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SOLUTIONS TO CHAPTER 8 

8.1	 THE VECTOR POTENTIAL AND THE VECTOR POISSON 
EQUATION 

8.1.1 (a) Ampere's differential law inside the solenoid gives 

VxB=O (1) 

The continuity law of magnetic flux gives 

V"lo'oB=O	 (2) 

Therefore, H is the gradient of a Laplacian potential. A uniform field is, of 
course, one special case of such a field. At the boundary, representing the coil 
as a surface current 

. Ni
K =14>­

d 
we have 

n X (Ba
- B b) = K (4) 

where n = -i.., the outside region is (b). Further we have 

n "1o'0(Ba 
- B b

) = 0	 (5) 

(b)	 An axial z-directed uniform field inside, zero field outside, automatically sat­
isfies (1), (2) and (5). On the surface we get from (4) 

•	 H a • • Ni 
-I.. x zl. = 14>d 

and since

I .. x I. = -I.,.


H a = Ni 
z	 d 

(c)	 A is tP directed by symmetry. From the integral form of V x A = 1o'0B we 
obtain 

Taking a radius r we find 

2'11"rA (r) = {'1I"r21o'0H; for r < a 
4> '1I"a211 Ha for r > a 

"'0	 z 

Therefore 
r	 Ni £A _ '210'07 lor r < a 

4> - { a' !li £ 
2r 10'0	 d lOr r > a 

1 
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8.1.2 Using the coordinates defined in Fig. P4.4.3, superposition of line current
vector potentials (8.1.16) gives

(1)

where

To linear terms in (d/2)2, the numerator of this expression is

(2)

where

r= "';z2+ 112

Similarly, the denominator is

(3)

Thus, to linear terms in (d/2r)2, (1) becomes

Observe that

(4)

=. = cos q,j ~ = sin q,.
r r '

Z2_'; 2..1.. 2
2 = cos ." - sm q, = cos 2q,

r
(5)

and it follows that (4) is the given vector potential.
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8.1.3 We can take advantage of the analog of a solution of Poisson's equation for
a two dimensional charge problem, and for a two dimensional current problem
(because the structure is long, l ::> wand l ::> d we treat it as two dimensional). The
analog charge problem is one with two charge sheets of opposite signs, producing
a uniform field, and a potential Cb ex y. Thus (see Fig. S8.1.3)

-y

Flsure S8.1.3

inside, A. = const outside, and we adjust A so that we get the proper discontinuity
of 8AII /8y to account for the discontinuity of H",

Therefore

and
Ni.

A. = J.'o-y inside
w

_± Ndi. { top
- 1'0 2w bottom

8.2 THE BIOT-SAVART SUPERPOSITION INTEGRAL

8'.2.1 The Biot-Savart integral, (7), is evaluated recognizing that

(• .) r
II/) X Ir'r 11= V

z2 +r2 (1)
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Thus, 
Jo li!:t.12 

11' r (2)fa dzrdtPdr 
H. = 4,," 0 0 J" vr + r2 (z2 + r2) 

The integration on z amounts to a multiplication by Ii. while that on tP is simply a 
multiplication by 2,,". Thus, (2) becomes 

H - Ii.Jo r i2dr ( ) 
.- 2 J" (z2+ r2)3/2 3 

and integration gives 

Ii.Jo[ -r vI]aH. = -- + In(r + r2 + z2) (4)
2 vr2 + z2 "


which is the given result.


8.2.2 We use the Biot-Bavart law, 

H - i-f ds X lr'r (1) 
- 4,," Ir- r'12 

The field due to the turns within the width RdO, and length sin ORd,p which produce 
a differential current ids = Kosin2 OR2 dOd,p, is (Note: Ir'r = -I...) 

2 2 
dH, = Kosin OR dO d,p (2)

4,,"R2 

I. 

