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SOLUTIONS TO CHAPTER 8

8.1 THE VECTOR POTENTIAL AND THE VECTOR POISSON
EQUATION

8.1.1  (a) Ampere’s differential law inside the solenoid gives
VxH=0 (1)
The continuity law of magnetic flux gives
V- pH=0 (2)

Therefore, H is the gradient of a Laplacian potential. A uniform field is, of
course, one special case of such a field. At the boundary, representing the coil
as a surface current

Nz
K= 3
o )
we have
nx (H°-HY) =K (4)
where n = —i,, the outside region is (b). Further we have
n u,(H*-H’) =0 (5)

(b) An axial z-directed uniform field inside, zero field outside, automatically sat-
isfies (1), (2) and (5). On the surface we get from (4)

-—i,. X H;i. = i¢%

and since
i X i. = —i¢
N2
H =—
® d
(c) A is ¢ directed by symmetry. From the integral form of V x A = p,H we
obtain

fA-ds: poH - da
c s

Taking a radius r we find

_ ) rriuH? forr<a
2nrAg(r) = {1ra Zu,H? forr>a
ty= {

Therefore

Lo forr<a

Ni
d
1, Ni
d

e 24

Yo forr>a

"’I



8.1.2

8-2 ' Solutions to Chapter 8

Using the coordinates defined in Fig. P4.4.3, superposition of line current

vector potentials (8.1.16) gives

A, = I‘o‘ l [ rirs ]
rary

—\P - 3% =yt
rp=1/(z+ g)’+y’; re=1/(z- §)2+y2

To linear terms in (d/2)?, the numerator of this expression is

where

— 2
rirs = V@ TR T A PR = 14 AP (A
where
r=+vVz2+y?
Similarly, the denominator is
2 — &)
3T = rz\/l ( r2 (2r)
Thus, to linear terms in (d/2r)2, (1) becomes
o~ o lln[l +250 ()
* o7 2 1— 2.(&’—_32).(2
_ Bt 4=2-9) 4
4r In[1+ r? (2r) ]
Observe that
2
z . z" — .
;=cos¢; g—=sm¢; rzyz =cosz¢—sm2¢=c0s2¢

and it follows that (4) is the given vector potential.

(1)

(3)

(4)

(5)



Solutions to Chapter 8 8-3

8.1.3 We can take advantage of the analog of a solution of Poisson’s equation for
a two dimensional charge problem, and for a two dimensional current problem
(because the structure is long, [ > w and | >» d we treat it as two dimensional). The
analog charge problem is one with two charge sheets of opposite signs, producing
a uniform field, and a potential ® o y. Thus (see Fig. 58.1.3)

A, = A.(y/d)

|4

Figure S8.1.3

inside, A, = const outside, and we adjust A so that we get the proper discontinuity
of A, /8y to account for the discontinuity of H,

dA Nz
poH: = ?!f = poK = I‘o_w'—
Therefore
Ao _  Ni
P
and

i . .
Ay = Bo—-Y inside

_ . Ndi{ top
= %40 2w {bot.tom

8.2 THE BIOT-SAVART SUPERPOSITION INTEGRAL

8.2.1 The Biot-Savart integral, (7), is evaluated recognizing that

r

(ip X ipre)z = W (1)
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8-4 Solutions to Chapter 8

Thus,

H. = Jo / /' 2 r dzrdédr (2)
Tan )y Jo Sy VE+E (P +1)
The integration on z amounts to a multiplication by A while that on ¢ is simply a
multiplication by 2x. Thus, (2) becomes
AJ, [¢ r2dr

H:==" ), @sryn (3)

and integration gives
AJ,
b=

Hz=

+in(r+Vr2 + 32)] (4)
which is the given result.

We use the Biot-Savart law,
ds X i,-l,-
T an ) -2 (1)
The field due to the turns within the width Rdf, and length sin 6 Rd$ which produce
a differential current tds = K, sin 0R2d0d¢, (Note: iy, = —ip.)
K,sin? 0R2d¢

dHy = - 47 R2

d¢ (2)

dH,

Figure S8.2.2

The field along the axis adds as one integrates around one turn, the components
normal to the axis cancel

2
dH, = —sinf dHy = Kodf

0
The total field is obtained by adding over all the currents

k)
H, = X / sin® 09 = 252 (4)
2 =0 3

sin® 4 (3)



