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1
 

MAXWELL’S
 
INTEGRAL LAWS
 
IN FREE SPACE
 

1.0 INTRODUCTION 

Practical, intellectual, and cultural reasons motivate the study of electricity and 
magnetism. The operation of electrical systems designed to perform certain engi­
neering tasks depends, at least in part, on electrical, electromechanical, or electro­
chemical phenomena. The electrical aspects of these applications are described by 
Maxwell’s equations. As a description of the temporal evolution of electromagnetic 
fields in three­dimensional space, these same equations form a concise summary of 
a wider range of phenomena than can be found in any other discipline. Maxwell’s 
equations are an intellectual achievement that should be familiar to every student 
of physical phenomena. As part of the theory of fields that includes continuum me­
chanics, quantum mechanics, heat and mass transfer, and many other disciplines, 
our subject develops the mathematical language and methods that are the basis for 
these other areas. 

For those who have an interest in electromechanical energy conversion, trans­
mission systems at power or radio frequencies, waveguides at microwave or optical 
frequencies, antennas, or plasmas, there is little need to argue the necessity for 
becoming expert in dealing with electromagnetic fields. There are others who may 
require encouragement. For example, circuit designers may be satisfied with circuit 
theory, the laws of which are stated in terms of voltages and currents and in terms 
of the relations imposed upon the voltages and currents by the circuit elements. 
However, these laws break down at high frequencies, and this cannot be understood 
without electromagnetic field theory. The limitations of circuit models come into 
play as the frequency is raised so high that the propagation time of electromagnetic 
fields becomes comparable to a period, with the result that “inductors” behave as 
“capacitors” and vice versa. Other limitations are associated with loss phenom­
ena. As the frequency is raised, resistors and transistors are limited by “capacitive” 
effects, and transducers and transformers by “eddy” currents. 
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Anyone concerned with developing circuit models for physical systems requires 
a field theory background to justify approximations and to derive the values of the 
circuit parameters. Thus, the bioengineer concerned with electrocardiography or 
neurophysiology must resort to field theory in establishing a meaningful connection 
between the physical reality and models, when these are stated in terms of circuit 
elements. Similarly, even if a control theorist makes use of a lumped parameter 
model, its justification hinges on a continuum theory, whether electromagnetic, 
mechanical, or thermal in nature. 

Computer hardware may seem to be another application not dependent on 
electromagnetic field theory. The software interface through which the computer 
is often seen makes it seem unrelated to our subject. Although the hardware is 
generally represented in terms of circuits, the practical realization of a computer 
designed to carry out logic operations is limited by electromagnetic laws. For exam­
ple, the signal originating at one point in a computer cannot reach another point 
within a time less than that required for a signal, propagating at the speed of light, 
to traverse the interconnecting wires. That circuit models have remained useful as 
computation speeds have increased is a tribute to the solid state technology that 
has made it possible to decrease the size of the fundamental circuit elements. Sooner 
or later, the fundamental limitations imposed by the electromagnetic fields define 
the computation speed frontier of computer technology, whether it be caused by 
electromagnetic wave delays or electrical power dissipation. 

Overview of Subject. As illustrated diagrammatically in Fig. 1.0.1, we 
start with Maxwell’s equations written in integral form. This chapter begins with 
a definition of the fields in terms of forces and sources followed by a review of 
each of the integral laws. Interwoven with the development are examples intended 
to develop the methods for surface and volume integrals used in stating the laws. 
The examples are also intended to attach at least one physical situation to each 
of the laws. Our objective in the chapters that follow is to make these laws useful, 
not only in modeling engineering systems but in dealing with practical systems 
in a qualitative fashion (as an inventor often does). The integral laws are directly 
useful for (a) dealing with fields in this qualitative way, (b) finding fields in simple 
configurations having a great deal of symmetry, and (c) relating fields to their 
sources. 

