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SOLUTIONS TO CHAPTER 5


5.1	 PARTICULAR AND HOMOGENEOUS SOLUTIONS TO 
POISSON'S AND LAPLACE'S EQUATIONS 

5.1.1	 The particular solution must satisfy Poisson's equation in the region of in­
terest. Thus, it is the first term in the potential, associated with the charge in 
the upper half plane. What remains satisfies Laplace's equation everywhere in the 
region of interest, so it can be called the homogeneous solution. It might also be 
made part of the particular solution. 

5.1.2 (a)	 The charge density follows from Poisson's equation. 

V2~ = _.!!... => P = Pocos{3z	 (1)
Eo 

(b)	 The first term does not satisfy Laplace's equation and indeed was responsible 
for the charge density, (1). Thus, it can be taken as the particular solution 
and the remainder as the homogeneous solution. In that case, 

~ _ Po cos {3z. ~h = _Po cos {3z cosh {3y 
p - Eo{32 ' Eo{32 cosh {3a 

(2) 

and the homogeneous solution must satisfy the boundary conditions 

Po cos (3z
~h(Y = -a) = ~h(Y = a) = -:.....:...----::-=-­ (3)

Eo{32 

(c)	 We could just have well taken the total solution as the particular solution. 

~p =~; ~h = 0	 (4) 

in which case the homogeneous solution must be zero on the boundaries. 

5.1.3	 (a) Because the second derivatives with respect to y and z are zero, the Laplacian 
reduces to the term on the left. The right side is the negative of the charge 
density divided by the permittivity, as required by Poisson's equation. 

(b) With 0 1 and O2 integration coefficients, two integrations of (b) give 

~ 4po (x - d)4 0 C (1)= - d2 E 12 + 1X + 2 
o 

Evaluation of this expression at each of the boundaries then serves to deter­
mine the coefficients 

(2) 

1 
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and hence the given potential. 

(c) From the derivation it is clear that the Laplacian of the first term accounts 
for all of the charge density while that of the remaining terms is zero. 

(d)	 On the boundaries, the homogeneous solution, which must cancel the potential 
of the particular solution on the boundaries, must be (d). 

5.1.4 (a) The derivatives with respect to y and z are by definition zero, so Poisson's 
equation reduces to 

tP. = _Po sin ('II"z) (1)
dz2 Eo d 

(b) Two integrations of (1) give 

PotP . ('II"z).= --2 sm -d +01Z + 0 2	 (2)
Eo 1/" 

and evaluation at the boundaries determines the integration coefficients. 

(3) 

It follows that the required potential is 

.... PotP. ('II"Z) Vz"I/!=--sm - +-	 (4)
Eo 1r2 d d 

(c)	 From the derivation, the first term in (4) accounts for the charge density while 
the remaining terms have no second derivative and hence no Laplacian. Thus, 
the first term must be included in the particular solution while the remaining 
term can be defined as the homogeneous solution. 

Vz.h=­	(5)
d 

(d)	 In the case of (c), it follows that the boundary conditions satisfied by the 
homogeneous solution are 

(6) 

5.1.5 (a) There is no charge density, so the potential must satisfy Laplace's equation. 
E = (-v/d)i. = -8./8z 

v2 • = ~(8.) = 0	 (1)
8s	 8s 

(b) The surface charge density on the lower surface of the upper electrode follows 
from applying Gauss' continuity condition to the interface between the highly 
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conducting metal and the free space just below. Because the field is zero in 
the metal, 

u. = folO - E~I = f~tJ	 (2) 

(c)	 The capacitance follows from the integration of the surface charge density 
over the surface of the electrode having the potential tJ. That amounts to 
multiplying (2) by the area A of the electrode. 

foA 
q = Au. = -tJ = ev	 (3)

d 

(d) Enclose	 the upper electrode by the surace S having the volume V and the 
integral form of the charge conservation law is 

1 J . nda + ~ rpdV = 0	 (4)J8 dt lv 

Contributions to the first term are confined to where the wire carrying the 
total current i into the volume passes through S. By definition, the second 
term is the total charge, q, on the electrode. Thus, (4) becomes 

(5) 

Introduction of (3) into this expression then gives the current 

dtJ
i =	 e (6)

dt 

5.1.6	 (a) Well away from the edges, the fields between the plates are the potential 
difference divided by the spacings. Thus, they are as given. 

(b)	 The surface charge densities on the lower surface of the upper electrode and 
on the upper plus lower surfaces of the middle electrode are, respectively 

(1) 

(2) 

Thus, the total charge on these electrodes is these quantities multiplied by 
the respective plate areas 

(3) 

q2 = folwum	 (4) 

These are the expressions summarized in matrix notation by (a). 
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5.2 UNIQUENESS OF SOLUTIONS OF POISSON'S EQUATION 

5.3 CONTINmTY CONDITIONS 

5.3.1 (a) In the plane y = 0, the respective potentials are 

(1) 

and are therefore equal. 

(b) The tangential fields follow from the given potentials. 

(2) 

Evaluated at y = 0, these are also equal. That is, if the potential is continuous 
in a given plan, then so also is its slope in any direction within that plane. 

(c) Feom Gauss' continuity condition applied to the plane y = 0, 

(3) 

and this is the given surface charge density. 

5.3.2	 (a) The y dependence is not given. Thus, given that E = -V~, only the :z; and z 
derivatives and hence :z; and z components of E can be found. These are the 
components of E tangential to the surface y = 0. If these components are to 
be continuous, then to within a constant so must be the potential in the plane 
y=O. 

(b) For this particular potential, 

Es = -f3V cos f3:z;sin PZj Ez = -pV sin p:z;cos pz (1) 

If these are to be the tangential components of E on both sides of the interface, 
then the :z; - z dependence of the potential from which they were derived must 
also be continuous (within a constant that must be zero if the electric field 
normal to the interface is to remain finite). 
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5.4	 SOLUTIONS TO LAPLACE'S EQUATION IN CARTESIAN 
COORDINATES 

5.4.1	 (a) The given potential satisfies Laplace's equation. Evaluated at either :r; = 0 or 
y = 0 it is zero, as required by the boundary conditions on these boundaries. 
At :r; = a, it has the required potential, as it does at y = a as well. Thus, it is 
the required potential. 

(b)	 The plot of equipotentials and lines of electric field intensity is obtained from 
Fig. 4.1.3 by cutting away that part of the plot that is outside the boundaries 
at :r; = a, y = a,:r; = 0 and y = O. Note that the distance between the 
equipotentials along the line y = a is constant, as it must be if the potential 
is to have a linear distribution along this surface. Also, note that except for 
the special point at the origin (where the field intensity is zero anyway), the 
lines of electric field intensity are perpendicular to the zero potential surfaces. 
This is as it must be because there is no component of the field tangential to 
an equipotential. 

5.4.2 (a)	 The pote~tials on the four boundaries are 

~(a, y) = V(y + a)/2a; ~(-a, y) = V(y - a)/2a 

~(:r;, a) = V(:r; + a)/2a; ~(:r;,-a) = V(:r; - a)/2a (1) 

(b) Evaluation	 of the given potential on each of the four boundaries gives the 
conditions on the coefficients 

v V 
~(±a,y) = 2aY ±"2 = ±Aa+By+C+D:r;y 

V V 
~(:r;, ±a) = -2:r; ± - = A:r; ± Ba + C + D:r;y (2)

a 2 

Thus, A = B = V /2a, C = 0 and D = 0 and the equipotentials are straight 
lines having slope -1. 

V 
~ = -(:r;+y)	 (3)

2a 

(c)	 The electric field intensity follows as being uniform and having :r; and y com­
ponents of equal magnitude. 

