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OVERVIEW OF
 
ELECTROMAGNETIC
 
FIELDS
 

15.0 INTRODUCTION 

In developing the study of electromagnetic fields, we have followed the course sum­
marized in Fig. 1.0.1. Our quest has been to make the laws of electricity and 
magnetism, summarized by Maxwell’s equations, a basis for understanding and 
innovation. These laws are both general and simple. But, as a consequence, they 
are mastered only after experience has been gained through many specific exam­
ples. The case studies developed in this text have been aimed at providing this 
experience. This chapter reviews the examples and intends to foster a synthesis of 
concepts and applications. 

At each stage, simple configurations have been used to illustrate how fields 
relate to their sources, whether the latter are imposed or induced in materials. Some 
of these configurations are identified in Section 15.1, where they are used to outline 
a comparative study of electroquasistatic, magnetoquasistatic, and electrodynamic 
fields. A review of much of the outline (Fig. 1.0.1) can be made by selecting a 
particular class of configurations, such as cylinders and spheres, and using it to 
exemplify the material in a sequence of case studies. 

The relationship between fields and their sources is the theme in Section 15.2. 
Again, following the outline in Fig. 1.0.1, electric field sources are unpaired charges 
and polarization charges, while magnetic field sources are current and (paired) mag­
netic charges. Beginning with electroquasistatics, followed by magnetoquasistatics 
and finally by electrodynamics, our outline first focused on physical situations where 
the sources were constrained and then were induced by the presence of media. In 
this text, magnetization has been represented by magnetic charge. An alternative 
commonly used formulation, in which magnetization is represented by “Ampèrian” 
currents, is discussed in Sec. 15.2. 

As a starting point in the discussions of EQS, MQS, and electrodynamic fields, 
we have used idealized models for media. The limits in which materials behave as 
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“perfect conductors” and “perfect insulators” and in which they can be said to have 
“infinite permittivity or permeability” provide yet another way to form an overview 
of the material. Such an approach is taken at the end of Sec. 15.2. 

Useful as these idealizations are, their physical significance can be appreciated 
only by considering the relativity of perfection. Although we have introduced the 
effects of materials by making them ideal, we have then looked more closely and 
seen that “perfection” is a relative concept. If the fields associated with idealized 
models are said to be “zero order,” the second part of Sec. 15.2 raises the level of 
maturity reflected in the review by considering the “first order” fields. 

What is meant by a “perfect conductor” in EQS and MQS systems is a part 
of Sec. 15.2 that naturally leads to a review in Sec. 15.3 of how characteristic times 
can be used to understand electromagnetic field interactions with media. Now that 
we can see EQS and MQS systems from the perspective of electrodynamics, Sec. 
15.3 is aimed at an overview of how the spatial scale, time scale (frequency), and 
material properties determine the dominant processes. The objective in this section 
is not only to integrate material, but to add insight into the often iterative process 
by which a model is made to both encapsulate the essential physics and serve as a 
basis of engineering innovation. 

Energy storage and dissipation, together with the associated forces on macro­
scopic media, provide yet another overview of electromagnetic systems. This is the 
theme of Sec. 15.4, which summarizes the reasons why macroscopic forces can usu­
ally be classified as being either EQS or MQS. 

15.1 SOURCE AND MATERIAL CONFIGURATIONS 

We can use any one of a number of configurations to review physical phenomena 
outlined in Fig. 1.0.1. The sections, examples, and problems associated with a given 
physical situation are referenced in the tables used to trace the evolution of a given 
configuration. 

Incremental Dipoles. In homogeneous media, dipole fields are simple solu­
tions to Laplace’s equation or the wave equation in two or three dimensions and 
have been used to represent the range of situations summarized in Table 15.1.1. 
As introduced in Chap. 4, the dipole represented closely spaced equal and opposite 
electric charges. Perhaps these charges were produced on a pair of closely spaced 
conducting objects, as shown in Fig. 3.3.1a. In Chap. 6, the electric dipole was used 
to represent polarization, and a distinction was made between unpaired and paired 
(polarization) charges. 

In representing conduction phenomena in Chap. 7, the dipole represented a 
closely spaced pair of current sources. Rather than being a source in Gauss’ law, 
the dipole was a source in the law of charge conservation. 

In magnetoquasistatics, there were two types of dipoles. First was the small 
current loop, where the dipole moment was the product of the area, a, and the 
circulating current, i. The dipole fields were those from a current loop, far from 
the loop, such as shown in Fig. 3.3.1b. As we will discuss in Sec. 15.2, we could 
have used current loop dipoles to represent magnetization. However, in Chap. 9, 
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TABLE 15.1.1 

SUMMARY OF INCREMENTAL DIPOLES 

:Electro quasistatic charge 
Point; Sec. 4.4, 
Line; Prob. 4.4.1, Sec. 5.7 

:Electro quasistatic polarization 
Sec. 6.1 

:Stationary conduction current 
Point; Example 7.3.2 
Line; Prob. 7.3.3 

:Magnetoquasistatic current 
Point; Example 8.3.2 
Line; Example 8.1.2 

:Magnetoquasistatic magnetization 
Sec. 9.1 

:Electric Electrodynamic 
Point; Sec. 12.2 

:Magnetic Electrodynamic 
Point; Sec. 12.2 
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magnetization was represented by magnetic dipoles, a pair of equal and opposite 
magnetic charges. Thus, the developments of polarization in Chap. 6 were directly 
applicable to magnetization. 