Chapter 2 develops a differential description from the integral laws. By follow­
ing the examples and some of the homework associated with each of the sections, 
a minimum background in the mathematical theorems and operators is developed. 
The differential operators and associated integral theorems are brought in as needed. 
Thus, the divergence and curl operators, along with the theorems of Gauss and 
Stokes, are developed in Chap. 2, while the gradient operator and integral theorem 
are naturally derived in Chap. 4. 

Static fields are often the first topic in developing an understanding of phe­
nomena predicted by Maxwell’s equations. Fields are not measurable, let alone 
of practical interest, unless they are dynamic. As developed here, fields are never 
truly static. The subject of quasistatics, begun in Chap. 3, is central to the approach 
we will use to understand the implications of Maxwell’s equations. A mature un­
derstanding of these equations is achieved when one has learned how to neglect 
complications that are inconsequential. The electroquasistatic (EQS) and magne­
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Fig. 1.0.1 Outline of Subject. The three columns, respectively for electro­
quasistatics, magnetoquasistatics and electrodynamics, show parallels in de­
velopment. 

toquasistatic (MQS) approximations are justified if time rates of change are slow 
enough (frequencies are low enough) so that time delays due to the propagation of 
electromagnetic waves are unimportant. The examples considered in Chap. 3 give 
some notion as to which of the two approximations is appropriate in a given situa­
tion. A full appreciation for the quasistatic approximations will come into view as 
the EQS and MQS developments are drawn together in Chaps. 11 through 15. 

Although capacitors and inductors are examples in the electroquasistatic 
and magnetoquasistatic categories, respectively, it is not true that quasistatic sys­
tems can be generally modeled by frequency­independent circuit elements. High­
frequency models for transistors are correctly based on the EQS approximation. 
Electromagnetic wave delays in the transistors are not consequential. Nevertheless, 
dynamic effects are important and the EQS approximation can contain the finite 
time for charge migration. Models for eddy current shields or heaters are correctly 
based on the MQS approximation. Again, the delay time of an electromagnetic 
wave is unimportant while the all­important diffusion time of the magnetic field 
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is represented by the MQS laws. Space charge waves on an electron beam or spin 
waves in a saturated magnetizable material are often described by EQS and MQS 
laws, respectively, even though frequencies of interest are in the GHz range. 

The parallel developments of EQS (Chaps. 4–7) and MQS systems (Chaps. 8– 
10) is emphasized by the first page of Fig. 1.0.1. For each topic in the EQS column 
to the left there is an analogous one at the same level in the MQS column. Although 
the field concepts and mathematical techniques used in dealing with EQS and MQS 
systems are often similar, a comparative study reveals as many contrasts as direct 
analogies. There is a two­way interplay between the electric and magnetic studies. 
Not only are results from the EQS developments applied in the description of MQS 
systems, but the examination of MQS situations leads to a greater appreciation for 
the EQS laws. 

At the tops of the EQS and the MQS columns, the first page of Fig. 1.0.1, 
general (contrasting) attributes of the electric and magnetic fields are identified. 
The developments then lead from situations where the field sources are prescribed 
to where they are to be determined. Thus, EQS electric fields are first found from 
prescribed distributions of charge, while MQS magnetic fields are determined given 
the currents. The development of the EQS field solution is a direct investment in the 
subsequent MQS derivation. It is then recognized that in many practical situations, 
these sources are induced in materials and must therefore be found as part of the 
field solution. In the first of these situations, induced sources are on the boundaries 
of conductors having a sufficiently high electrical conductivity to be modeled as 
“perfectly” conducting. For the EQS systems, these sources are surface charges, 
while for the MQS, they are surface currents. In either case, fields must satisfy 
boundary conditions, and the EQS study provides not only mathematical techniques 
but even partial differential equations directly applicable to MQS problems. 

Polarization and magnetization account for field sources that can be pre­
scribed (electrets and permanent magnets) or induced by the fields themselves. 
In the Chu formulation used here, there is a complete analogy between the way 
in which polarization and magnetization are represented. Thus, there is a direct 
transfer of ideas from Chap. 6 to Chap. 9. 

