a jump of ¥ /dy at y = d/2:
_ﬂ ﬂ = Mo cos ﬂg (5)
dy y=d/24 9y y=d/2_
and we find M,
—Acoshﬂ(-———a) + Bcosh fd = i ()
Using (3) we obtain
A=— M, sinh Ad
I/ coshﬂ(g - a) sinhﬂd—coshﬂdsinhﬂ(% —a) 7
_ M, sinhgd (7)
B sinhB($% +a)
The vertical component of B, B, above the tape, for y > d/2, is
av i
B, = ~Hogy = poM, —% cosh B(y — a) cos Bz (8)

Note that in the limit a — d/2, the flux is simply u,M, as expected If the tape
moves, cos Sz has to be expressed as cos ﬂ(z ~ Ut). The flux is

A=wN poMo :??fd 2 cosh B(h + = —a) x / cosf(z' — Ut)ds' (9)
The integral eva.lues to
1. l ) l 2 1
—ﬂ;[s1nﬂ(§—Ut)+smﬁ(§+Ut)] = EsmﬂicosﬂUt (10)
and from here on one proceeds as in the Example 9.3.2.

=D
°T dt
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9-18 Solutions to Chapter 9

In terms of the magnetic scalar potential, boundary conditions are

¥(z,b) =0; ¥(z,0)=0 (1)
_ av _ Y. ﬂ _ ﬂ
Hy - ay (0’ y) e KO cos a y ay (b, y) = Ko [ofe]:] a (2)

To satisfy the first pair of these while matching the y dependence of the second
pair, the potential is taken as having the y dependence sin(ry/a). In terms of ¥,
the conditions at the surfaces z = 0 and z = b are even with respect to z = b/2.
Thus, the combination of exp(+nz/a) chosen to complete the solution to Laplace’s
equation is even with respect to z = /2.

¥ = Acosh [%(z - g)] sin (%) (3)

Thus, both of the relations (2) are satisfied by making the coefficient A equal to

aK,
A= m cosh(mb/2a) (4)

The solution can be divided into a particular part due to the current density
in the wire and a homogeneous part associated with the field that is uniformly
applied at infinity. Because of the axial symmetry in the absence of the applied
field, the particular part can be found using Ampére’s integral law. Thus, from an
integration at a constant radius r, it follows that

Hyp2nr = nr2J,; r<R
Hy2rnr=7nR%*J,; R<r

(1)
so that the particular field intensity is

_Jrds/2; r<R
Hep = {R2J0/2r; R<r (2)

in polar coordinates

1(184,, JA,,
H_;(? 3¢ " ar "”) (3)
and it follows from (2), integrated in accordance with (3), that
2
_ ) —mer?JL /4 r<R
Asp = {—,i—,paJoR%n(r/R) —~ mRJ,; R<r (4)

In view of the applied field, the homogeneous solution is assumed to take the form

A — Dr sin ¢; _ r<R
zh = —p,aHorsinth-f-C%‘é;' R<r (5)
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The coeflicients C and D are adjusted to satisfy the boundary conditions at r = R,
A2 — AL =0 (6)

a b
_ 194 194, (7)

B Or uy Or

The first of these guarantees that the flux density normal to the surface is continuous
at r = R while the second requires continuity of the tangential magnetic field
intensity. Substitution of (5) into these relations gives a pair of equations that can
be solved for the coefficients C' and D.

e ] (5] = T (®

The coefficients which follow are substituted into (5) and those expressions respec-
tively added to (4) provide the given expressions.

(a) Given the magnetization, the associated H is found by first finding the distri-
bution of magnetic charge. There is none in the volume, where M is uniform.
The surface magnetization charge density at the surface, say at r = R, is

Oom = —fton - (M* = M?) = y,Mn i, = p,M cosf (1)

Thus, boundary conditions to be satisfied at r = R by the scalar magnetic
potential are

-yt =0 (2)
ave F)\Ad
~Ho=3 + Ho5 — = HoM cosf (3)

From the 6 dependence in (3), it is reasonable to assume that the fields outside
and inside the sphere take the form

_ ) —-H,rcosf + Ac—‘::—g
¥= { —~Hrcosf (4)

Substitution of these expressions into (2) and (3) gives
H=H,~ M= M =3(H,~ H) (5)
Thus, it follows that
B = uo(H + M) = po(—2H + 3H,) (6)
(b) This relation between B and H is linear and therefore a straight line in the

B — H plane. Where B =0in (6), H = 3H,/2 and where H =0, B = 3u,H,.
Thus, the load line is as shown in Fig. $9.6.11.
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JY.,H.,
bk -
B [ ~075
(tesigf -~ - -- ]
B \ J
L ] -
- ~3.1 : 3Ho/2 7
O / 1 N 1 1 ' 1 1 j

0 2 4 . 6 8
H(units of 10 amps/m)—

Figure $9.6.11

(¢) The values of B and H within the sphere are given by the intersection of the
load line with the saturation curve representing the constitutive law for the

magnetization of the sphere.