I, 

Fleure 58.2.2 

The field along the. axis adds as one integrates around one tum, the components 
normal to the axis cancel 

dH. = - sin 0 rll'dH, = KodO sin30 (3)Jo 2

The total field is obtained by adding over all the currents


H. = Ko (II' sin3 OdO = 2Ko (4) 
2 J,=o 3 
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8.2.3 

8.2.4 

8.2.5 

Solutions to Chapter 8 

We replace K o sin 9 by K o in Prob. 8.2.2. We can start with the integral in 
(4), where we drop one factor of sin 9. We get 

H., = K o r sin29d9 = 'lfKo 

2 18=0 4 

We can use the result of 8.2.3 for a single shell. The total current distribution 
can be thought of as produced by a concentric set of shells. Each shell produces the 
field ~JodR. Thus the net field at the center is 

la 
'If 'IfH., = -Jo dR = -JoR 
4 0 4 

No matter where the vertices of the loop, (8.2.22) can be used to determine 
the field. However, the algebra is simplified by recognizing that the triangle not 
only has sides of equal length, d, but that the z axis is at the center of the triangle. 
Thus, each leg makes the same contribution to the z component of the field along 
the z axis, and along that axis the z and 'Y components cancel. To see that the 
sides are of length equal to that of the one paralleling the z axis, note that the 
distance from the center of the leg to the vertex on the 'Y axis is V3f4d and that 
based on the base d/2 and this distance, either of the other leg lengths must be 

of length J(d/2)2 + (V3f4d)2 = d. Further, if the z axis is at the center of the 
triangle, then the distance from the origin to either of the legs not parallel to the 
z axis must be the distance to the parallel leg, V3f4d/3. Thus, we should have 

2V3f4d/3 = J(d/2}2 + (v'3f4d/3}2, as indeed we do. 
For the leg parallel to the z axis, 

a = dix 

b= -~i _! ~di -zi 
2 x 3V"4 ~ • (1) 

e = -1d. - -l/fd'1 - ZI• -
2 

x 
3 4 ~ • 

Thus, 

e X a = -zdi~ + ~/fd2i. 
~ Ie x al = d( ..!-d2 + z2) 1/2 (2)12 

a.e= d2/2 lei = (~/3 + z2) 1/2 

a.b = -d2 /2 Ibl = lei 
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and the given result follows from (8.2.22), multiplied by 3 to reflect the contributions 
from the other two legs. This same result is obtained using either of the other legs. 
For example, using the back leg, 

(3) 

8.2.6 From (8.2.22) 
B i e x a (a. ea·b)

= 41r Ie x al2 ~-1bI 

we can find the H-field produced by a current stick! We look at one stick in the 
bottom layer of wires, extending from the position vector 

b ( ' ). d i I. = z - Z Ix - 2"Y " - 2"1. 

to the position vector 

with 
a:= e -b= U. 

Thus


e x a = l[(z' - z)i" + ~ixJ


Ie x al2 = 12[(z' - z)2 + (d/2)2J 

Ibl = lei = \I'(z' - z)2 + (d/2)2 + (1/2)2 

r r 
a . e = - a .b = -­

2 2 

Therefore, B due to one stick, carrying the differential current Ni dz' is w 

B = Nidz'l [(z' - z)i" + gixl 12 

4'1rw 12 [(z' - z)2 + (d/2)2J \I'(z' - z) + (d/2)2 + (1/2)2 

Nidz' [(z' - z)i" + gixl 
~ 2'1rw (z' - z)2 + (d/2)2 
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in the limit when I is very long compared with d and w. This very same result
could have been obtained from Ampere's law and symmetry considerations for an
infinitely long wire (see Fig. 88.2.6)

H = _Nidx' _1_ i = Nidx (x' - x)l7' + ~ix
W 211'r tP 211'W (x' - x)2 + (d/2)2

17

a a 9 e 9 9 9 9 9 9 e 9 9 9 9 e 8 9 9 e 8 e

x Ix x'
r

I ...... I
I I

., ., •• ., ••••• II ••• ., ., .,. ,,= -d/2

Figure S8.~.8

The total field is obtained by adding the contribution from a symmetrically located
set of wires at the top, which cancels the y-component and doubles the x-component,
and by integrating over the length of the coil

f VJ/2 Nidx' d
H - -- -:---~--:-...,.....,-

:J: - -VJ/2 211"w (x' - x)2 + (d/2)2

Ni 1[2(w)] 1[2(W)]= - tan- - - - x + tan- - - + X
1I"W d 2 d 2

since

f dx 2 -l( /)
x2 + (d/2)2 = d tan 2x d

We may test this result by having W -+ 00. Then

H
_ Ni

:J:-
W

QED as is correct for sheets of an infinite set.

