MIT OpenCourseWare
http://ocw.mit.edu

Haus, Hermann A., and James R. Melcher. Solutions Manual for Electromagnetic
Fields and Energy. (Massachusetts Institute of Technology: MIT OpenCourseWare).
http://ocw.mit.edu (accessed MM DD, YYYY). License: Creative Commons
Attribution-NonCommercial-Share Alike.

Also available from Prentice-Hall: Englewood Cliffs, NJ, 1990. ISBN: 9780132489805.

For more information about citing these materials or our Terms of Use, visit:


http://ocw.mit.edu
http://ocw.mit.edu
http://ocw.mit.edu/terms

SOLUTIONS TO CHAPTER 4

4.1 TRROTATIONAL FIELD REPRESENTED BY SCALAR
POTENTIAL: THE GRADIENT OPERATOR AND
GRADIENT INTEGRAL THEOREM

4.1.1  (a) For the potential

|Z
@ = —2(a” +y* +2%) (1)
2V, 4 4
grad = a—;(:mz + yty + 21,) (2)

(b) The unit normal is

Vo _ x:; +y:y -+ Z:s

=i, (3)

n= =
V| /22 +y% + 22
4.1.2 For & = %&zy, we have

Vo . .

E=-Vd= —-a—z(ylx + ziy) (1)
»
(a,a)
- I
0

Figure S4.1.2

Integration on the path shown in Fig. $4.1.2 can be accomplished using ¢ as a
parameter, where for this curve z = t and y = d so that in

ds = i,dz +1iydy (2)
we can replace dz = dt,dy = dt. Thus,
(a,a) a A
/ E-ds= / o i1y - (i + 1) =V, (3)
(010) t=0 a

Alternatively, $(0,0) =0 and ®(a,a) =V, and so (0,0) — ®(a,a) = —V,.



4-2 Solutions to Chapter 4

4.1.3 (a) The three electric fields are respectively, E = —V®,

E=—(V,/a)ix (1)
E = —(V,/a)iy (2)
B= 220 - ui)) ®)

(b) The respective equipotentials and lines of electric field intensity are sketched
in the = — y plane in Figs. S4.1.3a-c.

Figure S4.1.3

(c) Alternatively, the vertical axis of a three dimensional plot is used to represent
the potential as shown in Figs. $4.1.3d-f.
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4.1.4 (a) In Cartesian coordinates, the grad operator is given by (4.1.12). With ® de-
fined by (a), the desired field is

32 0%
9z dy (1)
= _fo [E cos yl,‘ + sin = cos Wyi ]
€ol(r/a)2 + (x/b)?] ' a ) b a b
(b) Evaluation of the curl gives
Y 3E, JE,
VXE= % % 0 [ oz ayz]
E, E 0
2 xz  wy (2)
= [—cos—cos—y - o8 ZZ cos =¥
ab b b a b

so that the field is indeed irrotational.

?y

Figure S4.1.4

(c) From Gauss’ law, the charge density is given by taking the divergence of (1).

OE;  OE,

p=V B =co(ZE+ 5, (3)
— (= /b)?sin _:c_ sin Ty

—po
= x/a)?sin ==

r7ar+ G - (/)
(d) Evalvuation of the tantential component from (1) on each boundary gives; at

z=0,Ey=0; z=40,F,=0
y=0,E;=0; y=ea,E;=0

4)

(e) A sketch of the potential, the charge density and hence of E is shown in Fig.
54.1.5.
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+
+ B+ - - -

Figure S4.1.5

(f) The integration of E between points (a) and (b) in FIg. P4.1.5 should be the

same as the difference between the potentials evaluated at these end points
because of the gradient integral theorem, (16). In this particular case, let
z =t,y = (b/a)t so that dz = dt and dy = (b/a)dt.

b a
—~po nt xt
E-ds= cos — sin —dt
./; eol(7/a)? + (7/b)?] Jaya [a a a
+ T s sin xt cos ——]dt
a a . ot (5)
= Po T sin gt

¢o|(r/a)? + (x/b)?] Joza @

- Po
éol(7/a)? + (x/b)?]

The same result is obtained by taking the difference between the potentials.

@(g, ;,t) — ®(a,b,t) =

Po
el(w/a) + (=)o) ©)

(g) The net charge follows by integrating the charge density given by (c) over the

given volume.

Q= / dv = / / / posin(rz/a) sin(ry/b)dadydz = 4"0“”" M

From Gauss’ integral law, it also follows by integrating the flux density ¢,E-n
over the surface enclosing this volume.

Q =fseoE -nda = [(1r/a)2 + (1r/b)2] {/ ; —sin{wz/a) cos mdz
- /-oa % sin(rz/a)dz + /b § cos 7 sin Tdy (8)

b
T y 4paabd
/0 - sin ~—d. } =3
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(h) The surface cha.rge density on the electrode follows from using the normal
electric field as given by (1).

Tz

70 = By = 0) = [ G @)

Thus, the net charge on this electrode is

_ d p3af4 —Po xoowz, —\/i(a/b)dpo
o= [ f /a7 + o b 2 & 45 = a1 eppyr. (O)

(i) The current ¢(t) then follows from conservation of charge for a surface S that
encloses the electrode.

d ., dg
iJ-nda+E/Vpdu=>t+dt—0 (11)

Thus, from (10), /2
2(a/b)d__ dp,
= (Ja) + (/02 dt (12)

4.1.6  (a) In Cartesian coordinates, the grad operator is given by (4.1.12). With @ de-
fined by (a), the desired field is

ad, ]
ay r T X . T, (1)
= eol(r/a)z + (ﬂ'/b)zl [ sin ZCOS b ylx + z‘ cos ;zsm Zyly]

E=—[ 1,‘+

(b) Evaluation of the curl gives

L i, i
. 0B, OE
VXE= % % 0 =|.( azy—_-i)
E. E, o©
2
- po " inTosin (2)
= eol(n/a)? + (w/b)z][ ab SR gy
+"—r-iisin!'-:z:sinE ]—0
ab a by -

so that the field is indeed irrotational.

(c) From Gauss’ law, the charge density is given by taking the divergence of (1).

oE,

n
3y =2} = pocos — — T cos Ty (3)

b

p=V-e,E
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(d) The electric field E is tangential to the boundaries only if it has no normal
component there.

