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SOLUTIONS TO CHAPTER 1

1.1 THE LORENTZ LAW IN FREE·SPACE

·1.1.1 For Vi = 0, (7) gives

and from (8)

V = J-2~Ez

(1)

(2)

y

so

v=
2(1 X 10-2)(1.602 X 10-19)(10-2) 31

(9.106 X 10-31) = 5.9 x 10 m/s

z

(3)

-t-o.:::::~--------X

x

y

Figure 91.1.3

1.1.2 (a) In two-dimensions, (4) gives

mcPez = -eE
dt2 z

md2ey __ E
dt2 - e y

so, because V z (0) =Vi, while v y (0) = 0,

dez e
-=--Et+v"
dt m z •

Figure 91.1.3

(1)

(2)

(3)
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1-2 Solutions to Chapter 1 

de" = -!....E t 
dt m" (4) 

To make es(O) = 0 and e,,(O) = 0 

(5) 

(6) 

(b) From (5), es = 0 when 

and at this time 

1.1.3 The force is 

so, f = 0 if Eo = viPoHo. Thus, 

(7) 

e = -.!...-E (vi 2m)2 
" 2m" eEs 

(8) 

(1) 

dvs =0 dv" = 0 dv" =0 (2)dt dt ' dtI 

and vs , vII and v" are constants. Because initial velocities in :z: and 'Y directions are 
zero, Vs = v" = 0 and v = vii•. 

1.1.4 The force is 

so 

(2) 

and 
mdvs dvs

~ = ev"poHo ~ dt =WeV" (3)


md~ d~ 
~ = -evspoHo ~ ""dt = -WeVs (4) 

where We = epoHo/m. Substitution of (3) into (4) gives 

(5)
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Solutions are sinwet and cos wet. To satisfy the initial conditions on the velocity,

in which case (3) gives:

(6)

(7)

Further integration and the initial conditions on egives

(8)

(9)

x

z

- --H
-Eo 0--

y

z

/
x

Figure 91.1.4
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1.2 CHARGE AND CURRENT DENSITIES

1.2.1 The total charge is

(1)



1.2.2 

1-4 Solutions to Chapter 1 

Integration of the density over the given volume gives the total charge 

(1) 

Two further integrations give 

(2) 

1.2.8 The normal to the surface is ix, so 

(1) 

1.2.4 The net current is 

(1) 

1.2.5 (a) From Newton's second law 

where 

(b) On multiplying (1) by Vr , 

v 
r 

dEr - ­
- dt 

(1) 

(2) 

and using (2), we obtain 

(3)
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(c) Integrating (3) with respect to t gives

1 2
2"mvr + eEoblner = Cl

When t = 0, Vr = 0, er = b so Cl = eEoblnb and

~mv: + eEobln; = °
Thus,

1-5

(4)

(5)

(6)

(d) The current density is

Jr = p(r)vr(r) =* p(r) = .l(r)
Vr r

The total current, i, must be independent of r, so

.1 = -'-
r 211Tl

and it follows from (6) and (7) that

, m
p(r) = 21frl 2eEobln(b/r)

1.3 GAUSS' INTEGRAL LAW OF ELECTRIC FIELD
INTENSITY

(7)

(8)

(9)

1.3.1 (a) The unit vectors perpendicular to the 5 surfaces are as shown in Fig. 81.3.1.
The given area elements follow from the same construction.

(b) From Fig. 81.3.1,

(1)

r= vz2+y2

Thus, the conversion from polar to Cartesian coordinates gives

(2)

(3)
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Flpre Sl.3.1

(c) On the given surface, the normal vector is i x and so the integral is of the z
component of (3) evaluated at z = a.

f faA, 11 fa a
EoE· dal,,,=a = -2- 2 y2 dydz

'll"Eo 0 -a a +

= ~tan-1 (~)r = ~(~ +~) = A,
2'11" a -a 2'11" 4 4 4

(4)

Integration over the surface at z = -a reverses both the sign of E", and of the
normal and so is also given by (4). Integrations over the surfaces at 11 = a and
y = -a are respectively the same as given by (4), with the roles of z and y
reversed. Integrations over the top and bottom surfaces make no contribution
because there is no normal component of E on these surfaces. Thus, the total
surface integration is four times that given by (4), which is indeed the charge
enclosed, A,.

1.8.2 On the respective surfaces,

{

l/a2
E·da= -q- 0

4'11"fo 1/62
(1)

On the two surfaces where these integrands are finite, they are also constant, so
integration amounts to multiplication by the respective areas.