8.2.1 From (8.1.8) integrated over the cross-section of the stick,

1-'0 I J(r')dtl' I-'o.,e· a de (1)
A = 411" Ir - r'! = 411"' 1h y;i"j Ir - r'l

where a/lal is a unit vector in the direction of the stick and hence [a/lalJde is a
differential length along the stick. Using the expression for Ir-r'l following (8.2.17),
(1) is converted to an expression ready for integration.

A ""0. a,e· de
= 411"~ lh ";e + r~ (2)
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Integration gives 

(3) 

Finally, substitution from (8.2.21) makes this expression the given result. 

8.3 THE SCALAR MAGNETIC POTENTIAL 

8.3.1	 From the Biot-Savart law 

B = i-. f ds' X ir'p 

4", Ir-r'12 

we find the axial field H!II


2

i 1... Rd4l . 6 i 211" . 3 6H =- sm =--sm 

11 411" 0 R2/sin2 6 411" R 

i Jt3 =- 3
2RJKJ +32 

For large %, 

. R2 
H -2~ 

11 ­ 411"z3 

which is consistent with the axial field of a dipole (see Fig. S8.3.1). 

Flpre 81.S.1 
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8.3.2 The potential of one wire carrying the current i in the +z direction is

~

1/J=--tP
211"

The superposition gives (Fig. 88.3.2)

The lines W = const are described by

8-9

(1)

(2)

tan tPl - tan tP2
tan(tPl - tP2) = const = A- A-

1+ tan'f'l tan'f'2

Therefore

-lI.- _ -lI.­
x-a x+a

1 .....1i!.-+ x 2 -a2

2ya = const[x2 - a2 + y2]

This is the equation of circles that go through the points x = ±a, y = o.

,pI
a

TZ
Iy
I
I

.--- ix

RsinfJ

z

Figure 88.3.2 Figure 88.3.3

8.3.3 Assume that the coil extends from z = -l/2 to z = +l/2. The potential of a
loop is

~

W(r) =-0
411"

r'\ 1() 211"RsinBRdB ( B) ( (z - z') )
u = = 211" 1 - cos = 211" 1 - ---;:======~=

o R2 yI(z - z')2 + R2

The individual differential loops of length dz' carry currents lfi dz'. Therefore the
total potential is

W(x) - _Ni r'=1/2 dz' (1 _------r.~(=z=-:==:z':f::)===-=)
- 21 }%1=-1/2 yI(z - z')2 + R2

= ~li [l + V(~ -Z)2 + R2 - V(~ + z)2 + R2]
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We can check the result for a long coil, I -+ 00. Then

Solutions to Chapter 8

VI I v( 2Z)2 (2R)2 I ( 2z)(- =f z)2 + R2 = - 1 =f - + - ~ - 1 =f -
2 2 I I 2 I

and we find
Hi

\Ii(z) = -[1- 2z]
21

giving a field
_ a\Ii _ H _ Hi

az - % - I

which is correct.

8.4 MAGNETOQUASISTATIC FIELDS IN THE PRESENCE
OF PERFECT CONDUCTORS

,.j'
8.4.1 From (8.3.13),

'T'( ) riR2 cos (J'!I!'r-+O -+----
411' r2

and at r = 6

a\Ii I - 0
ar r=b

To meet these conditions, take the solutions to Laplace's equation

riR2 cos(J
\Ii = -- --2- + Ar cos (J

411' r

(1)

(2)

(3)

where the first automatically satisfies (1) and the coefficient A of the second is
determined by requiring (2). Thus,

i1l'R2 ( 1 2r)
\Ii=-- -+- cos(J

411' r2 63

The negative gradient of this magnetic potential is the given field intensity.

8.4.2 The magnetic field of the dipole is given by (8.1.21)

H id ( . -I.. -I.. )= --2 - sm 'PII' + cos 'PI",
21l'r

This corresponds to a scalar potential of

(4)
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The conductor acts like a perfect conductor cancelling the normal component of 
H, Hr. Thus we must have the total scalar potential 

id . (a	 r)W=--sml/> -+­
2,ra r a 

with the field 

8.4.3	 (a) Far from the half-cylinder, the magnetic potential must become that of a 
uniform magnetic field in the -z direction. 