E = -V~ = -!.(ix + i)')	 (4)
2a 

(d)	 The sketches ofthe potential, (3), and field intensity, (4), are as shown in Fig. 
85.4.2. 
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y 

x 

Figure 85.4.3 

(e)	 To make the potential zero at the origin, C = O. Evaluation at (x, y) = (0, a) 
where the potential must also be zero shows that B = O. Similarly, evaluation 
at (x,y) = (a,O) shows that A = O. Evaluation at (z,y) = (a, a) gives D = 
V 12a2 and hence the potential 

v 
C)= -zy	 (5)

2a2 

Of course, we are not guaranteed that the postulated combination of solu­
tions to Laplace's equation will satisfy the boundary conditions everywhere. 
However, evaluation of (5) on each of the boundaries shows that it does. The 
associated electric field intensity is 

(6) 

The equipotentials and lines of field intensity are as shown by Fig. 4.1.3 inside 
the boundaries z = ±a and y = ±a. 

5.4.3	 (a) The given potential, which has the form of the first term in the second column 
of Table 5.4.1, satisfies Laplace's equation. It also meets the given boundary 
conditions on the boundaries enclosing the region of interest. Therefore, it is 
the required potential. 

(b)	 In identifying the equipotential and field lines of Fig. 5.4.1 with this configu­
ration, note that k = 1rIa and that the extent of the plot that is within the 
region of interest is between the zero potentials at z = -1r12k and z = 1r12k. 
The plot is then adapted to representing our potential distribution by multi ­
plying each of the equipotentials by Vo divided by the potential given on the 
plot at (x, y) = (0, b). Note that the field lines are perpendicular to the walls 
at x = ±a/2. 



Solutions to Chapter 5	 5-7 

5.4.4	 (a) Write the solution as the sum of two, each meeting zero potential conditions 
on three of the boundaries and the required sinusoidal distribution on the 
fourth. 

.... _ T' • (1rZ) sinh(1ry/a) TF' 1ry sinh[;-(a - z)] (1).., - YoSln . h() + Yosm . h( ) a sm1r a Sln1r 

(b)	 The associated electric field is 

E = - as::~1r) {[cos(1rz/a) sinh(1ry/a) - sin(1ry/a) cosh [;(a - z)]]ix 

+ [sin(1rz/a) cosh(1ry/a) + cos(1ry/a) sinh [;(a - z)]] i y } 

y	 (2) 

Figure 85.4.4 

(c) A sketch of the equipotentials and field lines is shown in Fig. 85.4.4. 

5.4.5	 (a) The given potential, which has the form of the second term in the second 
column of Table 5.4.1, satisfies Laplace's equation. The electrodes have been 
shaped and constrained in potential to match the potential. For example, 
between y = -b and y = b, we obtain the y coordinate of the boundary '7(z) 
as given by (a) by setting (b) equal to the potential v of the electrode, y = '7 
and solving for '7. 

(b)	 The electric field follows from (b) as E = -VCb. 

(c)	 The potential given by (b) and field given by (c) have the same (z, y) depen­
dence as that represented by Fig. 5.4.2. To adjust the numbers given on the 
plot for the potentials, note that the potential at the location (3:, y) = (0, a) 
on the upper electrode is v. Thus, to make the plot fit this situation, multiply 
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each of the given potentials by tI divided by the potential given on the plot at 
the location (x, y) = (0, a). 

(d)	 The charge on the electrode is found by enclosing it by a surface S and using 
Gauss' integral law. To make the integration over the surface enclosing the 
electrode convenient, the surface is selected as enclosing the electrode in an 
arbitrary way in the field free region above the electrode, passing through the 
slits in the planes x = ±l to the y equal zero plane and closing in the y = 0 
plane. Thus, with Yl defined as the height of the electrode at its left and right 
extremities, the net charge is 

Y1 
q = dfo -Ex(x = -l)dy + dfo 

lYl Ex (x = l)dy
l ~o ~o 

+ dfo l~-, -Ey(Y = O)dx 

[lY1
tld1l"fo . 1I"l . h 1I"Y d= - -sm-sm - y (2)

2b sinh (;: ) 0 2b 2b 

l
Y1 1I"l 1I"y+ - sin - sinh -dy 

o 2b 2b 

1I"x]-cosbdx+ j_/
/ 

2 

Note that

. h k sinh ka


sm Yl = --kl- j - sinh2 ky + cosh2 ky = 1 (3)
cos


and (2) becomes the given result.


(e)	 Conservation of charge for a surface enclosing the electrode through which 
the wire carrying the current i passes requires that i = dq/dt. Thus, given the 
result of (d) and the voltage dependence, (e) follows. 

5.4.6	 (a) Reversing the potentials on the lower electrodes turns the potential from an 
even to an odd function of y. Thus, the potential takes the form of the first 
term in the second column of Table 5.4.1. 

1I"Y) 11" X 
~ =	 Acosh ( -b cos- (1)

2 2b 

To make the potential be tI at (x, y) = (0, a)' the coefficient is adjusted so 
that 

coshky k =_ ~ 
~ =	 tI cos kx cos h ka j 2b 

(2) 

The shape of the upper electrode in the range between x = -b and x = b is 
then obtained by solving (2) with ~ = tI and y = '1 for '1. 

'1 -
_ -!

k cos
h- 1 [COSh

k
ka] (3)

cos x 



Solutions to Chapter 5 5-9

(b) The electric field intensity follows from (2) as

E=- tJ:
k

l-sin(kz)cosh(ky)lx+coskzsinhkyly] (4)
cos a

(c) The equipotentials and field lines are as shown by Fig. 5.4.2. To adjust the
given potentials, multiply each by tJ divided by the potential given from the
plot at the location (z, y) = (0, a).

(d) The charge on the electrode segment is obtained by using Gauss' integral law
with a surface that encloses the electrode. This surface is arbitrary in the field
free region above the electrode. For convenience, it passes through the slits
to the y = 0 plane in the planes z = ±l and closes in the y = 0 plane. Note
that there is no electric field perpendicular to this latter surface, so the only
contributions to the surface integration come from the surfaces at z = ±l.

q = 2dEo 1" [co::ka sin(kl) COSh(kY)] dy

2dEo tJ . kl . h k
= hk sm sm YIcos a

With the use of the identities

coshka
cosh(kYI) = kl jcos

(5)

(6)

(5) becomes

2dEotJ •
q = etJ = hk smkl

cos a

(e) From conservation of charge,

[
cosh(ka)] 2 _ 1

cos kl
(7)

. e dtJ ev. .t = - = - cJJJsmwt
dt

5.5 MODAL EXPANSIONS TO SATISFY BOUNDARY
CONDITIONS

5.5.1 (a) The solutions superimposed by the infinite series of (a) are chosen to be zero
in the planes z = 0 and z = b and to be the linear combination of exponentials
in the y direction that are zero at y = b. To evaluate the coefficients, multiply
both sides by sin(m1rz/a) and integrate from z = 0 to z = a
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The integral on the right is zero except for m = n, in which case the integral 
of sin2 (n1r:r:/a) over the interval :r: = 0 to :r: = a gives the average value of 
1/2 multiplied by the length a, a/2. Thus, (1) can be solved for the coefficient 
Am, to obtain (b) as given (if m -+ n). 

(b) In the specific case where the distribution is as given, the integration of (b) 
gives 

3
2 10./' n1r:r:

An = . (Rfrb) V1sin (-)d:r:
a~mh - G 0./' a 

(2) 
2V1 [ n1r:r: ] 30./'= ----=:,--:7" cos (--)

n1rsinh (n:b) a 0./' 

which becomes (c) as given. 