(2)
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r 

Figure 91.3.2 

1.3.3	 (a) Because of the axial symmetry, the electric field must be radial. Thus, inte­
gration of Er over the surface at r = r amounts to a multiplication by the 
area. For r < b, Gauss' integral law therefore gives 

(1)2nl€oEr = 10(' 10r" 10r 
pdrrdl/Jdz = 21rl 10r p;2,.s dr 

Po,.s 
Er	 = 4€ob2 i r < b 

For b < r < a, the integral on the right stops at r = b. 

b<r<a	 (2) 

(b)	 From (17) 

(3) 

(c)	 Because it is uniform there, integration of the surface charge density given by 
'(3) over the surface r = a amounts to a multiplication by the surface area. 

(4) /. 

That this is the negative of the net charge within is confirmed by integrating 
over the enclosed charge density. 

( pdV = ('	r" r po(-)2rdl/Jdz = -n{~ob2 (5)
1v 1010 10 b 2 
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(d)	 As shown in the solution to Prob. 1.3.1, 

I.. = (zlx + yl"¥ )h/z2 + y2 j (6) 

and substitution into 

E=.~ {(r:/b2)I.. j r<b	 (7)
4Eo (b /r)l.. j b<r<a 

indeed results in the given field distribution. 

(e)	 For the surfaces at z = ±c, 

da = ±ixdydzj E . n = E,.,(z = ±c) (8) 

while for those at y = ±c, 

da = ±I"¥dzdzj E· n = EII(y = ±c)	 (9) 

The four terms in the given surface integral are the integrations over the 
respective surfaces using the field given by (d) evaluated in accordance with 
(8) and (9). According to (I), this integral must give the same answer as found 
by integrating the charge density over the enclosed volume. This has already 
been done and is given by (5). . 

1.3.4 (a) For r < b, (1) gives 

(1) 

Thus, 
_ por.

Er-
3Eo

, r<b	 (2) 

(3) 

Er = -3 [b
3Pb b3 

j b<r<a (4)1 -2- + (r- 2")Pa ] 
Eo r r 

(b)	 At r = a, (17) can be evaluated with n = i.. ,Ea = 0 and E b given by (4) 

1 [b3Pb b3
]u. = -3 ---;;F + (a - a2 )Pa	 (5) 

(c)	 For r < b, E r is still given by (2), while for b < r < a, (3) has an additional 
term on the right 471'"b2uo • Thus, 

3 3 2 
1 [b Pb b ] b uoEr = - -- + (r - -)Pa +-j b<r<a (6)

3Eo r 2 r 2 Eo r 2 

Then, instead of (5) we have 

1 [b3Pb b
3

] b
2 
uou. = -- - + (a - -)Pa --	 (7)

3	 a2 a2 a2 
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Pa

Figure 81.3.4

a
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1.3.6 Using the volume described in Example 1.3.2, with the upper surface between
the sheets, there is a contribution to the charge enclosed from both the lower sheet
and the volume between that sheet and the position, z, of the upper surface. Thus,
from (1)

(1)

and the solution for E z gives

(2)

Note that the charge density is an odd function of z. Thus, there is no net charge
between the sheets. With the surface above the upper sheet, the field given by (1)
with the integration terminated at z = 8/2 is just what it was below the lower
sheet, Eo.

1.3.6 With the understanding that the charge distribution extends to infinity in the
y and z directions, it follows from arguments already given that the electric field is
independent of y and z and that that part of it due to the charge sheets can result
only in a z directed electric field. It then follows from (1) that if the regions above
and below the charge sustain no electric field intensity, then the net charge from
the three layers must be zero. Thus, not only is

(1)

but also,
(2)

From these relations, it follows that

(3)
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1.3.'1 The gravitational force has a component in the edirection, - M g sin Q. Thus,
the sum of the forces acting on the upper particle in the edirection is

It follows that, for the particle to be in static equilibrium,

(1)

e= 41rfoM g sin Q
(2)

1.4 AMPERE'S INTEGRAL LAW

1.4.1 Evaluation of (1) is carried out for a contour having the constant radius, r,
on which symmetry requires that the magnetic field intensity be constant and in
the ¢ direction. Because the fields are static, the last term on the right makes no
contribution. Thus,

(1)

Solving this expression for H <f> and carrying out the integration then gives

(2)

1.4.2 (a) The net current carried by the wire in the +z direction must be returned in
the -z direction on the surface at r = a. Thus,

(1)

(b) For a contour at the constant radius, r, (1) is evaluated (with the last term
on the right zero because the fields are static), first for r < b and then for
b < r < a.

r<b (2)

b<r<a (3)
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(c)	 From (1.4.16)' 
H~ - H: = K z :::;. H~ = K z + H: (4) 

This expression can be evaluated using (1) and (3). 