(1) 

Thus, to satisfy the condition that there be no normal component of the field 
intensity at the surface of the half-cylinder, a second solution is added to this 
one having the same azimuthal dependence. 

cos I/>
W= Horcos I/> + A-­	(2) 

r 

Adjusting A so that 
8w
-(r = R) =	 0 (3)
8r


results in the given potential.


(b)	 As suggested, the field intensity shown in Fig. 8.4.2 satisfies the requirement 
of being tangential to the perfectly conducting surfaces. Note that the surface 
current density has the polarity required to exclude the magnetic field from 
the perfectly conducting regions, in accordance with (3). 

8.4.4	 The potential W of the uniform field is 

The sphere causes H to be tangential. The normal component H r must be cancelled: 

We obtain for the H field 
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8.4.5	 (a) An image current is used to satisfy the condition that there be no normal 
component of the field intensity in the plane y = O. Thus, the solution in 
region y < 0 is composed of a particular part due to the line current at 
z = 0, y = -h and a homogeneous part equivalent to the field of a line 
current at z = 0, y = h flowing in the opposite direction. To write these fields, 
first note that for a line current on the z axis, 

(1) 

Translation of this field to represent first the actual and then in addition the 
image line current then results in the given field intensity. 

(b)	 The surface current density that must exist at y = 0 if the region above 
sustains no field intensity is 

K = n x H => K. = Hz(y = 0)	 (2) 

This is the given function. 

8.4.6 (a)	 The scalar potential produced by one segment of length dz' is 

d,T. Kod:l:' -1 ( Y ) Kodz' -1 (:1:'- z)... =---tan -- =--cot -- (1)
211' z - Z, 211' Y 

The integral over the strip is 

l
z '=a	 K { a-z

'If = d'lf = ---.£ (a - z) cot-1 (--) 
~=b 211' Y 

1(b - z) y [ a - z 2]- (b - z) cot- -- + -log 1 + (--) (2) 
y 2 y 

_ ~ log [1 + (b ~ z)2
] } 

where the integral is taken from: B. O. Pearce, R. M. Foster, A Short Table 
of Integrals, 4th Ed., Ginn and Co. (1956). To this potential must be added 
an image potential that causes a'lf / az = 0 at z = O. This is achieved by 
adding to (2) a potential with the replacements 

Ko--Ko	 a--a, b--b 
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(b)	 The field H = -V'If and thus from (2) 

K o [ 1 (a - x) 1 (b - x)H x = -- - cot- -- + cot- - ­
2~ y y 

+	 (a - x)jy _ (b - x)jy 
1 + (a;x)2 1 + (b;X)2 

_ (a - x)jy + (b - x)jy ] 
1 + (a;x)2 1 + (b;X)2 

K o [ l(a-x)	 l(b-X)]= -- -cot- --	+cot- - ­
2~ y y 

= K o [tan- 1 (-y-) _ tan- 1 (-y-)]
2~ a - x b - x 

To this field we add 

H x = K o [tan- 1 (-y-) -	 tan- 1 (-y-)]
2~ x + a b + x 

8.5 PIECE-WISE MAGNETIC FIELDS 

(a) The surface current density is 

N	 .. cP'K = -tsm 1	 (1)2R z 

so that the continuity conditions at the cylinder surface where r = Rare 

a H b Ni. 
H</>- </>=2RsmcP	 (2) 

(3) 

Looking forward to satisfying (2), the cP dependence of the scalar potential is 
taken to be cos cP. Thus, the appropriate solutions to Laplace's equation are 

(4) 

'lfb = Cr cos cP (5) 

so that the field intensities are 

H a 
-
_ A ( cos

2 
cP 

lr
• + sin

2 
cP. 

I</> 
) (6) 

r r 
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H b = -C(cos ¢i r - sin ¢i<f»	 (7) 

Substitution of these fields into (2) and (3) then gives 

~ _ C = Ni	 (8)
R2 2R 

A 
R2	 + C = 0 (9) 

from which it follows that 

A= RNi. C=_Ni (10)
4 ' 4R 

Substitution of these coefficients into (4)-(7) results in the given expressions 
for the magnetic scalar potential and field intensity. 