Ex(oi y) =0, E::(a’ y) =0

Ey(z,0)=0, E,(z,b)=0 (4)

(e) A sketch of the potential, the charge density and hence of E is shown in Fig.
S4.14.

(f) The integration of E between points (a) and (b) in Fig. P4.1.4 should be the
same as the difference between the potentials evaluated at these end points
because of the gradient integral theorem, (16). In this particular case, where
y = (b/a)z on C and hence dy = (b/a)dz

(v)

ht b b
E-ds=/ E.(z,-z)dz + E,(z, ~z)(b/a)d
N [ (Ba(ma)dot By (a, o) b/ c)de)
= Po : L T zdz
T el®/aP+ @/ Sz e e P
—fo

" eol(n/a)? + (x/0)7]

The same result is obtained by taking the difference between the potentials.

(v 3 _ —Po
) Bas (o) - 20) = T + /)] ©

(¢) The net charge follows by integrating the charge density over the given vol-
ume. However, we can see from the function itself that the positive charge is
balanced by the negative charge, so

Q=/Vpdv=o (7)

From Gauss’ integral law, the net charge also follows by integrating the flux
density €,E - n over the surface enclosing this volume. From (d) this normal
flux is zero, so that the net integral is certainly also zero.

Q=f;eoE-nda=0 (8)

The surface charge density on the electrode follows from integrating ¢,E - n
over the “electrode” surface. Thus, the net charge on the “electrode” is

q=fseoE-nda=0 (9)
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4.1.6  (a) From (4.1.2)

ad, 0P

E= —(Elx + a—yiy)

= — A[m cosh mz sin k,y sin k. zi, (1)
+ sinh mzk, cos kyysin k,2iy

+ k, sinh mz sin kyy cos k,zi; ] sinwi

(b) Evaluation using (1) gives

VxE= a/az a/fay a/az

. a&, . (9E,
=‘X[ - ] lv[ 3z (2)

8E., . 80E, OE,
- az]+l'[8z - ay]

= — A sin wt{ix (kyk, sinh mz cos kyy cos k,z — kyk, sinh mz cos k,y cos k,z)
+ iy (mk, cosh mz sin kyy cos k,z — k,;m cosh mz sin kyy cos k, 2)
+ i5(mky cosh mz cos kyy sin k.2 — mk, cosh mz cos k,y sin k, 2)
=0
(3)
(c) From Gauss’ law, (4.0.2)
p=V - E = —¢,A(m® — k2 — k?) sinh masin kyysink,zsinwt  (5)

(d) No. The gradient of vector or divergence of scalar are not defined.

(e) For p =0 everywhere, make the coefficient in (5) be zero.

m? = k2 + k2 (6)

4.1.7 (a) The wall in the first quadrant is on the surface defined by
y=a-g (1)

Substitution of this value of y into the given potential shows that on this
surface, the potential is a linear function of z and hence the desired linear
function of distance along the surface

® = Aa(2z - a) (2)



(b)

(<)

418 (a)
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To make this potential assume the correct values at the end points, where
z = 0 and ® must be —V and where z = a and ® must be V, make 4 = V/a?

and hence v
= 5(22 - 9% (3)

On the remaining surfaces, respectively in the second, third and fourth quad-
rants

y=z+a, y=—a—2z; y=z—a (4)

Substitution of these functions into (3) also gives linear functions of z which
respectively satisfy the conditions on the potentials at the end points.

Using (4.1.12),

8<I>

E=—(3; )=— 7 (22 — 24iy) (5)

From Gauss’ law, (4.0.2), the charge density is

”) =-—-(2 2)= (6)

Figure S4.1.7
The equipotentials and lines of E are shown in Fig. $4.1.7.

For the given E,

iy
8/8:1: 6/ay 0
Cz —Cy

VxE= = 1.[—( Cy) — —(Cz)] =0 (1)

so E is irrotational. To evaluate C, remember that the vector differential
distance ds = i,dz+i, dy. For ths contour, ds = iy dy. To let the integral take
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account of the sign naturally, the integration is carried out from the origin to
(a) (rather than the reverse) and set equal to ®(0,0) — ®(0,h) = —V.

h 1
-V = / —Cydy = —=Ch? (2)
0 2

Thus, C = 2V /h2.
To find the potential, observe from E = —V® that

ad ad
-a"; = —Cl’, —a—g = Cy (3)

Integration of (3a) with respect to z gives
1
o= -1ca+ (y) (4)

Differentiation of this expression with respect to y and comparison to (3b)
then shows that
3% df

a—y—dy—0y=>f=%y2+D (5)
Because ©(0,0) = 0, D = 0 so that

@ =20z~ ) (©)
and, because ®(0, ) =V, it follows that

®— —%C(Oz — ) (1)

so that once again, C' = 2V /h2.

(<) The potential and E are sketched in Fig. S4.1.8a.

Figure S4.1.8


http:S4.1.8a
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(d)
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Gauss’ integral law is used to compute the charge on the electrode using the
surface shown in Fig. $4.1.8b to enclose the electrode. There are six surfaces
possibly contributing to the surface integration.

f B -nda=gq (8)
s

On the two having normals in the 2 direction, ¢,E -n = 0. In the region above
the electrode the field is zero, so there is no contribution there either. On the
two side surfaces and the bottom surface, the integrals are

q =6 /0'” /h:/m;E(d, y) - ixdydz
+ € /0 ) /;. :/mE(—d, y) - (—ix)dydz (9)

w pd
+ eo/ / E(z, k1) - (—iy)dzdz
0o J-d
Completion of the integrals gives

9= 4wde,\/d? + h?

e (10)
4.1.9 By definition,
A® = grad (@) - Ar (1)
In cylindrical coordinates,
Ar = Arip + rAdiy + Azi, (2)
and
Ap=0(r+ Ar, @+ AD,z + Az) — ¥(r, ¢, 2)
1) L) 8® (3)
= EAr+ %Ad) + a—zAz
Thus,
% aod o . . .
EAr + a—¢A¢ + -gAz = grad @ - (Ari, + rAdiy + Azi,) (4)

and it follows that the gradient operation in cylindrical coordinates is,

P, 1090, o
grad (@) = Fa

rt ;514, + o (5)
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4.1.10 By definition,
A® = grad (®) - Ar

