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3
 

INTRODUCTION TO
 
ELECTROQUASISTATICS 

AND 
MAGNETOQUASISTATICS 

3.0 INTRODUCTION 

The laws represented by Maxwell’s equations are remarkably general. Nevertheless, 
they are deceptively simple. In differential form they are 

�× E = − 
∂µ

∂t 
oH 

(1) 

�× H = J + 
∂�

∂t 
oE 

(2) 

� · �oE = ρ (3) 

� · µoH = 0 (4) 

The sources of the electric and magnetic field intensities, E and H, are the charge 
and current densities, ρ and J. 

If, at an initial instant, electric and magnetic fields are specified throughout 
all of a source­free space, then Maxwell’s equations in their differential form predict 
these fields as they subsequently evolve in space and time. Proof of this assertion is 
our starting point in Sec. 3.1. This makes it natural to attribute a physical signifi­
cance to the fields in their own right. Fields can exist in regions far removed from 
their sources because they can propagate as electromagnetic waves. An introduc­
tion to such waves is given in Sec. 3.2. It is shown that the coupling between E and 
H produced by the magnetic induction in Faraday’s law, the term on the right in 
(1) and the displacement current density in Ampère’s law, the time derivative term 
on the right in (2), gives rise to electromagnetic waves. 

Even though fields can propagate without sources, where they are initiated or 
detected they must be related to their sources or sinks. To do this, the Lorentz force 
law must be brought into play. In Sec. 3.1, this law is used to complete Newton’s law 

1 



2 Introduction To Electroquasistatics and Magnetoquasistatics Chapter 3 

and describe the evolution of a charge distribution. Generally, the Lorentz force law 
does not act so directly as it does in this example; nevertheless, it usually underlies 
a constitutive law for conduction that is added to Maxwell’s equations to relate 
the fields to the sources. The most commonly used constitutive law is Ohm’s law, 
which is not introduced until Chap. 7. However, in the intervening chapters we will 
often model electrodes and wires as being perfectly conducting in the sense that 
Lorentz’s law is responsible for making the charges move in just such a way that 
there is effectively no electric field intensity in the material. 

Maxwell’s equations describe the most intricate electromagnetic wave phe­
nomena. Of course, the analysis of such fields is difficult and not always necessary. 
Wave phenomena occur on short time scales or at high frequencies that are often 
of no practical concern. If this is the case, the fields may be described by truncated 
versions of Maxwell’s equations applied to relatively long time scales and low fre­
quencies (quasistatics). The objective in Sec. 3.3 is to identify the two quasistatic 
approximations and rank the laws in order of importance in these approximations. 

In Sec. 3.4, we find what turns out to be one typical condition that must 
be satisfied if either of these quasistatic approximations is to be justified. Thus, 
we will find that a system composed of perfect conductors and free space is either 
electroquasistatic (EQS) or magnetoquasistatic (MQS) if an electromagnetic wave 
can propagate through a typical dimension of the system in a time that is shorter 
than times of interest. 

If fulfillment of the same condition justifies either the EQS or MQS approxi­
mation, how do we know which to use? We begin to form insights in this regard in 
Sec. 3.4. 

A formal justification of the quasistatic approximations would be based on 
what might be termed a time­rate expansion. As time rates of change are increased, 
more terms are required in a series having its first term predicted by the appropriate 
quasistatic laws. In Sec. 3.4, a specific example is used to illustrate this expansion 
and the error committed by omission of the higher­order terms. 

Whether they be electromagnetic, or perhaps thermal or mechanical, dynam­
ical systems that proceed from one state to another as though they are static are 
commonly said to be quasistatic in their behavior. In this text, the quasistatic fields 
are indeed related to their sources as if they were truly static. That is, given the 
charge or current distribution, E or H are determined without regard for the dy­
namics of electromagnetism. However, other dynamical processes can play a role in 
determining the source distributions. 

In the systems we are prepared to consider in this chapter, composed of free 
space and perfect conductors, the quasistatic source distributions within a given 
quasistatic subregion do not depend on time rates of change. Thus, for now, we 
will find that geometry and spatial and temporal scales alone determine whether a 
subregion is magnetoquasistatic or electroquasistatic. Illustrated in Sec. 3.5 is the 
interconnection of such subsystems. In a way that is familiar from circuit theory, the 
resulting model for the total system has apportionments of sources in the subregions 
(charges in the EQS regions and currents in the MQS regions) that do depend on 
the time rates of change. After we have considered effects of finite conductivity 
in Chaps. 7 and 10, it will be clear that there are many other situations where 
quasistatic models represent dynamical processes. 

Again, Sec. 3.6 provides an overview, this time not of the laws but rather of 
the parts of the physical world to which they pertain. The discussion is qualitative 
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and the section is for “feet on the table” reading. Finally, Sec. 3.7 summarizes 
the electroquasistatic and magnetoquasistatic field laws that, respectively, are the 
themes of Chaps. 4–7 and 8–10. 

We return to the subject of quasistatic approximations in Chap. 12, where 
electromagnetic waves are again considered. In Chap. 15 we will come to recog­
nize that the concept of quasistatics promulgated in Chaps. 7 and 10 (where loss 
phenomena are considered) has made the classification into electroquasistatic and 
magnetoquasistatic regions depend not only on geometry and spatial and temporal 
scales, but on material properties as well. 

3.1 TEMPORAL	 EVOLUTION OF WORLD GOVERNED BY LAWS OF 
MAXWELL, LORENTZ, AND NEWTON 

If certain initial conditions are given, Maxwell’s equations, along with the Lorentz 
law and Newton’s law, describe the time evolution of E and H. This can be argued 
by expressing Maxwell’s equations, (1)–(4), with the time derivatives and charge 
density on the left. 

∂H 1 
∂t	

= − 
µo 

(�× E) (1) 

∂E 1 
∂t	

= 
�o 

(�× H− J) (2) 

ρ = oE (3)� · � 
0 = H	 (4)� · µo

The region of interest is vacuum, where particles having a mass m and charge 
q are subject only to the Lorentz force. Thus, Newton’s law (here used in its non­
relativistic form), also written with the time derivative (of the particle velocity) on 
the left, links the charge distribution to the fields. 

dv 
m = q(E + v × µoH)	 (5)

dt 

The Lorentz force on the right is given by (1.1.1). 
Suppose that at a particular instant, t = to, we are given the fields throughout 

the entire space of interest, E(r, to) and H(r, to). Suppose we are also given the 
velocity v(r, to) of all the charges when t = to. It follows from Gauss’ law, (3), that 
at this same instant, the distribution of charge density is known. 

