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SOLUTIONS TO CHAPTER 6


6.1	 POLARIZATION DENSITY 

6.1.1	 (a) From (6.1.6), the polarization charge density is 

P1' = -V·p = Popsinfh; (1) 

(b) The polarization surface charge density at the respective surfaces follows from 
(6.1.7) evaluated at the respective interfaces.


u 81' = -n . (pa _ pb)


(2) _{-(O -Pocospz) = PoCOSPZj y=d 
- -(Pocospz - 0) = -PoCOSPZj y=O 

6.2	 LAWS AND CONTINUITY CONDITIONS WITH 
POLARIZATION 

6.2.1 (a) Given the polarization density, the polarization current density follows from 
(6.2.9). 

ap dPo .)Q (.J l' = lit = "dt cos fJZ Ix + I~ (1) 

The polarization charge density is as found in Prob. 6.1.1. 

(b) Substitution of these quantities into (6.2.10) gives


ap1' V J apo • dPo •
at + . l' = --atpsmpz - "dtpsmPz = 0 (2) 

6.3	 PERMANENT POLARIZATION 

6.3.1	 (a) The polarization charge density between the electrodes is 

P1' = -V . P = Popsinpz (1) 

Thus, at each point between the electrodes, 

V2W= _P1' = _PoP sinpz (2)
Eo Eo 

1 



6-2 Solutions to Chapter 6

and a particular solution is gotten from

82~ PofJ. Q .... Po. Q
--2 = -- sm,.,z => 'VI'p = - sm,.,z
8z Eo fJEo

To satisfy the boundary conditions, use the homogeneous solutions Az

~ = Az + ~o sinfJz
,.,Eo

which satisfies ~(z = 0) = o. To make ~(z = a) = -V,

A V Po. Q= --- --sm,.,a
a fJEoa

so that (6.3.4) becomes

~ = Po (sinfJz - =sinfJa) - V=
fJEo a a

(3)

(4)

(5)

(6)

/ t/J=-V
a

f

"
o --.~ y

(b) In this case,

and

P = Po cos {3xix ~ = 0

Flpre 98.3.1

Pp = -V· P = fJPosinfJy (7)

82~p fJPo • Po • ( )-- =--sm fJy => ~ = - sm fJy 88y2 Eo p EofJ
Boundary conditions at z = 0 and z = a, are satisfied by ~ = -Vz/a. Thus,
we let

~ = Po sinfJy - V= + ~1 (9)
EofJ a

Then ~1 must be -(Po/EofJ) sinfJy at z = 0 and z = a. Such a solution to
Laplace's equation is symmetric about z = a/2;

~= P~sinfJY- VZ+AcoshfJ(z-~)sinfJY (10)
Eo,., a 2

To satisfy boundary conditions

A = _ Po 1 ( )
EofJ cosh (~ ) 11

Thus, from (6.3.4) and (6.3.5),

.... Po. Q [ cosh fJ (z - ~) ] V Z
'VI' = - sm,.,y 1 - - -

EofJ cosh (~) a
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6.3.2 The polarization charge density inside the rectangular region is 

(1) 

The potential is therefore a solution to 

V 2"", P. 11" • 11""*" = - o-Sln-X (2)
aEo a 

that satisfies the zero potential boundary conditions. Two of these conditions are 
satisfied by the particular solution to (6.3.2) that follows from assuming that it, 
like the charge distribution,. only depends on X. 

tP~p 11" • 11"-- = -Po - sm-x (3)
dx2 aEo a 

Two integrations, with the integration constants adjusted to make the potential at 
x = a and x = 0 zero then give the particular solution 

"'" p. a . 11""*" = o-sm-x (4)
p 1I"Eo a 

The homogeneous solution must also be zero on these boundaries and cancel this 
particular solution when evaluated at y = ±b. 