In spherical coordinates,

Ar = Ari. + rAfig + rsin 0Agiy

and
AD=Q(r+ Ar, 0 + Ab, ¢ + Ad) — O(r,0, ¢)
P ad L]
= EAr + WAG + -a-$A¢
Thus,

?I) Ar+ a;{:Aﬂ + 3¢ A¢ = grad () - (Ariy + rAfis + rsin0APiy)

and it follows that the gradient operation in spherical coordinates is,

a<I> 13®, 1 99,
grad(®) = —i, + —% oind %14,

4.2 POISSON’S EQUATION

4.2.1 In Cartesian coordinates, Poisson’s equation requires that

P 9%® 920
v2<1>———=>p_ —eo( 55 + 2)
Substitution of the potential

£o(t) sin X e sin — y

= Col(x/a) + (/o] b

then gives the charge density

=- polt) —(r/a)? sin ~ zsin —2
S (07 U
— (=/b)?sin Ez sin %y]
wy
b

= po(t) sin ? sin —=

4-11

(1)

(2)

(3)

(4)

(5)

(1)

(2)

(3)
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4.2.2 In Cartesian coordinates, Poisson’s equation requires that
324’ 324’
p= —€o ( 2 ) (1)

Substitution of the potential

®= e T T e @)

then gives the charge density

3 .
P = Pocos —zCo8 1y (3)
4.2.3 In cylindrical coordinates, the divergence and gradient are given in Table I as
voasilia)s 12, O (1

au. 1 du, au
Vu= :9— a¢l¢+ (2)

By definition,
13, 8u 1 8 ,13u d ,du
"3 * 7350 59) T 52 (55)

which becomes the expression also summarized in Table L.

Viy=V- Vu— (3)

. L1
r ar( r9¢% T 3.2 (4)
4.2.4 In spherical coordina.tes, the divergence and gradient are given in Table I as
_ 19 1 1 3A¢
v A_ (r 7+ rsind 80 (Aasmﬂ) t e rsinf 3¢ (1)
du 1du 1 Jdu
Wy Yy 4 Louw, 1 Ou
YT e T e remoag” @)
By definition,
18 du 1
Viu=V.(Vu)= 5 —(?
U (Vy) 2 or ar) rs1n0(r a6 sm0) 3
MEMENOA (®
rsind 3¢ ‘rsinf ¢
which becomes the expression also summarized in Table 1.
19 du 1 1 3%

Viy=—

5, .
75" 30) T Eamg 5p )+

2 I a¢2 (4)
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4.3 SUPERPOSITION PRINCIPLE

4.3.1

The circuit is shown in Fig. S4.3.1. Alternative solutions v, and v, must each
satisfy the respective equations

C&_*_Ua

3 T = L)

dvb Vp
o %
@ TR - b0

v

Figure S4.3.1
Addition of these two expressions gives

dvg duvp 1 _
C[W dt]+R[Ua+vb]—Ia+Ib

which, by dint of the linear nature of the derivative operator, becomes

d 1
CE(U" + vp) + E(Ua t+o) =L+ 1

Thus, if I, = v, and I, = v then I, + I, = v, + vp.

4.4 FIELDS ASSOCIATED WITH CHARGE SINGULARITIES

4.4.1 (2) The electric field intensity for a line charge having linear density J; is

Integration gives

(2)

where r, is the position at which the potential is defined to be zero.
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(b) In terms of the distances defined in Fig. S4.4.1, the potential for the pair of
line charges is

Al r+ Al r_ Al r_
d=- In{— ——In(—) = In(— 3
27eo n( ro) + 2we, n( ro) 2me, n(r+) ( )
where
r2 =v2+(d/2)? Frdcos ¢
Thus,
b= A ] 1+ (d/2r)2+ cos ¢

" ame, |1+ (¢/2r)2 — £cos ¢ @

For d < r, this is expanded in a Taylor series

In( J=(l+z)-In(l+y)~z—y (5)

1+=z
1+y
to obtain the standard form of a two-dimensional dipole potential.

Ad cosé

27e, r

[ J—Y

(6)

From the solution to Prob. 4.4.1, the potential of the pair of line charges is

d =

4re,

A ; [1 + (2r/d)? + %cos:ﬁ]
1+ (2r/d)2 — %r cos ¢

(1)

For a spacing that goes to infinity, r/d <« 1 and it is appropriate to use the first
term of a Taylor’s expansion

1+z
(%) ey @
Thus, (1) becomes
A
o= “odrcos é (3)

In Cartesian coordinates, z = rcos ¢, and (3) becomes

2\

o=
meod

z (4)
which is the potential of a uniform electric field.

—-2).
E= weodl" (5)
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4.4.3 The potential due to a line charge is
o= 2 inle (1)
2me, T

where r, is some reference. For the quadrapole,

A ro ro ro ro A rory
P = n——-In—+In——-In—| = —I|ln— 2
21reo[nr1 nr2 nrs nr4] 27e, nrlrs] ( )

where, from Fig. P4.4.3,

2= r2[1 + (d/2r)% — (d/r) sin ¢|

2 = ¢2[1 + (d/27)? + (d/r) cos §]
r2 = r2[1 + (d/2r)? + (d/r) sin ¢]

2 = 12[1+ (d/2r)% — (d/r) cos ¢]

With terms in (d/2r)? neglected, (2) therefore becomes

oo 2 ln{1— (d/r)? c032¢} (3)

47e, 1—(d/r)? sin? ¢
for d < r.
Now In(1 + z) =~ z for small z so In[(1+ z)/(1 + y)] =~ z — y. Thus, (3) is
approximately
_ A 2 2 2 2
o= 41reo[ (d/r)? cos® ¢ + (d/r)? sin” §]
—Ad? .
v [cos® ¢ — sin? ¢] (4)
—Ad?
= 2
47e,r? cos 2¢

This is of the form Acos2¢/y™ with

sy
T 4ze,’
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4.4.4 (a) For r <« d, we rewrite the distance functions as

2= @2 ((5)" +1- Feing] (10
A= @21 + 1+ G cond] (1)
2= @215 + 1+ S eing] (12
2= /2[5 +1- F cosd] (1e)

With the terms (2r/d)? neglected, at follows that

A 1— (4r/d)? cos? ¢ }
4w, ln{ 1— (4r/d)?sin® ¢

(2)

Because In(1 + z) ~ z for z < 1,In[(1 + z)/(1+ y)] 2 z—y and (2) is
approximately

— A (A4 sind g = —
o= ywy d)[cos¢ sin® §] =

42r2
weod2

cos 2¢ (3)

This potential is seen again in Sec. 5.7. With the objective of writing it in
Cartesian coordinates, (3) is written as

o=- 4’\dz [r(cos ¢ + sin @)r(cos ¢ — sin ¢)]

o _ 0
e+ =] = @ - )

T

(b) Rotate the quadrapole by 45°.