5.5.2	 (a) This problem illustrates how the modal approach can be applied to finding 
the solutions in a rectangular region for arbitrary boundary conditions on all 
four of the boundaries. In general, four infinite series would be used, each 
with zero potential on three of the walls and with coefficients to match the 
potential boundary condition on the fourth wall. Here, the potential is zero 
on two of the walls, so only two infinite series are used. The first is zero in 
the planes y = 0, 'II = band :r: = a and, because the potential is constant in 
the plane :r: = 0, has coefficients that are as given by (5.5.8). (The roles of a 
and b are reversed relative to those in the section for this first term and the 
minus sign results because the potential is being matched at :r: = O. Note that 
the argument of the sinh function is negative within the region of interest.) 
The coefficients of the second series are similarly determined. (This time, the 
roles of :z: and 11 and of a and b are as in the section discussion, but the surface 
where the uniform potential is imposed is at 'II = 0 rather than 'II =b.) 

(b) The surface charged density on the wall at :J: = a is 

8~ 
a. = fo[-Es(:r: = a)1 = -fo 8:r: (:r: = a)	 (1) 

Evaluation using (a) results in (b). 

5.5.3	 (a) For arbitrary distributions of potential in the plane 'II = 0 and :r: = 0, the 
potential is taken as the superposition of series that are zero on all but these 
planes, respectively. 

(1) 
+ L

00 

Bn sin (n;'II) sinh [n1r (:r: - a))
b

'1=1 

The first of these series must satisfy the boundary condition in the plane 
'11=0, 

~(:J: = 0) = f: An sinh ( - mrb) sin (n1r :r:) (2) 
'1=1 a a 
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where 
.(:z: 0) _ { 2Vo.:z:/a; 0 < :z: < a/2 (3), - 2Vo.(1 - :z:/a); a/2 < :z: < a 

Multiplication of both sides of (2) by sin(mll':z:/a) and integration from :z: = 0 
to:z: = a gives 

2V. 10./2 mll':Z: 10. mll':Z:
----!!. nin (-)d:z: + 2Vo. sin (-)d:z: 

a 0 a 0./2 a 

2V0.10. .	 (mll':Z:) (4)-- :Z:SIn -- d:z: 
a 0./2 a 

a	 . mll'b 
=	 Am-sinh ( --)

2 a 

Integration, solution for Am -+ An then gives An = 0, n even and for n odd 

8Vo.sin (T) 
n211'2 sinh (n:b) 

(5) 

Evalution on the boundary at :z: = 0 leads to a similar term with the roles of 
Vo. and a replaced by those of Vb and b, respectively. Thus, Bn = 0 for n even 
and for n odd 

8Vi sin (!!!t)B __ b 0. (5)
n - n211'2 sinh (n~o. ) 

(b) The surface charge density in the plane y = b is 

a. 
0'. = fo[-EI/(Y = b)1 = f o 8y (y = b) 

~ [ (nll'). (nll':Z:) (nll'). [(nll') ] (6)=	 L..J An - Sin - - Bn -b Sinh -b (:z: - a) 
..=1 a a 
odd 

where An and Bn are given by (5) and (6). 

5.5.4	 (a) Far to the left, the system appears as a parallel plate capacitor. A uniform 
field satisfies both Laplace's equation and the boundary conditions. 

E = - V i)' =>.0. = Vy	 (1)
d d 

(b) Because the uniform field part of this solution I .0., satisfies the conditions far 
to the left, the aditional part must go to zero there. However, the first term 
produces a field tangential to the right boundary which must be cancelled by 
the second term. Thus, conditions on the second term are that it also satisfy 
Laplace's equation and the boundary conditions as given 
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(c)	 Because of the homogeneous boundary conditions in the y = 0 and y = d 
planes, the solution is selected as being sinusoidal in the y direction. Because 
the region extends to infinity in the -z direction, exponential solutions are 
used in that direction, with the sign of the exponent arranged to assure decay 
in the -z direction. 

00 

iWo. ~ A • (n1l"Y) rnrz/d (2)....b =	 LJ n sIn d e 
n=l 

The coefficients are determined by the requirement on this part of the poten­
tial at z = o. 

Vy ~ . (n1l"Y)-d =	 LJAnsIn d (3) 
n=l 

Multiplication by sin(m1l"y/d), integration from y = a to y = d, solution for 
Am and replacement of Am by An gives 

2V 2V
An = -cosn1l" = _(_I)n	 (4)

n1l" n1l" 

The sum of the potentials of (1) and (2) with the coefficient given by (4) is 
(e). 

(d)	 The equipotential lines must be those of a plane parallel capacitor, (1), far to 
the left where the associated field lines are y directed and uniform. Because 
the boundaries are either at the potential V or at zero potential to the right, 
these equipotential lines can only terminate in the gap at (z, y) = (0, d), where 
the potential makes an abrupt excursion from the zero potential of the right 
electrode to the potential V of the top electrode. In this local, the potential 
lines converge and become radially symmetric. The boundaries are themselves 
equipotentials. The electric field, which is perpendicular to the equipotentials 
and directed from the upper electrode toward the bottom and right electrodes, 
can then be pictured as shown by Fig. 6.6.9c turned upside down. 

5.5.5	 (a) The potential far to the left is that of a plane parallel plate capacitor. It 
takes the form Az + B, with the coefficients adjusted to meet the boundary 
conditions at z = 0 and z = a. 

Cb(y -. -00) -. Cba = Va (1- 2z)	 (1)
2 a 

(b)	 With the total potential written as 

(2) 

the potential Cbb can be used to make the total potential satisfy the boundary 
condition at y = O. Because the first part of (2) satisfies Laplace's equation 
and the boundary conditions far to the left, the second part must go to zero 
there. Thus, it is taken as a superposition of solutions to Laplace's equation 
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that are zero in the planes y = 0 and y = a (so that the potential there as 
given by the first term is not disturbed) and that decay exponentially in the 
-y direction. 

00 

... ~ A . (n1fz) rury/a.	 (3)....b = L..J "SIn -- e 
,,=1 a 

At y = 0, ~(z, 0) = ~d(Z), Thus, ~b(Z, 0) = ~d(Z) - ~a.(z) and evaluation 
of (3) at y = 0, multiplication by sin(m1fz/a) and integration from Z = 0 to 
Z = a gives 

l a. [ () Vo ( 2z)]. m1fZ a
~d Z -	 - 1- - sID--dz=Am - (4) 

o 2 a a 2 

from which it follows that 

21a. n1fZ { ~. evA" = - ~d(Z) sin (--)dz - ~tr' n en (5)
a 0 a 0, n odd 

Thus, the potential between the plates is 

~ = Vo (1- 2z) + t A" sin (~)e"try/a. (6) 
2 a ,,=1 a 

where A" is given by (5). 

5.5.6	 The potential is taken as the sum of two, the first being zero on all but the 
boundary at z = a where it is Voy/a and the second being zero on all but the 
boundary at y = a, where it is Voz/a. The second solution is obtained from the 
first by interchanging the roles of z and y. For the first solution, we take 

00 • h(~) 
~I = L A" sin (~) SID. a.	 (1)

,,=1 a sIDhn1f 

The coefficients follow by evaluating this expression at z = a, multiplying by 
sin(m1fy/a) and integrating from y = 0 to Y = a. 

l a. Voz . (n1fz)
- SID	 - dz = A,,(a/2) (2)

o a a 

Thus, 

A" = -	 2Vo (_1)" (3)
n1f 

The first part of the solution is given by substituting (3) into (1). It follows that 
the total solution is 

... ~ 2Vo (-1)" [ . (n1fz) . h (n1fY) . (n1fY) . h (n1fz)].... = L..J-- SID -- SID -- +SID - SID -- (4)
,,=1 n1f sinh(n1f) a a a a 
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5.5.'1 

5.6 

5.6.1 

(a)	 The total potential is sero at y = 0 and so also is the first term. Thus, ~1 
must be zero as well at y = O. The first term satisfies the boundary condition 
at y = b, so ~1 must be zero there as well. However, in the planes :I: = 0 
and :I: = a, the first term has a potential Vy/b that must be cancelled by the 
second term so that the sum of the two terms is zero. Thus, ~1 must satisfy 
the conditions summarized in the problem statement. 