(5) 

Because these conditions are even in y, and because of the former boundary con­
ditions, the potential is therefore taken as having a cosh dependence on x and the 
potential distribution suggested by the conditions of (6.3.5) at y = ±b. 

a 11" cosh ~y 
~h = -Po - sin -X--:-'=:-:- (6)

1I"Eo a cosh ~b 

The required potential is then the sum of the particular and homogeneous solutions, 
(6.3.4) and (6.3.6). 

a 11" [ cosh :zr.. y ] (7)~ = Po - sin -x 1 _ G 

1I"Eo a cosh;b 



6.3.3

6-4

(a) First,
ap"

Pp = -v·p= -- =0ay

Solutions to Chapter 6

(1)

and

(2)

r
p = Po cos[(211"/A)xJill

-x

(3)

Figure 88.8.8

(b) The CJ> above and below must satisfy Laplace's equation and the boundary
conditions that at y = 0

EoE; - Eo~ = -Eo a:a I + Eo aaCJ>b I = Po cos [(2;)z]
Y ",=0 Y ",=0

To these ends, and to make CJ> -+ 0 at y -+ ±oo, make

(4)

(5)

6.3.4 In the region -a < y < 0, the divergence of the polarization density is zero
and so the polarization charge density is zero as well. Thus, in both regions (a)
and (b), the potential must satisfy Laplace's equation. Boundary conditions on the
potential are that it be the given values at y = ±a, that it be continuous at y = 0
and that it satisfy Gauss' continuity condition at y = O. This condition requires
that

-n. [aCJ>a _ aCJ>b] = O',p

ay ay ,,=0

where the polarization sudace charge density follows from

(1)

Thus, the fields are the same as if there were an unpaired sudace charge density
o',u = Posin,8(z - zo) in the plane y = o. With the identification of 0'0 -+ Po,
the physical situation is the same as considered in Prob. 5.6.12 and the solution as
outlined there.
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6.3.5	 The given polarization density is uniform, so there is no volume polarization 
charge density. The polarization surface charge density at the cavity interface is 

(1) 

Thus, the boundary conditions at r = R are 

~a = ~b	 (2) 

(3) 

On the right in this last expression is the sum of the polarization and unpaired 
surface charge densities. Superposition can be used to find the potentials due to 
the respective terms on the right and then their sum can be taken. Symmetry and 
Gauss' integral law give the electric field due to the uniform unpaired surface charge 
density. 

1
411"Eor 2 E~ = 411"R20'o => E~ = -(R/r)20'o	 (4)

Eo 

There is no electric field intensity inside, so the potential there is what it is on the 
surface. Thus, 

{ 
~. r<R 

~_ Eo' ­

- R~"'Q. r> R	 (5) 
r' ­

To find the potential from the second term in (6.3.3), assume that 

.... _ {AiCOS()	 (6)~-	 R~

Arrcos() 

where the coefficient has been adjusted to satisfy (6.3.2). Substitution of these 
expressions into (6.3.3) then gives 

A = _PoR	 (7)
3Eo 

The sum of (6.3.5) and (6.3.6) with the latter evaluated using (6.3.7) is the given 
potential. 

6.3.6 In polar coordinates, the uniform y directed polarization density is 

p = PJ)' = Polcos <Pi.. - sin <Pi",)	 (1) 

Because the divergence of P is zero in the volume, the only polarization charge is 
a surface charge density at r = R. This is 

O'.p = -n . cos(pa - pb) = -Po cos <p	 (2) 
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The equipotential boundary condition in the plane 11 = 0 is met by assuming 
solutions 

ibQ = -A 
cos ;i ibb = Br cos; (3) 

r 

Boundary conditions at r = R are 

(1'- [ -
BibQ	

- -Bibb] = ~ '* (-A + B) cos; = -Pocos; (4)
Br Br r=R Eo W 

A
-=BR	 (5)
R 

Simultaneous solution for the coefficients gives


A __ PoR2. Po

- 2' B=-­

2	
(6) 

and hence, 

Q PoRR b PoR rib = ----cos;· ib = ----cos;	 (7)
2 r ' 2 R 

6.3.1	 The fields in regions (a) and (b), respectively above and below the interface, 
are taken as uniform. Because the line integral of E between the electrodes is zero, 

aE:+b~ =0	 (1) 

At the interface, there is a polarization surface charge density 

(2) 

Thus, Gauss) continuity condition requires that 

(3) 

Solution of (6.3.1) and (6.3.3) then gives 

E'!. = _ Po 1 (4) 
:I: Eo (~ + 1) 
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6.3.8 (a)	 The polarization charge density is 

Pp = -V· P = -V· V,p = _V2 ,p (1) 

where ,p = Por cos(¢> - a) is a solution to Laplace's equation. Thus, PP = O. 