To create the time­varying positive and negative charges of the electric dipole, 
a current is required. In Fig. 3.3.1a, this current is supplied by the voltage source. 
In the EQS limit, the magnetic field associated with this current is negligible, as 
are the effects of the associated magnetic field. In Chap. 12, where the laws of 
Faraday and Ampère were made self­consistent, the coupling between these laws 
was found to result in electromagnetic radiation. Electric dipole radiation existed 
because the charging currents created some magnetic field and that, in turn, induced 
a rotational electric field. In the case of the magnetic dipole shown last in Table 
15.1.1, electromagnetic waves resulted from a displacement current induced by the 
time­varying magnetic field that, in turn, produced a more rotational magnetic 
field. 

Planar Periodic Configurations. Solutions to Laplace’s equation in Cartesian 
coordinates are all that is required to study the quasistatic and “steady” situations 
outlined in Table 15.1.2. The fields used to study these physical situations, which 
are periodic in a plane that “extends to infinity,” are by nature decaying in the 
direction perpendicular to that plane. 

The electrodynamic fields studied in Sec. 12.6 have this same decay in a 
direction perpendicular to the direction of periodicity as the frequency becomes low. 
From the point of view of electromagnetic waves, these low frequency, essentially 
Laplacian, fields are represented by nonuniform plane waves. As the frequency is 
raised, the nonuniform plane waves become waves that propagate in the direction 
in which they formerly decayed. Solutions to the wave equation can be spatially 
periodic in both directions. The TE and TM electrodynamic field configurations 
that conclude Table 15.1.2 help put into perspective those aspects of the EQS and 
MQS configurations that do not involve losses. 

Cylindrical and Spherical. A few simple solutions to Laplace’s equation are 
sufficient to illustrate the nature of fields in and around cylindrical and spherical 
material objects. Table 15.1.3 shows how a sequence of case studies begins with 
EQS and MQS fields, respectively, in systems of “perfect” insulators and “perfect” 
conductors and culminates in the very different influences of finite conductivity on 
EQS and MQS fields. 

Fields Between Plane Parallel Plates. Uniform and piece­wise uniform qua­
sistatic fields are sufficient to illustrate phenomena ranging from EQS, the “capac­
itor,” to MQS “magnetic diffusion through thin conductors,” Table 15.1.4. Closely 
related TEM fields describe the remaining situations. 

Axisymmetric (Coaxial) Fields. The case studies summarized in Table 15.1.4 
under this category parallel those for fields between plane parallel conductors. 
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TABLE 15.1.2 

PLANAR PERIODIC CONFIGURATIONS 

Field Solutions 

Laplace’s equation: Sec. 5.4 

Wave equation: Sec. 12.6 

Electroquasistatic (EQS) 

Constrained Potentials and Surface Charge: Examp. 5.6.2 

Constrained Potentials and Volume Charge: Examp. 5.6.1 

Probs. 5.6.1­4 

Constrained Potentials and Polarization: Probs. 6.3.1­4 

Charge Relaxation: Probs. 7.9.7­8 

Steady Conductor (MQS or EQS) 

Constrained Potential and Insulating Boundary: Prob. 7.4.3 

Magnetoquasistatic (MQS) 

Magnetization: Examp. 9.3.2 

Magnetic diffusion through Thin Conductors: Probs. 10.4.1­2 

Electrodynamic 

Imposed Surface Sources: Examps. 12.6.1­2 

Probs. 12.6.1­4 

Imposed Sources with Perfectly Examp. 12.7.2 

Conducting Boundaries: Probs. 12.7.3­4 

Probs. 13.2.1 

Perfectly Insulating Boundaries: Sec. 13.5 

Probs. 13.2.3­4 

Probs. 13.5.1­4 
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TABLE 15.1.3 

CYLINDRICAL AND SPHERICAL CONFIGURATIONS 

Field Solutions to Laplace’s Equation: Cylindrical; Sec. 5.7 Spherical; Sec. 5.9 

Electroquasistatic 

Equipotentials: Examp. 5.8.1 Examp. 5.9.2 

Polarization: 

Permanent: Prob. 6.3.6 Examp. 6.3.1 

Prob. 6.3.5 

Induced: Examp. 6.6.2 Probs. 6.6.1­2 

Charge Relaxation: Probs. 7.9.4­5 Examp. 7.9.3 

Prob. 7.9.6 

Steady Conduction (MQS or EQS) 

Imposed Current: Examp. 7.5.1 Probs. 7.5.1­2 

Magnetoquasistatic 

Imposed Current: Probs. 8.5.1­2 Examp. 8.5.1 

Perfect Conductor: Probs. 8.4.2­3 Examp. 8.4.3 

Prob. 8.4.1 

Magnetization: Probs. 9.6.3­4,10,12 Probs. 9.6.11,13 

Magnetic Diffusion: Examp. 10.4.1 Probs. 10.4.3­4 

Probs. 10.4.5­6 

TM and TE Fields with Longitudinal Boundary Conditions. The case stud­
ies under this heading in Table 15.1.4 offer the opportunity to see the relationship 
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TABLE 15.1.4. SPECIAL CONFIGURATIONS 

Fields Between Plane Parallel Plates 

Capacitor: 

Resistor: 

Inductor: 

Charge Relaxation: 

Magnetic Diffusion though: 

Thin Conductors: 
Thick Conductors (TEM): 

Principle (TEM) Waveguide Modes 

Transmission Line: 

Examps. 3.3.1, 6.3.3 

Probs. 6.5.1­4, 6.6.8, 11.2.1 

11.3.3, 11.6.1 

Examps. 7.2.1, 7.5.2 

Examp. 8.4.4, Probs. 9.5.1,3,6 

Examp. 7.9.2 

Prob. 10.3.4 
Examps. 10.6.1, 10.7.1 

Probs. 10.3.4, 10.6.1­2, 10.7.1­2 

Examps. 13.1.1­2 

Examps. 14.1.1, 14.8.2 

Axisymmetric (Coaxial) Fields 

Capacitor: 