4.5 SOLUTION OF POISSON’S EQUATION FOR SPECIFIED
CHARGE DISTRIBUTIONS

4.5.1  (a) With |r —x'| = \/2'2 + y2 + 22, (4.5.5) becomes

@ @ o,(z',y')dz'dy’
e- [ [ (&', y)dz'dy (1)
y'=—aJa'=

—a 47eo\/22 + y'? 4 22
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(b) For the particular charge distribution,

o= T /a /'“ z'y'dz'dy
a?meo Jyr=0 Jar=o /2% + y2 + 22
a
To

/ [Va? +y2 + 22y — Vy? + 2%y']dy’
y'=0

(2)

T a?we,
To complete this second integration, let u? = y'? + 22, 2udu = 2y/dy’ so that

a \/a’-i-—z’ 3 |Va?+z?
/ YV +22dy = / wldu = —
y'=0 z 3 z (3)

1
= 5[(az + 22)3/2 _ z3]

Similarly,

-/;=o IV @) =5[22+ )2 - @+ 27 (4

so that o
@ = 52|20+ Y + 2~ 2(a + )0 (5)
(c) At the origin,
_ % ((2a3)/7 203 = 2olV2 1)
e 3a21reo[(2a ) 27| = 37e, ()

(d) For z > a, (5) becomes approximately

0,2° 24° 3/2 a? 3/2
&~ {1+(z—2+1) -2(5+1) }

3a?re, 0
20,23 2a2 2a2 1/2 a? @@ 1/
=3a201r€o{1+(1+:;)(1+z—2) _2(1+z_2)(1+z_2) / }
For a?/2% « 1, we use (14 z)/2 ~ 1+ 1z and
20,23 242 a2 o2 o2
o= 3a201reo{1+ (1+55) 1+ ) - 201+ 5) (1 + .2;)}
_ 20,2° a_z fo 2a2
_3a21reo{1+(1+z2)[1+ 22 "2_@]} (8)
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Thus, .
20,0
@= 3mey 2z (9)
For a point charge Q at the origin, the potential along the z-axis is given by
Q
P = 10
4me,2z ( )
which is the same as the potential given by (9) if
2
Q=" (11)
(¢) From (5),
8%, _ oo 2 ,2\1/2 4 2 2 4 ,2\1/23
E=-Vo= —5;1. = ﬂ_azeo[z(Za + 2212 4 22 — 22(a? + 22)Y/?)i, (12)

4.5.2  (2) Evaluation of (4.5.5) gives
0o cos0'R?sin §'d¢'dd’
" /, =0 47€,[R? + 22 — 4Rz cos ¢']1/2
o R? sin 26’ d¢’
e, -/;'=o VR2 4 22 —2Rzcosf’

To integrate, let u? = R? F 22 — 2Rz cos§’ so that 2udu = 2Rzsin§’'d§’ and
note that cosf’ = (R2 + 22 — u2) /2Rz. Thus, (1) becomes

(1)

)
b (R? + 22 — u?)du
2,2 (R+2)°
2[(R +2z%)(R+2) - —~—
4eoz ( R 3 (2)
— (R +2%)(z— R) + —"'—3)—]
_ oR?
T 3e,22
(b) Inside the shell, the lower limit of (2) becomes (R — z). Then
0oz
= _32—0 (3)

(¢) From (2) and (3)

= o 2—""—E;—i z>R
= — = ——f, = 3¢, s
E=-Ve=---i { ~%i, 2<R (4)

(d) Far away, the dipole potential on the z-axis would be p/4we,2? for the point
charge dipole. By comparison of (2) to this expression the dipole moment is

4o, R3

P="73 (5)
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4583 (a) To find ¥(0,0,z) we use (4.5.4). For r = (0,0,2) and ' = a point on the
cylinder of charge, |r — r'| = /(2 — 2')2 + R2. This distance is valid for an
entire “ring” of charge. The incremental charge element is then oc2wrRdz so
that (4.5.4) becomes

' ' 0 _ ' _
Q(0,0, z) - / .27 Rdz + 0.2 Rdz (1)
0 4mey\/(2—2')2 + R2 _t4men/(z— 2')2 + R2

To integrate, let ¢ = z — 2',d¢’ = —dz' and transform the limits
ooR = dq ]

z—1 dq"
250[ v/: VQ'2+R"'+ =+ \/q'% + R?

o =

z—1 z (2)
=';°€R[—lnq'+\/R2+q'2 +In|¢’' + vV R2 + ¢ ]
o z z+1
Thus,
5= aoRln (2+ VR? + 22)(z + VR? + 22) ]
2 Lz—l+VE+(z-)2)(z+1+ VR +(2+1)?)

= UZOeR [2in(z + VER? + 22) — In(z~ 1+ VR + (z - 1)?) ®)
—n(z+1+ m)]

2z

| )
r=(,¢,2) — !
(:¢/.7) % Ir — 7|
r = (0,0, 2) ———4,/ T\\*
’d
/ T
z -
p” ™

Figure S4.5.3
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(b) Due to cylindrical geometry, there is no i, or iy field on the z axis.