(b) The surface polarization charge density at r = b is 

It is assumed that there is no unpaired surface charge density on this interface, 
so the boundary conditions are 

cpI(r = a) = 0 (3) 

cpI(r = b) = cpII(r = b) (4) 

foE; - foB;I = Pocos(¢> - a) (5) 

Solutions to Laplace's equation that have the same dependence as the right 
hand side of (6.3.5) take the form 

cp _ {A[(rla) - (air)] cos(¢> - a)	 (6)
- B(rlb) cos(¢> - a) 

Here, the solution that is infinite at the origin has been omitted and the two 
contributions to the outer potential adjusted to satisfy (6.3.3). Substitution 
of (6.3.6) into (6.3.4) and (6.3.5) then gives 

b a Pob2 b a 
B = A(- - -) = --(- --)	 (7)

a b 2foa a b 

Thus, (6.3.6) and (6.3.7) are the given potentials. 

6.3.9	 (a) Note that the scalar function inside the gradient operator is a solution to 
Laplace's equation. Thus, 

(1) 

and there is no polarization charge density in the volume of the rotor. However, 
at the interface there is a surface polarization charge density given by 

(2) 

(b) Boundary and continuity conditions are 

(2) 
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awa aWb ]
-Eo [--a;:-(r = b) - ar (r = b) = Pomcos mtP (3) 

Given the tP dependence of a.p , solutions to Laplace's equation are assumed 
to take the form 

wa = A[(r/a)m - (a/r)mJcos mtP (4a) 

wb = A(r/b)m[(b/a)m - (a/b)m] cosml/l (4b) 

where a linear combination of solutions has been selected in the annular region, 
(a), that satisfies the zero potential condition at r = a and the coefficients 
have been arranged so that the potential is continuous at r = b. The last of 
the boundary conditions then determines A. 

Thus, the potential is 

b<r<a 
r<b (6) 

(c)	 With the substitution tP -+ tP - Ot, at a given instant in time there is only a 
shift in the origin of tP. Because the field laws do not involve a time rate of 
change, they are satisfied by the new solution. To stay at a point of constant 
tP - Ot and hence constant P requires being at the angular position tP = Ot+ 
constant. Thus, the new solution is one that represents the fields associated 
with a rotor having the angular velocity O. 

(d) From (6.3.6), the surface charge density on the wall at r = a is 

awa bPo 2m 
a.u	 = Eo - (r = a) = --(b/a)m-cos m(tP - Ot) (7)ar 2 a 

The net charge on the segment is then 

q = l r a.uadtP = -lbPo(b/a)m[sin(-mOt) - sinm( - ~ - Ot)] 
~~m	 m 

(8)=lbPo(b/a)m[sin(mOt) - sin(1l" + mOt)]


= 2lbPo(b/a)m sin(mOt)


and hence the output voltage is 

(9)
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6.3.10	 (a) The potential in regions (a) and (b), respectively 0 < z and z < 0, take the 
form of (6.6.26) and (6.6.27) with V = 0 in the latter because both of the 
electrodes are grounded over their full length in the z direction and a -. d. 

00

L Vne-A[ssin n; y~a = (1) 
n=l 

~b = 
00

L Vne.llfs sin n; y (2) 
n=l 

The coefficient in these expressions, Vn , has been adjusted so that the po­
tential is continuous at the interface. Given V(y), these coefficients follow by 
evaluating either of these expressions at y = 0 

00 

LVnsin n;y=V(y) (3) 
n=l 

multiplying by sinemll'y/ d) and integrating from y = 0 to Y = d. 

(4) 

Given V(y), this integral can be evaluated and the coefficients needed to 
complete (1) and and (2) determined. 

(b) In addition to the continuity of potential which is already satisfied by (1) and 
(2), the continuity condition at z = 0 is 

(5) 

(c) With Po now the given quantity, substitution of (1) and (2) into (5) gives 

(6) 

The coefficients are evaluated in this case by the same procedure as leading 
to (4). 