8.2.8

8.24

8.2.6

Solutions to Chapter 8 8-5

We replace K,sinf by K, in Prob. 8.2.2. We can start with the integral in
(4), where we drop one factor of sind. We get

K,

T
Hz=&/ sin? §df =
2 0=0

We can use the result of 8.2.3 for a single shell. The total current distribution
can be thought of as produced by a concentric set of shells. Each shell produces the
field £J,dR. Thus the net field at the center is

e T
H, = Jo/ dR = —-J,R
o 4

No matter where the vertices of the loop, (8.2.22) can be used to determine
the field. However, the algebra is simplified by recognizing that the triangle not
only has sides of equal length, d, but that the z axis is at the center of the triangle.
Thus, each leg makes the same contribution to the 2 component of the field along
the z axis, and along that axis the z and y components cancel. To see that the
sides are of length equal to that of the one paralleling the z axis, note that the
distance from the center of the leg to the vertex on the y axis is 4/3/4d and that
based on the base d/2 and this distance, either of the other leg lengths must be

of length \/(d/2)2 + (v/3/4d)? = d. Further, if the z axis is at the center of the
triangle, then the distance from the origin to either of the legs not parallel to the
z axis must be the distance to the parallel leg, 1/3/4d/3. Thus, we should have

2+/3/4d/3 = \/(11/2)2 + (v/3/4d/3)2, as indeed we do.

For the leg parallel to the z axis,

a = di,

d, 1 /3 .
b= —'2—1x - 5\/;(11, — zig (1)

c—éi _l\ﬁd' 3
T2x T3Vt T

. 1 /3 5
¢ X a = —zdiy + g\/;dzl.

= |e x a| =d(;1§d"’+22)”2 (2)

a-c=d?/2 |c|=(d?/3+2%)/?
a-b=-d?/2 |b|=]c

Thus,
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8-6 Solutions to Chapter 8

and the given result follows from (8.2.22), multiplied by 3 to reflect the contributions
from the other two legs. This same result is obtained using either of the other legs.
For example, using the back leg,

2 /3
—_ — 3 — 3
b= 3 4dl,, zis (3)

From (8.2.22)

H—i- cxXa a-c_a-b
T 4mlexal?\ e [b|

we can find the H-field produced by a current stick! We look at one stick in the
bottom layer of wires, extending from the position vector

. _d L,
b= (z' — z)ix - -2-yi, — i

to the position vector

A N
c=(z' — z)i. — F¥iy + 5is
with
a=c—b=1Il,
Thus

cxa=l(z —2z)iy + g—ix]

le x a® = #{(z" - 2)* + (d/2)7]
bl = e = V/(=' — 2)2 + (d/2)% + (1/2)?
P P

a-c=? a-b=—?

Therefore, H due to one stick, carrying the differential current %dz’ is

g o Nz, (&' - )i, + 21) 2
dmw B((z' — 2)? +(d/2)%] \ /(' — z) + (d/2)2 + (I/2)?
., Nidz' (2’ — 2)iy + gix]
T 2rw (2’ —z)2 + (df2)?
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in the limit when [ is very long compared with d and w. This very same result
could have been obtained from Ampére’s law and symmetry considerations for an
infinitely long wire (see Fig. 58.2.6)

_Nide 1. _ Nidz (2 — z)iy + Six
w 2xr?  2mw (2 —2)? + (4/2)2

Iy

ooooe0o0o0e0oev|lopoeeebebdboo

'
\\ '
000806080880 eesoedoees y=—df2

i
Filgure S8.2.6

The total field is obtained by adding the contribution from a symmetrically located
set of wires at the top, which cancels the y-component and doubles the z-component,
and by integrating over the length of the coil

H - /'"/2 Nids' d
" Jewpr 2mw (& —2)? +(d/2)?

= ﬂi'.a.n'1 [%(-t-”— - :c)] + tan~?! 2(% + z)]

W 2 d

since

dz 1
/m = %tan_ (2.'5/d)

We may test this result by having w — co. Then

.
w

QED as is correct for sheets of an infinite set.

From (8.1.8) integrated over the cross-section of the stick,
po [I(E)dV'  p,. [ a dE
g g (1
dr ) [r—x'| 4x J¢ |a|fr—r|

where a/|a| is a unit vector in the direction of the stick and hence [a/|a|]d¢ is a
differential length along the stick. Using the expression for [r—r'| following (8.2.17),
(1) is converted to an expression ready for integration.

fe
A= Po; dé @)

z——— —————
4 |a| & V£2+7¢2;
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Integration gives

A=

’-‘ﬂ'f—ln[f""' E?+f3] (3)

w'la e+vVET2

Finally, substitution from (8.2.21) makes this expression the given result.