2 2 
Ha = _ b Jo + Job = 0 (5)

'" 2a 2a 

(d)	 In Cartesian coordinates, 

Thus, with r = ..jx2 + y2, evaluation of this expression using (2) and (3) gives 

(7) 

(e)	 On x = ±c,H· ds = ±H . i y while on y = ±c,H· ds = =r=H . i x so evaluation 
of (1) on the square contour gives 

(8) 

The result of carrying out this integration must be equal to what is obtained 
by carrying out the surface integral on the right in (1). 

(9) 

1.4.3	 (a) The total current in the +z direction through the shell between r = a and 
r = b must equal that in the -z direction through the wire at the center. 
Because the current density is uniform, it is then simply the total current 
divided by the cross-sectional area of the shell. 

(1) 

(b)	 Ampere's integral law is written for a contour that circulates around the z axis 
at the constant radius r. The fields are constant, so the last term in (1.4.1) 



1-12 Solutions to Chapter 1

is zero. Symmetry arguments can be used to argue that H is q, directed and
uniform on this contour, thus

21f'rH.; = -I => H.; = -1/21rr; 0 < r < b (2)

I 2 [1 (r2
- b

2
) 1]

21rrH.; = -I+ 1f'(a2 _ b2)1f'(r2 -b ) => H.; = I - 21f'r + a2 _ b2 21f'r (3)

(c) Analysis of the q, directed H-field into Cartesian coordinates gives

Hz = -H.;sinq, = -H.;y/Yx2 +y2

Hy = -H~cosq, = H.;x/Yx2 + y2

where r = yx2 + y2. Thus, from (2) and (3),

l(yix - xi:r) { 1; 0 < Yx2 + y2 < b
H = 21f'(x2 + y2) 1- (z3~~;.t); b < r < a

(4)

(5)

(6)

(d) In evaluating the line integral on the four segments of the square contour, on
x = ±c, dB = ±i:rdy and H· dB = ±Hy(±c,y)dy while on y = ±c, dB = Tixdx
and H· dB = THz(x, Tc)dx. Thus,

fa H . dB = [Cc Hy(c, y)dy + f:c -Hz(x, -c)dx

+ [Cc -Hy(-c,y)dy+ [Cc Hz(x,c)dx

This integral must be equal to the right hand side of (1.4.1), which can be
evaluated in accordance with whether the contour stays within the region
r < b or is closed within the shell. In the latter case, the integration over the
area of the shell enclosed by the contour is accomplished by simply multiplying
the current density by the area of the square minus that of region inside the
radius r = b.

c < b/V2
b/V2 < c < b
b < c < a/V2

(7)
where a = cos-1(c/b). The range b/V2 < c < bis complicated by the fact
that the square contour overlaps the circle r = b. Thus, the area over which
the return current in the shell passes through the square contour is the area
ofthe square (2c)2, minus the area of the region inside the radius b (as in the
last case where there is no overlap of the square contour and the surface at
r = b) plus the area where the circle r = b extends beyond the square, which
should not have been subtracted away.
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1.4.4 (a) The net current passing through any plane of constant z must be zero. Thus, 

(1) 

and we are given that 
K za = 2Kzb (2) 

Solution of these expressions gives the desired surface current densities 

Kza 
I K _ I (3)

= 1I"(2a + b); zb - 21I"(2a + b) 

(b)	 For r < b, Ampere's integral law, (1.4.1), applied to the region r < b where 
the only current enclosed by the contour is due to that on the z axis, gives 

-I 
211"rH", = -I~ H", =-j r < b	 (4)

211"r 

In the region b < r < a, the contour encloses the inner of the two surface 
current densities as well. Because it is in the z direction, its contribution is of 
opposite sign to that of I. 

2a 
211"rH", = -I + 211"bKzb = -(--b)I	 (5)

2a+ 

Thus, 

H	 -_~(~). b<r<a (6)
'" - 211"r 2a + b ' 

Note that if Ampere's law is applied where a < r, the net current enclosed is 
zero and hence the magnetic field intensity is zero. 