(b)	 Because the flux density is uniform over the interior of the cylinder, the flux 
linked by a turn in the plane x = x' = R cos ¢' is 

n.. HR· A-.'	 Ni R . A-.' (11)'I!',). = /-Lo .,2 sm,+, = /-Lo 4R 2 sm '+' 

Thus, the total flux is 

\	 0111" /-LoN • A-.'( N) • A-.'RdA-.';'\ =~ --sm,+, - sm,+, '+' 
o	 2 2R 

N21r 
= ~0/-Lo--

N2 111" . 2 '+'A-.'d-l.' [/-Lo---	
(12) 

SIn '+' = ]
~ 

0 

4 0 8 

and thus the inductance is identified as that given. 

8.5.2 (a) At r = b, there is a jump in tangential H: 

(1) 

with region (a) outside, (b) inside the cylinder carrying the windings. Thus 
n = i r and at r = b 

(2) 

Further the normal component of W must be continous at r = b. 

aW(a) aW(b)
---+--=0	 (3)ar ar 

At r = a, the normal component of H has to vanish: 

aWl = 0	 (4)
ar r=a 
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(b)	 We have a "square-wave" for the current distribution. Therefore, we need an 
infinite sum of terms for q;: 

q;(b) = E
co 

A,.(r/b)" cos n(<p - <Po); 0 < r < b 
n=l 

q;(a) = E
co 

B,.(a/r)" cos n(<p - <Po); b< r < a (5) 
n=l 

+ L
co 

0,. (r/a)n cosn(<p - <Po) 
,.=0 

We picked the normalization of the coefficients so that the boundary condi­
tions are most simply stated. From (4) we have 

and thus 
(6) 

From (3) we have 

(7) 

and using (6) 
(8) 

From (2) we obtaiR: 

The expansion of the square wave K.(<p) is 

K.(<p)=Ko L ~sinn(<p-<po)	 (10) 
"	 n1l" 

ft.-odd 

Thus, using (6), (8) and (10) in (9) we obtain, for n odd: 

and 0,. = 0 for n even. Thus 

(11)
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and 

A" = ~b Ko[(b/ar~" - 1] (12)
n1r 

for n odd, zero for n even. We should check a few limits right away. When 
a -+ 00, we get (for n odd) 

2b 
A" = --2-Ko

n1r 
and 

2b 
Web) = - L -2-Ko(r/b)" cos n(1/> - 1/>0) 

,,-odd n 1r 

2b 
W(a) = L -2-Ko(b/r)" cos n(1/> - 1/>0) 

,,-odd n 1r 

which gives the field due to the cylinder alone. For a -+ b, we get A" = 0 

"" 4b~ L,.., -2-Kocosn(1/> - 1/>0) 
,,-odd n 1r 

There is a I/> directed field in the region between the coil and the shield of 
magnitude 

1 aW "" 4Ko • ( )
H~ ~ --- ~ L,.., -- sm n I/> - 1/>0 

a al/> ,,-odd n1r 

which is approximately square-wave-like. These checks confirm the correctness 
of the solution. 

(c)	 The inductance of the rotor coil is computed from the flux linkage of an 
individual wire-loop, 

1 -~'+1I' I co A 1-~'+1I'~.A = l 1I0Hrbdl/> = L -lilo n b" cos n(1/> - I/>o)bdl/> 
~=-~' r=b ,,_1 ~=-~' 

odd 

(b)2"].- "')= ~ L.." l110--4Kob [1 - smn'f'("" - 'f'o
,,_1 n1r a 
odd 

where l is the length of the system. The flux linkage is obtained by taking the 
number of wires per unit circumference N/1rb, multiplying them by ~.A and 
integrating from 1/>' = 1/>0 to 1/>' = 1/>0 + 1r 

>. = f N bdl/>'~.A = IN f: 110 4Kob [1 - (!)2"] f dl/>' sin n(¢" - 1/>0)
1rb 1r "=1 n1r a 

odd 

8N'2 . (~ 1 [ ( b)2"])= l--lIo'& L.." - 2 1- ­
2:11" ,,=1 n a 

odd 
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where we use the fact that 
K	 _ Ni 
0-	 2b 

The inductance is 

L = ~ = 8~2 Jl-ol f :2 [1 _ (~) 2n] 
n.=l 

"'-odd 

The inductance is, of course, <Po independent because the field is "tied" to the 
rotor and moves with <Po. 