ρ(r, to) = E(r, to) (6)� · �o

Then the current density at the time t = to follows as 

J(r, to) = ρ(r, to)v(r, to)	 (7) 

So that (4) is satisfied when t = to, we must require that the given distribution of 
H be solenoidal. 
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The curl operation involves only spatial derivatives, so the right­hand sides of 
the remaining laws, (1), (2), and (5), can now be evaluated. Thus, the time rates 
of change of the quantities, E, H, and v, given when t = to, are now known. This 
allows evaluation of these quantities an instant later, when t = to+Δt. For example, 
at this later time, 

E = E(r, to) + Δt
∂E ��

(r,to) 
(8)

∂t 

Thus, when t = to + Δt we have the same three vector functions throughout 
all space we started with. This process can be repeated iteratively to determine the 
distributions at an arbitrary later time. Note that if the initial distribution of H 
is solenoidal, as required by (4), all subsequent distributions will be solenoidal as 
well. This follows by taking the divergence of Faraday’s law, (1), and noting that 
the divergence of the curl is zero. 

The left­hand side of (5) is written as a total derivative because it is required 
to represent the time derivative as measured by an observer moving with a given 
particle. 

The preceding argument shows that in free space, for given initial E, H, 
and v, the Lorentz law (here used with Newton’s law) and Maxwell’s equations 
determine the charge distributions and the associated fields for all later time. In 
this sense, Maxwell’s equations and the Lorentz law may be said to provide a 
complete description of electrodynamic interactions in free space. Commonly, more 
than one species of charge is involved and the charged particles respond to the field 
in a manner more complex than simply represented by the laws of Newton and 
Lorentz. In that case, the role played by (5) is taken by a conduction constitutive 
law which nevertheless reflects the Lorentz force law. 

Another interesting property of Maxwell’s equations emerges from the preced­
ing discussion. The electric and magnetic fields are coupled. The temporal evolution 
of E is determined in part by the curl of H, (2), and, similarly, it is the curl of E 
that determines how fast H is changing in time, (1). 

Example 3.1.1. Evolution of an Electromagnetic Wave 

The interplay of the magnetic induction and the electric displacement current is 
illustrated by considering fields that evolve in Cartesian coordinates from the initial 
distributions 

E = Eoixe−z 2/2a 2 (9) 

2/2a 2 H = 
�

�o/µoEoiye−z (10) 

In this example, we let to = 0, so these are the fields when t = 0. Shown in Fig. 3.1.1, 
these fields are transverse, in that they have a direction perpendicular to the coordi­
nate upon which they depend. Thus, they are both solenoidal, and Gauss’ law makes 
it clear that the physical situation we consider does not involve a charge density. It 
follows from (7) that the current density is also zero. 

With the initial fields given and J = 0, the right­hand sides of (1) and (2) can 
be evaluated to give the rates of change of H and E. 

∂H ∂Ex d 2/2a 2 µo 
∂t 

= −� × E = −iy 
∂z 

= −iyEo 
dz

e−z (11) 
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Fig. 3.1.1 A schematic representation of the E and H fields of Exam­
ple 3.2.1. The distributions move to the right with the speed of light, 
c. 

∂E d 2/2a 2 �o 
∂t 

= �× H = −ix
�

�o/µoEo 
dz

e−z (12) 

It follows from (11), Faraday’s law, that when t = Δt, 

H = iy
�

�o/µoEo

�
e−z 2/2a 2 − cΔt

d 
e−z 2/2a 2

� 
(13)

dz 

where c = 1/
√

�oµo, and from (12), Ampère’s law, that the electric field is 

E = Eoix
�
e−z 2/2a 2 − cΔt

d 
e−z 2/2a 2

� 
(14)

dz 

When t = Δt, the E and H fields are equal to the original Gaussian distribution 
minus cΔt times the spatial derivatives of these Gaussians. But these represent the 
original Gaussians shifted by cΔt in the +z direction. Indeed, witness the relation 
applicable to any function f(z). 

df 
f(z − Δz) = f(z)− Δz . (15)

dz 

On the left, f(z − Δz) is the function f(z) shifted by Δz. The Taylor expansion 
on the right takes the same form as the fields when t = Δt, (13) and (14). Thus, 
within Δt, the E and H field distributions have shifted by cΔt in the +z direction. 
Iteration of this process shows that the field distributions shown in Fig. 3.1.1 travel 
in the +z direction without change of shape at the speed c, the speed of light. 

c = √
�

1 

oµo 
= 3× 108 m/sec∼ 

(16) 

Note that the derivation would not have changed if we had substituted for the 
initial Gaussian functions any other continuous functions f(z). 

In retrospect, it should be recognized that the initial conditions were premed­
itated so that they would result in a single wave propagating in the +z direction. 
Also, the method of solution was really not numerical. If we were interested in pursu­
ing the numerical approach, care would have to be taken to avoid the accumulation 
of errors. 
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The above example illustrated that the electromagnetic wave is caused by the 
interplay of the magnetic induction and the displacement current, the terms on the 
left in (1) and (2). Through Faraday’s law, (1), the curl of an initial E implies that 
an instant later, the initial H is altered. Similarly, Ampère’s law requires that the 
curl of an initial H leads to a change in E. In turn, the curls of the altered E and 
H imply further changes in H and E, respectively. 

There are two main points in this section. First, Maxwell’s equations, aug­
mented by laws describing the interaction of the fields with the sources, are sufficient 
to describe the evolution of electromagnetic fields. 

Second, in regions well removed from materials, electromagnetic fields evolve 
as electromagnetic waves. Typically, the time required for fields to propagate from 
one region to another, say over a distance L, is 

L 
τem = (17) 

c 

where c is the velocity of light. The origin of these waves is the coupling between 
the laws of Faraday and Ampère afforded by the magnetic induction and the dis­
placement current. If either one or the other of these terms is neglected, so too is 
any electromagnetic wave effect. 

3.2 QUASISTATIC LAWS 

The quasistatic laws are obtained from Maxwell’s equations by neglecting either 
the magnetic induction or the electric displacement current. 

ELECTROQUASTATIC MAGNETOQUASISTATIC 

� × E = − 
∂µoH 

∂t 
� 0 (1a) � × E = − 

∂µoH 

∂t 
(1b) 

� × H = 
∂�oE 

∂t 
+ J (2a) � × H = 

∂�oE 

∂t 
+ J � J (2b) 

� · �oE = ρ (3a) � · �oE = ρ (3b) 

� · µoH = 0 (4a) � · µoH = 0 (4b) 
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The electromagnetic waves that result from the coupling of the magnetic in­
duction and the displacement current are therefore neglected in either set of qua­
sistatic laws. Before considering order of magnitude arguments in support of these 
approximate laws, we recognize their differing orders of importance. 

In Chaps. 4 and 8 it will be shown that if the curl and divergence of a vector 
are specified, then that vector is determined. 

In the EQS approximation, (1a) re­
quires that E is essentially irrotational. 
It then follows from (3a) that if the 
charge density is given, both the curl 
and divergence of E are specified. Thus, 
Gauss’ law and the EQS form of Fara­
day’s law come first. 

� · �oE = ρ (5a) 

�× E = 0 (6a) 

In the MQS approximation, the dis­
placement current is negligible in 
(2b), while (4b) requires that H is 
solenoidal. Thus, if the current den­
sity is given, both the curl and di­
vergence of H are known. Thus, the 
MQS form of Ampère’s law and the 
flux continuity condition come first. 