80, _ haooR [""(”W’TT) ( ey )

E=——i, =
' z+VR? + 22 z—-1+VR+(z—1)?

z 2¢,

=+

o Lt Tt ) @
z+Il+ R+ (z+1)2

. 0o —2 1 1

=1.250[\fR2+zz+\/R7+(z—l)°+Rz+(z+l)2]

(c) First normalize all terms in @ to 2

q,:aoRln[ (1+/1+ B)(1+1/1+ B) ]

2 2 2
L LR+ (1= D)+ bV @/ + (4 D)
(5)
Then, for z > ! and z 3» R,
ao (L+1)(1+1) ]
"= —+1—-)(1+£+1+§)
ln
“ [r(l (z/z)=)] "
2
l [1 (l/ )2] & ln[1+ (¢/2)?]
10_13 L
2, 22
The potential of a dipole with dipole moment p is
™~ p cosf
Daipole’ = Ine, 12 (7)
In our case, cos 8/r? = 1/z%, 50 p = 2x RI? (note the p = qd, ¢ = 27 Rlo,, deys =
).
4.5.4 From (4.5.12),
df2 Ay’
O(z,y,2 =/ 1
(2,9,2) y'=-d/2 47€\/(z —a)? + (y — ¢v')? + 22 ()
To integrate, let u = y' — y so that (1) becomes
o A —y+d/3 du
T 4me, —y-d/2 Vu?+(z—a)? + 22 @)
_ A -y+d/2
= Eln[u + V2 + (z - a)? + 23] —y—df2

which is the given expression.
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4.5.5 From (4.5.12),

Ao ! z'dz’ z'dz’ }
®(0,0, -_—
(0,0,2) = 4r eol { -/;'=o Va2 +(a—2)2 /22 + (a+2)?

- V& +(al +22)}
4.5.6 From (4.5.12),
@ A2'de! ), @ z ,
2(0,0,2) = /,,=_a dme,a(z —2')  4dme.a /;,=_a (-1+ z— ."z')dz (1)
= 4:6 a[—a — zin(z — a) — z + zin(z + a)]
Thus,

®(0,0,2) = Z)] (2)

—2o [2a + zln(z —
€o: z+

Because of the symmetry about the z axis, the only component of E is in the z

direction
ad., A zZ—a 1 1 .
E__—é—z—l'_41reo [ln(z+a)+z{z——a z+a}}l' (3)
Ao ln(z — a) + 2az i
T 4rwe, z+a 22 —a?|"
4.5.7 Using (4.5.20)

A b
oo(d —b) ,
b =— _ I
,/’;l=0 /.$I=_b A21reo(d - I') lnld z ldz dy

_ _oo(d—b) b Mdz'
2me, xz'=-b (d - z')
_ aog;ire b) {- _[ln(d - x’)]2|ib}

_ oo(d—b)

=2 fin(d — B)? - [in(d +5)]%}
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4.5.8 From (4.5.20),

2d ) 0 _ e’
®(d,0) = - / olnld — 2 ), / ooln|d — 2'|dz "

2'=0 27|'€o 1=—2d 21f€o

To integrate let u = d — &’ and du = —dz'.

®(d,0) = /’d oolnudy _ /d oolnudu
d 3

21!'60 d 21'.60
o —-d d
= ——212 {u(ln]u] - 1)|d — u(ln|u| - 1)|3d} (2)
{+]
= 2% 3din3
27e,

Thus, setting ®(d,0) =V gives

27e,V
%= 3din3 (8)

—0, O,
———* -z

— 2d 2d

Figure S4.5.8

4.5.9 (a) (This problem might best be given while covering Sec. 8.2, where a stick
model is developed for MQS systems.) At the lower end of the charge, &, is
the projection of ¢ on a. This is given by

c-a

e = W (1)
Similarly, b
-a
== 2
& a] (2)
(b) From (4.5.20),
[ ade E 0 ade
&= ,/;.=Ec dmeor — 1| /T:? 4reo[r — ') ()
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where
r—r?=¢6+d*

With 0 defined as the angle between a and b,

|d| = |b|siné (4)
But in terms of a and b,
. ,_ |laxDb]
sind = fallb] (5)
so that
axb
d= l fa] I (6)
and
a x bj?
v =y e 22 )

(c) Integration of (3) using (6) and (7) gives

b

fat

|a x b|2

|af?

(8)

4re,

A ln{€+ £+

and hence the given result.

(d) For a line charge A, between (z,y, z) = (0,0,d) and (z,y,2) = (d,d, d),

a = diy + diy
b = (d — z)ix + (d — y)iy + (d — 2)i,
¢ = —zi, — yiy + (d — 2)i,
b-a=d(d— z)+d(d—y)
c-a=-—zd—yd
axb=| & 4 o (©)
d—z d-y d-—=z
= d(d — 2)ix — d(d — 2)iy + d(z — y)is
ja x b = P[2(d— 2)* + (s — )]
(b-a)? = d*|(d ~z) + (d - y))*
(c-a)? = d*(z +y)?

and evaluation of (c) of the problem statement gives (d).
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This problem could be given in connection with covering Sec. 8.2. It illus-
trates the steps followed between (8.2.1) and (8.2.7), where the distinction between
source and observer coordinates is also essential. Given that the potential has been
found using the superposition integral, the required electric field is found by taking
the gradient with respect to the observer coordinates, r, not r'. Thus, the gradi-
ent operator can be taken inside the integral, where it operates as though r' is a
constant.

- ve—- [ v - - [ Sl

4me,jr — ') ' 47e,
The arguments leading to (8.2.6) apply equally well here

1 __ 1 )
v[lr_rll] - lr_r:lni" (2)

The result given with the problem statement follows. Note that we could just as well
have derived this result by superimposing the electric fields due to point charges
p(r')dv’. Especially if coordinates other than Cartesian are used, care must be taken
to recognize how the unit vector i,., takes into account the vector addition.

(a) Substitution of the given charge density into Poisson’s equation results in the
given expression for the potential.

(b) If the given solution is indeed the response to a singular source at the origin, it
must (i) satisfy the differential equation, (a), at every point except the origin
and (ii) it must satisfy (c). With the objective of showing that (i) is true, note
that in spherical coordinates with no ¢ or ¢ dependence, (b) becomes

S (D)~ =a(r) )

Substitution of (e) into this expression gives zero for the left hand side at
every point, r, except the origin. The algebra is as follows. First,

d /A .- Ax _ Ae~"r
dr\r m)=_—r—e o r2 (2)
Then,
1d Ac _, , e " g Ae™"™"  Ak? fonr Ak?
r"’dr(r +r2) e L e (3)
=0; r#0

To establish the coefficient, A, integrate Poisson’s equation over a spherical
volume having radius r centered on the origin. By virtue of its being singular
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(©)

(a)

there, what is being integrated has value only at the origin. Thus, we take the
limit where the radius of the volume goes to zero.