The parallel quasistatic studies culminate in Chaps. 7 and 10 in an examina­
tion of loss phenomena. Here we learn that very different answers must be given to 
the question “When is a conductor perfect?” for EQS on one hand, and MQS on 
the other. 

In Chap. 11, many of the concepts developed previously are put to work 
through the consideration of the flow of power, storage of energy, and production 
of electromagnetic forces. From this chapter on, Maxwell’s equations are used with­
out approximation. Thus, the EQS and MQS approximations are seen to represent 
systems in which either the electric or the magnetic energy storage dominates re­
spectively. 

In Chaps. 12 through 14, the focus is on electromagnetic waves. The develop­
ment is a natural extension of the approach taken in the EQS and MQS columns. 
This is emphasized by the outline represented on the right page of Fig. 1.0.1. The 
topics of Chaps. 12 and 13 parallel those of the EQS and MQS columns on the 
previous page. Potentials used to represent electrodynamic fields are a natural gen­
eralization of those used for the EQS and MQS systems. As for the quasistatic fields, 
the fields of given sources are considered first. An immediate practical application 
is therefore the description of radiation fields of antennas. 
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The boundary value point of view, introduced for EQS systems in Chap. 
5 and for MQS systems in Chap. 8, is the basic theme of Chap. 13. Practical 
examples include simple transmission lines and waveguides. An understanding of 
transmission line dynamics, the subject of Chap. 14, is necessary in dealing with the 
“conventional” ideal lines that model most high­frequency systems. They are also 
shown to provide useful models for representing quasistatic dynamical processes. 

To make practical use of Maxwell’s equations, it is necessary to master the 
art of making approximations. Based on the electromagnetic properties and dimen­
sions of a system and on the time scales (frequencies) of importance, how can a 
physical system be broken into electromagnetic subsystems, each described by its 
dominant physical processes? It is with this goal in mind that the EQS and MQS 
approximations are introduced in Chap. 3, and to this end that Chap. 15 gives an 
overview of electromagnetic fields. 

1.1 THE LORENTZ LAW IN FREE SPACE 

There are two points of view for formulating a theory of electrodynamics. The older 
one views the forces of attraction or repulsion between two charges or currents as the 
result of action at a distance. Coulomb’s law of electrostatics and the corresponding 
law of magnetostatics were first stated in this fashion. Faraday[1] introduced a new 
approach in which he envisioned the space between interacting charges to be filled 
with fields, by which the space is activated in a certain sense; forces between two 
interacting charges are then transferred, in Faraday’s view, from volume element 
to volume element in the space between the interacting bodies until finally they 
are transferred from one charge to the other. The advantage of Faraday’s approach 
was that it brought to bear on the electromagnetic problem the then well­developed 
theory of continuum mechanics. The culmination of this point of view was Maxwell’s 
formulation[2] of the equations named after him. 

From Faraday’s point of view, electric and magnetic fields are defined at a 
point r even when there is no charge present there. The fields are defined in terms 
of the force that would be exerted on a test charge q if it were introduced at r 
moving at a velocity v at the time of interest. It is found experimentally that such 
a force would be composed of two parts, one that is independent of v, and the other 
proportional to v and orthogonal to it. The force is summarized in terms of the 
electric field intensity E and magnetic flux density µoH by the Lorentz force law. 
(For a review of vector operations, see Appendix 1.) 

f = q(E + v × µoH) (1) 

The superposition of electric and magnetic force contributions to (1) is illus­
trated in Fig. 1.1.1. Included in the figure is a reminder of the right­hand rule used 
to determine the direction of the cross­product of v and µoH. In general, E and H 
are not uniform, but rather are functions of position r and time t: E = E(r, t) and 
µoH = µoH(r, t). 