�× H = J; � · J = 0 (5b− c) 

� · µoH = 0 (6b) 

Implied by the approximate form 
of Ampère’s law is the continuity 
condition of J, given also by (5b). 

In these relations, there are no time derivatives. This does not mean that the 
sources, and hence the fields, are not functions of time. But given the sources at a 
certain instant, the fields at that same instant are determined without regard for 
what the sources of fields were an instant earlier. Figuratively, a snapshot of the 
source distribution determines the field distribution at the same instant in time. 

Generally, the sources of the fields are not known. Rather, because of the 
Lorentz force law, which acts to set charges into motion, they are determined by 
the fields themselves. It is for this reason that time rates of change come into play. 
We now bring in the equation retaining a time derivative. 

Because H is often not crucial to the 
EQS motion of charges, it is elimi­
nated from the picture by taking the 
divergence of (2a). 

∂ρ 

Faraday’s law makes it clear that a 
time varying H implies an induced 
electric field. 

� · J + 
∂t 

= 0 (7a) = 
−∂µoH 

(7b)�× E 
∂t 
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In the EQS approximation, H is usu­
ally a “leftover” quantity. In any case, 
once E and J are determined, H can 
be found by solving (2a) and (4a). 

∂�oE �× H = 
∂t 

+ J (8a) 

� · µoH = 0 (9a) 

In the MQS approximation, the charge 
density is a “leftover” quantity, which 
can be found by applying Gauss’ 
law, (3b), to the previously deter­
mined electric field intensity. 

� · �oE = ρ (8b) 

In the EQS approximation, it is clear that with E and J determined from 
the “zero order” laws (5a)–(7a), the curl and divergence of H are known [(8a) and 
(9a)]. Thus, H can be found in an “after the fact” way. Perhaps not so obvious 
is the fact that in the MQS approximation, the divergence and curl of E are also 
determined without regard for ρ. The curl of E follows from Faraday’s law, (7b), 
while the divergence is often specified by combining a conduction constitutive law 
with the continuity condition on J, (5b). 

The differential quasistatic laws are summarized in Table 3.6.1 at the end of 
the chapter. Because there is a direct correspondence between terms in the differ­
ential and integral laws, the quasistatic integral laws are as summarized in Table 
3.6.2. The conditions under which these quasistatic approximations are valid are 
examined in the next section. 

3.3 CONDITIONS FOR FIELDS TO BE QUASISTATIC 

An appreciation for the quasistatic approximations will come with a consideration 
of many case studies. Justification of one or the other of the approximations hinges 
on using the quasistatic fields to estimate the “error” fields, which are then hopefully 
found to be small compared to the original quasistatic fields. 

In developing any mathematical “theory” for the description of some part of 
the physical world, approximations are made. Conclusions based on this “theory” 
should indeed be made with a concern for implicit approximations made out of 
ignorance or through oversight. But in making quasistatic approximations, we are 
fortunate in having available the “exact” laws. These can always be used to test 
the validity of a tentative approximation. 

Provided that the system of interest has dimensions that are all within a factor 
of two or so of each other, order of magnitude arguments easily illustrate how the 
error fields are related to the quasistatic fields. The examples shown in Fig. 3.3.1 
are not to be considered in detail, but rather should be regarded as prototypes. The 
candidate for the EQS approximation in part (a) consists of metal spheres that are 
insulated from each other and driven by a source of EMF. In the case of part (b), 
which is proposed for the MQS approximation, a current source drives a current 
around a one­turn loop. The dimensions are “on the same order” if the diameter of 
one of the spheres, is within a factor of two or so of the spacing between spheres 
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Fig. 3.3.1 Prototype systems involving one typical length. (a) EQS system 
in which source of EMF drives a pair of perfectly conducting spheres having 
radius and spacing on the order of L. (b) MQS system consisting of perfectly 
conducting loop driven by current source. The radius of the loop and diameter 
of its cross­section are on the order of L. 

and if the diameter of the conductor forming the loop is within a similar factor of 
the diameter of the loop. 

If the system is pictured as made up of “perfect conductors” and “perfect 
insulators,” the decision as to whether a quasistatic field ought to be classified as 
EQS or MQS can be made by a simple rule of thumb: Lower the time rate of change 
(frequency) of the driving source so that the fields become static. If the magnetic 
field vanishes in this limit, then the field is EQS; if the electric field vanishes the 
field is MQS. In reality, materials are not “perfect,” neither perfect conductors nor 
perfect insulators. Therefore, the usefulness of this rule depends on understanding 
under what circumstances materials tend to behave as “perfect” conductors, and 
insulators. Fortunately, nature provides us with metals that are extremely good 
conductors– and with gases, liquids, and solids that are very good insulators– so 
that this rule is a good intuitive starting point. Chapters 7, 10, and 15 will provide 
a more mature view of how to classify quasistatic systems. 

The quasistatic laws are now used in the order summarized by (3.2.5)­(3.2.9) 
to estimate the field magnitudes. With only one typical length scale L, we can 
approximate spatial derivatives that make up the curl and divergence operators 
by 1/L. 

ELECTROQUASISTATIC MAGNETOQUASISTATIC 

Thus, it follows from Gauss’ law, (3.2.5a), 
that typical values of E and ρ are re­
lated by 

�oE ρL 
= ρ E = (1a)

L 
⇒ 

�o 

Thus, it follows from Ampère’s law, 
(3.2.5b), that typical values of H 
and J are related by 

H 
= J H = JL (1b)

L 
⇒ 

As suggested by the integral forms of the laws so far used, these fields and 
their sources are sketched in Fig. 3.3.1. The EQS laws will predict E lines that 
originate on the positive charges on one electrode and terminate on the negative 
charges on the other. The MQS laws will predict lines of H that close around the 
circulating current. 

If the excitation were sinusoidal in time, the characteristic time τ for the 
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sinusoidal steady state response would be the reciprocal of the angular frequency 
ω. In any case, if the excitations are time varying, with a characteristic time τ , then 

the time varying charge implies a cur­
rent, and this in turn induces an H. 
We could compute the current in the 
conductors from charge conservation, 
(3.2.7a), but because we are interested 
in the induced H, we use Ampère’s 
law, (3.2.8a), evaluated in the free space 
region. The electric field is replaced in 
favor of the charge density in this ex­
pression using (1a). 

H �oE 
= 

L 

H = 

τ 
⇒ 

�oEL 
= 

L2ρ 
(2a) 

τ τ 

the time­varying current implies an 
H that is time­varying. In accor­
dance with Faraday’s law, (3.2.7b), 
the result is an induced E. The mag­
netic field intensity is replaced by J 
in this expression by making use of 
(1b). 

E 
= 

µoH 

L 

E = 

τ 
⇒ 

µoHL 
= 

µoJL2 (2b) 

τ τ 

What errors are committed by ignoring the magnetic induction and displace­
ment current terms in the respective EQS and MQS laws? 