1im{/v-v<1>du—n2/<1>du}=1im{-l/adu} (4)
v v r—=0 € Jv

r—0

Gauss’ theorem shows that the first integral can be converted to a surface
integral. Thus,

lim { v<1>-da—,c2/V<I>du}=1im{—;1;/"adu} (5)

r—0 s r—0

If the potential does indeed have the r dependence of (e), then it follows that

r
lim [ ®dv=1lim | ®4xr’dr=0 (6)
r—0 Jy r—0 Jo

so that in the limit, the second integral on the left in (5) makes no contribution
and (5) reduces to

)anr? = —4xA = -9 (7)

(4

lim

—Kr
(- Ax oK Ae
r—0 r

- =
and it follows that A = Q/4~e,.

We have found that a point source, Q, at the origin gives rise to the potential

Quo=_2 " (8)

dre, r

Arguments similar to those given in Sec. 4.3 show that (b) is linear. Thus,
given that we have shown that the response to a point source p(r')dv atr =r'
is

p(r') dy e—*l=—r|

")d o=
plr')dv = 4re, |r—r'|

(9)

it follows by superposition that the response to an arbitrary source distribu-

tion is =) e
_ p r’ c_lc r—r
B(r) = fv e (10)

A cross-section of the dipole layer is shown in Fig. S4.5.12a. Because the field
inside the layer is much more intense than that outside and because the layer is
very thin compared to distances over which the surface charge density varies
with position in the plane of the layer, the fields inside are as though the
surface charge density resided on the surfaces of plane parallel planes. Thus,
Gauss’ continuity condition applied to either of the surface charge densities
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shows that the field inside has the given magnitude and the direction must be
that of the normal vector.

7(' Euc = —eN e, (1)

(a) (b)

Figure S4.5.12

(b) It follows from (4.1.1) and the contour shown in Fig. S4.5.12b having incre-
mental length Az in the z direction that

~E2Az + E'Az + Ey(z + Az)d — Ey(z)d =0 (2)
Divided by Az, this expression becomes
dE
—E* 4 b4 g%5y _
E+E+d—"=0 (8)

The given expression then follows by using (1) to replace E, with —ei,gi and
>( recognizing that 7, = o,d.

4.6 ELECTROQUASISTATIC FIELDS IN THE PRESENCE
OF PERFECT CONDUCTORS

4.6.1 In view of (4.5.12),

A(E2)

4re,(a — 2')

©(0,0,a) = /;b

The z dependence of the integrand cancels out so that the integration amounts to
a multiplication.

dz' (1)

8(0,0,6) = o5 (b= ) (2)

The net charge is
a—b

Q=30+t~ ©)

a—¢C
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Provied that the equipotential surface passing through (0,0,a) encloses all of the
segment, the capacitance of an electrode having the shape of this surface is then
given by

(a)

(b)

Q

C=¢&m@

= 27eo(2a — b —¢) (4)

The potential is the sum of the potentials due to the charge producing the
uniform field and the point charges. With r. defined as shown in Fig. S4.6.2a,

q q
d=— — 1
o t+ dmeory 4Ameor— ( )

where
z=rcosf

ry = \ﬂz +(d/2)2 ¥ 2rg- cos

To write (1) in terms of the normalized variables, divide by E,d and multiply
and divide ry by d. The given expression, (b), then follows.

2
: L T T
'
L ) .
'
5 F ! a
i
N | -
1
1
d/? - t .
[
d/2 - :
t
.l o t |l r
{ | 11 1
(b) 0 1 2
r

Figure S4.6.2

An implicit expression for the intersection point d/2 < r on the z axis is given
by evaluating (b) with ® =0 and § = 0.

N | g
T ®

The graphical solution of this expression for d/2 < r(1/2 < r) is shown in
Fig. 54.6.2b. The required intersection point is r = 1.33. Because the right
hand side of (2) has an asymptote at r = 0.5, there must be an intersection
between the straight line representing the left side in the range 0.5 < r.



4-28 Solutions to Chapter 4

(c) The plot of the & = 0 surface for 0 < § < x/2 is shown in Fig. S4.6.2c.

()

Figure S4.6.2

(d) At the north pole of the object, the electric field is z-directed. It therefore
follows from (b) as (0.5 < r)

_ % 9 a8 g g
Br=gy =B = E°az( S ;+§)

3)

__ 3 ]
2= 2
-1 @+d)
Evauation of this expression at y = 1.33 and ¢ = 2 gives E, = 3.33E,.

(e) Gauss’ integral law, applied to a surface comprised of the equipotential and
the plane z = 0, shows that the net charge on the northern half of the object
is g. For the given equipotential, g = 2. It follows from the definition of g that

=92 = __.__q =q=
q=2 yv— => Q = q = 8we,E,d? (4)
4.6.3 For the disk of charge in Fig. 4.5.3, the potential is given by (4.5.7)
Oo
= 2. (VR +27 - |2|) (m
(]

At (0,0, d), .
®(0,0,d) = i":(\/ﬂ2 +d? —d) (2)
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and
g =oomR? (3)
Thus ;
C = q — 2€o7rR (4)
¢(0101 d) VR2+d2—-d
4.8.4  (a) Due to the top sphere,
_ @
By = 47eory (1)
and similarly,
__—Q
e-= 4ATe,ra (2)

At the bottom of the top sphere

__9 Q
@+ = 4me,R ~ 4we,(h— R) (8)

while at the top of the bottom sphere

_ Q@ Q
e- |'=R " 4me,R + 4re,(h — R) (4)

The potential difference between the two spherical conductors is therefore

_220 __ 2 __Q . __R/h
V= dme,R  Ame,(h— R) 21re,,R(1 1—R/h)

(3)

The maximum field occurs at z = 0 on the axis of symmetry where the
magnitude is the sum of that due to point charges.