(d) For the specific values given, the load line is as shown in Fig. S9.6.11. The
values of B and H deduced from the intersection are also indicated in the

figure.

We assume that the field is uniform inside the cylinder and then confirm the
correctness of the assumption. The scalar potentials inside and outside the cylinder

are
v { —H,Rcos ¢(r/R) + Acos$(R/r) r>R
Ccos ¢(r/R) r<R

Because ¥ is continuous at r = R
-H,R+A=C

If there is an internal uniform magnetization M = Mi,, then
n-M=Mcos¢

The boundary condition for the normal component of u,H at r = R gives

A C
(I‘oHo + I‘OE) + I‘OE = uoM

Therefore, from (2) and (4)
M

=_Ho+?

wQ

(1)

(2)

(3)

(4)

(5)
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and the internal (r < R)H field is (we use no subscripts to denote the field internal
to cylinder):
M,.
H= (Ho - 7)1’( (6)

The magnetization causes a “demagnetization” field of magnitude M/2. We can
construct “load line” to find internal B graphically. Since

B = po(H + M) )
we find from (6) for the magnitude of the internal H field

M+H H B H
H—(Ho—- > +?>—H0—m+'§‘ (8)
or B
H=2H,-2 (9)

(]

The two intersection points are (see Fig. $9.6.12)
H=2H, for B=0

and
B=2u,H, for H=0
We read off the graph: B = 0.67 tesla, H = 2.5 x 10° amps/m.

' L ! ' ]
I oaf | g ~
B B
(teslo) {tesla)
05 0.5
O ¢] t
¢ 0 2 4 . 6 8
H(units of 10’ amps/m)— H{units of 10 amps/m)—
Figure S9.6.12 Figure S9.6.13

The relation between the current in the winding and H and M in the sphere
are given by (9.6.15).
Ni
M=3(— -

(X _ ) )

From this, the load line follows as

Nz

BEI‘o(H'*'M):“o(E_ZH) (2)
The intercepts that can be used to plot this straight line aic shown in Fig. $9.6.13.

The line shown is for the given specific numbers. Thus, within the sphere, B =~ 0.54
and H ~ 1.8.
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9.7 MAGNETIC CIRCUITS

9.7.1

(a)

(b)

Because of the high core permeability, the fields are approximated by taking
an “inside-outside” approach. First, the field inside the core is approximately
subject to the condition that

n-B=0 at r=a and r=} (1)
which is satisfied because the given field distribution has no radial component.
Further, Ampére’s integral law requires that

27 2r Ni
Hyrd$ = Ni = —rd¢ = Ni (2)
0 o 2nr
In terms of the magnetic scalar potential, with the integration constant ad-
justed to define the potential as zero at ¢ = =,

_1o¥ = N => V= —&¢+const
r d¢ 27r 2x
. (3)
2 x

This potential satisfies Laplace’s equation, has no radial derivative on the
inside and outside walls, suffers a discontinuity at ¢ = O that is Nt and has a
continuous derivative normal to the plane of the wires at ¢ = 0 (as required.
by flux continuity). Thus, the proposed solution meets the required conditions
and is uniquely specified.

In the interior region, the potential given by (3), evaluated at r = b, provides
a boundary condition on the field. This potential (and actually any other
potential condition at r = b) can be represented by a Fourier series, so we
represent the solution for r < b by solutions to Laplace’s equation taking the
form

.S Ym sinm (7)™ (4)

m=1

Because the region includes the origin, solutions r~™ are omitted. Thus, at
the boundary, we require that

]‘2," 1- —- E ¥m sin m¢ (5)

Multiplication by sin n¢ and 1ntegratlon gives
2n N: ¢ 2x 00
/ —(1- %) sin(ng)d¢ = / D $m sin mg sin ngds
0 2 T 0 me=1
=t

(6)

Thus,
. |
bm= 22 [ (1= G sinmpag = 2 (7

mx
Substitution of this coefficient into (4) results in the given solution.
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9.7.2 The approximate magnetic potential on the outer surface is
o0 .
N2
¥ = E —sinm 1
m=1 mn ¢ ( )

according to (b) of Prob. 9.7.1. The outside potential is a solution to Laplace’s
equation that must match (1) and decays to zero as r — co. This is clearly