(b)	 To satisfy the conditions at :I: = 0 and :I: = a, the y dependence is taken 
as sin(ml"y/b). The product form :I: dependence is a linear combination of 
exponentials having arguments (R'JI"y/b). Because the boundary conditions in 
the :I: = 0 and :I: = a planes are even about the plane :I: = a/2, this linear 
combination is taken as being the cosh function displaced so that its origin is 
at:l: = a/2. 

DO 

" • (R'JI"Y) [R'JI"( a)]() = L...J An SIn -b- cosh T :I: - 2'	 (1) 
n=l 

Thus, if the boundary condition is satisfied at :I: = a, it is at :I: = 0 as well. 
Evaluation of (1) at :I: = a, multiplication by sin(m'Jl"y/b) and integration from 
y = 0 to Y = b then gives an expression that can be solved for Am and hence 
An 

A _ 2V(-1)n ( ) 
n - R'JI"cosh(R'JI"a/2b) 2 

In terms of these coefficients, the desired solution is then 
DO 

Vy L • (R'JI"Y) [R'JI" a)]~ = - + AnsIn -- cosh -(:1:-- (3)
b n=l b b 2 

SOLUTIONS TO POISSON'S EQUATION WITH 
BOUNDARY CONDITIONS 

The potential is the sum of two homogenous solutions that satisfy Laplace's 
equation and a third inhomogeneous solution that makes the potential satisfy Pois­
son's equation for each point in the volume. This latter solution, which follows from 
assuming ~p = ~p(y) and integration of Poisson's equation, is arranged to give zero 
potential on each of the boundaries, so it is up to the first two to satisfy the bound­
ary conditions. The first solution is zero at y = 0, has the same :I: dependence as the 
wall at y = d and has a coefficient that has been adjusted so that the magnitude 
of the potential matches that at y = d. The second solution is zero at y = d (the 
displaced sinh function is a linear combination of the sinh and cosh functions in 
column 2 of Table 5.4.1) and so does not disturb the potential already satisfied by 
the first term at that boundary. At y = 0, where the first term has been arranged 
to make no contribution, it has the same y dependence as the potential in the y = 0 
plane and has its coefficient adjusted so that it has the correct magnitude on that 
boundary as well. 
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5.6.2	 The particular solution is found by assuming that the particular potential 
is only a function of 11 and integration of Poisson's equation twice. With the two 
integration coefficients adjusted to make the potential of this particular solution 
zero on each of the boundaries, it is the same as the last term in (a) of Prob. 5.6.1. 
Thus, the homogeneous solution must be zero at 11 = 0, suggesting that it has 
a sinh function 11 dependence. The z dependence of the potential at y = d then 
suggests the z dependence of the potential be made sin(kz). With the coefficient of 
this homogeneous solution adjusted so that the condition at y = d is satisfied, the 
desired potential is 

. sinh k1l Po ( ).= .0 smhkz . hkd - -2 11 y-d	 (1)
sm f o 

5.6.3	 (a) In the volume, Poisson's equation is satisfied by a potential that is independent 
of y and z, 

2 
2 8 • Po ( )= --p	 = --cosk z-6 (1)V .p 

8z2 f o 

Two integrations give the particular solution 

(2) 

Ep = PO sin k(z - 6)ix (3)
f o k 

(b) The boundary conditions at y = ±d/2 are 

(4) 

Because the configuration is symmetric with respect to the z - z plane, use 
cosh(ky) as the 11 dependence. Thus, in view of the two z dependencies, the 
homogeneous potential is assumed to take the form 

.h = [A sin kz + B cos k(z ­ 6)1 cosh ky (5) 

The condition of (4) then requires that 

ElIJh = -[Acoskz ­ B sin k(z ­ 6)lkcoshky (6) 

and it follows from the fact that at 11 = d/2 that (3) + (6) = (4) 

A = -Eo/kcosh(kd/2)j B = -Po/fok2 cosh(kd/2) (7) 

so that the total potential is as given by (d) of the problem statement. 
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(c)	 First note that because of the symmetry with respect to the z plane, there is 
no net force in the y direction. In integrating pEs over the volume, note that 
Es is 

Po	 • ( ) cosh leh [ Po • ( )]Es	 = -le sm le z - 8 + (kd) Eo cos lez - -le sm le z - 8 (8) 
f o cosh "2 f o 

In view of the z dependence of the charge density, only the second term in this 
expression makes a contribution to the integral. Also, P = Po cos le(z - 8) = 
Po[cos le8 cos lez - sin le8 sin kz] and only the first of these two terms makes a 
contribution also. 

12../10 jd/2 cosh ley
fs = Pocosle8coskz (kd) Eocoskzdydz 

o -d/2 cosh "2	 (9) 

= [211"poEocosleHanh(lcd/2)Jlle2 

5.6.4 (a) For a particular solution, guess that 

() = Acoslc(z - 8)	 (1) 

Substitution into Poisson's equation then shows that A = Po/fole 2 so that the 
particular solution is 

()p = Ple°2 cos le(z - 8) (2)
f o 

(b)	 At y = 0 

(3) 

while at y = d, 

()h. = Vocoslez - P° cosle(z - 8) (4) 
f o le2 

(c)	 The homogeneous solution is itself the sum of a part that satisfies the condi­
tions 

(5) 

and is therefore 
sinh ley 

()1 = Vocos lcz sinh led (6) 

and a part satisfying the conditions 

(7) 

which is therefore 

.....	 _ Po le( ~) cosh le(y - ~) 
'\11'2 - - -- cos z - (}

lc2 f o cosh(led/2)	
(8) 



Solutions to Chapter 5	 5-17 

Thus, the total potential is the sum of (2), (6) and (8). 

Po [COSh k(y - ~)] sinh ky 
~ = -k2 cosk(x - 6) 1- (led) +Vocoskx . hkd (9) 

f o	 cosh 2" sm 

(d) In view of the given charge density and (9), the force density in the x direction 
is 

Po . [ cosh k(y - ~)] 
Fz = -k smk(x - 6) cos k(x - 6) 1- (led) 

f o cosh 2" (10) 
.	 sinhky

+ PokVo sm kx cos k( x - 6) sinh kd 

The first term in this expression integrates to zero while the second gives a 
total force of 

P kV: /	 (11)/z = s~h k~ i0 

2fr 1e i0 

d 

sin kx cos k(x - 6) sinh kydydx 

With the use of cos k(x - 6) = cos kx cos k6 + sin kx sin k6, this integration 
gives 

- v: (cosh kd - 1) sin k6 (12)f z - Po1f 0 ksinhkd 

5.6.5	 By inspection, we know that if we look for a particular solution having only 
a y dependence, it will have the same y dependence as the charge distribution 
(the second derivative of the sin function is once again a sin function). Thus, we 
substitute Asin(1fy/b) into Poisson's equation and evaluate A. 

(1) 

The homogeneous solution must therefore be zero on the boundaries at y = band 
y = 0 and must be -Po b2 sin(1fy/b)/fo1f2 at x = ±a. This latter condition is even 
in x and can be matched by the solution to Laplace's equation 

(2) 

if the coefficient, A, is made 

(3) 

Thus, the solution is the sum of (1) and (2) with A given by (3). 
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5.6.6 (a) The charge distribution follows from Poisson's equation. 