Resistor: 

Inductor: 

Charge Relaxation: 

TEM Transmission Line 

Probs 6.5.5­6 

Examps. 7.5.2 

Probs. 7.2.1,4,8 

Examp. 3.4.1 

Probs. 9.5.2,4­5 

Prob. 7.9.1 

Prob. 13.1.4 

TM and TE Fields with Longitudinal 

Boundary Conditions 

Capacitive Attenuator: 

TM Waveguide Fields: 

Inductive Attenuator: 

TE Waveguide Fields: 

Sec. 5.5 

Examp. 13.3.1 

Examp. 8.6.3 

Examp. 13.3.2 

Cylindrical Conductor­Pair and 

Conductor­Plane 

EQS Perfect Conductors: 

MQS Perfect Conductors: 

TEM Transmission Line: 

Examp. 4.6.3 

Examp. 8.6.1 

Examp. 14.2.2 
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between fields and their sources, in the quasistatic limits and as electromagnetic 
waves. The EQS and MQS limits, illustrated by Demonstrations 5.5.1 and 8.6.2, 
respectively, become the shorted TM and TE waveguide fields of Demonstrations 
13.3.1 and 13.3.2. 

Cylindrical Conductor Pair and Conductor Plane. The fields used in these 
configurations are first EQS, then MQS, and finally TEM. The relationship between 
the EQS and MQS fields and the physical world is illustrated by Demonstrations 
4.7.1 and 8.6.1. Regardless of cross­sectional geometry, TEM waves on pairs of 
perfect conductors are much of the same nature regardless of geometry, as illustrated 
by Demonstration 13.1.1. 

15.2 MACROSCOPIC MEDIA 

Source Representation of Macroscopic Media. The primary sources of 
the EQS electric field intensity were the unpaired and paired charge densities, 
respectively, describing the influence of macroscopic media on the fields through 
conduction and polarization (Chap. 6). Although in Chap. 8 the primary source 
of the MQS magnetic field due to conduction was the unpaired current density, 
in Chap. 9, magnetization was modeled as the result of orientation of permanent 
magnetic dipoles made up of a pair of magnetic charges, positive and negative. This 
is not the conventional way of introducing magnetization. However, the magnetic 
charge model made possible an analogy between polarization and magnetization 
that enabled us to introduce magnetization into the field equations by analogy to 
polarization. More conventional is the approach that treats magnetization as the 
result of circulating Ampèrian currents. The two approaches lead to the same fi­
nal result, only the model is different. To illustrate this, let us rewrite Maxwell’s 
equations (12.0.1)–(12.0.4) in terms of B, rather than H 

∂ �× E = − 
∂t 

B (1) 

B ∂ ∂ �× 
µo 

= �× M + Ju + 
∂t 

�oE + 
∂t 

P (2) 

� · �oE = −� · P + ρu (3) 

� · B = 0 (4) 

Thus, if B is considered to be the fundamental field variable, rather than H, then the 
presence of magnetization manifests itself by the appearance of the term �×M next 
to Ju in Ampère’s law. Like Ju, the Ampèrian current density, �× M, is the source 
responsible for driving B/µo. Because B is solenoidal, no sources of divergence 
appear in Maxwell’s equations reformulated in terms of B. The fundamental source 
representing magnetization is now a current flowing around a small loop (magnetic 
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dipole). Equations (1)–(4) are, of course, identical in content to (12.0.1)–(12.0.4) 
because they resulted from the latter by a simple substitution of B/µo − M for H. 
Yet the model of magnetization was changed by this substitution. As mentioned 
in Sec. 11.8, both models lead to the same result even when relativistic effects are 
included, but the Ampèrian model calls for greater care and sophistication, because 
it contains moving parts (currents) in the rest frame. This is the other reason we 
chose the magnetic charge model extensively developed by L. J. Chu. 

Material Idealizations. Much of our analysis of electromagnetic fields has 
been based on source idealizations. In the case of sources produced by or induced in 
media, idealizations were made of the media and of the boundary conditions implied 
by the induced sources. These are summarized by the first and second parts of Table 
15.2.1. 

The case studies listed in Tables 15.1.2–15.1.4 can be used as themes to ex­
emplify these idealizations. 

The Relativity of Perfection. We began modeling EQS and MQS fields 
in the presence of media by postulating “perfect” conductors. When we studied 
materials in more detail, we learned that “perfection” is a relative concept. Useful 
as are the idealizations summarized in Table 15.2.1, they must be used with proper 
regard for the approximations made. Those idealizations that involve conductivity 
depend not only on relative material properties for their validity but on size and 
time­rates of change as well. These are reviewed in the next section. 

In each of the three “infinite parameter” idealizations listed in the table, the 
parameter in one region is large compared to that in another region. The appropriate 
boundary condition depends on the region of field excitation. The idealization makes 
it possible to approximate the field in an “inside” region without regard for what 
is “outside.” One of the continuity conditions on the surface of the “inside” region 
is approximated as being homogeneous. Then the fields in the “outside” region are 
found by starting with the other continuity condition. Our first introduction to this 
“inside­outside” approach came in Sec. 7.5. With appropriate regard for replacing 
a source of curl with a source of divergence, the general discussion given in Sec. 9.6 
for magnetizable materials is applicable to the other situations as well. 