The electric field induced by the qua­
sistatic magnetic field is estimated by 
using the H field from (2a) to esti­
mate the contribution of the induc­
tion term in Faraday’s law. That is, 
the term originally neglected in (3.2.1a) 
is now estimated, and from this a curl 
of an error field evaluated. 

Eerror 
= 

µoρL2 

L 

Eerror = 

τ2 

µoρL3 

τ2 

⇒ 
(3a) 

The magnetic field induced by the 
displacement current represents an 
error field. It can be estimated from 
Ampère’s law, by using (2b) to eval­
uate the displacement current that 
was originally neglected in (3.2.2b). 

Herror 
= 

�oµoJL2 

L 

Herror = 

τ2 

�oµoJL3 

τ2 

⇒ 
(3b) 
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It follows from this expression and (1a) 
that the ratio of the error field to the 
quasistatic field is 

Eerror 

E 
= 

µo�oL
2 

τ2 
(4a) 

It then follows from this and (1b) 
that the ratio of the error field to 
the quasistatic field is 

Herror �oµoL
2 

= (4b)
H τ2 

For the approximations to be justified, these error fields must be small com­
pared to the quasistatic fields. Note that whether (4a) is used to represent the EQS 
system or (4b) is used for the MQS system, the conditions on the spatial scale L 
and time τ (perhaps the reciprocal frequency) are the same. 

Both the EQS and MQS approximations are predicated on having sufficiently 
slow time variations (low frequencies) and sufficiently small dimensions so that 

µo�oL
2 L 

τ2 
� 1 � τ	 (5)⇒ 

c 

where c = 1/
√

�oµo. The ratio L/c is the time required for an electromagnetic wave 
to propagate at the velocity c over a length L characterizing the system. Thus, 
either of the quasistatic approximations is valid if an electromagnetic wave can 
propagate a characteristic length of the system in a time that is short compared to 
times τ of interest. 

If the conditions that must be fulfilled in order to justify the quasistatic ap­
proximations are the same, how do we know which approximation to use? For 
systems modeled by free space and perfect conductors, such as we have considered 
here, the answer comes from considering the fields that are retained in the static 
limit (infinite τ or zero frequency ω). 

Recapitulating the rule expressed earlier, consider the pair of spheres shown 
in Fig. 3.3.1a. Excited by a constant source of EMF, they are charged, and the 
charges give rise to an electric field. But in this static limit, there is no current and 
hence no magnetic field. Thus, the static system is dominated by the electric field, 
and it is natural to represent it as being EQS even if the excitation is time­varying. 

Excited by a dc source, the circulating current in Fig. 3.3.1b gives rise to a 
magnetic field, but there are no charges with attendant electric fields. This time it 
is natural to use the MQS approximation when the excitation is time varying. 

Example 3.3.1.	 Estimate of Error Introduced by Electroquasistatic 
Approximation 

Consider a simple structure fed by a set of idealized sources of EMF as shown 
in Fig. 3.3.2. Two circular metal disks, of radius b, are spaced a distance d apart. 
A distribution of EMF generators is connected between the rims of the plates so 
that the complete system, plates and sources, is cylindrically symmetric. With the 
understanding that in subsequent chapters we will be examining the underlying 
physical processes, for now we assume that, because the plates are highly conducting, 
E must be perpendicular to their surfaces. 

The electroquasistatic field laws are represented by (3.2.5a) and (3.2.6a). A 
simple solution for the electric field between the plates is 

E = 
E 
iz ≡ Eoiz	 (6)

d 
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Fig. 3.3.2 Plane parallel electrodes having no resistance, driven at 
their outer edges by a distribution of sources of EMF. 

Fig. 3.3.3 Parallel plates of Fig. 3.3.2, showing volume containing 
lower plate and radial surface current density at its periphery. 

where the sign definition of the EMF, E , is as indicated in Fig. 3.3.2. The field 
of (6) satisfies (3.2.5a) and (3.2.6a) in the region between the plates because it 
is both irrotational and solenoidal (no charge is assumed to exist in the region 
between the plates). Further, the field has no component tangential to the plates 
which is consistent with the assumption of plates with no resistance. Finally, Gauss’ 
jump condition, (1.3.17), can be used to find the surface charges on the top and 
bottom plates. Because the fields above the upper plate and below the lower plate 
are assumed to be zero, the surface charge densities on the bottom of the top plate 
and on the top of the bottom plate are 

Ez(z = d) = Eo; z = d
� −�o −�oσs = (7)

�oEz(z = 0) = �oEo; z = 0 

There remains the question of how the electric field in the neighborhood of the 
distributed source of EMF is constrained. We assume here that these sources are 
connected in such a way that they make the field uniform right out to the outer 
edges of the plates. Thus, it is consistent to have a field that is uniform throughout 
the entire region between the plates. Note that the surface charge density on the 
plates is also uniform out to r = b. At this point, (3.2.5a) and (3.2.6a) are satisfied 
between and on the plates. 

In the EQS order of laws, conservation of charge comes next. Rather than using 
the differential form, (3.2.7a), we use the integral form, (1.5.2). The volume V is a 
cylinder of circular cross­section enclosing the lower plate, as shown in Fig. 3.3.3. Be­
cause the radial surface current density in the plate is independent of φ, integration 
of J da on the enclosing surface amounts to multiplying Kr by the circumference,· 
while the integration over the volume is carried out by multiplying σs by the surface 
area, because the surface charge density is uniform. Thus, 

Kr2πb + πb2�o 
dEo 

= 0 ⇒ Kr

�� = − 
b�

2 
o dEo 

(8)
dt r=b dt 

In order to find the magnetic field, we make use of the “secondary” EQS 
laws, (3.2.8a) and (3.2.9a). Ampère’s law in integral form, (1.4.1), is convenient for 
the present case of high symmetry. The displacement current is z directed, so the 
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Fig. 3.3.4 Cross­section of system shown in Fig. 3.3.2 showing surface 
and contour used in evaluating correction E field. 

surface S is taken as being in the free space region between the plates and having a 
z­directed normal. � � 

∂�oE 
H ds = izda (9)· 

∂t 
· 

C S 

The symmetry of structure and source suggests that H must be φ independent. A 
centered circular contour of radius r, as in Fig. 3.3.2, with z in the range 0 < z < d, 
gives 

dEo 2 r dEo
Hφ2πr = �o πr Hφ = �o (10)

dt 
⇒ 

2 dt 

Thus, for this specific configuration, we are at a point in the analysis represented 
by (2a) in the order of magnitude arguments. 

Consider now “higher order” fields and specifically the error committed by 
neglecting the magnetic induction in the EQS approximation. The correct statement 
of Faraday’s law is (3.2.1a), with the magnetic induction retained. Now that the 
quasistatic H has been determined, we are in a position to compute the curl of E 
that it generates. 