8.3 THE SCALAR MAGNETIC POTENTIAL

8.3.1 From the Biot-Savart law
13 ds’ x i,.l.-
H r J r—r'f?
we find the axial field H,
i [?* Rdy' i2r .4
) Bt T
R3

For large z,

which is consistent with the axial field of a dipole (see Fig. S8.3.1).

l¢ x 14

Figure 88.3.1
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8.3.2 The potential of one wire carrying the current ¢ in the 42 direction is

1
b=—t

The superposition gives (Fig. S8.3.2)

(1)

U= ——(¢1— ¢o)

The lines ¥ = const are described by

(2)

tan ¢; — tan ¢g 2+ - ‘Lz+a
tan(@1 — ¢2) = const = = 2
1+ tan ¢; tan ¢, 1+ oL

Therefore
2ya = const[z? — a? + y?]

This is the equation of circles that go through the points z = £a,y = 0.

Figure S8.3.2

Figure S8.3.3
8.3.3

Assume that the coil extends from z = —{/2 to z = +1/2. The potential of a
loop is

7
v = —I{]
(r) = -
0 . o
0= / ____—21rRs11120Rd0 = 27(1 — cosd) = 21r(1 - (z =) )
0 R (Z - zI)Z -+ RZ

The individual differential loops of length dz' carry currents %dz’. Therefore the
total potential is

. z'=l/2 ot
\Il(z)=&/ dz'(l— (z—2) )
21 z’=—l/2 vV (Z - Z’)2 —+ R2
L

- [l+\/(%—2)2+R2~\/(é+z)2+R2]
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We can check the result for a long coil, I — oo. Then

Vezaem=L/az2r e By~ taz2

and we find Ni
)
¥(z) = 71_[1 — 22|
giving a field
_av —H N
T3z ==

which is correct.

8.4 MAGNETOQUASISTATIC FIELDS IN THE PRESENCE

y

84.1

8.4.2

OF PERFECT CONDUCTORS

From (8.3.13),
miR? cosf
Y(r —0) — y—
and at r=1>
0w _
or r=b

To meet these conditions, take the solutions to Laplace’s equation

miR? cos 0
4r

+ Arcosf

(1)

(2)

(3)

where the first automatlcally satisfies (1) and the coefficient A of the second is

determined by requiring (2). Thus,

1.1rR

( + bs)cosﬂ

The negative gradient of this magnetic potential is the given field intensity.

The magnetic field of the dipole is given by (8.1.21)

id
= 2’?(—- sin @i, + cos diy)
This corresponds to a scalar potential of

id
\I’d = —EF sm¢

(4)
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The conductor acts like a perfect conductor cancelling the normal component of
H, H,. Thus we must have the total scalar potential

a r
= ——sm¢(; + ;)
with the field
d 2 2
_ _2;Lra2 sin ¢(% — 1)],. cos 45(—2 + 1)14,

8.4.3 (a) Far from the half-cylinder, the magnetic potential must become that of a
uniform magnetic field in the —z direction.

H(z — to00) = —Hoizs = ¥ = Hoz = Horcos ¢ (1)
Thus, to satisfy the condition that there be no normal component of the field
intensity at the surface of the half-cylinder, a second solution is added to this

one having the same azimuthal dependence.

V= Horcos¢-i-AcosqS

(2)

Adjusting A so that
v

E(T=R)'=O (3)

results in the given potential.

(b) As suggested, the field intensity shown in Fig. 8.4.2 satisfies the requirement
of being tangential to the perfectly conducting surfaces. Note that the surface
current density has the polarity required to exclude the magnetic field from
the perfectly conducting regions, in accordance with (3).

8.4.4 The potential ¥ of the uniform field is
VY, = H,rcosf
The sphere causes H to be tangential. The normal component H, must be cancelled:

¥ = HORcosﬂ[ + %(R)z]

r
R r

We obtain for the H field

H=-V¥= —H,,{ cos 61 — (R)3]ir —sin 61+ %(?)3]%}

r
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8.4.5 (a) An image current is used to satisfy the condition that there be no normal
component of the field intensity in the plane y = 0. Thus, the solution in
region y < 0 is composed of a particular part due to the line current at
z = 0,y = —h and a homogeneous part equivalent to the field of a line
current at £ = 0,y = h flowing in the opposite direction. To write these fields,
first note that for a line current on the z axis,

H=ip(c) = & (- bxsingtiycosd
*\onr 2x NZy

LN ™ + iyz
T2\ 22+y? 22+ y?