— Ni
= — m o ’ 2
v mz=:1 — (a/r)™ sinmé ( )
9.7.3 Using contours C; and C; respectively, as defined in Fig. $9.7.3, Ampére’s
integral law gives
Hisa=Ni= H, = Ni/a (1)
Hyb = Ni = Hy = Ni/b (2)

e e

i s B |
Z"-:'. ] QN/ 'V
T~
. ¥ T |
-—-dl—. | cl-

! ¥
| | -
L____,N_"’_"_“,,’L__#J.___j

Figure S9.7.3

From the integral form of flux continuity, for a closed surface S that intersects the
middle leg and passes through the gaps to right and left, we know that the flux
through the middle leg is equal to the sum of those through the gaps. This flux is
linked N times, so

A = N(cwpgH, + dwuy, Hp) (3)

Substitution of (1) and (2) into this expression gives

A= N2w(Z2 4 d—gﬁ)i (4)

where the coefficient of ¢ is the given inductance.
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The field in the gap due to the coil of N turns is approximately uniform
because the hemisphere is small. From Ampere’s law

Hh = Ni (1)

where H directed downward is defined positive. This field is distorted by the sphere.
The scalar magnetic potential around the sphere is

= R cosd[(r/B) - (R/rY? (2)
where 4 is the angle measured from the vertical axis. The field is
H= —Hhi{i,. cos8[1 + 2(R/r)?] — ig sin 6[1 — (R/r)?]} (3)
A,
Rsin 8 Rd6
df

. Figure S9.7.4
The flux linked by one turn at angle a is (see Fig. $9.7.4)

a
®, =/ poH, 2% R? sin 6d6
0

. a
= -3;;0%21rR2 /(; sin § cos §df (4)

_ 3B Ni
2 h

But 1 — cos 2a = 2sin® o which will be used below. The flux linkage is A2; where 1
stands for the coil on the 7/2 leg of the “circuit”, 2 for the hemispherical coil

wR%(1 — cos 2a)

/2 n
A1 = / P, — sin aRda
0 R

x/2
= —§uo&i7rR2/ sin® ada (5)
4" h 0
Nn _,.
= po-ﬁrR 1
The mutual inductance is
A Nn
Ly = % = —MoﬁﬂRz (6)
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In terms of the air-gap magnetic field intensities defined in Fig. §9.7.5, Ampére’s
integral law for a contour passing around the magnetic circuit through the two
windings and across the two air-gaps, requires that

Nlil + Ngig = Haa: + HbI (1)

\;
\\‘_\tx

[
)

Figure S9.7.5

In terms of these same field intensities, lux continuity for a surface S that encloses
the movable member requires that

awpo Hy = buwpo,Hy = Hy = %Ha (2)
From these relations, it follows that

H, = (Ny1i; + Nziz)/x(l + %) (3)

The flux linking the first winding is that through either of the gaps, say the upper
one, multiplied by N;

A1 = Niawpu,Hg = Lo(le’il + N1N27:2) (4)

The second equation has been written using (3). Similarly, the flux linking the
second coil is that crossing the upper gap multiplied by Nj.

A2 = NoawpoHg = Lo(No Nty + N2i3) (5)

Identification of the coefficients of the respective currents in these two relations
results in the given self and mutual inductances.
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9.7.6

Denoting the H field in the gap of width z by H, and that in the gap g by
H,, Amptre’s integral law gives

fH-ds:zH,+gH,=Ni (1)
where flux continuity requires

poHzma? = poH 2nad
Thus

(2)

2
xa
zH,

+ m gH, = Ni (3)
The flux is Ni
®) = p,7a’H, = o't

A I‘o x ﬁf + Z_’h
The inductance is

L= N®, poN 2

i ot
9.7.7

We pick two contours (Fig. $9.7.7) to find the H field which is indicated in the

three gaps as H,, Hy, and H.. The fields are defined positive if they point radially
outward. From contour Cj:

(—H, + Hy)g = Ny1,

(1)
P

11t

H;

le—  —n

Figure S89.7.7
From contour C;

(—Ha + Hc)g = Ni1t1 + Naig
The flux must be continuous so that

(2)

21ra[(d - s)ﬂ'oHa + duoHp + €I‘oHc] =0

(3)
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We find from these three equations

_d+EN € Nais

= 4
He 2d g 2d ¢ (4)
d— leil f Nzia

= - = 5

Hy=—3 g 2 ¢ (5)
d— ¢ Nyiy  2d— € Naip

- 6

Ho==0 9 Y722 (6)

The flux linkage of coil (1) is:

A1 = =N 27a(d — &) poHq

dz-—szfil &(d — €) N1 N2ig

The flux linkage of coil (2) is:

Az = Np2malu. He

= uowa[{:@d_ §) Niz + §(d—¢) NlNzix]
d g d g

The inductance matrix is, by inspection

d2 62

L1y = poma a7 Nf
£(2d-¢
Loz = powa—(—a—g————)—Ng
d—
le = L21 = ﬂoﬂ'ae( dg 6) N1N2

9.7.8 (a) ¥ must be constant over the surfaces of the central leg at z = F! /2 where
we have perfectly permeable surfaces. In solving for the field internal to the
central leg we assume that ¥ /dn = 0 on the interfaces with .