(7) 

Evaluated using this coefficient, (1) and (2) become the given potential. 
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6.8.11	 In region (b), the potential must satisfy Poisson's equation with the charge 
density found in Prob. 6.1.1. 

(1) 

while in region (a) it satisfies Laplace's equation. At the interface, the potential 
must be continuous and satisfy Poisson's continuity condition for the polarization 
surface charge density found in Prob. 6.1.1. 

(2) 

Finally, the potential must go to zero as 'II -+ 00 and be zero in the plane 'II = O. The 
particular solution to (1) is taken as depending only on z. Thus, two integrations 
give 

~:= P~sinfJz	 (3) 
Eo,", 

The z dependence of the potential due to the surface charge density is cos(fJz) 
while that due to the volume charge denisty is sin(fJz). The potential is taken as 
the sum of potentials due to these two sources, ~ =~. + ~". The potential due to 
the surface charge satisfies Laplace's equation in each region and takes the form 

A.e-I'(u-d) cos fJz 
~. = Binb (4)

{ A. Binb I'd cos fJz 

Here, the coefficients have been adjusted to make the potential continuous at 'II = d, 
while the sinh function satisfies the zero potential boundary condition at 'II = O. The 
coefficient is determined by requiring that Gauss' continuity condition be satisfied 
with the surface charge density given by (2). 

-EoA.[-fJ - fJcoth(fJd)]cos(fJz) = Pocos(fJz) => A. 
Po (5)= -:-:--....:;....".....,~:'":' 

EofJ[l + coth(fJd)] 

The part of the potential due to the bulk charge takes the form 

A"e-I'(u-d) sin(fJz) 
~,,= { £i; [1 + B" sinh(fJ'Y) + C" cosh(fJ'Y)] sin(fJz) (6) 

where the solution in the lower region has been taken as the sum of the particular 
solution, (3), and two solutions to Laplace's equation. This·part of the potential 
must also be zero at 'II = 0, so C = -1. In addition both the potential and its 
normal derivative must be continuous at 'II = d. 

A" = P~[l + B" sinh(fJd) - cosh(fJd)]	 (7) 
Eo,", 
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-fJAu = Po [Bu cosh(fJd) - sinh(fJd)	 (8)
Eo 

Simultaneous solution of these expressions gives (sinh2 Z - cosh2 Z = -1). 

Au = Po [cosh(fJd) - 1] 
EofJ [cosh(fJd) + sinh(fJd)J (9) 

B =	 cosh(fJd) + sinh(fJd) - 1 (10) 
u 

cosh(fJd) + sinh(fJd) 

Finally, the total solution is the sum 'of (4) and (6) with the coefficients given by 
(5), (9), and (10). 

6.4	 POLARIZATION CONSTITUTIVE LAWS 

6.4.1 In terms of the number density N, the polarization density is given by 

P =	 Nqd = (E - Eo)E (1) 

It follows that the, separation d of single electronic charges needed to account for 
the given polarization is 

d = (E - Eo)E = (1.5)(8.85 x 10-12)(10'1) = 11 10-1. (2)
Ng (6 x 1026/8)103(1.6 X 10-19) . X 

This is less than 1/1000 of a dimension typical of an atom. 

6.5	 FIELDS IN THE PRESENCE OF ELECTRICALLY LINEAR 
DIELECTRICS 

6.5.1 (a) Tlte divergence of EE is zero 

a [V·EE= - E(Z)-] =0a1/ 
t1 

d	
(1) 

and the curl of E, a unifoJ:ID field, is as well. Given that the field is normal 
to the perfectly conducting boundaries, which extend to infinity, it follows 
that the solution, which does indeed satisfy the relevant field laws, is uniquely 
specified. 

(b) On the upper surface of the lower electrode in the regions to right and left, 

(2) 



6-12 Solutions to Chapter 6 

It follows that the net charge on the lower electrode is 

(3) 

and hence the capacitance is as given. 

(c) In this case, the surface charge density on the lower electrode is 

(4) 

and so the net charge on the lower electrode is 

(5) 

so that C is as given. 

