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SOLUTIONS TO CHAPTER 2

2.1 THE DIVERGENCE OPERATOR

2.1.1

2.1.2

2.1.3

From (2.1.5)
DivA = a(a‘:,) + a(a’;”) + a(a,:,)
= Bl + 20+ 26) )
=2aty+a) (2)
(a) From (2.1.5), operating on each vector
VoA=L ()45 @) =0 1)
VA= Ll - o) =0 (2)

2 a
V-A=A,[—(e™coskr) — — (e *¥sinkz
= Ao[—ke ™ sinkz + ke™* sinkz] =0
(b) All vectors having only one Cartesian component, a (non-constant) function
of the coordinate corresonding to that component. For example, A = i, f(z)

or A = i, g(y) where f(z) and g(y) are not constants. The example of Prob.
2.1.1 is a superposition of these possibilities.

From Table I 18 184 94
A= -— ol i1
VoA=L tA Y I Y e, M
Thus, for (a)
_ 419 5 9
V-A= 7 [r ar(r cos 2¢) 3 (sin 29)] @

= %‘-’[2(:032:)5 —2cos2¢] =0

for (b)
148 19 .
V-A=Ao[;arcos¢—;%sm¢] =0 (3)
while for (c)
A, 18 A,
V-A= 2o = d23r (4)
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2.1.4 From (2),

DivA = lugo AV f A -ds (1)

Following steps like (2.1.3)-(2.1.5)

f A -da ~A¢Az[(r+ %’:)A,(r+ 5?',¢,z)]
S

~ ag8s[(r — 51 Ar(r— 57, 4,9)] 2
N +ArAz[A¢(r,¢+—,z)—A¢(T,¢—%sz)]
+ragar(As (e + ZD) - Au(n b,z )]
Thus, the limit
DivA = lim
rAdAz—0
[("+ Ar)4, ( + Ar:¢’z) (" - _)Ar("_ —,¢,z)]
{'A‘/’Az : rA¢AzAT
o [As(ne+52:2) - Ao(rg— 42,2)] G
rA¢
[A,(T,¢,Z+ H) - A,(r,¢,z — 'A_')]
+ : Az : }
gives the result summarized in Table 1.
2.1.5 From Table I,
dA
VA= 32 (PA) + s a(A.,sm 6) + silnf,?f (1)
For (a)
4,
v oA=2[520) = 226 (2
for (b)
A, 1 98
v =?rsin0%(r2)=o (3)
and for (c)
V-A=Ao[2a (? cos ) — 630(m 9] @
= Ao[—cosﬁ - M] =0
r rsind
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2.1.6 Starting with (2) and using the volume element shown in Fig. $2.1.6,

A0¢)

f A-da= (Ar)(mo)}i,'ﬁnam_.o {( + —)Ao(r + —) sin0APA, (r +
—(r- —)Aa(r - —) sin 0AGA, (r - A— ,6,4)
+ ArrAg[sin (6 + —2—-)A¢(r,0 + —2—,¢)
—sin (0 — —Az—a)A¢(r,0 - %f,eﬁ)]
+ rABAr[Ag(r,6, 6 + %) — Ag(r,0,¢ - %)]}
(1)

(r + &) cosfAo

Figure S2.1.6
Thus,

§s A -ds
(Ar)(rAf)(rsin6A¢)
- i [Vl .00 - 0= 4 (= .00
Ar—0 | r2 Ar
+ lim sing B0+ 5)4o(r0+ 5% ¢) —sin (6 - 57) Ag(r,0 — 52,4)]
A6—0 r Ad

1 [Ag(r0,8+52) — A4(r,0, 6 — 52)] }

V-A=

Adno rEind Ad

(2)
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In the limit

19,, 1 ad,. 1 094,
A=-22 — = i 3
v-A r? 3r(r Ar)+ rsin § 80(31110‘40)_*_ rsinf d¢ 3)

2.2 GAUSS’ INTEGRAL THEOREM

2.2.1

I i;dzdy

A | = iydydz
/ 7

—iydzdr <4f—--- . ——— i Y
ixdydz iydzdz

/ !
i / ; — igdzdy

x

Figure S2.2.1

(a) The vector surface elements are shown in Fig. S2.2.1.

(b) There is no z contribution, so there are only z = +d surfaces, A, = (4,/d)(+d)

and n = +i,dydz. Hence, the first two integrals. The second and third are
similar.