15.3 CHARACTERISTIC TIMES, PHYSICAL PROCESSES, 
AND APPROXIMATIONS 

Self­Consistency of Approximate Laws. By dealing with EQS and MQS 
systems, we concentrated on phenomena that result from approximate forms of 
Maxwell’s equations. Terms in the “exact” equations were ignored, and field con­
figurations were derived from these truncated forms of the equations. This way 
of solving problems is not unique to electromagnetic field theory. Very often it is 
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TABLE 15.2.1 
IDEALIZATIONS 

Idealization Source Constraint Section 

EQS Perfect Insulator 

Perfectly Polarized 

MQS Perfect “Insulator” 

Perfectly Magnetized 

Resonant/Traveling­Wave 
Electrodynamic Systems 

Charges Constrained 

P Constrained 

Currents Constrained 

M Constrained 

Self­Consistent 
Charge and Current 

4.3­5 

6.3 

8.1­3 

9.3 

12.2­4, 12.6 

Idealization Boundary Condition Section 

EQS Perfect Conductor 

Steady Conduction 
“Infinite Conductivity” 

“Infinite” Permittivity 

“Infinite” Permeability 

MQS Perfect Conductor 

Perfectly Conducting 
Surfaces Equipotentials 

n × E ≈ 0 or n · J ≈ 0 
on surface 

n × E ≈ 0 or n · D ≈ 0 
on surface 

n × H ≈ K or n · B ≈ 0 
on surface 

∂n · B/∂t ≈ 0 
on perfectly 
conducting surfaces 

4.6­7, 5.1­10 

7.2, 9.6 

9.6 

9.6 

8.4, 8.6 
10.1, 12.7 
13.1­4 

necessary to ignore terms that appear in a “more exact” formulation of a physical 
problem. When this is done, it is necessary to be fully cognizant of the consequences 
of such approximations. Thus, the energy conservation relations used in the EQS 
and MQS approximations are special limiting cases of the Poynting theorem obeyed 
by the full Maxwell equations. The neglect of the displacement current or magnetic 
induction is equivalent to the neglect of the electric or magnetic energy storage. 

Next, one needs to ascertain whether the problem has been sufficiently speci­
fied by the approximate form of the equations and which boundary conditions have 
to be retained, which discarded. The development of the EQS and MQS approxi­
mations, with the proof of the uniqueness theorem, provided examples of the devel­
opment of a self­consistent formalism within the framework of a set of approximate 
equations. In systems composed of “perfectly conducting” and “perfectly insulat­
ing” media, it is relatively easy to decide whether or not there are subsystems that 
are EQS or MQS. 
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A system of perfect conductors surrounded by perfect insulators is likely to 
be EQS, if it is “open circuit” at zero frequency (a system of capacitors), and MQS, 
if it is “short circuit” at zero frequency (a system of inductors). However, we are 
generally not confronted with physical situations in which the materials are labeled 
as “perfect conductors” or “perfect insulators.” Indeed, with the last half of Chap. 
7 and Chap. 10 as background, there comes an awareness that in EQS and MQS 
systems the term “perfect” usually has very different meanings. 

Presented with a physical object connected to an electrical source, how do we 
sort the dominant from the inconsequential electromagnetic phenomena? Generally, 
this is an iterative process with the first “guess” based on experience and intuition. 
With the understanding that the combinations of materials and geometries that 
are of practical interest are far too diverse to make a few simple rules universally 
applicable, this section is nevertheless aimed at organizing what we have learned 
so as to promote the insight required to identify dominant physical processes. 

From the examination of how finite conductivity influences the distribution 
of the charge density in the EQS systems of Chap. 7 and the current density in 
the MQS systems of Chap. 10, and from the discussion of the electrodynamics of 
lossy materials, we have a good idea of what questions must be asked to determine 
the electromagnetic nature of simple subsystems. A specific example, familiar from 
Sec. 14.8, is the conducting block sandwiched between perfectly conducting plane 
parallel electrodes, shown in Fig. 14.8.1. 

First, what are the electrical properties of the materials? Here this question • 
has been reduced to, What are σ, �, and µ? The most widely ranging of these 
parameters is the conductivity σ, which can vary from 10−14 S/m in com­
mon hydrocarbon liquids to almost 108 S/m in copper. Indeed, vacuum and 
superconducting materials extend this range from absolute zero to infinity. 

Second, what is the size scale l? In common engineering systems, lengths of • 
interest range from the submicrometer scales of semiconductor junctions to 
lengths for power transmission systems in excess of 1000 kilometers. Of course, 
even this range is small compared to the subnuclear to supergalactic range 
provided by nature. 

Third, what time scale τ is of interest? Perhaps the system is driven by a • 
sinusoidally varying source. Then, the time scale would most likely be the 
reciprocal of the angular frequency 1/ω. In common engineering practice, 
frequencies range from 10−2 Hz used to characterize insulation to optical fre­
quencies in the range of 1015 Hz. Again, nature provides frequencies that range 
even more widely, including the reciprocal of millions of years for terrestrial 
magnetic fields in one extreme and the frequencies of gamma rays in the other. 

Similitude and Maxwell’s Equations. Consider an arbitrary system, shown 
in Fig. 15.3.1, having the typical length l and properties 

��(r), σσ(r), µµ(r) (1) 
where �, σ, and µ are typical magnitudes of dielectric constant, conductivity and 
permeability, and �(r), σ(r), and µ(r) are the spatial distributions, normalized so 
that their peak values are of the order of unity. 
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Fig. 15.3.1 Arbitrary system having typical length l, permittivity �, con­
ductivity σ, and permeability µ. 