6.5.2 A uniform electric field, E = (v/d)i)' is irrotational and satisifies Gauss' law 
with the permittivity varying with z, a direction perpendicular to the proposed 
electric field. 

a [ v (1)V· fE = oy fall + acos,8z)d] = 0 

Thus, E is indeed uniform and 

(2) 

This is also the density of unpaired surface charge on the lower electrode, so the 
total charge on that electrode is 

f' v 
q = C1 fa(l + acos,8z)ddz 

0 (3a) 
Cfa [ a. ]'= d z+ psm,8z Ov = Cv 

Cfa [ a. ]
C == d 1+ psm,81 (3b) 

6.5.S (a) Because the field is independent of z and z, 

aDyV·D=-=O (1)ay 

and from this it follows that Dy = DII(t). 
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(b) In terms of the given distribution of permittivity, 

(2) 

This expression can be solved for E" and hence for the y dependence of E". 
To determine the unknown D", that expression is integrated from the lower 
to the upper electrode and the result equated to the voltage. 

The total charge on the lower electrode, and hence G, follows from this result 

= AD = [€oXa A /l (1 + 2Xa)] 
q " l n (1 + Xa) tI	

(4) 

6.5.4	 Because the field is independent of x and z, 

(1) 

and from this it follows that D" = D,,(t). This means that 

(2) 

is independent of y and can be solved for E". The voltage is then 

(3) 

and this expr.ession can be solved for D", which is the surface charge density on the 
lower electrode. 

q = AD" = Gtlj 
G=

- d(1 -
A€p

e-l / d )	
(4) 

6.5.5	 (a) For each, the electric field intensity in each region takes the form E = irA/r 
[the potential takes the form cP = Aln(r)]. In the first case, the integral of 
this field between the electrodes must be the same whether it is taken in the 
dielectric or in the free space region. Thus, in the first case, 

laA 
tI = -dr = Aln(a/b) => E = irtl/rln(a/b) (1) 

b r 

Note that this solution satisfies the conditions that the tangential field be 
continuous at the dielectric-free space interfaces and that the normal D be 
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continuous (there is no normal D). The field is normal to the circular cylinder 
electrodes and so these are equipotentials, as required. In the second case, the 
coefficient A has a different value in each of the regions. The two coefficients 
are found by requiring that 

(2) 

and that at the interface 
(3) 

Thus, in the second case, 

E_ irv {1; b < r< R (4)
- [In(R/b) + E: In(a/R)]r E/Eo; R<r< a 

(b) The capacitance follows from integrating the surface charge density over the 
inner electrode. In the first case, 

q = l[abEEr(r = 6) + (27r - a)6EoEr(r = 6)] = Cv; (5a) 

C == l[aE + (27r - a)Eol/ln(a/6) (56) 

while in the second case 

e 
q = l27rbDr (r = b) == Cv; C == 27rlE/[ln(R/b) + -In(a/R)) (6) 

Eo 

6.5.6 Based on experience in the special case where the wedge is of uniform permit­
tivity (so that the spatial variations in permittivity are bumps at the interfaces) 
postulate that the electric field is no different than if the dielectric wedge were not 
present. 

E = [v/rln(a/6»)i r (1) 

Because the electric field is perpendicular to the gradient in permittivity, there is 
no induced polarization charge, (6.5.9), and hence no distortion of this field by the 
dielectric. The field of (1) has no divergence (and of course no curl) and hence does 
satisfy the bulk conditions throughout the volume. It also has no tangential value 
on the boundaries, as required. The given capacitance follows from integrating the 
unpaired surface charge over the surface of the inner electrode. 
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6.6	 PIECE-WISE UNIFORM ELECTRICALLY LINEAR 
DIELECTRICS 

6.6.1	 Given that the imposed potential takes the form 

.(r - (0) = -Eor cos 0	 (1) 

assume postentials of the form 

A• = -EorcosO + r2 cosO; r> R	 (2) 

r	 A) r
.=BRcos6=(EoR+ WRcosO; r<R (3) 

Here I the coefficients have already been adjusted to make the potential continuous 
at r = R. The remaining condition is that 

(4) 

from which it follows that 
A = EoR3(Ea - Eo} (&)

(2Eo + Ea) 

The given potentials follow from substitution of (5) into (2) and (3). 