_~ = V
2." => P = foV sin~:l:Sin ~'I (~2 + ;) (1) 

(b)	 To make the total solution satisfy the lero potential conditions. the homo­
geneous solution must also be lero at 11 = 0 and 11 = b. At z = 0 it 
must also be lero but at z = a the homogeneous solution must be ." = 
-V sin('lI'1Ijb) sin~a. Thus. we select the homogeneous solution 

.... _ A' 'lI'1I sinh('lI'zjb) (2)
"It'll. - sm b sinh('lI'ajb) 

make A = -V sin ~a and obtain the potential distribution 

if,	 V. ('lI'1I) [. Q • Q sinh(,rzjb)] 
"It' = sm T sml'Z - sml'asinh('lI'ajb) (3) 

5.6.'1 A particular solution is found by assuming that it only depends on z and 
integrating Poisson's equation twice to obtain 

Pol 2 z z3 
." = - 6Eo (, - "is) (1) 

The two integration constants have been assigned so that the potential is lero at 
z = 0 and z = I. The homogeneous solution must therefore satisfy the boundary 
conditions 

.",(z = 0) = .",(z = I) = 0 

pI2 Z z3 
.",(y= ±d) = - ~o (, -"is) (2) 

The first two of these are satisfied by the following solutions to Laplace's equation. 

~ . n'll'z cosh (7)
~", = LJ An sm (-,-) h (!!!rJ!)	 (3) 

71.=1 COS, 

This potential has an even y dependence. reflecting the fact that the boundary 
conditions are even in y. To determine the coefficients in (3). note that the second 
pair of boundary conditions require that 

.f: A sin n'll'z = _por C~ _ Z3)	 (4)
n=l 71. I 6Eo I 13 

Multiplication of both sides of this expression by sin(m'll'zjl). and integration gives 

I poll'· (m'll'z) Po l' 3 . m'll'zAm - =-- zsm -- dz+ -- z sln--dz (5)
2 6Eo 0 I 6Eo l 0 I 
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or 

Thus, the required potential is 

w= Po l
2 (=- _ X

3
) + ~ ~(_l )3 PO (_1)n sin n'll'x cosh (T) (6) 

6e l ZS L- l n'll' e l cosh (mrd)
o	 n=l 0 I 

5.6.8	 (a) The charge density can be found using Poisson's equation to confirm that the 
charge density is that given. Thus, the particular solution is indeed as given. 

(b) Continuity conditions at the interface where y = 0 are 

(1) 

8wa 8wb 

8y = 8y	 (2) 

To satisfy these conditions, add to the particular solution a solution to Laplace's 
equation in the respective regions having the same x dependence and decaying 
to zero far from the interface. 

(3) 

wb = 
(fj2

Po 
- 0 2 ) 

cos fjxe OlIJ + B cos fjxe f11J (4)
eo 

Substitution of these relations into (1) and (2) shows that 

A = e {fj2 
Po 
_	 02)2

(
1 - Ii0) (5) 

o 

-Po (	 0)
B = e (fj2 _	 02)2 1 + Ii (6) 

o 

and substitution of these coefficients into (3) and (4) results in the given 
potential distribution. 

5.6.9	 (a) The potential in each region is the sum of a part due to the wall potentials 
without the surface charge in the plane y = 0 and a part due to the surface 
charge and having zero potential on the walls. Each of these is continuous in 
the y = 0 plane and even in y. The x dependence of each is determined by 
the respective x dependencies of the wall potential and surface charge density 
distribution. The latter is the same as that part of its associated potential so 
that Gauss' continuity condition can be satisfied. Thus, with A a yet to be 
determined coefficient, the potential takes the form 

w= {V~~:~~: cosfjx - Asinhfj(y - a) sinfj(x - xo ); 0 < y < a (1) 
V~~:~~ cosfjx - A sinh fj(y + a) sinfj(x - xo ); -a < y < 0 
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The coefficient is determined from Gauss' condition to be 

8iI>a 8iI>b]	 -u (2)-Eo [ -8 
y 

- -8
Y y=O 

= uo sin P(z - zo) => A = 2
Eo

P 
cos

°hP
a 

(b) The force is 

(3) 

From (1), 

- ) - VQ sinf3z _ uosinhf3a Q( _ )Ez (Y -	 0 - '" cosh f3a 2Eo cosh f3a 
cos", z Zo (4) 

The integration of the second term in this expression in (3) will give no con­
tribution. Substitution of the first term gives 

duoVf31z+2fr/{1 • .	 d1r cosf3zo 
fz =	 hf3 smp(z - zo) smpzdz = uoV f3( Q) h f3 (5)

cos	 ao ",cos a 

(d) Because the charge and wall potential are synchronous, that is U = w/f3, the 
new potential distribution is just that found with z replaced by z - Ut. Thus, 
the force is that already found. The force acts on the external mechanical 
system (acts to accelerate the charged particles). Thus, U fz is the mechanical 
power output and -U fz is the mechanical power input. Because the system 
is loss free and the system is in the steady state so that there is no energy 
storage, -U fz is therefore the electrical power output. 

.	 1rcosf3zo ()Electrical Power Out = -Ufz = -UduoVf3- hf3 6
f3 cos	 a 

(e) For (6) to be positive so that the system is a generator, ~ < pzo < 3;. 

5.7	 SOLUTIONS TO LAPLACE'S EQUATION IN POLAR 
COORDINATES 

5.1.1	 The given potentials have the correct values at r = a. With m = 5, they 
are solutions to Laplace's equation. Of the two possible solutions in each region 
having m = 5 and the given distribution, the one that is singular at the origin is 
eliminated from the inner region while the one that goes to infinity far from the 
origin is eliminated from the outer solution. Hence, the given solution. 
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5.7'.2 (a)	 Of the two potentials have the same 4J dependence as the potential at r = R, 
the one that is not singular at the origin is 

(1) 

Note that this potential is also zero on the y = 0 plane, 80 it satisfies the 
potential conditions on the enclosing surface. 

(b) The sunace charge density on the equipotential at y = 0 is 

(2) 

and hence is uniform. 

5.7'.3 The solution is written as the sum of two solutions, ~a and ~b. The first of 
these is the linear combination of solutions matching the potential on the outside 
and being zero on the inside. Thus, when added to the second solution, which is zero 
on the outside but assumes the given potential on the inside, it does not disturb 
the potential o~ the inside boundary. Nor does the second potential disturb the 
potential of the first solution on the outside boundary. Note also that the correct 
combination of solutions, (rlb)3 and (blr)3 in the first solution and (ria) and (air) 
in the second solution can be determined by inspection by introducing r normalized 
to the radius at which the potential must be zero. By using the appropriate powers 
of r, this approach can be used for any 4J dependence of the given potential. 

5.7'.4 From Table 5.7.1, column two, the potentials that are zero at 4J = 0 and 4J = a 
are 

r±m sin m4J (1) 

with m = mr/a, n = 1,2, ... In taking a linear combination of these that is zero 
at r = a, it is convenient to normalize the r dependence to a and write the linear 
combination as 

(2) 

where A and B are to be determined. It can be seen from (2) that to make ~ = 0 
at r = a, A = -Band the solution becomes 

(3) 

Finally, the last coefficient and n are adjusted so that the potential meets the 
condition at r = b. Thus, 

(4) 
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5.1.5	 To make the potential zero at 4J = 0, use the second and fourth solutions in 
the third column of Table 5.7.1. 

cos[pln(r)] sinh p4J, sin[pln(r)] sinh p4J	 (1) 

The linear combination of these solutions that is zero at r a is obtained by 
simply normalizing r to a in the second solution. This can be seen by using the 
double-angle formula to write that solution as 

Asin[pln(r/a)]sinhp4J = Asin[pln(r) - pln(a)]sinhp4J 

= A{sin[pln(r)] cos[pln(a)] (2) 

- cos[pln(r)] sin[pln(a)]} sinh p4J 

This solution is made to be zero at r = b by making p = n1r/ln(b/a), where n is 
any integer. Finally, the last boundary condition at 4J = 0 is met by adjusting the 
coefficient A and selecting n = 3. 

A = V / sinh[311"a/ln(b/a)]	 (3) 

5.1.6 The potential is a linear combination of the first two in column one of Table 
5.7.1.


V 311" 24J

~ = A4J + B = - -- (4J - -) = V (1 - -) (1)

(311"/2) 2 311" 

This potential and the associated electric field are sketched in Fig. 85.7.6. 