(c) From (2.1.5)

A d L3 . 24,
V-A= d[azz+ayy]-— ¥ (1)

Thus, because V - A is constant over the volume

/ V.AdV = 3‘}'—(2@3 = 16A,d? (2)
v

2.2.2 The surface integration is

A d d d d
A-da=7i§[ / / dy*dydz - / / (—d)y?dydz
s —dJ-d -dJ-d

d d d d
+ / / dz?dzdz — / / (—d)z?dzdz
-dJ—d -dJ—-d

(1)
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From the first integral

= %(2%’) (gd")

The others give the same contribution, so

_ 44,445 164,d?

e 3
To evaluate the right hand side of (2.2.4)
_ A, |9 d _ Ao 2 2
V. -A= ds[azy+a y]—da(y+z)

So, indeed

d rd prd 4 16
/ V- Adv= / / / —5 (v* + 2?)dydzdz = — A, d?
v —ad_at-ad 3

2.3 GAUSS’ LAW, MAGNETIC FLUX CONTINUITY AND
CHARGE CONSERVATION

2.3.1  (a) From Prob. 1.3.1

LN LIS Y
e, tz2 +y2 - 24 y2 Y
From (2.1.5)
A [0 y
V.E_2weo[az(zz+y2)+8y(x2+yz)]
_ A 1 _ 232 + 1 _ 2y2
e T T @R FrE @A

A [y2—22 z? — o ]=0

= 27¢, | (22 + )2 + (=% + y2)2
except where z2 + y?> = 0 (on the z-axis).

(b) In cylindrical coordinates
E= A li
- 2we, T

Thus, from Table I,

V E - —_‘(TEr) +

19Fy 0B, 10 )

3¢ + 9z ror )=0

2xe,

|

(2)

(3)

(4)

(5)

e)

@)

(3)

(4)
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2.3.2 From Table I in cylindrical coordinates with 8( )/8¢ and 8( )/dz =0,
€& 9
VB = =—(rE) (1)
80
) 3 | port/4eb?; r<b
Ve r or { ;ob [4€p; b<r<a (2)
2 /32
_ ] por® % r<b
- { ° 0; b<r<a (3)
2.3.8 Using H = H,(ix + iy) in (2.1.5),
a(1) a(1
Vl.loH I‘oH[() ()]_0 (1)
2.3.4 In cylindrical coordinates (Table I):
143 13H, aH, _1
V-H= rar(rH') r 3¢ + - ra¢ 21rr (1)
2.3.5 If V- u,H = 0 everywhere then the integral of its normal over an arbitrary
closed surface in that region will be zero and
(a)
VuH=0
(b} H,3 H
V. I"OH = __I ===
a Oz a
(c) .
V. ﬂoH = ____.'/_ =0
a 9z

Thus, only (b) will not satisfy (1.7.1)
2.3.6 Evaluation using (2.1.5) gives

E
p=V-eoE=eoa 2 22&2
dz s

which is the given charge density.
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2.3.7 Using V - F in spherical coordinates from Table I with /80 and 8/8¢ =0
_ 18,4, _ 138 ,°dp dpo

ViI=-a5t ) =—5533)=
which, since p, is independent of r, checks with (2.3.3).

2.4 THE CURL OPERATOR

2.4.1 All cases have only z and y components, independent of 2z
I 94, 04
VxA=|£ £ 0] =iL]-" 32 ay’]
A, A, O
Thus
(a)
4o
VxA=2l1-1]=0 (1)
(b)
VxA= —[0 0] = (2)
(c)

V x A= A,[—e " coskz + ke™*¥ cos kz] = 0

(3)

To make a finite curl make a single component having any dependence on a
coordinate perpendicular to the vector

A, = f(=), A, =0, A, =0

(4)
Say,

f(z)=z,z2,z3»VxA=%-£i)=1,2z,3z2 (5)

2.4.2 In all cases A, =0 and 8/32z = 0, so from Table I

14 1904

v =i r

X A =i, T (1)
(3) Thus
(a.):VxA..—-_i.ﬁ[l 6( n2¢)———(rcos2¢)]
d‘'ror

4 (2)
= i.—d°-[—2sin2¢ + 2sin2¢] =0
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(b)=>V><A—1.A,,[———( —rsin ¢) — -——Ecos:ﬁ]
(3)
=ile[_su:¢+¥]=o
©=»Vxa=i () 3 (4