6.6.2	 (a) Assume a potential within the cavity that is consistent with the dipole being 
at the origin with the addition term satisfying Laplace's equation while having 
the same 0 dependence as the dipole and being finite at the origin. Outside 
the cavity, the potential again has the 6 dependence of the dipole and goes to 
zero at infinity. 

...L-co;9 + Brcod' r < a 
•	 _ 4t1'Eo r , (1)

- { Acos 9 • a < r 
r2 I 

Potential .continuity and continuity of normal D at r = a requires that the 
coefficients A and B satisfy 

[i:	 ~a] [~] = [~] (2) 
(is"	 0 4'1l"~i 

Thus, 

A- 3p • (3)
- 41r(Eo + 2E)' 

so that ~he required potential is 

{ 
~ 2~ r<a• = pcos 0 ;:t" - aa Tl+B r ; (4)

41rEo 3 1. 
1+2-'- ;:;, a<r 

'0 
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The electric field follows as 

2 2 ~] • [ 1 2 -f--l 
3 3	 3E = --.!!..- [ r + a ~ cos 01.. + - a3 l+~ r<a 

r 

4'11"Eo { 6 c088i + 3 8in8i.	 a<r1+* rr.. 1+* rr 8,	

(5) 

(b) In the limit E --+ 00, the tangential electric field at r = a becomes 

1 2(.£ - 1) 1 1 
lim-- =---=0	 (6) 

E-CO a3 a3(1 
Eo 

+ ~:) 3 a3a

and the potential inside the cavity, (1a), becomes 

lim ~b = pcosO (.!.. _~)	 (7) 
E-CO 4'll'Eo r 2 a3 

(c) IT the cavity is regarded as an equipotential at the outset, it follows from (ta) 
that 

P 1 P---+Ba=O=>B=--­	(8)
4'11"Eo a2	 4'11"Eoa3 

in agreement with what was obtained by taking the limit, (7). 

6.6.3	 Feom (5.8.4), the potential around a perfectly conducting rod of radius R in 
a uniform electric field is 

~ = -EaR(!:... - R) costIJ	 (1)R r 

The potential for a two-dimensional electric dipole is given by (a) of Prob. 4.4.1. 

~ = Aid costIJ (2) 
2'11"Eo r 

Comparison of these expressions shows that the induced two-dimensional dipole 
moment is 

Aid = (2'11"EoR 2 )Ea	 (3) 
The density of the rods is (1/82 ) per unit area and therefore the polarization density 
IS 

(4) 

6.6.4 The dielectric spheres have induced dipole moments that follow from (a) of 
Prob.6.6.1.


n3 (E, - Eo)

p = 4'11"EoEo n.- (

E, + 2Eo
)	 (1) 

Using the arguments of (6.6.6)-(6.6.9), it follows that the equivalent permittivity is 

E= 1 + 4'll'(R/8)3 (E, - Eo) (2) 
(E, + 2Eo) 
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6.6.5 Writing the potential in the upper region as that of the point charge q at
y = h and its yet to be determined image at y = -h, both on the y axis, we have
(Sec. 4.4)

~ = _1_ { ~ - ~j 0 < y (1)
4'll"Eo r+ j Y < 0

where
r+ = y z2 + (y - h)2 + z2 j r_ = y z2 + (y + h)2 + z2

In their respective regions, these have been chosen to satisfy Poisson's equation (in
the upper region) and Laplace's equation. At the interface, where y = 0 in (1), the
potential must be continuous for all z and z

(2)

(3)

and the normal electric flux density must be continuous (there is no unpaired surface
charge density)

Simultaneous solution of these expressions gives the relations for qa and qb sum­
marized by (b) in the problem. To determine the force on the charge caused by
the surface polarization charge it induces at the interface of the dielectric, compute
the electric field at y = h, z = 0, z = 0 using (1) and ignoring the self field (it can
produce no net force on itself) and multiply by q.

f = i)'qEI/(z = O,y = h,z = 0)

Thus, the force is one of attraction, as given.

(4)

6.6.6 In the upper half space, the particular solution is that of a line charge. Because
it has the same z dependence of its potential in the y = 0 plane, a homogeneous
solution is added to this which is the potential of an image line charge at (z, y) =
(0, -h).

(1)

In the lower half space, the potential is taken as that due to a line charge located
at (z, y) = (0, h).