TABLE 15.3.1 
SECTIONS EXEMPLIFYING CHARACTERISTIC TIMES 

Electroquasistatic charge relaxation time: Sec. 7.7, 7.9 

Magnetoquasistatic magnetic (current) 
diffusion time: 

Sec. 10.2­7 

Electromagnetic wave transit time: Sec. 12.2­7, 14.3­4 

From our studies of ohmic conductors in EQS and MQS systems, we know that 
field distributions are governed by the charge relaxation time τe and the magnetic 
diffusion time τm, respectively. Moreover, from our study of electromagnetic waves, 
we know that the transit time for an electromagnetic wave, τem, comes into play 
with electrodynamic effects. Sections in which these three times were exemplified 
are listed in Table 15.3.1. Thus, we expect to find that in systems having one typical 
size scale, there are no more than three times that determine the nature of the fields. 

τe ≡ 
σ

� 
; τm ≡ µσl2; τem ≡ 

c

l 
= l
√

µ� (2) 

Actually, the electromagnetic transit time is the geometric mean of the other two 
times, so that only two of these times are independent. 

τem = 
√

τeτm (3) 

With an excitation having the angular frequency ω, the relative distribution 
of sources and fields in a system is determined by the product of ω and any pair of 
these times. This can be seen by writing Maxwell’s equations in normalized form. 
To that end, we use underbars to denote normalized (dimensionless) variables and 
normalize the spatial coordinates to the typical length l. The time is normalized to 
the reciprocal of the angular frequency. 

(x, y, z) = (xl, yl, zl), t = t/ω (4) 
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The fields and charge density are normalized to a typical electric field intensity E . 

E = EE, H = E 
� 

µ

�
H, ρu = 

�

l

E 
ρ 

u 
(5) 

Then, Maxwell’s equations (12.0.7)–(12.0.10), with the constitutive laws of (1), 
become 

� · �E = ρ (6)
u 

= 
� 1 

E + 
∂�E� 

(7a)�× H ωτem
ωτe ∂t 

1 ∂�E 
= ωτmE + ωτem (7b)

ωτem ∂t 

∂H �× E = −ωτem 
∂t 

(8) 

� · µH = 0 (9) 

In writing the alternative forms of Ampère’s law, (3) has been used. 
In a system having the constitutive laws of (1), two parameters specify the 

fields predicted by Maxwell’s equations, (6)–(9). These are any pair of the three 
ratios of the characteristic times of (2) to the typical time of interest. For the sinu­
soidal steady state, the time of interest is 1/ω. Thus, using the version of Ampère’s 
law given by (7a), the dimensionless parameters (ωτem, ωτe) specify the fields. Using 
(7b), the parameters are (ωτem, ωτm). 

Characteristic Times and Lengths. Evidently, the three dimensionless pa­
rameters formed by multiplying the characteristic times of (2) by the frequency, ω, 
(or the reciprocal of some other time typifying the dynamics), are the key to sorting 
out physical processes. 

ωτe = 
ω� 

; ωτm = ωµσl2; ωτem = ωl
√

µ� (10)
σ 

Given two of these parameters and hence the third, we have some clues as to 
what physical processes are dominant. However, even in a subsystem typified by 
one permittivity, one conductivity, and one permeability, other parameters may be 
needed to specify the geometry. Every ratio of dimensions is another dimensionless 
parameter! To begin with, suppose that we are dealing with a system where all 
of the dimensions are on the order of the typical length l. The characteristic times 
make evident why quasistatic systems are either EQS or MQS. They also determine 
how the effects of finite conductivity come into play either through charge relaxation 
or magnetic diffusion as the frequency is raised. 

Since the electromagnetic transit time is the geometric mean of the charge 
relaxation and magnetic diffusion times, (3), τem must lie between the other two 
times. Thus, the three times are in one of two orders. Either τm < τe, in which case 
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Fig. 15.3.2 Ordering of reciprocal of characteristic times on the frequency 
axis. 

the order of reciprocal times is as shown in Fig. 15.3.2a, or the reverse is true, and 
the order is as in Fig. 15.3.2b. Moreover, if τe is well removed from τem, then we 
are assured that τm is also very different from τem. 

As the frequency is raised, we first encounter either the charge relaxation 
phenomena typical of EQS subsystems (Fig. 15.3.2a) or the magnetic diffusion 
phenomena of MQS subsystems (Fig. 15.3.2b). The respective quasistatic laws for 
EQS and MQS systems apply for frequencies ranging above the first reciprocal time 
but below the reciprocal electromagnetic transit time. In both cases, the frequency 
is well below the reciprocal of the electromagnetic delay time. 

The EQS laws follow from (6)–(9) using the first form of (7). A physical 
situation is characterized by the EQS laws, when the term on the right hand side 
of Faraday’s law, (8), is negligible. From Ampère’s law we gather that H is of the 
order of ωτemE when ωτe > 1, and of order τem/τe when ωτe < 1. In the former 
case, in which the displacement current density dominates over the conduction 
current density, one finds for the right hand side in Faraday’s law: (ωτem)2E. In the 
latter case, in which the conduction current density is larger than the displacement 
current density, the right hand side of (8) is ωτ2 /τeE. Thus the source of curl in em
Faraday’s law can be neglected when (ωτem)2 � 1 or ωτem/τe � 1 whichever is 
a more stringent limit on ω. The laws of EQS prevail. An analogous, but simpler, 
argument arrives at the laws of MQS. The argument is simpler, because there is no 
analog to unpaired electric charge. 