1.4.5	 Symmetry arguments can be used to show that H depends only on z. Ampere's 
integral law is used with a contour that is in a plane of constant y, so that it encloses 
the given surface and volume currents. With z taken to be in the vertical direction, 
the area enclosed by this contour has unit length in the x direction, its lower edge 
in the field free region x < -8/2 and its upper edge at the location z. Then, (1.4.1) 
becomes 

i H.dS=Hx(Z)=-Ko+!Z Jydz (1) 
G -0/2 

and for	 -8/2 < z < 8/2, 

z	 2Joz Jo [ 2 2]Hx	 = -Ko + --dz = -Ko + - z - (8/2) (2)
! -0/2	 8 8 

while for 8/2 < z, 
(3)
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1.5 CHARGE CONSERVATION IN INTEGRAL FORM 

1.5.1	 Because of the radial symmetry, a spherical volume having its center at the 
origin and a radius r is used to evaluate 1.5.2. Because the charge density is uniform, 
the volume integral is evaluated by simply multiplying the volume by the charge 
density. Thus, 

2 d[4 s ()] rdpo47rr J. + - -7rr p t = 0 => J. =--- (1)
r dt3	 r 3dt0 

1.5.2	 Equation 1.5.2 is evaluated for a volume enclosed by surfaces having area A 
in the planes z = z and z -= O. Because the the current density is z directed. 
contributions to the surface integral over the other surfaces, which have normals 
that are perpendicular to the z axis. are zero. Thus, (1.5.2) becomes 

(1) 

1.5.3 From (12), 

a~. = -n . (JG - Jb) = -(0) + J:(z = 0) = Jo(z, y) cos(wt) (1) 

Integration of this expression on time gives 

Jo(z,y) . 
0'. = Slnwt	 (2)

w 

where the integration function of (z. y) is zero because, at every point on the surface, 
the surface charge density is initially zero. 

1.5.4	 The charge conservation continuity condition is applied to the surface at r = 
R, where Jb = 0 and n = il" Thus, 

Jo(tIJ, z) sinwt + a~. = 0	 (1) 

and it follows that 

0'. = -it Jo(tIJ,z)sinwtdt= Jo(tIJ,z) coswt	 (2) 
o	 W 

1.6 FARADAY'S INTEGRAL LAW 
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1.6.1	 (a) On the contour y = sx/g, 

· d· d (. dy .) d (. s.)ds = dXIx + yIy = X Ix + -dI y	 = X Ix + -Iy (1) 
X 9 

(b)	 On this contour, 

while the line integral from (x,y) = (g,s) [from b ---+ c] to (O,s) along y = s is 
zero because E . ds = O. The integral over the third segment, [c ---+ a]' is 

(3) 

so that f E . ds = Eos - Eos = 0	 (4) 

and the circulation is indeed zero. 

1.6.2	 (a) The solution is as in Prob. 1.6.1 except that dyjdx = 2sxjg2. Thus, the first 
line integral gives the same answer. 

(1) 

Because the other contours are the same as in Prob. 1.6.1, their contributions 
are also the same and the net circulation is again found to be zero. 

(b)	 The first integral is as in (b) of Prob. 1.6.2 except that the differential line 
element is described as in (1) and the field has the given dependence on x. 

(Note that we would now get a different answer, Eosj2, if we carried out this 
integral using this field but the straight-line contour of Prob. 1.6.1.) From 
b ---+ c there is again no contribution because E . ds = 0 while from c ---+ a, the 
integral is 

{" -Eo~l_ dy=_EoxYI_ =0	 (3)J 9 x-a 9 x-ao 

which makes no contribution because the contour is at X = o. Thus, the net 
contribution to the closed integral, the circulation, is given by (2). 
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1.6.3	 (a) The conversion to cylindrical coordinates of (1.3.13) follows from the argu­
ments given with the solution to Prob. 1.3.1. 

(1) 

(b)	 Evaluation of the line integral amounts to recognizing that on the four seg­
ments, 

(2) 

respectively. Note that care is taken to take the endpoint of the integrals as 
being in the direction of an increasing coordinate. This avoids taking double 
account of the sign implied by the dot product E . dB. 

(3) 

These integrals become 

(4) 

and it follows that the sum of these contributions is indeed zero. 

1.6.4	 Starting at (z, y) = (s,O), the line integral is 

£E . dB = ld Ez(z, O)dz +1d 
EII(d, Y)d y -1d 

Ez(z, d)dz 

-ld Ell (0, y)dy + l' Ez(z, s)dz -1' EII(s, y)dy 

(1) 

This expression is evaluated using E as given by (a) of Prob. 1.6.3 and becomes 

i [ld 1d 1d 
AI dz Y ZE . dB = -- - + dy - dz 

o 211"£0' Z 0 rJ.2 + y2 0 z2 + rJ.2 

dy z y ]- -+ dz- d -0l, 

d 

y 
l' 

0	 z2 + s2 
l' 

0 S2 + y2 Y -

(3) 
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y

cos <piy

181
I I

r --:..: coil
da I ,.