(b) Possible vector functions having a curl make A = A4iy where rdy = f(r) is
not a constant. For example f(r) = r,r2, 7%, in which case

N l 9 ny __ n-—2
VXA_l'rar(r)—nr (5)
2.4.3 From (2)
(curlA), = ltlll'_l.lo'A—a f A . ds (1)

Using contour of Fig. P2.4.3a,

(VxA), = lim {[AzA,(r,¢+ 12) — AzA,(r,¢ — > ,z)]

rA¢Az—0 TA¢AZ
_[ragAg(r,d,2 + 52) — rAbAy(r 8,2 — 4)] 2)
rAdAz
_ 104, 34
T r 8¢ Oz

Using the contour of Fig. P2.4.3b

[ArA,(r, ¢, 2+ 42) — ArA, (r, 4,2 — 42)]
ArAz

_ [AzA,(r+ %,¢,2) - AZA;(T - %L,¢,z)] } (3)

(VxA)y= lim {

ArAz—0

ArAz
0A, _ 0A.
oz ar

(V X A), = Arrlgg—vo

{[(r+ F)AbAs(r+ 5, 4,2) = (r— 57)AdAs(r = 5. 4,2)]

ArrAg

[ArA.(r, ¢+ 42,2) — Ard, (r,¢ — 42,2)] (4)
B ArrA¢
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Solutions to Chapter 2 2-9

244
rad A%'/ ar [ (re3a
9 L rsinfAoe —~ 6 ~ f

X5
S SST

(r- %I)Ao
Figure S2.4.4
From (2)
_ . [erAO (T, 0, ¢ + 'A—zé) - TAer(f, 0, ¢ - %Q)]
(VXA) = o biBago {‘ rAfrsin 0A 4
rsin (04 80)AgAy(r0 + 42, 9) —rsin (0~ 4% Apay(r0 - 5.9)]
rAfrsin0A¢

_ 1 JdA, 1 a(sin 0A¢)
" rginf ¢ ' rsinf  Af

(1)
_ . [ArA,(r,0,¢ + 42) — ArA,(r,0,4 — 42)]
(V x A)o - Arninlg'nA¢—->('){ Azrsin 07‘A¢ *
_ [Agsind(r+ 57)Ag(r + 57,6, 4) — Agsing(r— 57) Ag(r ~ 47,6, )]
ArsinfrA¢
_ 1 3A, 19(rd,)
" r(sinf) 3¢ r or
(2)
L [A8(r + A2) Ao (r + 57,6, 8) — A8(r — BZ) A(r — 47,4, 4)]
(VxA)y=  Mm { rAGAT
[ArA, (r,0+ £2,8) — ArA,(r,0 — 82, 4)]
B rAO AT
19, 184,
= 7o) = 1

(3)
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2.4.5 (a) Stokes’ integral theorem, (2.4.1) is

fA-ds=/VxA-da (1)
Cc S
With S a closed surface, C — 0, so
vaA-da=o=/v-(VxA)dv (2)
s v

Because V is arbitrary, the integrand of this volume integral must be zero.

(b) Carrying out the operations gives

d JA, d [0A, aAz a 04
v-(xA) = 2 (2 yy, D (04 34y, 224

0A,
- Ay ] =0 (3)

2.5 STOKES’ INTEGRAL THEOREM

2.5.1 X

A

[

z O~ . = T
g g+ A

Figure 82.5.1
(a) Using Fig. $2.5.1 to construct A - ds,

g+a h
fA-ds=/ A,(z,O)dz+/ Ay(g+ A, y)dy
C g 1]
g+A h
—/ Az, h)dz—f Ay(g,y)dy
g 0

=/g+A(0)d$+/h ﬂ(g+A)2dy (1)

g+a
—/ (0)dz—/ 7 = g?dy
y

= ;—El(g +A)%h — g*h]
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(b) The integrand of the surface integral is

T S
VxA=[a/’5z 0 6]=i,?-ﬁ=i.
0 4, 0

Thus

/SVxA-da=/0 ng 2‘:;’% d °[(9+A)’—92]h (2)