__—2Qi, _ -2Q,
Bumax = 4me,(h/2)2 —— (4)

(b) Replace point charge Q at z = h/2 by @, = Q% at z = % - ’—f;— and @, =

Q[1— £] at z = h/2. The potential on the surface of the top sphere is now

. Qo Ql _ Q
QtoP - dme R + 41reo(R —_ % 41l'€o(h — R) (5)

The potential on the surface of the bottom sphere is

Qo Q1 Q
4ne,(h — R) t 41reo(h - R- 1:—2 h 4me,R ()

Ppottom =



4-30

Solutions to Chapter 4

The potential difference is then,

41re [(_'h R)] QIO[R—II},—’_;;—RI—R—’]

For four charges Q; = QR/h at z = h/2— R?/h; Qo = Q(1— £) at 2z =
h/2; Q2 =—QR/h at z=—h/2+ R?/h; Q3 = —Q(1— £) at z=—h/2 and

B = Qo Q1 Q2

°P " 4we R 41reoR(1— ) 41reo(h R——- (1)
49
4re,(h — R)

which becomes

Qu-§), _af

Diop = 4me R 4re, R(1 — %) )
___Q(R*/R)  Q(R/A)
dre,(1— £ - B1)  dmeR
Similarly,
_ Q(R/R) Q(R?/R?)
Dbotiom = dme, R + 41reoR(1 - % - %:)
__QR/h ___Q(1-R/k) ©)
4me, R(1- E) 4me,
so that
__2Q [, R _R/h  RR? R
_41reoR{1 h+1_% 1_%_%—;} (10)
__Q [. 2R __R/h  (R/r)?
"e 2“03{1 h T I-RIR T 1-E- (R/h)z} (1)
Q 2we, R
C = V TE, (12)

=1 _2r DN EJh)3
1- 28 + S0 — TR
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4.6.5 (a) The potential is the sum of that given by (a) in Prob. 4.5.4 and a potential due
to a similarly distributed negative line charge on the line at z = —a between
y=—d/2and y=d/2.

o= tn{[g—y+\/(z—a)2+(——y)2+z2]

4re,

-—g—y+\/(z+a)2+(§+y)2 +z2]/

L

-—-é—y+ (z—a)2+(c—l+y)2+z2
| 2 2

:g—y+\/(7z+a)2+(-g—y)2+z2]}

(b) The equipotential passing through (z, y, z) = (a/2,0,0) is given by evaluating
(1) at that point

x ,n{[%+ 95+4£][—%+\/§Zﬁ]} o

Figure S4.6.5
(¢} In normalized form, (2) becomes
{(z-n+ﬁ —12+ @0 +2* ) (~2-n+/(EX )+ @+n) 152
(=2-0+/-1)+@+n)+52) (2-n+/(2=0) 2+ (2-n)+#?)

¢ =
- ln{ (44/1+16)(—4+./9+16) }

(3)
(—4+v/1+16)(4+/0+16)
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where & = ®/9(%,0,0),¢§ = z/a,n = y/a and d = 4a. Thus, @ = 1 for
the equipotential passing through ($,0,0). This equipotential can be found
by writing it in the form (¢, n) = 0, setting n and having a programmable
calculator determine £. In the first quadrant, the result is as shown in Fig.
S84.6.5.

The lines of electric field intensity are sketched in Fig. S4.6.5.

The charge on the surface of the electrode is the same as the charge enclosed
by the equipotential in part (c), @ = A;d. Thus,

[d+ va2 + d?][—d + V942 + d?| }
[—d + va? + d?|[d + V9a? + d?|

C= :\“7‘1 = 41reod/ln{ (4)

4.7 METHOD OF IMAGES

4.7.1

4.7.2

(a)
(b)

(<)

(a)

The potential is due to @ and its image, —Q, located at 2 = —d on the z axis.

The equipotential having potential V' and passing through the point z =a <
d,z = 0,y = 0 is given by evaluating this expression and taking care in taking
the square root to recognize that d > a.

_Q 1 1., @ 2a
V_41reo(d—a d+a)_41re,,(d2—az)

(1)
In general, the equipotential surface having potential V is

_9Q 1 : 1
‘4«eo[\/z2+y=+(z—d)ﬂ \/z2+y2+(z+d)=] @

The given expression results from equating these last two expressions.

The potential is infinite at the point charge and goes to zero at infinity and in
the plane z = 0. Thus, there must be an equipotential contour that encloses
the point charge. The charge on the electrode having the shape given by (2)
must be equal to @ so the capacitance follows from (1) as

(3)

The line charge and associated square boundaries are shown at the center
of Fig. S4.7.2. In the absence of image charges, the equipotentials would be
circular. However, with images that alternate in sign to infinity in each di-
rection, as shown, a grid of square equipotentials is established and hence
the boundary conditions on the central square are met. At each point on the
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boundary, there is an equal distance to both a positive and a negative line
charge. Hence, the potential on the boundary is zero.

“

I SR
|
|
|
. +
] )

)
[}

folmmmm o~
1
[}

1
1 -
1
|
'

A i
1 i
|
: | :
H + i - + )
1 I { |
| = - !

! 1

e droeees . k9

Figure S4.7.2

(b) The equipotentials close to the line charge are circular. As the other boundary
is approached, they approach the square shape of the boundary. The lines of
electric field intensity are as shown, terminating on negative surface charges

on the surface of the boundary.

(2) The bird acquires the same potential as the line, hence has charges induced
on it and conserves charge when it flies away.

(b) The fields are those of a charge Q at y = h,z = Ut and an image at y = —h
and z = Ut.

(c) The potential is the sum of that due to Q and its image —Q.