8.6	 VECTOR POTENTIAL AND THE BOUNDARY VALUE 
POINT OF VIEW 

8.6.1	 (a) For the two-dimensional situation under consideration, the magnetic field in­
tensity is found from the vector potential using (8.1.17) 

H = ~(~ 8Az i - 8Azi,p) (1) 
Jl-o r 8<p 

r 
8r 

Thus, if the vector potential were discontinuous at r R, the azimuthal 
magnetic field intensity would be infinite there. 

(b)	 Integration of (1) using the fields given by (1.4.7) gives 

!	 {R3/9R+ h; r 

R 
<
< 

R 
r Az =	 -Jl-o H,pdr + f(<p) = -Jl-oJo ~2 In(r/ R) + 12; (2) 

A -	 {gl (r); r < R 
z -	 g2(r); R < r (3) 

Because the integrations are performed holding rand <p-constant, respectively, 
the integration "constants" are actually functions of the "other" independent 
variable, as indicated. From (3) it is clear, however, that there is no depen­
dence of hand 12 on <p. Given that the vector potential is zero at r = 0 
and that A z is continuous at r = R, h = 0 and h = R2 /9. Thus, the vector 
potential is as given. 

(c)	 In terms of the vector potential, the flux is given by (8.4.12). Because there 
are no contributions on the radial legs and because Az (r = 0) has been defined 
as zero, 

.A = fA. ds = I[Az(O) - Az(a)] = -IAz(a) 
0' (4) 

. =	 Jl- 0 1R 
2 
Jo [In(ar/ R) + ~] 

3 3 

This illustrates how the use of A to represent the field makes it possible to 
evaluate the flux linkage without carrying out an integration. 



8-18 Solutions to Chapter 8 

8.6.2 A must be z-directed and must obey Poisson's equation 

(1) 

Now 

"\72 = ~ i. (ri.)
r dr dr 

in the special symmetry of the problem. Thus 

(2) 

and 

r < b (3) 

Outside this region b < r < a, A z obeys Laplace's equation 

A", ex Cln(r/b) + const 

At r = b we must have continuous A", and dAz/dr (continuous Hq,). Thus, 

b2 

const = -l-'oJz4 
and 

Thus 

~- " X direction 
./' offield 

/

/

/

\ 
\ 
~ 

............. --­
 positive direction 
of loop 

Figure 88.6.2 
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The flux is, according to (8.6.5) [see Fig. 88.6.2] 

>. = l(A~ - A~) 

and thus

>. = -lA~


because 
A~ = 0 

For c < b 

For c > b 
b2 

>. = lJLo Jz "4[1 + 2ln(cjb)] 

Note that A z ¥= 0 for r > O. This should be remedied by adding a constant to Az • 

It does not affect the flux linkage. 

8.6.3 (a) In cylindrical coordinates where there is no <p dependence, the vector potential 
has only a () component 

A = A/;/(r, z)i/;/ (1) 

and the flux density is found from 

JLoH = V x A * JLoH = ir ( - aaA/;/) +iz[~aa (rA/;/)] (2)
z r r 

For reasons that are apparent in part (b), it is convenient to write A as 

A = Ac(r, t)	 (3) 
r 

in which case, (2) becomes 

H _ ~ [_ aAc • aAc .]
JLo - a lr + a lz	 (4) 

r z r 

(b)	 For any surface S enclosed by the contour C, the net flux can be found from 
the vector potential by 

>. = £A . ds	 (5) 