Translation of this field to represent first the actual and then in addition the
image line current then results in the given field intensity.

(1)

(b) The surface current density that must exist at y = O if the region above
sustains no field intensity is

K=nxH=K,=H,(y=0) (2)
This is the given function.
8.4.6  (a) The scalar potential produced by one segment of length dz’ is

_ Kdd .y
d¥ = o tan ( ) =

Kdz

(1)

The integral over the strip is

\Il=/:'=ad\ll ;( {(a.—z)cot

'=b
—(b—z)cot™ 1( )+ylo [

7))

where the integral is taken from: B. O. Pearce, R. M. Foster, A Short Table
of Integrals, 4th Ed., Ginn and Co. (1956). To this potential must be added
an image potential that causes V/3z = 0 at z = 0. This is achieved by
adding to (2) a potential with the replacements

(2)

—%log [1+

K,—-K, a——a, b—-b
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(b) The field H= —VV¥ and thus from (2)

Hz=——;-{;o[—cot_1 (%)+cot_1(b;z)
+ (a—=)/y (b—23)/y
(57 L ()

oy, oy ]

1+(22) 14 (552)°
=g | e (T e ()
B %[m_l (G25) —tan™ (bfz)]

To this field we add

_ K -1(_ Y N _ -1 Y
Hz—zw[tan (-2 - tan (bﬂ)]

8.5 PIECE-WISE MAGNETIC FIELDS

{.5.1 (a) The surface current density is

K= Sptsin Pig (v

so that the continuity conditions at the cylinder surface where r = R are

Ni
a _ b — 2t

H3 - H, 2Rsm¢> (2)
poH® — poH? =0 (3)

Looking forward to satisfying (2), the ¢ dependence of the scalar potential is
taken to be cos ¢. Thus, the appropriate solutions to Laplace’s equation are

¥ = A9§—¢ (4)
U® = Crcos ¢ (5)

so that the field intensities are

o cos ¢, sin ¢,
H =A(——rz—lr+ 12 1d>) (6)
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H® = —C(cos ¢i, — sin ¢iy) (7
Substitution of these fields into (2) and (3) then gives
A Ni
Y ®)
A
ﬁ +C=0 (9)

from which it follows that

_ RNz. C___Nz

4 4’ T 4R

(10)

Substitution of these coefficients into (4)-(7) results in the given expressions
for the magnetic scalar potential and field intensity.

(b) Because the flux density is uniform over the interior of the cylinder, the flux
linked by a turn in the plane z = z' = Rcos ¢’ is

&)\ = p,H,2Rsin¢' = MO%ZR sin ¢’ (11)

Thus, the total flux is

" 4N N
A=i/ £ sin ¢'( ) sin ¢' Rdg’
0
2 pr 2 (12)
_ bl / sin? ¢'dg’ = [P T,
4 Jo 8

and thus the inductance is identified as that given.
8.5.2 (a) At r =20, there is a jump in tangential H:
nx (HY -—H®)=K (1)

with region (a) outside, (b) inside the cylinder carrying the windings. Thus
n=i.andatr=5%

19¥(@ 1300
~% 3 +y ) = K, (4) (2)

Further the normal component of ¥ must be continous at r = b.

av(e) 3yl
- or + Or =0 (3)

At r = a, the normal component of H has to vanish:

ov

ol “



Solutions to Chapter 8 8-15

(b) We have a “square-wave” for the current distribution. Therefore, we need an
infinite sum of terms for ¥:

v = f: An(r/b)"cosn(d—¢o); O<r<b

n=1

vl = i B,(a/r)"cosn(p—¢,); b<r<a (5)

n=1

+ E Chn(r/a)™ cosn(¢ — ¢,)

n=0

We picked the normalization of the coefficients so that the boundary condi-
tions are most simply stated. From (4) we have

a® n—1
—anm + nCyp an =0
and thus
Cu = Bn (6)
From (3) we have
a" -1 1
nB"’bnT —nC, an + nA,.z =0 (7)
and using (6)
An = Cp[(b/a)" — (a/b)"] (8)