Q[ 1 1 ](1)

T are, VeVt w_hP 2 JE-UPt Rt

(d) From this potential

y =

@ _ @ { y—h
dy  dmeo, | (z— Ut)2 + (y — h)2 + 223/2

_ y+h }
[(z - Ut)? + (v + h)? + 22]3/2

Thus, the surface charge density is
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0, = €5, = Qeo[ z_hz 57
y=o  47€o [[(z — Ut)2 + A2 + 223/
- h ] 3)
[(z — Ut)2 + A2 + 22]3/2

- —Qh
~ 2x((z — Ut)? + h2 + 22]3/2
(e) The net charge g on electrode at any given instant is

_rr —Qhdzdz
= /=o /::o 2x[(z — Ut)? + h2 + 22]3/2 (4)
If w <h, i /, ohods .
1= | o 2nl(z = UB2 + 2P

For the remaining integration, 2’ = (z — Ut), d2’ = dz and

1-Ut /
_ ~Qhwdz
= /_,,, 2n]z + h2]/? (6)
Thus Q - Ut Ut
w —
= _m[\/(z v i m | OO T h’] 7)

(f) The dahsed curves (1) and (2) in Fig. 54.7.3 are the first and second terms in
(7), respectively. They sum to give (3)

(b)

Figure S4.7.3
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(g) The current follows from (7) as
_dg _ Qu —Uh? + Uh?
Ta T [((— Ut + W2P72 " [(Ut)? + k273

t 2rxh
and the voltage is then v = —iR = —Rdg/dt. A sketch is shown in Fig.
S4.7.3b.

(8)

4.74 For no normal E, we want image charges of the same sign; +X at (—a,0) and
—A at (—b5,0). The potential in the z = 0 plane is then,

&= ——-Z-A—ln(az + y2)1/2 + —2—'\—ln(b2 + y2)1/2
27e, 27e,
A a2 +y2 (1)

27e, ye +y?

4.7.5  (a) The image to make the z = 0 plane an equipotential is a line charge —A at
(z,9) = (—d,d). The image of these two line charges that makes the plane
y = 0 an equipotential is a pair of line charges, +A at (—d,—d) and —X at
(d,—d). Thus

®= -—F'\eo—ln[(z _dP+(y—d) - 4—1:‘;;»4(3; +d)P + (v +d)?]

+ 41:\eoln[($ —d +(y+d)’ + Z%;‘"((z +dP+ -4 (1

_ A ,n{ [(z—4d)* + (y + 9)%)[(=z + d)* + (y — d)?] }
4o L [(z—d)? + (y— d)?|[(= +d)% + (v + d)?

(b) The surface of the electrode has the potential

_ 2 flUe=dP +(a+d)?[(a+d)?+ (a—d)?| | _
o) = ool [ = el A G =Y @
Then c _x_ dre, _ 2me, "
length ~ V In { ;l-r‘i;*-ﬁ‘;-‘fi”} = ln[ﬁﬁ'—%] )

4.7.8 (a) The potential of a disk at z = s is given by 4.5.7 with z — 2 — s
¥(z>s)= 2> [VEP + (2 9)7 — |z —s] (1)

The ground plane is represented by an image disk at z = —s; (4.5.7) with
2z — 2z + s. Thus, the total potential is

= L [VBTE P -l ol - VETET Bt lerel] @
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(b) The potential at z=d < s is

<I>(z=d<s)=%[\/R2+(d—a)3—|d—s|—\/R2+(d+s)2+|d+a|]
= S (BT A= (o - &)~ VT @F T +5+d)
=;T°[\/m+2d—- R2 4 (d+3)?] =V

(3)
Thus,
C= Q_ 2¢,m R?
V VR +(d-s)?2-/R2+(d+3s)2+2d
4.7.7 From (4.5.4),
2r pR (7% d 2r sR __Gar
8(0,0,a) = / Terdrdd + /' %Frrdrdé
¢=0 Jr=0 dxeo /12 + (h—a)2  Jo=0Jr=0 4me,\/7? + (h + a)2

_ 0o R r3dr R r2dr
" 2R [,/,=o r2 + (h — a)? - /r'=0 2+ (h+ a)’]
P [52'1(\/1:2 T h—ap

h—a
~ VR +(h+a)?) + (k- 4)21"(—\/R2—+—(hﬁ)
+ht a)zln(R+ VR + (h+a)_2)]

h+a

1
The total charge in the disk is @
(R oo 2x
Q= / —=-rdrd$ = —R%q,
$=0 J r=0 R ¢ 3 °
Thus,
Q R
C=f/_= 2nR%, 3/ E[ R? + (h —a)?
— VR + (h+a)?]

2 h—a
+(h—a) ln(—RaT\/._ﬁ)
+ (b +a)2in( B+ m)}

(h+a)
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4.7.8 Because there is perfectly conducting material at z = 0 there is the given line
charge and an image from (0,0,—d) to (d,d,—d). Thus, for these respective line
charges

a = di, + diy
f = (d— z)ix + (d — y)iy + (Ld — 2)is
¢ = —zi, — yiy + (2d - 2)i, (1)
b-a=dfd-2)+(d~y)]
c-a=—zd—yd
a x b = d(+d — 2)ix — iyd(+d — 2) +1.d[(d — y) — (d — )]
la x b] = d%(xd — 2)? + d*(+d — 2)® + &*[(d — y) — (d — 2)]?
The potential due to the line charge and its image then follows (c) of Prob. 4.5.9.

L]

__A ln{Zd—z—y+\/2[(d—z)2+(d—y)2+(d—z)2]

dreo —z—-y+ V222 + 42 + (d - 2)?] (2)
. —z—y+ V22’ +¢* +(d+ )% }
2d — z—y+/2[(d—z)2 + (d— y)2 + (d + 2)?]

4.8 CHARGE SIMULATION APPROACH TO BOUNDARY
VALUE PROBLEMS

4.8.1 For the six-segment system, the first two of (4.8.5) are
|4
S1101 + S1202 + S1303 + S1404 + S1505 + S1606 = 7 (1)
v
82101 + S2202 + S2303 + S2404 + S2505 + S2606 = 2 (2)
Because of the symmetry,
01 =03 = —04 = —0g, Oy = —03 (3)

and so these two expressions reduce to two equations in two unknowns. {(The other
four expressions are identical to (4).)

(atsecguzgaegd[a]-Va]



4-38 Solutions to Chapter 4
Thus,
o1 = -2%[(522 — 825) — (S12 — S15)] ()
o3 = %[(su + 813 — 814 ~ S16) — (Sa21 + S23 — S24 — Sz6))] (6)
where
D = (S11 + S13 — S14 — S16)(S22 — S25) — (S21 + S23 — S24 — S26)(S12 — S15)

and from (4.8.3) .
C= V(b/3)[20’1+0’2] (7)