In addition to the units of length, mass, and time associated with mechanics, 
a unit of charge is required by the theory of electrodynamics. This unit is the 
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Fig. 1.1.1 Lorentz force f in geometric relation to the electric and magnetic 
field intensities, E and H, and the charge velocity v: (a) electric force, (b) 
magnetic force, and (c) total force. 

coulomb. The Lorentz force law, (1), then serves to define the units of E and of 
µoH. 

newton kilogram meter/(second)2 
units of E = =	 (2)

coulomb coulomb 

newton kilogram
units of µoH = =	 (3)

coulomb meter/second coulomb second 

We can only establish the units of the magnetic flux density µoH from the force 
law and cannot argue until Sec. 1.4 that the derived units of H are ampere/meter 
and hence of µo are henry/meter. 

In much of electrodynamics, the predominant concern is not with mechanics 
but with electric and magnetic fields in their own right. Therefore, it is inconvenient 
to use the unit of mass when checking the units of quantities. It proves useful to 
introduce a new name for the unit of electric field intensity– the unit of volt/meter. 

In the summary of variables given in Table 1.8.2 at the end of the chapter, the 
fundamental units are SI, while the derived units exploit the fact that the unit of 
mass, kilogram = volt­coulomb­second2/meter2 and also that a coulomb/second = 
ampere. Dimensional checking of equations is guaranteed if the basic units are used, 
but may often be accomplished using the derived units. The latter communicate 
the physical nature of the variable and the natural symmetry of the electric and 
magnetic variables. 

Example 1.1.1.	 Electron Motion in Vacuum in a Uniform Static 
Electric Field 

In vacuum, the motion of a charged particle is limited only by its own inertia. In 
the uniform electric field illustrated in Fig. 1.1.2, there is no magnetic field, and an 
electron starts out from the plane x = 0 with an initial velocity vi. 
The “imposed” electric field is E = ixEx, where ix is the unit vector in the x 
direction and Ex is a given constant. The trajectory is to be determined here and 
used to exemplify the charge and current density in Example 1.2.1. 
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Fig. 1.1.2 An electron, subject to the uniform electric field intensity 
Ex, has the position ξx, shown as a function of time for positive and 
negative fields. 

With m defined as the electron mass, Newton’s law combines with the Lorentz 
law to describe the motion. 

d2ξx 
m = f = −eEx	 (4)

dt2 

The electron position ξx is shown in Fig. 1.1.2. The charge of the electron is custom­
arily denoted by e (e = 1.6× 10−19
 coulomb) where e is positive, thus necessitating 
an explicit minus sign in (4).
 

By integrating twice, we get
 

1 e 2ξx = − 
2 m

Ext + c1t + c2	 (5) 

where c1 and c2 are integration constants. If we assume that the electron is at ξx = 0 
and has velocity vi when t = ti, it follows that these constants are 

e	 1 e 2 c1 = vi + Exti; c2 = −viti − Exti	 (6) 
m	 2 m 

Thus, the electron position and velocity are given as a function of time by 

1 e 2ξx = − 
2 m

Ex(t − ti) + vi(t − ti)	 (7) 

dξx e 
= − 

m
Ex(t − ti) + vi	 (8)

dt 

With x defined as upward and Ex > 0, the motion of an electron in an electric 
field is analogous to the free fall of a mass in a gravitational field, as illustrated 
by Fig. 1.1.2. With Ex < 0, and the initial velocity also positive, the velocity is a 
monotonically increasing function of time, as also illustrated by Fig. 1.1.2. 