In particular, consider a surface enclosed by a contour C having as the first 
of four segments a contour spanning 0 < <p < 211" at the radius, a, from the z 
axis. The second segment connects that circular contour with a second at the 
radius b by a segment connecting the two in a plane of constant <p. The contour 
is closed by a second contour in an adjacent <p = constant plane joining these 
circular segments. Integration of (5) gives contributions only from the circular 
contours. The segments joining the circular contours are perpendicular to the 
direction of A, and in any case make compensating contributions because they 
are in essentially the same <p = constant planes. Thus, the flux through the 
surface having outer and inner radii, a and b respectively, is as given. 
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8.6.4	 (a) The vector potential, A., BatisfieB Laplace'B equation. The first three condi­
tionB of (8.6.18) are met by the solution 

· hR'I" • R'I"A• = ARBm	 -yBm-z (1)
a a 

The last condition is met by BuperimpoBing these solutions 

00 

~A' hR'I" . R'I"A• = LJ I' BIn -yBm-z	 (2) 
1'=1 a a 

and evaluating the coefficientB by requiring that this function satisfy the fourth 
boundary condition of (8.6.18). 

00 

~ A • h R'I"b . R'I"A=LJ RBm - sm-z (3) 
1'=1 a a 

Multiplication by Bin(m'l"zja) and integration giveB 

Aa m'l"] a Ama. m'l" 
--COB-Z = --Bmh-b	 (4)

m'l" a	 0 2 a 

which therefore giveB the coefficients as 

(5) 

so that (2) becomes the given solution. 

(b) The total current in the lower plate is 

i = 1
a

K.dz = - 1a Hs(Y = O)dz = - 1a 
-1 8A I dz (6)_. 

o	 0 0 Jjo 8y 1/=0 

Evaluation using the given vector potential gives 

. ~ 8A ~ IBinwt 
, = - ~ IL R'I"sinh (RtI'b) = - LJ 2RBinh (RtI'b) (7) 

.._1 ,..0 a 1'=1 a 
odd 

(c) In the limit where bja::> I, 

. h (Rd)	 1 RtI'blasm - --e	 (8)
a 2 
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and (7) becomes 

00 

i --. - E !-e-n/rrbIG sinwt --. _Ie-wbIG sinwt (9)
,,_1 n 
odd 

Taking In of the magnitude of this expression gives 

In( I~I) == -7I"(b/a)	 (10) 

which is the straight line portion of the plotted function. 

(d) In the limit b/a <: 1, (7) becomes 

i --. _-!.- SA ~ E -!.- - --!.-A~	 (11)
Po r b n2 - Po b 

This is the same as what is obtained if it is assumed that the field is uniform 
and simply Hz --. A/bpo so that 

K. --. -Hz => i --. K.a --. -aA/bpo	 (12) 

8.6.5	 The perfectly conducting electrodes force H to be tangential to the electrodes. 
Thus 8A",/8z == -Po H lI vanishes at y == 0, y == d except for the gap at z == 0 and 
8A",/8y == PoHz vanishes at z == ±a. The magnetic vector potential jumps by A as 
one goes from z == 0_ to z == 0+, at y == 0 and y == d. Thus A. is constant around 
the c shaped contour as well as the :J shaped one. Denoting by the superscripts 
(a) and (b) these two regions respectively, we have for Laplacian solutions of A", 

A~b) == E
00 

Bn sinh n; (z - a) sin n; y + Bo(z - a) 
n=l 

At z == 0, the constants Ao and Bo account for the jump of A"" Bo == -A/2 == Ao • 
The vector potential and its curl must be continuous for 0 < y < d at z == O. We 
thus have An == - Bn for all n except n == O. The sinusoidal series has to cancel 
that jump for 0 < y < d. We must have 

" A	 . h n7l" • n7l" " 4Ao • n7l"L.J	 n sm -a sm -y == - L.J -- sm -y 
n d d n-odd n7l" d 

and similarly for the series in region b. We obtain 

A (G) _	 " 2A sinh 7(z + a) . ml' A( )
• - L.J . hRtr sln-y-- z+a 

n-odd n7l" sm da d 2 
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(b) _ " 2A sinh !!f(z - a) . mr _!.( _ )
A.	 - L..J • h mr sm d y 2 z a 

n-odd n1l' sm (f"a 

(b) See Fig. S8.6.5. 

Ftsure 58.6.& 

8.6.6	 (a) We must satisfy Poisson's equation for the vector potential everywhere inside 
the perfectly conducting boundaries 

(1) 

and make the normal flux density and hence A. zero on the boundaries. 