2.5.2 (a) Using the contour shown in Fig. §2.5.1,

ch.dF %[£0+A(O)dz+/(;h(g+A)dy

) ./am(—h)dz - /oh gdy] @

2A.hA
d

7”[(9 + A)h+ hA — gh] =
(b} To get the same result carrying out the surface integral,

i i is
VxA=[6/’5z 8/’:9y 0]—1. 24y 94 "]
4, A, 0
24,
d

A, _
= 7[1'{'1] =

and hence

(V x A)-da= 2?(Ah) @)

o

2.6 DIFFERENTIAL LAWS OF AMPERE AND FARADAY

2.6.1 From Prob. 1.4.2
H=£{—y§x+zi,; » o r<b (1)
2 | —b%y(z? + y) ik + B23(22 + y?) Yy b<r<a
Thus,
0H, 0H,
VxH=1i[—-¥¢ % oy —=]
I [(1-(-1) =2 r<b (2)

== 32 -b -b
{Fbﬁﬁ ey~ i + ol <0 b<r<a

Thus, V X H = J at each point, r.
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2.6.2 Ampére’s differential law is written in cylindrical coordinates using the ex-
pression for V x H from Table I with /3¢ and 3/8z =0 and H, =0, H, = 0.
Thus

. 1 a ° 1 a —rja —rjas
VxH=h-o(rHy) =1a s o-{Jos?[1 - ¢ o1+ )]} = Joe o (1)

2.7 VISUALIZATION OF FIELDS AND THE DIVERGENCE
AND CURL

2.7.1 (a) For p and E given by

= Por,2_ (32
2[5~ (3)) u
the sketch is shown in Fig. $2.7.1
+

il

Figure S2.7.1
VXE= [0 0 /32
(c) The density of field lines does not vary in the direction perpendicular to lines.

+

H

| —t— +
|omet— ¢
| =4
| e 4=

(b)
=0 2)

0 0 E,

2.7.2 (a) From Prob. 1.4.1,

~rfa Ja'2
J; = Joe /; Hy = 2

[1-e/4(1+ )] (1)
and the field and current plot is as shown in cross-section by Fig. 82.7.2.

(b) From Prob. 1.4.4, the currents are a line current at the origin returned as two
surface currents. m
I/m(2a+b); r=a
K, = { I/1r(2a+l;) r=»b (2)
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In the annular regions,

I 1 0<r<b
H"’—_E; {Za/’r(2a+b); b<r<a (3)

This distribution of current density and magnetic field intensity is shown in
cross-section by Fig. S2.7.2.

Figure S2.7.2

(¢) Because H has no ¢ dependence with its only component in the ¢ direction, it
must be solenoidal. To check that this is so, note that /3¢ = 0and 3/3z =0
and that (from Table I)

19

(d) See (c).

2.7.3  (a) The only irrotational field is (b), where the lines are uniform in the direction
perpendicular to their direction. In (a), the line integral of the field around a
contour such as that shown in Fig. $2.7.3a must be finite. Similarly, because
the field intensity is independent of radius in case (c), the line integral shown
in Fig. S2.7.3b must be finite.



2-14 Solutions to Chapter 2

A 2 F/'—_\
C ==+ ===
N | /
1 | \ I
[ | \ 4
1 £
(a) (b)
Figure $2.7.3
2.74 The respective fields are
Oo, 20,,
_ To; 200 1
E eol" + . iy (1)
Oo, Oo,
~ %o, 4 % 2
E €ol + eox, (2)

and the field plot is as shown in Fig. $2.7.4. Note that the spacing between lines is
lesser above to reflect the greater intensity of the field there.

A
V%

Figure S2.7.4

a?

Figure S3.7.5

2.7.56 The respective fields are
H = K,i, + 2K,i, (1)

H = K,iy + Kois 2)

and the field plot is as shown in Fig. S2.7.5. Note that, because the field is solenoidal,

the number of field lines above and below can be the same while having their spacing
reflect the field intensity.

2.7.6 (a) The tangential E must be continuous, as shown in Fig. 52.7.6a, so the normal

E on top must be larger. Because there is than a net flux of E out of the

interface, it follows from Gauss’ integral law [continuity condition (1.3.17)]
that the surface charge density is positive.
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(a) (b)
Figure S2.7.6

(b) The normal component of the flux density uoH is continuous, as shown in Fig.
$2.7.6b, so the tangential component on the bottom is largest. From Ampére’s
integral law [the continuity condition (1.4.16)] it follows that K, > 0.


http:S2.7.6b