:J:=d

Fleure 81.6.5
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(1)

1.6.5 (a) In view of Fig. S1.6.5, the magnetic field given by (1.4.10)

B=I",(J...-)
211"r

is converted to Cartesian coordinates by recognizing that

• • A.. A.. -'11 I + z. - / 2 2 (2)
I", = - sm 'f'lx + cos 'f'1;y = x. J l;y i r = V z + '11

Vz2 + '112 V z2 + '112

so that (1) becomes

B = i.- [ -'11 Ix + z I] (3)
211" z2 + '112 z2 + '112 ;y

(b) The surface of Fig. 1.7.2a, shown in terms of the z - '11 coordinates by Fig.
S1.6.5, can be used to evaluate the net flux as follows.

r rVR~-d.~
>'1= Js"'oB.da=lJo -PoH",(d,y)dy

l ·lVR~-d.~ () I" (4)
= _ Po' -y dy = Po' In(R/d)

211" 0 d2 + '112 211"

This result agrees with (1.7.5), where the flux is evaluated using a different
surface. Just why the flux is the same, regardless of surface, is the point of
Sec. 1.7.

(c) The circulation follows from Faraday's law, (1.6.1),

1 E. ds = _ d>'1 = _po',n(R/d) di (5)
Ja dt 211" dt

(d) This flux will be linked N times by an N turn coil. Thus, the EMF at the
terminals of the coil follows from (8) as

tab = P;': In(R/d) ~~ (6)
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1.6.6	 The left hand side of (1.6.1) is the desired circulation of E, found by deter­
mining the right hand side, where ds = i,.dzdz. 

1 E. ds = -~ r/SoB.. ds 
0'	 dt 1s 

d J'/21V1 

= --d /SoH,Az, 0, z)dzdz (1) 
t -1/2 0 

dHo 
= -/Sowl""dt 

1.6.7	 From (12), the tangential component of E must be continuous, so 

n x (EG
- Eb

) = 0 => 1:; - E1 = 0 => E; = E1 (1) 

From (1.3.17), 

foE; - foE2 = 0'0 => ~ = 0'0 + E2 (2)
f o 

These are components of the given electric field just above the 11 = 0 surface. 

1.6.8	 In polar coordinates, 

(1) 

The tangential component follows from (1.6.12) 

(2) 

while the normal is given by using (1.3.17) 

Er(r = R+) = 0'0 cosq, + Eosinq,	 (3)
f o 

1.1 GAUSS' INTEGRAL LAW OF MAGNETIC FLUX 

1.7.1	 (a) In analyzing the z directed field, note that it is perpendicular to the q, axis 
and, for 0 < fJ < 11"/2, in the negative fJ direction. 

B = Ho(C08fJi.. - sinfJio)	 (1) 

(b)	 Faraday's law, (1.6.1), gives the required circulation in terms of the surface 
integral on the right. This integral is carried out for the given surface by 
simply multiplying the z component of B by the area. The result is as given. 
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(c)	 For the hemispherical surface with its edge the same as in part (b), the normal 
is in the radial direction and it follows from (1) that 

PoH . ds = (PoHocos O)r sin OdOrdtP	 (2) 

Thus, the surface integral becomes 

(3) 

so that Faraday's law again gives 

(4) 

1.7.2 The first only has contributions on the right and left surfaces, where it is of 
the same magnitude. Because the normals are oppositely directed on these surfaces, 
these integrals cancel. Thus, (a) satisfies (1.7.1). 

The contributions of (b) are to the top and bottom surfaces. Because H differs 
on these two surfaces (:.c = :.c on the upper surface while :.c = 0 on the lower one), 
this H has a net flux. 

1 H.ds= AHo:.c	 (1)Is d 

As for (b), the top and bottom surfaces are where the only contributions 
can be made. This time, however, there is no net contribution because H does not 
depend on :.c. Thus, at each location y on the upper surface where there is a positive 
contribution, there is one at the same location y on the lower surface that makes a 
contribution of the opposite sign. 

1.7.S Continuity of the normal flux density,(1.7.6), requires that 

IJoH: -	 IJoHl = 0 => H: = Hl (1) 

while Ampere's continuity condition, (1.4.16) requires that the jump in tangential 
H be equal to the given current density. Using the right hand rule, 

H; - H2 = K o => H; = K o + H2	 (2) 

These are the components of the given H just above the surface. 

1.7.4	 Given that the tangential component of H is zero inside the cylinder, it follows 
from Ampere's continuity condition, (1.4.16), that 

H",(r = R+) = Ko	 (1) 

According to (1.7.6), the normal component of PoH is continuous. Thus, 

poHr(r = R+) = poHr(r = R_) = H l	 (2) 