From (2) we obtain:
n[Bn(a/b)" + Cu(b/a)"] sinn(¢ — ) — nA,sinn(¢ — $o) = bK.(4) (9)

The expansion of the square wave K,(4) is

K(¢)=K, 3 —sinn(g— o) (10)

n—-odd

Thus, using (6), (8) and (10) in (9) we obtain, for n odd:

nCul(a/8)" + (8/a)"] - nCa[(6/a)" - (o/8)"] = K,
and C, = 0 for n even. Thus

2 .
Cn = 5= Ko(b/a)" = By (11)
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and 2b
Ap, = mK.,[(b/a)"' - 1] (12)

for n odd, zero for n even. We should check a few limits right away. When
a — oo, we get (for n odd)

An = —EKQ
and

g = _ Z n2—2:_-K,,(r/b)" cos n(d — ¢,)

n—odd

wle) = Z %Ko(b/r)" cos (¢ — o)

n—odd
which gives the field due to the cylinder alone. For a — b, we get A, =0

¥ 3 2k [(o/ + (r/a)"] cosn(s - b)

n—odd
There is a ¢ directed field in the region between the coil and the shield of
magnitude ow X,
1 4
Hy =~ Y i 7;81!1”(¢ $0)

n—odd

which is approximately square-wave-like. These checks confirm the correctness
of the solution.

(c) The inductance of the rotor coil is computed from the flux linkage of an
individual wire-loop,
—¢'+n
O, =1 poHbdd
¢=—9

E =y, nin /-¢ * cos n(¢p — ¢o)bdd

r=b n=l
odd

= 5 b B (1 By simnis - 0

n=l
odd

where ! is the length of the system. The flux linkage is obtained by taking the
number of wires per unit circumference N/xb, multiplying them by ®, and
integrating from ¢’ = ¢, to ¢' = ¢ + 7

[+ +]

A= [ pa# e =13 21— (1)) [ a#'sinn(s - 4)

nw

n=1
odd
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where we use the fact that

K, = o7

The inductance is
A 8N2 i 1 b 2n
L===——pol E:p[l—(;) ]

n=1
n—odd

The inductance is, of course, ¢, independent because the field is “tied” to the
rotor and moves with ¢,.

8.6 VECTOR POTENTIAL AND THE BOUNDARY VALUE
POINT OF VIEW

8.6.1 (a) For the two-dimensional situation under consideration, the magnetic field in-
tensity is found from the vector potential using (8.1.17)

1 laA dA,,
= uo(r 99 r T 5, 0) (1)

Thus, if the vector potential were discontinuous at r = R, the azimuthal
magnetic field intensity would be infinite there.

(b) Integration of (1) using the fields given by (1.4.7) gives

e (B SR
1(r); r<R
A. = {gzsr;; R<< r (3)

Because the integrations are performed holding r and ¢-constant, respectively,
the integration “constants” are actually functions of the “other” independent
variable, as indicated. From (3) it is clear, however, that there is no depen-
dence of f; and f; on ¢. Given that the vector potential is zero at r = 0
and that A, is continuous at r = R, f; = 0 and f2 = R?/9. Thus, the vector
potential is as given.

(¢) In terms of the vector potential, the flux is given by (8.4.12). Because there
are no contributions on the radial legs and because A, (r = 0) has been defined
as zero,

A=¢ A ds=1[A,(0)- A,(a)] = ~14.(a)
C;R 2J, 1 4)
= £ "2{in(a/R) + 5]

This illustrates how the use of A to represent the field makes it possible to
evaluate the flux linkage without carrying out an integration.



8.6.2

8-18 Solutions to Chapter 8

A must be z-directed and must obey Poisson’s equation

V2Az = _”‘on
Now 1d. d
V2= -—(r—
r dr (r dr)
in the special symmetry of the problem. Thus
1d, d
;;(ra)Az - _ﬂon
and
A= —p, 0 b
z — Mo zz r<

Outside this region b < r < a, A, obeys Laplace’s equation
A, o Cln(r/b) + const

At r = b we must have continuous A, and dA,/dr (continuous Hy). Thus,

b2
const = _ﬂonZ
and c b
—b- = _quzE
Thus

b2
A, = —poJ,Z[2ln(r/b) +1); b<r<a

- — direction

y ~ >/\ of field

positive direction
of loop

Figure $8.6.2

(3)
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The flux is, according to (8.6.5) [see Fig. $8.6.2]

A= 142 - 42)

and thus
A= -4}
because
A} =0
Forc< b
2
A=lpod, Z
Forc>b

b2
A= lqu,—4-[1 + 2in(c/b)]

Note that A, # O for r > 0. This should be remedied by adding a constant to A,.
It does not affect the flux linkage.