In cases where the ordering of characteristic times is as in Fig. 15.3.2b, the 
MQS laws apply for frequencies beyond the reciprocal magnetic diffusion time but 
again falling short of the electromagnetic transit time. This can be seen from the 
normalized Maxwell’s equations, this time using (7b). Because ωτem � 1, the last 
term in (7b) (the displacement current) is negligible. Thus, we are led to the primary 
MQS laws, Ampère’s law with the displacement current neglected and the continuity 
law for the magnetic flux density (9). This time, it follows from Ampère’s law [(7b) 
with the last term neglected] that H ≈ (ωτm/ωτem)E, so that the right­hand side of 
Faraday’s law, (8), is of the order of ωτm. Thus, the MQS laws are (10.0.1)–(10.0.3). 

As the frequency is raised, so that we move from left to right along the fre­
quency axes of Fig. 15.3.2, we expect dynamical phenomena associated with charge 
relaxation, electromagnetic waves, and magnetic diffusion to come into play as the 
frequency comes into the range of the respective reciprocal characteristic times. 
Actually, because the dynamics can establish their own length scales (for example, 
the skin depth), matters are sometimes not so simple. However, insight is gained 
by observing that the length scale l orders these critical frequencies. With the ob­
jective of picturing the electromagnetic phenomena in a plane, in which one axis 
reflects the effect of the frequency while the other axis represents the length scale, 

http:15.3.2a
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Fig. 15.3.3 In plane where the vertical axis denotes the log of the length 
scale normalized to the characteristic length defined by (14), and the horizontal 
axis is the angular frequency multiplied by the charge relaxation time τe, the 
three lines denote possible boundaries between regimes. 

we normalize the frequency to the one characteristic time, τe, that does not de­
pend on the length. Thus, the frequency conditions for effects of charge relaxation, 
magnetic diffusion, and electromagnetic waves to be important are, respectively, 

ωτe = 1 (11) 

ωτm = 1 ωτe = (l/l∗)−2 (12)⇒ 

ωτem = 1 ωτe = (l/l∗)−1 (13)⇒ 

where the characteristic length l∗ is 

l∗ ≡ 
σ 

1 �
�/µ (14) 

In a plane in which the coordinates are essentially the length scale and the 
frequency, the lines along which the frequency is equal to the respective reciprocal 
characteristic times are shown in Fig. 15.3.3. The vertical axis denotes the log of 
the length scale normalized to the characteristic length, while the horizontal axis is 
the log of the frequency multiplied by the charge relaxation time. Thus, the origin 
is where the length is equal to l∗ and the frequency is equal to 1/τe. 

Note that for systems having a typical length l less than the reciprocal of 
the characteristic impedance conductivity product, l∗, the ordering of times is as 
in Fig. 15.2.1a. If the length is greater than this characteristic length, then the 
ordering is as in Fig. 15.2.1b. At least for systems having one length scale l and one 
characteristic time 1/ω, the system can be MQS only if l is larger than l∗ and can 
be EQS only if l is smaller than l∗. The MQS and EQS regimes of Fig. 15.3.3 both 
reduce to quasistationary conduction (QSC) at frequencies such that ωτm � 1 and 
ωτe � 1, respectively. 

Since σ is such a widely varying parameter, the values of l∗ also have a wide 
range. Table 15.3.2 illustrates this fact. In water having physiological conductivity 

http:15.2.1a
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(in flesh), the characteristic times would coincide if the length scale were about 12 
cm at a characteristic frequency (ωτe = 1) f = 45 MHz. For lengths less than about 
12 cm, the ordering would be as in Fig. 15.3.2a and for longer lengths, as in Fig. 
15.3.2b. However, in copper it would require that the characteristic length be less 
than an atomic distance to make τe exceed τm. On such a short length scale, the 
conductivity model is not valid.1 In the opposite extreme, a layer of corn oil about 
60,000 miles thick would be required to make τm exceed τe! 

Example 15.3.1.	 Overview of TEM Fields in Open Circuit Transmission 
Line Filled with Lossy Material (continued) 

In Sec. 14.8, we considered the nature of the electromagnetic fields in a conductor 
sandwiched between “perfectly conducting” plates. Example 14.8.2 was devoted to 
an overview of electromagnetic regimes pictured in the length­time plane, Fig. 14.8.3, 
redrawn as Fig. 15.3.3. As the frequency was raised in that example with l � l∗, the 
line ωτm = 1 indicated that quasi­stationary conduction had given way to magnetic 
diffusion (the resistor had become a system of distributed resistors and inductors). 
In that specific example, this was the line at which the long wave approximation 
broke down, βl ≈ 1. With l � l∗, we have seen that as the frequency was raised, 
the crossing of the line ωτe = 1 denoted that a resistor had changed into a system 
of distributed resistors in parallel with distributed capacitors. 

This example has a misleading simplicity that can be traced to the fact that it 
actually possesses more than one length scale and conductivity. To impose the TEM 
fields by means of the source, it was necessary to envision the slab of conductor 
as making perfect electrical contact with perfectly conducting plates. In reality, the 
boundary condition used to represent these plates implies conditions on still other 
parameters, notably the electrical properties and thickness of the plates. 