Again, for this highly symmetric configuration, it is best to use the integral 
law. Because H is φ directed, the surface is chosen to have its normal in the φ 
direction, as shown in Fig. 3.3.4. Thus, Faraday’s integral law (1.6.1) becomes 

� � 
∂µoHφ

E ds = iφ da (11)· − 
∂t 

· 
C S 

We use the contour shown in Fig. 3.3.4 and assume that the E induced by the 
magnetic induction is independent of z. Because the tangential E field is zero on 
the plates, the only contributions to the line integral on the left in (11) come from 
the vertical legs of the contour. The surface integral on the right is evaluated using 
(10). 

b 
µo�od 

� 
d2Eo

[Ez(b)− Ez(r)]d = r�dr� 
2 dt2 

r (12) 
µo�od 2 2 d2Eo 

= (b − r )
4 dt2 

The field at the outer edge is constrained by the EMF sources to be Eo, and so it 
follows from (12) that to this order of approximation the electric field is 

Ez = Eo + 
�oµo d

2Eo 
(r 2 − b2) (13)

4 dt2 

We have found that the electric field at r = b differs from the field at the edge. How 
big is the difference? This depends on the time rate of variation of the electric field. 
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For purposes of illustration, assume that the electric field is sinusoidally varying 
with time. 

Eo(t) = A cos ωt (14) 

Thus, the time characterizing the dynamics is 1/ω. 
Introducing this expression into (13), and calling the second term the “error 

field,” the ratio of the error field and the field at the rim, where r = b, is 

|Eerror | 
=

1 
ω2�oµo(b

2 − r 2) (15)
Eo 4 

The error field will be negligible compared to the quasistatic field if 

ω2�oµob
2 

� 1 (16)
4 

for all r between the plates. In terms of the free space wavelength λ, defined as the 
distance an electromagnetic wave propagates at the velocity c = 1/

√
�oµo in one 

cycle 2π/ω 

λ 2π 
= : c ≡ 1/

√
µo�o (17) 

c ω 

(16) becomes 

b2 � (λ/π)2 (18) 

In free space and at a frequency of 1 MHz, the wavelength is 300 meters. Hence, if 
we build a circular disk capacitor and excite it at a frequency of 1 MHz, then the 
quasistatic laws will give a good approximation to the actual field as long as the 
radius of the disk is much less than 300 meters. 

The correction field for a MQS system is found by following steps that are 
analogous to those used in the previous example. Once the magnetic and electric 
fields have been determined using the MQS laws, the error magnetic field induced 
by the displacement current can be found. 

3.4 QUASISTATIC SYSTEMS1 

Whether we ignore the magnetic induction and use the EQS approximation, or 
neglect the displacement current and make a MQS approximation, times of interest 
τ must be long compared to the time τem required for an electromagnetic wave to 
propagate at the velocity c over the largest length L of the system. 

L 
τem = � τ (1) 

c 

1 This section makes use of the integral laws at a level somewhat more advanced than neces­
sary in preparation for the next chapter. It can be skipped without loss of continuity. 
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Fig. 3.4.1 Range of characteristic times over which quasistatic approxima­
tion is valid. The transit time of an electromagnetic wave is τem while τ? is a 
time characterizing the dynamics of the quasistatic system. 

Fig. 3.4.2 (a) Quasistatic system showing (b) its EQS subsystem and 
(c) its MQS subsystem. 

This requirement is given a graphic representation in Fig. 3.4.1. 
For a given characteristic time (for example, a given reciprocal frequency), it 

is clear from (1) that the region described by the quasistatic laws is limited in size. 
Systems can often be divided into subregions that are small enough to be quasistatic 
but, by virtue of being interconnected through their boundaries, are dynamic in 
their behavior. With the elements regarded as the subregions, electric circuits are 
an example. In the physical world of perfect conductors and free space (to which we 
are presently limited), it is the topology of the conductors that determines whether 
these subregions are EQS or MQS. 

A system that is described by quasistatic laws but retains a dynamical be­
havior exhibits one or more characteristic times. On the characteristic time axis in 
Fig. 3.4.1, τ? is one such time. The quasistatic system model provides a meaningful 
description provided that the one or more characteristic times τ? are long compared 
to τem. The following example illustrates this concept. 

Example 3.4.1. A Quasistatic System Exhibiting Resonance 

Shown in cross­section in Fig. 3.4.2 is a resonator used in connection with electron 
beam devices at microwave frequencies. The volume enclosed by its perfectly con­
ducting boundaries can be broken into the two regions shown. The first of these is 
bounded by a pair of circular plane parallel conductors having spacing d and radius 
b. This region is EQS and described in Example 3.3.1. 

The second region is bounded by coaxial, perfectly conducting cylinders which 
form an annular region having outside radius a and an inside radius b that matches 
up to the outer edge of the lower plate of the EQS system. The coaxial cylinders are 
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Fig. 3.4.3 Surface S and contour C for evaluating H­field using Ampère’s 
law. 

shorted by a perfectly conducting plate at the bottom, where z = 0. A similar plate 
at the top, where z = h, connects the outer cylinder to the outer edge of the upper 
plate in the EQS subregion. 

For the moment, the subsystems are isolated from each other by driving the 
MQS system with a current source Ko (amps/meter) distributed around the periph­
ery of the gap between conductors. This gives rise to axial surface current densities 
of Ko and −Ko(b/a) on the inner and outer cylindrical conductors and radial surface 
current densities contributing to J da in the upper and lower plates, respectively. · 
(Note that these satisfy the MQS current continuity requirement.) 

Because of the symmetry, the magnetic field can be determined by using the 
integral MQS form of Ampère’s law. So that there is a contribution to the integration 
of J da, a surface is selected with a normal in the axial direction. This surface is· 
enclosed by a circular contour having the radius r, as shown in Fig. 3.4.3. Because 
of the axial symmetry, Hφ is independent of φ, and the integrations on S and C 
amount to multiplications. 

H ds = J izda 2πrHφ = 2πbKo (2)· · ⇒
C S 

Thus, in the annulus, 
b 

Hφ = Ko (3) 
r 

In the regions outside the annulus, H is zero. Note that this is consistent with 
Ampère’s jump condition, (1.4.16), evaluated on any of the boundaries using the 
already determined surface current densities. Also, we will find in Chap. 10 that 
there can be no time­varying magnetic flux density normal to a perfectly conducting 
boundary. The magnetic field given in (3) satisfies this condition as well. 

In the hierarchy of MQS laws, we have now satisfied (3.2.5b) and (3.2.6b) and 
come next to Faraday’s law, (3.2.7b). For the present purposes, we are not interested 
in the details of the distribution of electric field. Rather, we use the integral form of 
Faraday’s law, (1.6.1), integrated on the surface S shown in Fig. 3.4.4. The integral 
of E ds along the perfect conductor vanishes and we are left with · 

b� 
dλf Eab = E ds = (4)· 
dt 

a 

where the EMF across the gap is as defined by (1.6.2), and the flux linked by C is 
consistent with (1.6.8). 