Figure S5.7'.6 
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5.8.1 Either from (5.8.4) or from Fig. 5.8.2, it is clear that outside of the cylinder,
the z = 0 plane is one having the same zero potential as the surface of the cylinder.
Therefore, the potential and field as respectively given by (5.8.4) and (5.8.5) also
describe the given situation.

Intuitively, we would expect the maximum electric field to be at the top of
the cylinder, at r = R,q, = 1r/2. From (5.8.5), the field at this point is

Emax = 2Eo (1)

and this maximum field is indeed independent of the cylinder radius. To be more
rigorous, from (5.8.5), the magnitude of E is

(2)

where

e == V[1 + (R/r)2]2 cos2 fJ + [1 - (R/r)2]2 sin2 fJ

IT this function is pictured as the vertical coordinate in a three dimensional plot
where the floor coordinates are rand q" its extremes are located at (r, q,) where
the derivatives in the rand q, directions are zero. These are the locations where
the surface represented by (2) is level and where the surface is either a maximum,
a minimum or a saddle point. Thus, to locate the coordinates which are candidates
for giving the maximum, note that

and

~; = ~o 2~2 {[I + (R/r)2]2 cos2 fJ + [1- (R/r)2] sin2 fJ} = 0 (4)

Locations where (3) is satisfied are either at

or at

with r not equal to R or at

~=o

q,=1r/2

r=R

(5)

(6)

(7)

with q, not given by (5) or (6). Putting (5) into (4) shows that there is no solution
for r while putting (6) into (4) shows that the associated value of r is r = R. Finally,
putting (7) into (4) gives the same location, r = Rand q, = 1r/2. Inspection of (5)
shows that this is the location of a maximum, not a minimum.
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5.8.2	 Because there is no 4> dependence of the potential on the boundaries, we use 
the second m = 0 potential from Table 5.7.1. 

~= Alnr+B (1) 

Here, a constant potential has been added to the In function. The two coefficients, 
A and B, are determined by requiring that 

Vb = Alnb+B (2) 

Va = Alna+B (3) 

Thus, 
A = (Va - Vb)/ln(a/b) 

B = {Vblna- Valnb}/ln(a/b) (4) 

and the required potential is 

~=v. In(r/b) _Vlln(r/b) VI 
a In(a/b) b In(a/b) + b (5) 

= lValn(r/b) - Vbln(r/a)Jlln(a/b) 

The electric field follows as being 

(6) 

and evaluation of this expression at r = b shows that the field is positive on the 
inner cylinder, and everywhere else for that matter, if Va < Vb­

5.8.3	 (a) The given surface charge distribution can be represented by a Fourier series 
that, like the given function, is odd about 4> = 4>0 

U. = L
00 

Un sin mr(4) - 90 ) (1) 
n=l 

where the coefficients Un are determined by multiplying both sides of (1) by 
sin mll"(4) - 4>0) and integrating over a half-wavelength. 

Thus, 
4uo 

Un = -j nodd	 (3)
nll" 
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and u'" = 0, n even. The potential response to this surface charge density is 
written in terms of solutions to Laplace's equation that i) have the same rP 
dependence as (I), ii) go to zero far from the rotating cylinder (region a) and 
at the inner cylinder where r = R and are continuous at r = a. 

~ {[(a/R)'" - (R/a)"'](R/r)"'}' ( ) a < r (4)cP = ~ CP", (R/a)"'[(r/R)'" - (R/r)"'] sm n rP - 00 R < r < a 
odd 

The coefficients CP", are determined by the "last" boundary condition, requir­
ing that 

acpa aCPb]
u.(r=a)=-fo ----	 (5)[ ar ar r=a 

Substitution of (I), (3) and (4) into (5) gives 

(6) 

(b)	 The surface charge density on the inner cylinder follows from using (4) to 
evaluate 

u.(r = R) = -foaa~b Ir=R = - f~2 f: CP",n(R/a)"'sinn(rP - 90 ) (7) 
,,=1
odd 

Thus, the total charge on the electrode segment in the wall of the inner cylin­
der is 

q =	 w l
Q 

u.(R)RdrP = - L
co 

Q",[cosn90 - cosn(a - Do)] (8) 
o	 ..._1 

odd 

where 

(c)	 The output voltage is then evaluated by substituting 90 - Ot into (8) and 
taking the temporal derivative. 

Vo = -Ro ~: = -ORo f nQ",[sin nOt + sin n(a - Ot)] (9) 
,,=1 
odd 
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5.8.4	 The Fourier representation of the square-wave of surface charge density is 
carried out as in Prob. 5.8.3, (1) through (3), resulting in 

00 

u, = L u" sin mr(1fl - ( 0 )	 (1) 
...01 
odd 

where 
4uo

u" = -j nodd 
n7l'" 

The potential between the moving sheet at r = R and the outer cylindrical wall at 
r = a, and inside the moving sheet, are respectively 

~ { (a/R)"[(r/R)" - (R/r)"j}. ( ) a < r < R 
~ = =:~" = (r/R)"[(a/R)" - (R/a)" smn Ifl - 00 r < a (2) 

odd 

where the coefficient has been adjusted so that the potential is zero at r = R and 
continuous at the surface of the moving sheet, where r = a. The coefficients are 
determined by using Gauss' continuity condition with the surface charge density 
written as (1) and the potential given by (2)j 

( a~a a~b)	 n n 
-Eo -a - -a = u, => -Eo~,,(a/R)"[ -(a/R)" + -(R/a)"] 

r r r=a	 a a (3) 

+ ~(a/R)"[(a/R)" _ (R/a)"] = 4uo 
a	 n7l'" 

which implies that 
~ = _ 2uoa (4)

" n 2 71'"Eo 

The surface charge on the detection segment is 

u, = Eo aa~a I = - f: 4uo(a/R)"+l sin n(1fl - ( 0 ) (5) 
r r=R ..=1 7I'"n 

odd 

and so the total charge on that segment is 

(6) 

where 
Q" = 4UowR(a/R)"+l~ 

71'" n 2 

Finally, with 00 = Ot, the detected voltage is therefore 

tlo = -Ro ~: = -ORo f nQ,,[sin nOt + sin n(a - Ot)] (7) 
.._1 
odd 
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5.8.5	 Of the potentials in the second column of Table 5.7.1, the requirement that the 
potential be zero where <p = 0 selects the two that vary as sin(m<p) while the fact that 
the space of interest extends to the origin precludes those with negative exponents, 
for m > 0, the last two. The potential will be zero at <p = a if m = n1l"I d, n = 1,2, ... 
Thus, candidate potentials are 

(1) 

Evaluated at r = R, this potential takes the form of a Fourier series, used here to 
represent the uniform potential. 

v = f: An sin (n:<p)	 (2) 
m=l 

Multiplication by sin(q1l"<Pla) and integration from <p = 0 to <p = a gives an expres­
sion which can be solved for the coefficients in (2). 

_ Va cos (q1l"<P)]Q = A ~ =* An = 4V {lin; n odd 
q1l" a 0 q 2 11" OJ n even 

(3) 

Thus, (1) and (3) are the given answer. 

5.8.6	 Far from r = R, the field becomes that of a pair of electrodes extending from 
the origin to infinity in the planes <p = 0 (with zero potential) and <p = a (with 
potential V). The associated electric field is <p directed and simply the voltage V 
divided by the distance ar between the electrodes, following lines of constant r. 

~(r -+ 00) = V! =* E(r -+ 00) = ~i4>	 (1)
a	 ar 

Although this potential satisfies the boundary conditions on the "wedge" electrodes, 
it does not satisfy the boundary conditions over the surface at r = R. On that 
surface, the potential should be the constant V. To satisfy this boundary condition, 
we add to (1) a potential that is zero on the surfaces <p = 0 and <p = a where (1) 
already satisfies the boundary conditions and that goes to zero at r -+ 00, where 
(1) is also the correct potential. 