As the frequency is raised for a system in the upper half­plane (l larger than the 
matching length), why do we not see a transition to electromagnetic waves at ωτem = 
1 rather than ωτe = 1? The perfectly conducting plates force the displacement 
current to compete with the conduction current on its “own” length scale (either 
the skin depth or the electromagnetic wavelength). Thus, in this example, we do not 
make a transition from magnetic diffusion (with a penetration length determined by 
the skin depth δ) to a damped electromagnetic wave (with a decay length of twice 
l∗) until the electromagnetic wavelength λ = 2π/

√
µ�ω has become as short as the 

skin depth. Both are decreasing with increasing frequency. However, the skin depth 
(which decreases as 1/

√
ω) is equal to the wavelength (which decreases as 1/ω) only 

as the frequency reaches ωτe = 2π2 (for present purposes, “ωτe = 1”). 
In the lower half­plane, where systems are smaller than the characteristic 

length, why was the transition at ωτe = 1 evident in the surface current density in 
the plates but not in the spatial distribution of the fields? The electric field was found 
to remain uniform until the frequency had been raised to ωτem = 1. Here again, the 
“perfectly conducting” plates obscure the general situation. The conducting block 
has uniform conductivity. As a result, it can support no volume charge density, 
regardless of the frequency. In the EQS limit, it is the charge density that shapes 
the electric field distribution. Here the only charges are at the interfaces between 
the block and the perfectly conducting plates. Until magnetic induction comes into 
play at ωτem = 1, these surface charges assume whatever distribution they must 

1 Put another way, on a time scale as short as the charge relaxation time in a metal, the 
inertia of the electrons responsible for the conduction would come into play. (S. Gruber, “On 
Charge Relaxation in Good Conductors,” Proc. IEEE, Vol. 61 (1973), pp. 237­238. The inertial 
force is not included in the conductivity model. 
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to be consistent with an irrotational electric field. As a result, the plates make the 
EQS fields essentially uniform, and the appropriate model simplifies to one lumped 
parameter C in parallel with one lumped parameter R. 

15.4 ENERGY, POWER, AND FORCE 

Maxwell’s equations attribute an excitation (E and H) to every point in space. 
Consistent with this view, energy density and power flow density must be associ­
ated with every point in space as well. Poynting’s theorem, Sec. 11.2, does that. 
Poynting’s theorem identifies energy storage and dissipation associated with the 
polarization and magnetization processes. 

Each self­consistent macroscopic set of equations must possess an energy con­
servation principle, maybe including terms describing transformation of energy into 
other forms, like heat, if dissipation is present. An example was given in Sec. 11.3 
of a conservation principle for the approximate description of EQS fields with a 
density of power flow vector that was different from E× H. This alternate form of 
an energy conservation principle was better suited to the EQS description, because 
it did not contain the H field which is not usually evaluated in the EQS approxi­
mation. Instead, the charge conservation law (derived from Ampère’s law) was used 
to find the currents flowing in the system. 

An important application of the concept of energy was the derivation of the 
force on macroscopic material. The force on a dielectric or magnetic object com­
puted from energy change can include correctly the contributions to the net force 
from fringing fields even though the field expressions neglect them, if the energy 
associated with the fringing field does not change in a small displacement of the 
object. 

Energy and Quasistatics. Because magnetic and electric energy storages, 
respectively, are negligible in EQS and MQS systems, a comparison of energy den­
sities can also be used to establish the validity of a quasistatic approximation. 
Specifically, we will see that in systems characterized by one length scale, the ratio 
of magnetic to electric energy storage takes the form 

wm = K
� l �2 

we l∗ 
(1) 

where l∗ is the characteristic length 

l∗ ≡ 
1 
σ 

�
�/µ (2) 

familiar from Secs. 14.82 and 15.3 and K is of the order of unity. 

2 In Sec. 14.8, twice this length was found to be the decay length for an electromagnetic wave. 
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Fig. 15.4.1 Low­frequency equivalent circuits and associated ordering to 
reciprocal times. 

Energy arguments can also be the basis for simple models that modestly 
extend the frequency range of quasi­stationary conduction. A second object in this 
section is the illustration of how these models are deduced. 

As the frequency is raised, one of two processes leads to a modification in 
the field sources, and hence of the fields. If l is less than l∗, so that 1/τe is the 
first reciprocal characteristic time encountered as ω is raised, then the current 
density is progressively altered to supply unpaired charge to regions of nonuniform 
σ and �. Alternatively, if l is larger than l∗, so that 1/τm is the shortest reciprocal 
characteristic time, magnetic induction alters the current density notonly in its 
magnitude and time dependence but in its spatial distribution as well. 

Fully dynamic fields, in which all three (or more) characteristic times are 
of the same order of magnitude are difficult to analyze because the distribution 
of sources is not known until the fields have been solved selfconsistently, often a 
difficult task. However, if the frequency is lower than the lowest reciprocal time, 
the field distributions still approximate those for stationary conduction. This makes 
it possible to approximate the energy storages, and hence to identify both the 
conditions for the system to be EQS or MQS and to develop models that are 
appropriate for frequencies approaching the lowest reciprocal characteristic time. 

The first step in this process is to determine the quasi­stationary fields. The 
second is to use these fields to evaluate the total electric and magnetic energy 
storages as well as the total energy dissipation. 

� 
1 

� 
1 

� 
we = �E Edv; wm = µH Hdv; pd = σE Edv (3) 

V 2 
· 

V 2
· 

V 

· 

If it is found that the ratio of magnetic to electric energy storage takes the form of 
(1), and that if l is either very small or very large compared to the characteristic 
length, then we can presumably model the system by either the R­C or the L­R 
circuit of Fig. 15.4.1. 

As the third step, parameters in these circuits are determined by compar­
ing we, wm, and pd, as found from the QSC fields using (3), to these quantities 
determined in terms of the circuit variables. 