λf = h

� a 

µoHφdr = µobhKo 

� a 
dr 

= µohb ln
� a�

Ko (5) 
r b

b b 

. 
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Fig. 3.4.4 Surface S and contour C used to determine EMF using 
Faraday’s law. 

These last two expressions combine to give 

Eab = µohb ln
� a� dKo 

(6)
b dt 

Just as this expression serves to relate the EMF and surface current density at the 
gap of the MQS system, (3.3.8) relates the gap variables defined in Fig. 3.4.2b for the 
EQS subsystem. The subsystems are now interconnected by replacing the distributed 
current source driving the MQS system with the peripheral surface current density 
of the EQS system. 

Kr + Ko = 0 (7) 

In addition, the EMF’s of the two subsystems are made to match where they join. 

−E = Eab (8) 

With (3.3.8) and (3.3.6), respectively, substituted for Kr and Eab, these expressions 
become two differential equations in the two variables Eo and Ko describing the 
complete system. 

b�o dEo − 
2

+ Ko = 0 (9)
dt 

−dEo = µobh ln
� a� dKo 

(10)
b dt 

Elimination of Ko between these expressions gives 

d2Eo 
+ ωo

2Eo = 0 (11)
dt2 

where ωo is defined as 

ωo 
2 = 

�oµohb

2
2 

d

ln
� 

a
b 

� (12) 

and it follows that solutions are a linear combination of sin ωot and cos ωot. 
As might have been suspected from the outset, what we have found is a re­

sponse to initial conditions that is oscillatory, with a natural frequency ωo. That is, 
the parallel plate capacitor that comprises the EQS subsystem, connected in parallel 
with the one­turn inductor that is the MQS subsystem, responds to initial values 
of Eo and Ko with an oscillation that at one instant has Eo at its peak magnitude 
and Ko = 0, and a quarter cycle later has Eo = 0 and Ko at its peak magnitude. 



18 Introduction To Electroquasistatics and Magnetoquasistatics Chapter 3 

Fig. 3.4.5 In terms of characteristic time τ , the dynamic regime in which the 
system of Fig. 3.4.2 is quasistatic but capable of being in a state of resonance. 

Remember that �oEo is the surface charge density on the lower plate in the EQS 
section. Thus, the oscillation is between the charges in the EQS subsystem and the 
currents in the MQS subsystem. The distribution of field sources in the system as a 
whole is determined by a dynamical interaction between the two subsystems. 

If the system were driven by a current source having the frequency ω, it 
would display a resonance at the natural frequency ωo. Under what conditions can 
the system be in resonance and still be quasistatic? In this case, the characteristic 
time for the system dynamics is the reciprocal of the resonance frequency. The EQS 
subsystem is indeed EQS if b/c � τ , while the annular subsystem is MQS if h/c � τ . 
Thus, the resonance is correctly described by the quasistatic model if the times have 
the ordering shown in Fig. 3.4.5. Essentially, this is achieved by making the spacing 
d in the EQS section very small. 

With the region of interest containing media, the appropriate quasistatic limit 
is often as much determined by the material properties as by the topology. In 
Chaps. 7 and 10, we will consider lossy materials where the distributions of field 
sources depend on the time rates of change and a given region can be EQS or MQS 
depending on the electrical conductivity. We return to the subject of quasistatics 
in Chaps. 12 and 14. 

3.5 OVERVIEW OF APPLICATIONS 

Electroquasistatics is the subject of Chaps. 4–7 and magnetoquasistatics the topic 
of Chaps. 8–10. Before embarking on these subjects, consider in this section some 
practical examples that fall in each category, and some that involve the electrody­
namics of Chaps. 12–14. 

Our starting point is at location A at the upper right in Fig. 3.5.1. With 
frequencies that range from 60­400 MHz, television signals propagate from remote 
locations to our homes as electromagnetic waves. If the frequency is f , the field 
passes through one period in the time 1/f . Setting this equal to the transit time, 
(3.1.l7) gives an expression for the wavelength, the distance the wave travels during 
one cycle. 

c 
=L ≡ λ 

f 

Thus, for channel 2 (60 MHz) the wavelength is about 5 m, while for channel 54 it 
is about 20 cm. The distance between antenna and receiver is many wavelengths, 
and hence the fields undergo many oscillations while traversing the space between 
the two. The dynamics is not quasistatic but rather intimately involves the electro­
magnetic wave represented by inset B and described in Sec. 3.1. 
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Fig. 3.5.1 Quasistatic and electrodynamic fields in the physical world. 

The field induces charges and currents in the antenna, and the resulting sig­
nals are conveyed to the TV set by a transmission line. At TV frequencies, the line 
is likely to be many wavelengths long. Hence, the fields surrounding the line are also 
not quasistatic. But the radial distributions of current in the elements of the anten­
nas and in the wires of the transmission line are governed by magnetoquasistatic 
(MQS) laws. As suggested by inset C, the current density tends to concentrate 
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adjacent to the conductor surfaces and this skin effect is MQS. 
Inside the television set, in the transistors and picture tube that convert the 

signal to an image and sound, electroquasistatic (EQS) processes abound. Included 
are dynamic effects in the transistors (E) that result from the time required for an 
electron or hole to migrate a finite distance through a semiconductor. Also included 
are the effects of inertia as the electrons are accelerated by the electric field in the 
picture tube (D). On the other hand, the speaker that transduces the electrical 
signals into sound is most likely MQS. 

Electromagnetic fields are far closer to the viewer than the television set. As 
is obvious to those who have had an electrocardiogram, the heart (F) is the source 
of a pulsating current. Are the distributions of these currents and the associated 
fields described by the EQS or MQS approximation? On the largest scales of the 
body, we will find that it is MQS. 

Of course, there are many other sources of electrical currents in the body. 
Nerve conduction and other electrical activity in the brain occur on much smaller 
length scales and can involve regions of much less conductivity. These cases can be 
EQS. 

Electrical power systems provide diverse examples as well. The step­down 
transformer on a pole outside the home (G) is MQS, with dynamical processes 
including eddy currents and hysteresis. 

The energy in all these examples originates in the fuel burned in a power 
plant. Typically, a steam turbine drives a synchronous alternator (H). The fields 
within this generator of electrical power are MQS. However, most of the electronics 
in the control room (J) are described by the EQS approximation. In fact, much 
of the payoff in making computer components smaller is gained by having them 
remain EQS even as the bit rate is increased. The electrostatic precipitator (I), 
used to remove flyash from the combustion gases before they are vented from the 
stacks, seems to be an obvious candidate for the EQS approximation. Indeed, even 
though some modern precipitators use pulsed high voltage and all involve dynamic 
electrical discharges, they are governed by EQS laws. 