(2) 

The coefficients An are determined from evaluating (2) on the electrode at r = R, 
where 

V<p ~ A . (n1l"<P)V = -+ LJ n SlD -- (3) 
a n=l a 
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The first term on the right in (3) is tra.nsferred to the left, both sides of the expres­
sion multiplied by sin(m1/"~/a) a.nd both sides integrated from ~ = 0 to ~ = a to 
obtain 

a (m1/"~) a [. m1/"~ m1/"~ (m1/"~)]}Q AmaV { --cos -- --- sln-----cos -- =-- (4)
m1/" a (m1/")2 a a a 0 2 

This expression can be solved for the coefficient, which (with m - n) is 

_ 2V 
A1'- (5)

n1/" 

Evaluated using this coefficient, (2) is the desired potential. 

5.8.'1 (a) From the four equations in the second column of Table 5.7.1, the sin functions 
satisfy the boundary conditions that Cb = 0 at ~ = 0 and ~ = 21/" if m = 
n/2, n = 1,2, ... With the understanding that n is positive, the solutions 
with exponents -m are excluded so that the potential is finite as r - O. 
Thus, the remaining potential is the superposition of the modes 

DO 

Cb= LAn(r/R)n/2sin(~~) (1) 
1'=1 

(b) The boundary condition at r = R requires that 

00 

Vo = L A,. sin (~~) (2) 
1'=1 

Multiplication of both sides of this expression by sin(p~/2) and integration 
gives 

(3) 

or 
2 

--Volcos(m1/") - 11 = 1/"Am (4)
m 

so that it follows that An = 0, n even and for n odd 

_ 4VoA I' -
n1/" 

(5) 

Substitution of this coefficient into (1) then gives the desired potential. 

(6) 
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(c) The associated electric field follows from this expression as 

14Vo ~ 1 [ nr!-l. n . nrt - n]
E = ---;:- ~;; Il'i Rn/2 Sln (if) + l<I»i Rn/2 cos (if) (7) 

odd 

r 

(b) 

(a) 

(e) 

Figure S5.8.' 

A sketch of the lead term in (6) and (7) is shown in Fig. 85.8.7a. The potential is 
finite at the tip of the fin but the electric field intensity varies as 1/..;r at the tip. 
On the surface 81 shown in Fig. 85.8.7b, the surface charge density follows from 
(7) as 

oo
4foVo L 1 r!j-1 

f E-t-(r ..I. = 0) = - -- --- (8)o ." ,Y' 1/" 2 Rn/2 
..=1 
odd 

On the circular cylindrical surface 82 at radius a, also shown in Fig. 85.8.7b, 

4foVo ~ 1 a!-l. n 
foEr(r = Q, f) = --1/"- L.J "2 Rn/2 Sin (if) (9) 

,.,=1 
odd 

while on surface 83 ,


4 v: 00 1 n-1

-f E-t- = -~ ~_.!:.:...
-

o ." 1/" L.J 2 Rn/2 (10) 
,,=1 
odd 

http:85.8.7a
http:85.8.7b
http:85.8.7b
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The total charge represented by the first mode in the series is therefore 

2EoVo [ _ fR r-1/2dr _ rrr a-l/2sin(~/2)ad~ _ fR r-1/2dr] = 8EoVo (11)
'frVR Ja Jo Ja 'II" 

(d) The potential and field distribution is sketched in Fig. S5.8.7b. 

5.8.8	 The potential takes the form of (5.8.15) with azimuthal coordinate displaced 
so that ~ -+ ~o - ~. 

4> = ;	 An sin [n'll" ;:~:~:~] sinh [,n(aib) (~o - ~)] (1) 

Evaluated at ~ = 0, this expre88ion is then the same as (5.8.15) evaluated at ~ = ~o' 
Thus, the coefficients are the same as given by (5.8.17). For n even, An = 0 and for 
n odd 

(2) 

5.8.9	 The radial distribution Rn(r) is governed by (5.7.5). 

d (dRn ) 2 
r dr r"d;" +PnRn = 0	 (1) 

Multiplication of this expression by another of the eigenfucntions and the weighting 
factor l/r and integration results in the expression 

r [R-r.!!(r
dRn 

) +p2 !RnRm]dr'= 0	 (2)Ja r dr dr n r


With the identification udtl = d(Uti) - vdu where


( dRn)
du = d r"d;"' tI = R- (3) 

Eq. (2) can be integrated by parts 

ala 
dRn	 ]a ( dRn dRm ) 21 1r-Rm - r--- dr+Pn -RnRmdr=O (4)
dr b b dr dr b r 

This same procedure can be repeated with the roles of n and m reversed. Substrac­
tion of the resulting expression from (4) gives 

dRn dRm]a (2 2) fa 1 
r [---;I;:Rm-Rn b b + Pn-Pm J 

b 
;RnRmdr=O (5) 

l
H boundary conditions require that the first term is zero, or in particular that 
Rn(a) = 0 and Rm(b) = 0, then the orthogonality condition follows. 

a1 
(p~ - p~) -RnRmdr = 0	 (6)

b r 

http:S5.8.7b
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5.9 THREE SOLUTIONS TO LAPLACE'S EQUATION IN 
SPHERICAL COORDINATES 

5.9.1	 (a) The given surface potential has the same fJ dependence as for the uniform 
field potential of (5.9.4) and the dipole field potential of (5.9.3). With the 
coefficients of these potentials adjusted to match the given potential at r = a, 

~	 _ {v(r/a) cos fJj r<a 
- V(a/r)2 cos fJj a<r (1) 

(b)	 A sketch of ~ and E is shown in Fig. 6.3.1. 

5.9.2	 (a) The surface charge density has the same fJ dependence at r = a as the discon­
tinuity in the normal derivative of the potential. This suggests representing 
the potentials inside and outside the sphere with the same fJ dependence as 
the given surface charge distribution. In addition, these potentials must be 
finite at the origin and at infinity. The natural choices are the uniform field 
potential given by (5.9.4) inside the sphere and the dipole potential of (5.9.3) 
outside the sphere. 

~	 _ {A(a/r)2 cos fJj a < r (1) 
- A(r/a)cosfJj r<a 

The coefficients have already been adjusted so that the potential is continuous 
at r = a. Gauss' continuity condition then requires that 

:"'fO(a~a - a~b) r=a = 0"0 cos fJ * -fo [~+ ~] A = (2)0"0 

so that A = 0"0a/3fo and the potential is as given with the problem. 

(b)	 In Example 6.3.1, the potentials inside and outside the sphere take the same 
form as in (1) /(6.3.9) and (6.3.8)] and satisfy boundary conditions which take 
the same form as used here /(6.3.6) and (6.3.7)]. Indeed, we will see in Sec. 
6.3 that with the polarization density given the polarization charge density is 
specified- and the determination of the associated potential and field is much 
the same as in this chapter when the charge is specified. Hence, Fig. 6.3.1 
portrays the potential and field. 

5.9.3	 Because the given charge density does not depend on 1/1, the potential is also 
independent of 1/1. In that case, Poisson's equation in spherical coordinates reduces 
to 

-!. ~ (~ a~) + _1_ ~ ( sin fJ a~) = _ Po cos fJ (1) 
r2 ar ar r2sin fJ afJ afJ f o 

First, given the dependence of the charge density on fJ, look for a particular solution 
having the form ~p = ArP cos fJ. Substitution into (1) then shows that p = 2 and 
A = -Po/4fo so that a particular solution is 

~p = -4
Po 

r 2 cosfJ	 (2)
f o 
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The sum of this potential and a solution to Laplace's equation must satisfy the 
condition that the potential be zero at r = a. Again, for the fJ dependence of the 
particular solution, it is natural to take a uniform field as the homogeneous solution. 
Thus, with B an adjustable coefficient, 

• = _.f!!!...,-2 cos fJ + Br cosO	 (3)
4Eo 

and by requiring that the total potential be zero at r = a, it follows that B = 
poa/4Eo so that the potential is as given with the problem statement. 