(a)

(b)

In cylindrical coordinates where there is no ¢ dependence, the vector potential
has only a § component

A= Ao(r, Z)io (1)
and the flux density is found from
. 9 A, . (18
poH=VxA=>uoH=1..(—§)+1,[;E(TA9)] (2)
For reasons that are apparent in part (b), it is convenient to write A as
A Ac(r,t) (3)
r
in which case, (2) becomes
1 OA.,  8A.,
woll = o[- it G0 “

For any surface S enclosed by the contour C, the net flux can be found from
the vector potential by

)\=f;A~ds (5)

In particular, consider a surface enclosed by a contour C having as the first
of four segments a contour spanning 0 < ¢ < 27 at the radius, a, from the 2
axis. The second segment connects that circular contour with a second at the
radius b by a segment connecting the two in a plane of constant ¢. The contour
is closed by a second contour in an adjacent ¢ = constant plane joining these
circular segments. Integration of (5) gives contributions only from the circular
contours. The segments joining the circular contours are perpendicular to the
direction of A, and in any case make compensating contributions because they
are in essentially the same ¢ = constant planes. Thus, the flux through the
surface having outer and inner radii, a and b respectively, is as given.
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864 (a)

(b)

(<)

Solutions to Chapter 8

The vector potential, A,, satisfies Laplace’s equation. The first three condi-
tions of (8.6.18) are met by the solution
A, = A, sinh ——ysin ’%ra: (1)

The last condition is met by superimposing these solutions

E A, sinh —ysm e (2)

n=1

and evaluating the coefficients by requiring that this function satisfy the fourth
boundary condition of (8.6.18).

A= Z A, sinh —bsm L (3)

Multiplication by sin(mnz/a) and integration gives

A. a
~=2 cos mz] = Ama sinh T (4)
mn a Jo 2 a
which therefore gives the coefficients as
2A
Ap = m[— cosmnx + 1] (5)

so that (2) becomes the given solution.

The total current in the lower plate is

.'=/ K,dz=—/ H,,(y=o)dz=—/ 1040 4 (g
0 0 0 Mo ay y=0
Evaluation using the given vector potential gives
. - 8A o~ Isinwt
= - ———————— T — — 7
: £~ ponmsinh (-'%") nz=:1 2nsinh ("T"'b) (7)

odd

In the limit where b/a > 1,

sinh (1;2) — -;-e’""’/ ¢ (8)
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and (7) becomes

$— — Z —nmb/a ginwt — —Te~™/% ginwt
n=1l

odd

Taking In of the magnitude of this expression gives

in(E)) = —x(s/a)

which is the straight line portion of the plotted function.
(d) In the limit b/a < 1, (7) becomes
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(9)

(10)

(11)

This is the same as what is obtained if it is assumed that the field is uniform

and simply H; — A/bu, so that
K, — —H;=>i{— K,a— —aA/bu,

(12)

The perfectly conducting electrodes force H to be tangential to the electrodes.
Thus 8A,/8z = —poHy vanishes at y = 0,y = d except for the gap at z = 0 and
8A,/8y = poH, vanishes at z = +a. The magnetic vector potential jumps by A as
one goes from £z =0_ to z = 04, at y = 0 and y = d. Thus A, is constant around
the C shaped contour as well as the D shaped one. Denoting by the superscripts
(a) and (b) these two regions respectively, we have for Laplacian solutions of A,

Al®) = Z A, sinh %(z + a) sin %’ry + Ay(z + a)

n=1

oo
AP = Z B,, sinh %(z — a)sin %y + Bo(z —a)

n=1

At z = 0, the constants A, and B, account for the jump of 4., B,

=—-A/2=A

0
The vector potential and its curl must be continuous for 0 < y < d at z = 0. We
thus have A4,, = —B,, for all n except n = 0. The sinusoidal series has to cancel

that jump for 0 < y < d. We must have

E A, sinh ~% asm -—-y =— E 44, sin 2%
d n
n—odd

and similarly for the series in region b. We obtain

A = E 2A sinh 27 (z + a)

nw smh'"" dy_ (z+a)

n—odd
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sin

2Asinh 2%(z —a) | nrx
b) _ “4 in 2%
AP = Z nw  sinh%fa d

A
y=5(z—a)
n—odd

(b) See Fig. S8.6.5.
1 y

)

z
Figure S8.6.5
8.6.6 (a) We must satisfy Poisson’s equation for the vector potential everywhere inside
the perfectly conducting boundaries
V24, = poin,sin (Eaf) (1)

and make the normal flux density and hence A, zero on the boundaries.