The power transmission system is at high voltage and therefore might nat­
urally be regarded as EQS. Certainly, specification of insulation performance (K) 
begins with EQS approximations. However, once electrical breakdown has occurred, 
enough current can be faulted to bring MQS considerations into play. Certainly, 
they are present in the operation of high­power switch gear. To be even a fraction of 
a wavelength at 60 Hz, a line must stretch the length of California. Thus, in so far 
as the power frequency fields are concerned, the system is quasistatic. But certain 
aspects of the power line itself are MQS, and others EQS, although when lightning 
strikes it is likely that neither approximation is appropriate. 

Not all fields in our bodies are of physiological origin. The man standing 
under the power line (L) finds himself in both electric and magnetic fields. How is 
it that our bodies can shield themselves from the electric field while being essentially 
transparent to the magnetic field without having obvious effects on our hearts or 
nervous systems? We will find that currents are indeed induced in the body by both 
the electric and magnetic fields, and that this coupling is best understood in terms 
of the quasistatic fields. By contrast, because the wavelength of an electromagnetic 
wave at TV frequencies is on the order of the dimensions of the body, the currents 
induced in the person standing in front of the TV antenna at A are not quasistatic. 
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As we make our way through the topics outlined in Fig. 3.5.1, these and other 
physical situations will be taken up by the examples. 

3.6 SUMMARY 

From a mathematical point of view, the summary of quasistatic laws given in Table 
3.6.1 is an outline of the next seven chapters. 

An excursion down the left column and then down the right column of the 
outline represented by Fig. 1.0.1 carries us down the corresponding columns of the 
table. Gauss’ law and the requirement that E be irrotational, (3.2.5a) and (3.2.6a), 
are the subjects of Chaps. 4–5. In Chaps. 6 and 7, two types of charge density 
are distinguished and used to represent the effects of macroscopic media on the 
electric field. In Chap. 6, where polarization charge is used to represent insulating 
media, charge is automatically conserved. But in Chap. 7, where unpaired charges 
are created through conduction processes, the charge conservation law, (3.2.7a), 
comes into play on the same footing as (3.2.5a) and (3.2.6a). In stages, starting in 
Chap. 4, the ability to predict self­consistent distributions of E and ρ is achieved 
in this last EQS chapter. 

Ampére’s law and magnetic flux continuity, (3.2.5b) and (3.2.6b), are featured 
in Chap. 8. First, the magnetic field is determined for a given distribution of current 
density. Because current distributions are often controlled by means of wires, it is 
easy to think of practical situations where the MQS source, the current density, is 
known at the outset. But even more, the first half of Chap. 7 was already devoted 
to determining distributions of “stationary” current densities. The MQS current 
density is always solenoidal, (3.2.5c), and the magnetic induction on the right in 
Faraday’s law, (3.2.7b), is sometimes negligible so that the electric field can be 
essentially irrotational. Thus, the first half of Chap. 7 actually starts the sequence 
of MQS topics. In the second half of Chap. 8, the magnetic field is determined 
for systems of perfect conductors, where the source distribution is not known until 
the fields meet certain boundary conditions. The situation is analogous to that 
for EQS systems in Chap. 5. Chapters 9 and 10 distinguish between effects of 
magnetization and conduction currents caused by macroscopic media. It is in Chap. 
10 that Faraday’s law, (3.2.7b), comes into play in a field theoretical sense. Again, 
in stages, in Chaps. 8–10, we attain the ability to describe a self­consistent field 
and source evolution, this time of H and its sources, J. 

The quasistatic approximations and ordering of laws can just as well be stated 
in terms of the integral laws. Thus, the differential laws summarized in Table 3.6.1 
have the integral law counterparts listed in Table 3.6.2. 
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TABLE 3.6.1 

SUMMARY OF QUASISTATIC DIFFERENTIAL 

LAWS IN FREE SPACE 

ELECTROQUASISTATIC MAGNETOQUASISTATIC Reference Eq. 

� · �oE = ρ 

� × E = 0 

� · J + 
∂ρ 

∂t 
= 0 

� × H = J; � · J = 0 

� · µoH = 0 

� × E = 
−∂µoH 

∂t 

(3.2.5) 

(3.2.6) 

(3.2.7) 

Secondary 

� × H = J + 
∂�oE 

∂t 

� · µoH = 0 

� · �oE = ρ (3.2.8) 

(3.2.9) 

TABLE 3.6.2 

SUMMARY OF QUASISTATIC INTEGRAL 

LAWS IN FREE SPACE 

(a) 

ELECTROQUASISTATIC 

(b) 

MAGNETOQUASISTATIC Eq. 

�
S 

�oE · da = 
�

V 
ρdv 

�
C 

E · ds = 0 

�
S 
J · da + d 

dt 

�
V 

ρdV = 0 

�
C 

H · ds = 
�

S 
J · da; 

�
S 
J · da = 0 

�
S 

µoH · da = 0 

�
C 

E · ds = − d 
dt 

�
S 

µ0H · da 

(1) 

(2) 

(3) 

Secondary 

�
C 

H · ds = 
�

S 
J · da + d 

dt 

�
S 

�oE · da 
�

S 
µoH · da = 0 

�
S 

�oE · da = 
�

V 
ρdv (4) 

(5) 
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P R O B L E M S 

3.1 Temporal Evolution of World Governed by Laws 
of Maxwell, Lorentz, and Newton 

3.1.1	 In Example 3.1.1, it was shown that solutions to Maxwell’s equations can 
take the form E = Ex(z − ct)ix and H = Hy(z − ct)iy in a region where 
J = 0 and ρ = 0. 

(a) Given E and H by (9) and (10) when t = 0, what are these fields for 
t > 0? 

(b) By substituting these expressions into (1)–(4), show that they are 
exact solutions to Maxwell’s equations. 

(c) Show that for an observer at z = ct+ constant, these fields are con­
stant. 

3.1.2∗	 Show that in a region where J = 0 and ρ = 0 and a solution to Maxwell’s 
equations E(r, t) and H(r, t) has been obtained, a second solution is ob­
tained by replacing H by −E, E by H, � by µ and µ by �. 

3.1.3	 In Prob. 3.1.1, the initial conditions given by (9) and (10) were arranged 
so that for t > 0, the fields took the form of a wave traveling in the +z 
direction. 

(a) How would you alter the magnetic field intensity, (10), so that the 
ensuing field took the form of a wave traveling in the −z direction? 

(b) What would you make	 H, so that the result was a pair of electric 
field intensity waves having the same shape, one traveling in the +z 
direction and the other traveling in the −z direction? 

3.1.4	 When t = 0, E = Eoiz cos βx, where Eo and β are given constants. When 
t = 0, what must H be to result in E = Eoiz cos β(x − ct) for t > 0. 

3.2 Quasistatic Laws 

3.2.1	 In Sec. 13.1, we will find that fields of the type considered in Example 3.1.1 
can exist between the plane parallel plates of Fig. P3.2.1. In the particular 
case where the plates are “open” at the right, where z = 0, it will be found 
that between the plates these fields are 

cos βz 
E = Eo cos ωtix	 (a)

cos βl 

� 
�o sin βz 

H = Eo sin ωtiy	 (b) 
µo cos βl 
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Fig. P3.2.1 

Fig. P3.2.2 

where β = ω
√

µo�o and Eo is a constant established by the voltage source 
at the left. 