5.9.4 Because the given charge density does not depend on q" the potential is also 
independent of q,. In that case, Poisson's equation in spherical coordinates reduces 
to 

1a(2 a.) 1 a('fJa.) Po(/)m ()
r2 ar	 r ar + r2 sin fJ afJ sm tii = - Eo r a cos fJ 1 

First, given the dependence of the charge density on fJ, look for a particular solution 
having the form (r/a) cos fJ. Substitution into (1) then shows that p = m + 2 and 
A = -poa2 /Eo(m + 1)(m + 4) so that a particular solution is 

2 
A;. po a ( / )m+2 fJ 
'Jt'p =	 Eo(m+ 1)(m+4) r a cos (2) 

The sum of this potential and a solution to Laplace's equation must satisfy the 
condition that the potential be zero at r = a. Again, for the fJ dependence of the 
particular solution, it is natural to take a uniform field as the homogeneous solution. 
Thus, with B an adjustable coefficient, 

• = .p + B(r/a) cos fJ	 (3) 

and by requiring that the total potential be zero at r = a, it follows that the 
required potential is 

_P a2 

• = Eo(m+ l)(m+ 4) (rfa) [(rfa)m+l -l]cosfJ (4) 

5.10	 THREE-DIMENSIONAL SOLUTIONS TO LAPLACE'S 
EQUATION 

5.10.1	 Given the zero potential surfaces at y = 0 and y = b and at z = 0 and z = w, 
it is natural to construct the solution from product solutions having the form 

A;. X()' m1rY • n1rZ 
'Jt'=	 z sln-b-sm~ (1) 
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where, to satisfy Laplace's equation

X(x) ={sinh km"x
coshkm"x

5-33

and
km" = .J(m'lr/b)2 + (R'Ir/w)2

The boundary conditions on the surfaces at x =0 and x =a are the same. Thus, if
X(x) is chosen to be even about an origin at x =a/2, the potential that satisfies the
condition of being tI at x = 0 will also be tI at x = a. Thus, X(x) is made a linear
combination of the solutions given with (1) which is the cosh function displaced so
that its argument is zero where x = a/2.

X(x) = Am" coshkm,,(x - i) (2)

The solution therefore takes the form of (a) given with the problem. At x = 0, the
condition at x = 0 requires that

~ ~ A h (km"a) . (m'lr1l ) • (R'lrll) (3)
tI = L..J L..J m" COB -2- sm -b- sm --;;-

m=l,,=l

Note that this expression is the same as (11) if the sinh(kmnb) is replaced by
cosh(km..a/2) and x/a - 1I/b. The evaluation of the coefficient using the orthogo­
nality of the product solutions is therefore essentially the same as given by (5.10.11)­
(5.10.15), resulting in (b) as given with the problem.

5.10.2 Given the :I: and II dependence of the surface charge density, which is the
same as that of the components of E in the II direction on either side of the surface
y = a/2, look for solutions of the form

~ = Y(y) sin (~) sin (II) (1)
a w

where

and

Y(y) = {Sinh klly
coshk1l1l

(2)

kll = ../(1IJa)2 + (7I"/b)2
To satisfy the continuity conditions at y = b/2, the potential function is given a
piece-wise representation. The function in the upper region must be zero at y = b,
so Y(y) is chosen as a sinh with its argument displaced to y = b. In the lower region,
the sinh function with its origin at y = a does the job. Thus,

..... _{Asinhkll(y-b)}. (71":1:). (~)"*" - B . hk sm sinsm llY a w

At 11 = b/2, the potential must be continuous and Gauss' continuity condition must
be satisfied.

-Asinh(kllb/2) = Bsinh(kllb/2)

-fokll(A - B) cosh(kllb/2) = U o

It follows that the coefficients in (2) are

A = -B = -Uo/2fokll cosh(kllb/2)

(3)
(4)

(5)
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5.10.3	 In each case, the solution can be regarded as the superposition of a particular 
solution to Poisson's equation and a homogeneous solution to satisfy the boundary 
conditions. The determination of representation begins with the selection of the 
former. 

As a first solution, select a particular solution that is only z dependent. Then, 
Poisson's equation reduces to 

d2~ Po (1)
dz2 = - €o 

and the particular solution that (for convenience) is also zero at z = 0 and z = a is 

(2) 

With this potential satisfying the boundary conditions on two of the surfaces, the 
homogeneous solution must assure satisfying the conditions on the remaining four 
surfaces. This is done by adding to (2) solutions designed to satisfy the conditions 
at Y = 0 and Y = b while being zero at all the other surfaces and therefore neither 
disturbing the already satisfied conditions at z = 0 and z = a nor those to be 
satisfied by the next homogeneous solution. To satisfy both the conditions at Y = 0 
and y = b, the y dependence is taken as even about y = b/2. A second homogeneous 
solution is then added to this one to assure satisfaction of the conditions at Z = 0 
and Z = w/2 while not disturbing the potential at the other four surfaces. Thus, 
the potential takes the form 

00 00 

~ = -2Po z(z - a) + L L Bmn coshkmn(y - -) 
b 

sin (m'1l" z) sin C~!z) 
Eo m=ln=l 2 a w 

(3)
00 00 

+ L LOmncoshkmn(z- ;) sin (:'1I"z) sin (n'1l"y)
bm=ln=l 

The coefficients Bmn and Omn are determined by requiring that the potential indeed 
be zero on the surfaces y = 0 and Z = 0 (and hence also at y = b and Z = w). 

Po 00 00 kmnb . m'1l" • n'1l"
~z(z - a) = L L Bmn cosh (-2-) sm (-;-z) sm (-;-z) (4) 

o m=ln=l 

Po 00 00 kmnw . m'1l" • n'1l" 
-2z(z-a) = L LOmncosh(--)sm(-z)sm(-by) (5)

Eo	 2 am=ln=l 

The coefficients therefore follow from the same procedure as illustrated by (5.10.11) 
through (5.10.15). For m or n even the coefficients are zero. For m and n odd, 

(6) 
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emn = P(Ic) (4/m!") fa z(z - a) sin (~z)dz 
2Eocosh ~ 10 a 

(7) 
= -Po (4/m!") ~ 

2Eo cosh (Icm;W) (mll")3 

Two more solutions are obtained by replacing the role of z with that of y and of z. 
As a fourth solution, expand the charge distribution in a three dimensional Fourier 
series 

00 00 00 

"" "" "" R . (mll"z) . (nll"Y) . (qll"z)Po = LJ LJ LJ mnq sm -- sm -b- sm -- (8)
a w

m=l n=lq=l 

The coefficients Rmnq follow by multiplying by 

. (rll"z) . (slI"Y) . (ulI"z)sm -- sin -- sm -­
a b w 

integrating over the volume and solving for Rr,u. Then, with rsu -+ mnq, 

(9) 

for m and nand q odd and zero for m or n or q even. Given this (z, y, z) dependence 
and given that the second derivative of each of the sinusoids results in the same 
sinusoidal function, we are motivated to look for a particular solution having the 
same form. 

00 00 00 

...... "" "" ""...... . (mll"z) . (nll"Y) . (qll"z) (10)-.r = LJ LJ LJ -.rmnq sm -- sm -b- sin -­
m=l n=l q=l a w 

Substitution of this expression into Poisson's equation shows that term by term it 
is not only a solution to Poisson's equation (and therefore a particular solution) if 

(11) 

but satisfies the boundary conditions as well. 