(2)

The coefficients, ~a and ~b are now adjusted to satisfy the continuity conditions on
the potential and the normal dielectric flux density in the y = 0 plane.

(3)

(4)
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Because each of the terms in one or the other of these expressions has (by design) 
the same :z; dependence, the boundary conditions can be satisfied by adjusting the 
coefficients. Simultaneous solution gives 

,xa = ,x(€a - €b)/(€a + €b) (5) 

,xb = 2€b,x/(€a + €b) (5) 
In the limit where €b -+ 00 the field in the upper region, (5), becomes that of a line 
charge over a ground plane, where the image line charge is equal in magnitude and 
opposite in sign to that of the line charge and the field lines are perpendicular to 
the surface. In the opposite extreme where the upper region has a very large €, the 
field lines in the upper region tend to have no normal component. One way to see 
this is to observe that in the limit €a -+ 00 the image line charge becomes equal to 
the line charge. 

6.6.1	 (a) The uniform electric field that would exist if the permittivities were equal is 
written in polar coordinates as 

iP = -Eorcos 4J => E = Eo(cos 4Jir - sin 4Ji",) (1) 

(b) The surface polarization charge density induced by this imposed field is 

a.v = -P: + P: = -(fa - €b)Er 

= €b(1-€a)Er = lt€bEocos4J (2)
€b 

(c) The potential induced by this surface charge density is of the form 

iP = {A cr1"J j r > R 
A(r/R) cos 4Jj r < R	 (3) 

where the outer solution leaves the field as that imposed at infinity and the 
coefficients have been adjusted to insure continuity of the potential at the 
surface. The continuity condition from Gauss' law then gives 

BiPa BiPb) 
- ( €a a;: - €b Br = lt€bEo cos 4J	 (4) 

hence 
A = ItEoR	 (5) 

2 
Substitution of this coefficient into (3) confirms the given potential. 

(d) The exact solution given by (6.6.21) and (6.6.22) is first written in terms of 
It. 

iPa = -REocos4J[':" _ !!:,_It_] (6)
R r2-1t 

iPb = -REocos4J[':" 2(1- It)]	 (7)
R 2-1t 

To linear terms in It, note that 

_It_ -+~. 2(1 - It) -+ 1 _ ~	 (8) 
2-1t 2' 2-1t 2 

Using these expressions in (6) and (7) gives the same approximate expressions 
for the potential as given with the problem. 
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6.6.8 (a) If the dielectric is uniform, then so is the electric field.
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(1)

(b) From (6.6.25), if (1) approximates the electric field then the approximate
polarization surface charge density is

(2)

(c) For Eb < Eel, trap < O. Thus, the distribution of surface charge density and
hence electric field is as shown in Fig. S6.6.8.

(a)

j f\ \¥W
++ ..... ±+=++

(b)
Flpre se.e.8

(d) For the second case, the polarization surface charge density is as sketched in
Fig. S6.6.8b.

6.6.9 (a) The potential is represented as a piece-wise continuous function. In regions
(a) and (b) where the permittivity is uniform, it is expanded in solutions to
Laplace's equation that have zero potential on the boundaries. To satisfy the
potential boundary condition to the left, Y is added to the potential in region
(b).

!
~ sinh [n; (z - a)]. rur

_ ~-An sinh(nll'a/d) sm(d"Y)i

~- ~B sinh [n;(z+a)] . (nll') y.
LJ n . h( /d) sm d Y + ,
n=l sm nll'a

Continuity of Dz at the interface requires that

O<z<a

-a < z < 0

(1)

(nll') (nll'a) (nll') (nll'a)
EaAn d coth T = -BnEb d coth T

which gives

(2)

(3)
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To make the potential continuous at z = 0, the constant V is expanded in 
the same Fourier series as representing the y dependence in the other terms 
in (1). 

V = L
00 

On sin (n~y)	 (4) 
n=l 

Multiplication by sin(m'll'"y/d) and integration on y from 0 to d then gives an 
expression that can be solved for the coefficients. 

4V. 
On = rnr' n odd (5){ o·, n even 

The potential continuity condition is then satisfied by each term in the series. 