(b) If we assume an essentially uniform field H, in the central leg, Ampére’s
integral law applied to a contour following the central leg and closing around
the upper part of the magnetic circuit gives

Hul = Niz; + Naip (1)
Therefore

V(z = —1/2) = N”l—;NZ’E ()
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U(z=1/2) = _&lzﬂ (3)

(¢) In region a, at y = 0, ¥ must decrease linearly from the value (2) to the value
(1)

. .\T
U= —(Nyiy + Nztz)f (4)
At
y=a, ¥=0 (5)
At z = £l/2,0 < y < a, ¥ must change linearly from (2) and (3) respectively,
to zero ! Nyis + Nais ( )
__* _ M 22 16— Y
¥(e = —1,y) = Miirt Paia (o ©)
l N]_il + Ng‘l:g (a - y)
U(z=—,y) = 7
(z=39) 2 . (7)

(d) ¥ must obey Laplace’s equation and match boundary conditions that vary
linearly with z and y. An obvious solution is

¥ = Azy+ Bz + Cy

We have, at y =0
R
Bz = —(Nli]_ + Nz‘lg)T

and thus . .
N]_‘l1 + Ng‘l.z

B=- ]

In a similar way we find at y=a
Aaz+ Bz +Ca=0

and thus
C=0, Aa=-B

which gives
V= Mty + Naip) ;:Ng‘&z) [zy — az]

9.7.9 From Ampére’s integral law we find for the H fields
LA +1H; = Ni+ Kl (1)

where K is the (“surface-”) current in the thin sheet. This surface current is driven
by the electric field induced by Faraday’s law

K
2—(3a+w)=fE-ds=—i/uoH-da
cA dt (2)
dH,
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Finally, the flux is continuous so that

uH,3aw = pHyaw (3)
and
Hy =3H; (4)
When we introduce complex notation and use (4) in (1) we find
f[l(ll +3lz) =N20+IA(11 (5)
and .
- Jwpaw -
= T 6
K 2(3a+w)UAH1 ( )
Introducing (6) into (5) yields
. Ni, 1
H, = , 7
YT +3k) 1+ jwry, (M
where ;
Tm = Mol o

The cross-sectional areas of the legs to either side are half of that through
the center leg. Thus, the flux density, B, tends to be the same over the cross-
sections of all parts of the magnetic circuit. For this reason, we can expect that
each point within the core will tend to be at the same operating point on the given
magnetization characteristic. Thus, with H; defined as the air-gap field intensity
and H defined as the field intensity at each point in the core, Ampére’s integral law
requires that

2Ni = (l; +,)H +dH, (1)

In the gap, the flux density is u,H; and that must be equal to the flux density just
inside the adjacent pole faces.

koHy = B (2)

The given load-line is obtained by combining these relations. Evaluation of the

intercepts of this line gives the line shown in Fig. $9.7.10. Thus, in the core, B = 0.75
Tesla and H = 0.3 x 10* A/m.

1 | | \2'N‘l,,l‘/2 ' ) —
B =125 E '
(tesla) ™~/ g 0.5 )
- : =100 4 o°
[ O )
| \ S N
o A M = 05 I 15
) 0.5x104 Hy (units of 10 amps/m)

H (amps/m)—

Figure S9.7.10 Figure S9.7.11
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9.7.11 (a) From Ampére’s integral law we obtain for the field Hj in the ¢ material and

(b)

H, in the air gap:
bHy,+aH, = N3

Further, from flux continuity

ABy = Au.Hg

and thus N B
(] a Dy

Hy=— _22

Tb by

Now By = po(Hp + M) and thus

Hy = &— E(H{,'FM)
b b
or N b
1
Hy, = -
YT a+b a+bM
This is the load line.
The intercepts are at M =0
Nz N: 6
H, = o+t 2a =0.25x10
and at H, =0 )
M= % = 0.5 x 10°
We find
M =0.22 x 10° A/m
Hy,=0.13x 10°A/m
The B field is

(1)

(2)

(3)

(4)

(5)

to(Hy + M) = 4m x 1077(0.13 + 0.22) x 10° = 0.44 tesla