A, =0 at z=a,y=0,y=b (2)
A particular solution to (1) follows by looking for one that depends only on
z.
324 .. Tz . a2 | 7z

az;p = HotNno 8N (T) = Ap = —poznoF sin " (3)

Then the homogeneous solution must satisfy Laplace’s equation and the con-
ditions

A =0 at z=q (4a)

. a2 | mz
A = Poitio 3 sin — at y=0,b (4b)

The first of these conditions, can be met by making the z dependence sin(7z/a).
Then, the y dependence must be comprised of a linear combination of exp(+ky)
and exp(—ky). If the y coordinate were at y = b/2, the second of the condi-

tions of (4) would be even in y. So, make the linear combination cosh k(y — 2]

and for convenience adjust the coefficient so that the second of conditions (4)

are met, divide this function by its value at y = b/2. This makes it clear that

the coefficient is the value given on the boundary from (4). Thus, the desired

solution, the sum of the particular and homogeneous parts, is

_ _ HBoinoa? [cosh I(y - %) o (T2
Ar=Awp+ Aan = =3 [ cosl(% —1|sin (=) (5)
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(b) The flux linked by one turn is

(<)

(a)

@) = —l[A:(z,y) — A:(—=,9)]
_ 2uoin.a3l [cosh ﬂy - %
x2 cosh (Z&

(6)

_ 1] sin *%
a
and the total flux of all of the windings in series is

a pb
A= / / Brn,sin (— ) dydz
o Jo a
_ 2pondatl xb b
- [2a tanh(Za]
] N —4
§44441 { + 1
L2

(7)

3

Figure S8.6.6

A sketch of the lines of constant vector potential and thus H for the particular,
homogeneous and total solution (the sum of these) is shown in Fig. S8.6.6.
It is perhaps easiest to envision the sum by picturing the addition of contour
maps of the two parts, the axes out of the paper being the height A, of the
respective surfaces.

This is a problem involving a particular and a homogeneous solution of the
vector Poisson equation. The particular solution is due to uniform current

density J, = n,t
2

.z
Ay, = —pont————

Alternatively, we may find the homogeneous solution by comparison with
Prob. 8.6.6. In that problem the wire density was sinusoidal. Now it is uniform.
A, was antisymmetric, now it is symmetric. We can expand the symmetric
wire distribution as a square wave.
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The particular solution of the vector potential is thus

4 ,2
A, =~ puonet Z ;r-(-r—s;)zcos (?m)

n
n-odd

The complete solution is

nr(, . b
A=i,ponoizi(2_a)2cos(ﬂx)[COSh 3V=3)

— nw o nw 2a cosh 9%b
odd

4

(b) The flux linkage of a wire at z,y is
A=1A,(z,y)

and thus

dX 4 2a,2 nr | [cosh 2% (y — %) di
”"—&?"“"""lz;ﬂ(?) cos (552) cosh5Ep |G

odd

8.6.8 (a) Here we have a solution very much like that of Prob. 8.6.6, except that the
particular solution

A, = —izuein,(a/7)? sin (%)

has to be replaced by an infinite sum whose second derivative reproduces the
square wave of magnitude zn,. Thus

. 4 .
Ay, = —iuin, Z —(i)2 sin (_n7rz)
g MEonm a

Figure S8.6.8

The complete solution is (compare Prob. 8.6.6)

A =igpoin, Y i(i)zsin(m) cosh(nr/a)(y - 3) _

nwb
e a cosh ( o )

1
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(b) The inductance is computed from

a pb
- / / nodz'dy 214, (z', ¥')
o Jo

where 2[A, is the flux linkage of one turn n,dz'dy is the wire density. Thus
integrating one typical term:

[ azen 2y [ [°°s‘;o';;,,,,, - 1]y = 2(2) 2% tant 20 - ]

and the inductance is

nw "nmw
n-—odd

L=pondl 3 22 (2)4 (20 tan (2]