1 1 
we = Cv2; wm = Li2; pd = Ri2 (4)

2 2 

In general, the circuit models are valid only up to frequencies approaching, but not 
equal to, the lowest reciprocal time for the system. In the following example, we 
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will find that the R­C circuit is an exact model for the EQS system, so that the 
model is valid even for frequencies beyond 1/τe. However, because the fields can be 
strongly altered by rate processes if the frequency is equal to the lowest reciprocal 
time, it is generally not appropriate to use the equivalent circuits except to take 
into account energy storage effects coming into play as the frequency approaches 
1/RC or R/L. 

Example 15.4.1. Energy Method for Deriving an Equivalent Circuit 

The block of uniformly conducting material sandwiched between plane parallel 
perfectly conducting plates, as shown in Fig. 14.8.1, was the theme of Sec. 14.8. 
This gives the opportunity to see how the low­frequency model developed here fits 
into the general picture provided by that section. 

In the conducting block, the quasi­stationary conduction (QSC) fields have 
the distributions v σv 

E = ix; H = ziy (5) 
a a 

The total electric and magnetic energies and total dissipation follow from an 
integration of the respective densities over the volume of the system in accordance 
with (3) 

1 v 2 
we = wal � ;

2 a2 

waµ� σv 
wm = 

�2 
l3;

6 a 

a 
i2 pd = 

wlσ 
(6) 

where v and i are the terminal voltage and current.
 
Comparison of (4) and (6) shows that
 

lw� aµl a 
C = ; L = ; R = (7) 

a 3w lwσ 

Because the entire volume of the system considered here has uniform prop­
erties, there are no sources of the electric field (charge densities) in the volume of 
the system. As a result, the capacitance C found here is no different than if the vol­
ume were filled with a perfectly insulating material. By contrast, if the slab were of 
nonuniform conductivity, as in Example 7.2.1, the capacitance, and hence equivalent 
circuit, found by this energy method would not be so “obvious.” 

The inductance of the equivalent circuit does reflect a distribution of the source 
of the magnetic field, for the current density is distributed throughout the volume 
of the slab. By using the energy argument, we have acknowledged that there is a 
distribution of current paths, each having a different flux linkage. Strictly, when the 
flux linked by any current path is the same, inductance is only defined for perfectly 
conducting current paths. 

Which equivalent circuit is appropriate? Here we decide by comparing the 
stored energies. 

wm 
=

1� l �2 
(8) 

we 3 l∗ 

Thus, as we anticipated with (1), the system can be EQS if l � l∗ and MQS 
if l � l∗. The appropriate equivalent circuit in Fig. 15.4.1 is the R − C circuit if 
l � l∗ and is the L− R circuit if l � l∗. 

The simple circuits of Fig. 15.4.1 are not generally valid if the frequency 
reaches the reciprocal of the longest characteristic time, since the field distributions 
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have changed by then. In terms of the circuit elements, this means that in order for 
the circuits to be equivalent to the physical system, the time rates of change must 
remain slow enough so that ωRC < 1 or ωL/R < 1. 
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P R O B L E M S 

15.1 Source and Material Configurations 

15.1.1	 A theme from Chap. 5 on has been the use of orthogonal modes to represent 
field solutions and satisfy boundary conditions. Make a table identifying 
examples and problems illustrating this theme. 

15.2 Macroscopic Media 

15.2.1	 Field lines in the vicinity of a spherical interface between materials (a) and 
(b) are shown in Fig. P15.2.1. In each case, describe four idealized physical 
situations for which the field lines would be appropriate. 

Fig. P15.2.1 

Fig. P15.2.2 

15.2.2	 Dipoles at the center of a spherical region and associated fields are shown 
in Fig. P15.2.2. In each case, describe four appropriate idealized physical 
situations. 

15.3 Characteristic Times, Physical Processes, and Approximations 
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15.3.1	 In Fig. 15.3.3, a typical length and time are considered the independent 
parameters. Suppose that we wish to see the effect of varying the conduc­
tivity with the size held fixed. For example, with not only the size but 
the frequency fixed, the material might be cooling from a very high tem­
perature where it is molten and an ionic conductor to a low temperature 
where it is a good insulator. Using the conductivity rather than the length 
for the vertical axis, select a normalization time for the horizontal axis 
that is independent of conductivity, and construct a diagram analogous to 
Fig. 15.3.3. Identify a “characteristic” conductivity, σ∗, for normalizing the 
conductivity. 

15.3.2	 Figure 7.5.3 shows a circular conductor carrying a current that is returned 
through a coaxial “perfectly” conducting “can.” For sufficiently low fre­
quencies, the electric field and surface charge densities are as shown in Fig. 
7.5.4. The magnetic field is described in Example 11.3.1 where the effect of 
the washer­shaped conductor is neglected. 

(a) Sketch E and H, as well as the distribution of ρu and Ju. 
(b) Suppose that the length L is on the order of the radius (a), and 

(b) is not much smaller than (a). As the frequency is raised, argue 
that either charge relaxation will first dominate in revising the field 
distribution as in Fig. P15.3.2a, or magnetic diffusion will dominate as 
in Fig. P15.3.2b. In the latter case, describe the current distribution in 
the conductor by associating it with an example and a demonstration 
in this text. 

(c) With	 L allowed to be large compared to (a), under what circum­
stances will the system behave as the lossy transmission line of Fig. 
14.7.1 with G = 0? Discuss the EQS and MQS limits where this model 
applies. 

Fig. P15.3.2 

15.4 Energy, Power, and Force 

15.4.1	 For the system considered in Prob. 15.3.2, use the energy approach to 

http:P15.3.2a
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identify the parameters in the low frequency equivalent circuits of Fig. 
15.4.1, and write the ratio of energies in the form of (1). Ignore the effect 
of the washer­shaped conductor. 