4V 
An = Bn + -j n odd	 (6)

n'll'" 

It follows from (3) and (6) that the coefficients in (1) are An = B n = 0 for n 
even and for n odd. 

A 
_ 4V 1 . (7)

n - n'll'" 1 + fa / fb ' 

(b)	 In sketching ~ and E, as shown in Fig. S6.6.9a for the case where the permit­
tivities are equal, note that the potential varies from V to 0 across the gaps. 
Every other point on the boundaries is either at potential V or potential o. 
Thus, equipotentials all terminate and originate in the gaps. The equipoten­
tial ~ = V /2 is in the z = 0 plane. Thus, the potential and field lines in each 
region are as shown in Fig. 5.5.3. 

(c)	 The surface charge density is given by using (6.6.25) with E approximated by 
what it would be if the permittivities were equal. 

(8) 

In the case where f a / fb > 1, U ap < 0, as illustrated by Fig. S6.6.9b. Some 
of the field lines originating to the left terminate in the negative U ap on the 
interface. Thus, the dielectric to the right tends to shield out the field. With 
f a / fb < 1, the surface charge density is positive, and the field tends to be 
shielded out of the material to the left. 

(d)	 With fa :> fb, the surface becomes an equipotential and the field is concen­
trated in the region to the left, as shown in Fig. S6.6.9c. 

http:S6.6.9b
http:S6.6.9c
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c'[) = v--

('l)

-,,

(b)
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(e)

FIKure 98.8.9

(e) With Eb :> Ea , the field is shielded out of the region to the left. The field looks
much as in Fig. S6.6.9c except that the fields are on the right rather than the
left. The equipotential ~ = V /2 is in the z = 0 plane. Thus, the potential and
field lines in each region are as shown in Fig. 5.5.3.

6.7 SMOOTHLY INHOMOGENEOUS ELECTRICALLY
LINEAR DIELECTRICS

6.7.1 Far from the lower end, the system becomes a pair of parallel plates having
the potential difference V separated by a dielectric having its permittivity gradient
in the y direction. Thus, as y - 00, the potential becomes simply

z
~(y - 00) - V- (1)a

The product solutions throughout the region between the plates are as developed
in Example 6.7.1. From those, we add to (1) those that are zero at z = 0 and
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x = a (so as not to disturb the fact that (1) already satisfies the conditions on the 
potential there) and that go to zero as y -+ 00 [again, so that the potential there 
becomes (1)]. 

(2) 

To determine the coefficients, Vn , (2) is evaluated at y = 0 and set equal to the 
potential there. 

V = L
00	

Vn sin n1r x +V:: (3) 
a	 a 

n=l 

Multiplication by sin(m1rx/a) and integration from x = 0 to x = a then gives the 
coefficients and hence the potential. 

a
21 x. n1rVn = - V(I- -) sm -xdx = (2/n1r)V	 (4) 
a 0 a a 

6.1.2	 The solutions to (6.7.2) for the given distributions of permittivity are as found 
in Example 6.7.1 with the roles of x and y interchanged. In the region to the left, 
{3 -+ -{3. Because the system extends to infinity in the ±x directions, exponential 
solutions are selected in each of the regions that decay to zero at infinity. 

(1) 

Continuity of D~ gives one condition on the coefficients. 

[€pe{t~ E~l~=o = [€pe-{t~ E;I~=o => B n = -An (2) 

To match the potential in the x = 0 plane, the first term in the solution to the left, 
in (lb), is expanded in the same series as the other terms. 

V(a_y)= f:Cn sin(n1r y)	 (3)
a	 a 

n=l 

The coefficient is found by multiplying this expression by sin(m1rY/ a) and integrat­
ing from y = 0 to Y= a. 

(4) 

It follows from (2) and (4) that 

(5) 
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6.7'.3 (a) The polarization charge density is approximately
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(1)

I

(b) For EoXp > 0, the field induces positive and negative regions of charge density
in the upper and lower regions respectively. These are centered on the y axis
where the function yexp(-y2/a2) peaks, at y = a/-/i Thus, some of the
field lines entering from below in Fig. 86.7.3 terminate on the negative charge
while some leaving at the top originate on the positive charge. The field is
that of a diffuse dipole.

y

\ )
+

+++
+

( \
Figure 88.'.S