Example 1.1.2.	 Electron Motion in Vacuum in a Uniform Static 
Magnetic Field 

The magnetic contribution to the Lorentz force is perpendicular to both the particle 
velocity and the imposed field. We illustrate this fact by considering the trajectory 
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Fig. 1.1.3 (a) In a uniform magnetic flux density µoHo and with no 
initial velocity in the y direction, an electron has a circular orbit. (b) 
With an initial velocity in the y direction, the orbit is helical. 

resulting from an initial velocity viz along the z axis. With a uniform constant 
magnetic flux density µoH existing along the y axis, the force is 

f = −e(v × µoH) (9) 

The cross­product of two vectors is perpendicular to the two vector factors, so the 
acceleration of the electron, caused by the magnetic field, is always perpendicular 
to its velocity. Therefore, a magnetic field alone cannot change the magnitude of 
the electron velocity (and hence the kinetic energy of the electron) but can change 
only the direction of the velocity. Because the magnetic field is uniform, because the 
velocity and the rate of change of the velocity lie in a plane perpendicular to the 
magnetic field, and, finally, because the magnitude of v does not change, we find that 
the acceleration has a constant magnitude and is orthogonal to both the velocity 
and the magnetic field. The electron moves in a circle so that the centrifugal force 
counterbalances the magnetic force. Figure 1.1.3a illustrates the motion. The radius 
of the circle is determined by equating the centrifugal force and radial Lorentz force 

2 mv 

e µoHo 

eµo v Ho =| |
r 

(10) 

which leads to 

r = 
m |v| 

(11) 

The foregoing problem can be modified to account for any arbitrary initial angle 
between the velocity and the magnetic field. The vector equation of motion (really 
three equations in the three unknowns ξx, ξy, ξz) 

m
d

dt

2

2 

ξ̄ 
= −e

� d
dt 

ξ̄ × µoH
� 

(12) 

is linear in ξ̄, and so solutions can be superimposed to satisfy initial conditions that 
include not only a velocity viz but one in the y direction as well, viy. Motion in the 
same direction as the magnetic field does not give rise to an additional force. Thus, 
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the y component of (12) is zero on the right. An integration then shows that the y 
directed velocity remains constant at its initial value, viy. This uniform motion can 
be added to that already obtained to see that the electron follows a helical path, as 
shown in Fig. 1.1.3b. 

It is interesting to note that the angular frequency of rotation of the electron 
around the field is independent of the speed of the electron and depends only upon 
the magnetic flux density, µoHo. Indeed, from (11) we find 

v e ≡ ωc = µoHo (13) 
r m 

For a flux density of 1 volt­second/meter (or 1 tesla), the cyclotron frequency is fc = 
ωc/2π = 28 GHz. (For an electron, e = 1.602×10−19 coulomb and m = 9.106×10−31 

kg.) With an initial velocity in the z direction of 3 × 107 m/s, the radius of gyration 
in the flux density µoH = 1 tesla is r = viz/ωc = 1.7× 10−4 m. 

1.2 CHARGE AND CURRENT DENSITIES 

In Maxwell’s day, it was not known that charges are not infinitely divisible but 
occur in elementary units of 1.6× 10−19 coulomb, the charge of an electron. Hence, 
Maxwell’s macroscopic theory deals with continuous charge distributions. This is 
an adequate description for fields of engineering interest that are produced by ag­
gregates of large numbers of elementary charges. These aggregates produce charge 
distributions that are described conveniently in terms of a charge per unit volume, 
a charge density ρ. 

Pick an incremental volume and determine the net charge within. Then 

ρ(r, t) ≡ 
net charge in ΔV 

(1)
ΔV 

is the charge density at the position r when the time is t. The units of ρ are 
coulomb/meter3. The volume ΔV is chosen small as compared to the dimensions of 
the system of interest, but large enough so as to contain many elementary charges. 
The charge density ρ is treated as a continuous function of position. The “graini­
ness” of the charge distribution is ignored in such a “macroscopic” treatment. 

Fundamentally, current is charge transport and connotes the time rate of 
change of charge. Current density is a directed current per unit area and hence 
measured in (coulomb/second)/meter2. A charge density ρ moving at a velocity v 
implies a rate of charge transport per unit area, a current density J, given by 

J = ρv (2) 

One way to envision this relation is shown in Fig. 1.2.1, where a charge density 
ρ having velocity v traverses a differential area δa. The area element has a unit 
normal n, so that a differential area vector can be defined as δa = nδa. The charge 
that passes during a differential time δt is equal to the total charge contained in 
the volume v δadt. Therefore, · 

d(δq) = ρv δadt (3)· 
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Fig. 1.2.1 Current density J passing through surface having a normal n. 