A. = 0 at	 z = ±a,y = 0, y = b (2) 

A particular solution to (1) follows by looking for one that depends only on 
z. 

(3) 

Then the homogeneous solution must satisfy Laplace's equation and the con­
ditions 

A.h = 0 at	 z = ±a; (4a) 
2 . a • 1I'Z 

A.h = I-'o'ln0"2sm - at Y = O,b	 (4b)
11'	 a 

The first ofthese conditions, can be met by making the z dependence sin(1I'Z/ a). 
Then, the y dependence must be comprised of a linear combination of exp(+ky) 
and exp(-ky). IT the y coordinate were at y = b/2, the second of the condi­
tions of (4) would be even in y. So, make the linear combination cosh k(y- k)] 
and for convenience adjust the coefficient so that the second of conditions f4) 
are met, divide this function by its value at y = b/2. This makes it clear that 
the coefficient is the value given on the boundary from (4). Thus, the desired 
solution, the sum of the particular and homogeneous parts, is 

A = A + A - I-'oinoa 
2 [COSh Hy - ~) - 1] . (~) (5) 

• !liP .h - 2 h (ft'b)" sm
11' cos 20 a 
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(b) The flux linked by one turn is

.~ = -l[A.(z,y) - A.(-z,y)!

= _ 2poiRoa
2

l [COSh i(y -l) _ 1] sin!!
,,"2 cosh (;:) a

and the total flux of all of the windings in series is

8-23

(6)

(7)

+

8.6.7

@@
Figure 98.8.8

(C) A sketch of the lines of constant vector potential and thus B for the particular,
homogeneous and total solution (the sum of these) is shown in Fig. 88.6.6.
It is perhaps easiest to envision the sum by picturing the addition of contour
maps of the two parts, the axes out of the paper being the height A. of the
respective surfaces.

(a) This is a problem involving a particular and a homogeneous solution of the
vector Poisson equation. The particular solution is due to uniform current
density Jo = Roi

Z2 - a2

A p = -PoRoi 2 i.

Alternatively, we may find the homogeneous solution by comparison with
Prob. 8.6.6. In that problem the wire density Was sinusoidal. Now it is uniform.
A. Was antisymmetric, now it is symmetric. We can expand the symmetric
wire distribution as a square wave.

() . '" 4noi n7rJ. 3:,y = R o' = L..J --cos-Z
.. RlI" 2a

..-odd



8-24 Solutions to Chapter 8

The particular solution of the vector potential is thus

. "" 4 2a)2 (n1r)A p = -i.JLono~ L...J -(- cos-x
.. n1r n1r 2a

",-odd

The complete solution is

• ."" 4 2a 2 n1r [COSh ~: (y - ~)
A = 1.JLono~ L...J -(-) cos (-x) h mfb

.. n1r n1r 2a cos 4a
odd

(b) The flux linkage of a wire at x, y is

and thus

- 1]

8.6.8 (a) Here we have a solution very much like that of Prob. 8.6.6, except that the
particular solution

has to be replaced by an infinite sum whose l'econd derivative reproduces the
square wave of magnitude ino. Thus

A • . "" 4 ( a )2 . (n1rx)b = -l.J.'otno L...J - - sm--
n1r n1r a

n-odd

x=o
-a

Figure S8.6.8

The complete solution is (compare Prob. 8.6.6)

a

A _. . "" ~(~)2 . (n1rx) [cosh(n1r/a)(y - ~) _ ]
- 1.JLo~no L...J sm (b) 1n1r n1r a cosh n

2
11"

n-odd a
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(b) The inductance is computed from 

where 21Az is the Hux linkage of one turn nod:z;' dy' is the wire density. Thus 
integrating one typical term: 

r d:z;' sin (mr:z;') r [COSh 7 (y - £) _1] dy' = 2( ~)[2~ tanh mrb - b]
10 a 10 cosh mrb n7l" n7l" 2ao 0 2a 

and the inductance is 

- 21 ~ 16( a )4[n7l"b h(n7l"b)]L -p.on LJ - - --tan ­
o d n7l" n7l" 2a 2a

,.-od 