(a) By substitution, show that in the free space region between the plates 
(where J = 0 and ρ = 0), (a) and (b) are exact solutions to Maxwell’s 
equations. 

(b) Use trigonometric identities to show that these fields can be decom­
posed into sums of waves traveling in the ±z directions. For example, 
Ex = E+(z − ct) + E (z + ct), where c is defined by (3.1.16) and E 
are functions of z � ct

−
, respectively. 

± 

(c) Show that if	 βl � 1, the time l/c required for an electromagnetic 
wave to traverse the length of the electrodes is short compared to the 
time τ ≡ 1/ω within which the driving voltage is changing. 

(d) Show that in the limit where this is true, (a) and (b) become 

E Eo cos ωtix	 (c)→ 

H Eo�oωz sin ωtiy	 (d)→ 

so that the electric field between the plates is uniform. 
(e) With the frequency low enough so that (c) and (d) are good approx­

imations to the fields, do these solutions satisfy the EQS or MQS 
laws? 

3.2.2	 In Sec. 13.1, it will be shown that the electric and magnetic fields between 
the plane parallel plates of Fig. P3.2.2 are 

� 
µo sin βz 

E = Ho sin ωtix	 (a)
�o cos βl 
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cos βz 
H = Ho cos ωtiy	 (b)

cos βl 

where β = ω
√

µo�o and Ho is a constant determined by the current source 
at the left. Note that because the plates are “shorted” at z = 0, the electric 
field intensity given by (a) is zero there. 

(a) Show that (a) and (b) are exact solutions to Maxwell’s equations in 
the region between the plates where J = 0 and ρ = 0. 

(b) Use trigonometric identities to show that these fields take the form 
of waves traveling in the ±z directions with the velocity c defined by 
(3.1.16). 

(c) Show that the condition βl � 1 is equivalent to the condition that 
the wave transit time l/c is short compared to τ ≡ 1/ω. 

(d) For the frequency	 ω low enough so that the conditions of part (c) 
are satisfied, give approximate expressions for E and H. Describe the 
distribution of H between the plates. 

(e) Are these approximate fields governed by the EQS or the MQS laws? 

3.3 Conditions for Fields to be Quasistatic 

3.3.1	 Rather than being in the circular geometry of Example 3.3.1, the configu­
ration considered here and shown in Fig. P3.3.1 consists of plane parallel 
rectangular electrodes of (infinite) width w in the y direction, spacing d in 
the x direction and length 2l in the z direction. The region between these 
electrodes is free space. Voltage sources constrain the integral of E between 
the electrode edges to be the same functions of time. 

� d 

v =	 Ex(z = ±l)dx (a) 
0 

(a) Assume that the voltage sources are varying so slowly that the electric 
field is essentially static (irrotational). Determine the electric field 
between the electrodes in terms of v and the dimensions. What is the 
surface charge density on the inside surfaces of the electrodes? (These 
steps are very similar to those in Example 3.3.1.) 

(b) Use conservation of charge to determine the surface current density 
Kz on the electrodes. 

(c) Now use Ampère’s integral law and symmetry arguments to find H. 
With this field between the plates, use Ampère’s continuity condition, 
(1.4.16), to find K in the plates and show that it is consistent with 
the result of part (b). 

(d) Because of the H found in part (c), E is not irrotational. Return to 
the integral form of Faraday’s law to find a corrected electric field 
intensity, using the magnetic field of part (c). [Note that the electric 
field found in part (a) already satisfies the conditions imposed by the 
voltage sources.] 
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Fig. P3.3.1 

(e) If the driving voltage takes the form v = vo cos ωt, determine the ratio 
of the correction (error) field to the quasistatic field of part (a). 

3.3.2	 The configuration shown in Fig. P3.3.2 is similar to that for Prob. 3.3.1 ex­
cept that the sources distributed along the left and right edges are current 
rather than voltage sources and are of opposite rather than the same polar­
ity. Thus, with the current sources varying slowly, a (z­independent) surface 
current density K(t) circulates around a loop consisting of the sources and 
the electrodes. The roles of E and H are the reverse of what they were in 
Example 3.3.1 or Prob. 3.3.1. Because the electrodes are pictured as having 
no resistance, the low­frequency electric field is zero while, even if the exci­
tations are constant in time, there is an H. The following steps answer the 
question, Under what circumstances is the electric displacement current 
negligible compared to the magnetic induction? 

(a) Determine H in the region between the electrodes in a manner consis­
tent with there being no H outside. (Ampère’s continuity condition 
relates H to K at the electrodes. Like the E field in Example 3.3.1 or 
Prob. 3.3.1, the H is extremely simple.) 

(b) Use the integral form of Faraday’s law to determine E between the 
electrodes. Note that symmetry requires that this field be zero where 
z = 0. 

(c) Because of this time­varying E, there is a displacement current density 
between the electrodes in the x direction. Use Ampère’s integral law 
to find the correction (error) H. Note that the quasistatic field already 
meets the conditions imposed by the current sources where z = ±l. 

(d) Given that the driving currents are sinusoidal with angular frequency 
ω, determine the ratio of the “error” of H to the MQS field of part 
(a). 

3.4 Quasistatic Systems 
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Fig. P3.3.2 

3.4.1	 The configuration shown in cutaway view in Fig. P3.4.1 is essentially the 
outer region of the system shown in Fig. 3.4.2. The object here is to deter­
mine the error associated with neglecting the displacement current density 
in this outer region. In this problem, the region of interest is pictured as 
bounded on three sides by material having no resistance, and on the fourth 
side by a distributed current source. The latter imposes a surface current 
density Ko in the z direction at the radius r = b. This current passes ra­
dially outward through a plate in the z = h plane, axially downward in 
another conductor at the radius r = a, and radially inward in the plate at 
z = 0. 

(a) Use the MQS form of Ampère’s integral law to determine H inside 
the “donut”­shaped region. This field should be expressed in terms of 
Ko. (Hint: This step is essentially the same as for Example 3.4.1.) 

(b) There is no H outside the structure. The interior field is terminated 
on the boundaries by a surface current density in accordance with 
Ampère’s continuity condition. What is K on each of the boundaries? 

(c) In general, the driving current is time varying, so Faraday’s law re­
quires that there be an electric field. Use the integral form of this law 
and the contour C and surface S shown in Fig. P3.4.2 to determine E. 
Assume that E tangential to the zero­resistance boundaries is zero. 
Also, assume that E is z directed and independent of z. 

(d) Now determine the error in the MQS H by using Ampère’s integral 
law. This time the displacement current density is not approximated 
as zero but rather as implied by the E found in part (c). Note that the 
MQS H field already satisfies the condition imposed by the current 
source at r = b. 

(e) With	 Ko = Kp cos ωt, write the condition for the error field to be 
small compared to the MQS field in terms of ω, c, and l. 
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