Fig. 1.2.2 Charge injected at the lower boundary is accelerated up­
ward by an electric field. Vertical distributions of (a) field intensity, (b) 
velocity and (c) charge density. 

Divided by dt, we expect (3) to take the form J δa, so it follows that the current · 
density is related to the charge density by (2). 

The velocity v is the velocity of the charge. Just how the charge is set into 
motion depends on the physical situation. The charge might be suspended in or on 
an insulating material which is itself in motion. In that case, the velocity would 
also be that of the material. More likely, it is the result of applying an electric field 
to a conductor, as considered in Chap. 7. For charged particles moving in vacuum, 
it might result from motions represented by the laws of Newton and Lorentz, as 
illustrated in the examples in Sec.1.1. This is the case in the following example. 

Example 1.2.1. Charge and Current Densities in a Vacuum Diode 

Consider the charge and current densities for electrons being emitted with initial 
velocity v from a “cathode” in the plane x = 0, as shown in Fig. 1.2.2a.1 

Electrons are continuously injected. As in Example 1.1.1, where the motions of the 
individual electrons are considered, the electric field is assumed to be uniform. In the 
next section, it is recognized that charge is the source of the electric field. Here it is 
assumed that the charge used to impose the uniform field is much greater than the 
“space charge” associated with the electrons. This is justified in the limit of a low 
electron current. Any one of the electrons has a position and velocity given by (1.1.7) 
and (1.1.8). If each is injected with the same initial velocity, the charge and current 
densities in any given plane x = constant would be expected to be independent of 
time. Moreover, the current passing any x­plane should be the same as that passing 
any other such plane. That is, in the steady state, the current density is independent 

1 Here we picture the field variables Ex, vx, and ρ as though they were positive. For electrons, 
ρ < 0, and to make vx > 0, we must have Ex < 0. 
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of not only time but x as well. Thus, it is possible to write 

ρ(x)vx(x) = Jo (4) 

where Jo is a given current density. 
The following steps illustrate how this condition of current continuity makes 

it possible to shift from a description of the particle motions described with time as 
the independent variable to one in which coordinates (x, y, z) (or for short r) are the 
independent coordinates. The relation between time and position for the electron 
described by (1.1.7) takes the form of a quadratic in (t − ti) 

1 e 2Ex(t − ti) − vi(t − ti) + ξx = 0 (5)
2 m 

This can be solved to give the elapsed time for a particle to reach the position ξx. 
Note that of the two possible solutions to (5), the one selected satisfies the condition 
that when t = ti, ξx = 0. 

2 e Exξxvi − 
�

vi − 2 
mt − ti = e Ex 

(6) 
m 

With the benefit of this expression, the velocity given by (1.1.8) is written as 

dξx 

� 
2 2e 

dt 
= vi − 

m
Exξx (7) 

Now we make a shift in viewpoint. On the left in (7) is the velocity vx of the 
particle that is at the location ξx = x. Substitution of variables then gives 

e2vx = 

�
vi − 2 Exx (8) 

m 

so that x becomes the independent variable used to express the dependent variable 
vx. It follows from this expression and (4) that the charge density 

Jo Jo
ρ = = (9) 

vx 2 2e
�

vi − 
m 

Exx 

is also expressed as a function of x. In the plots shown in Fig. 1.2.2, it is assumed 
that Ex < 0, so that the electrons have velocities that increase monotonically with 
x. As should be expected, the charge density decreases with x because as they speed 
up, the electrons thin out to keep the current density constant. 

1.3 GAUSS’ INTEGRAL LAW OF ELECTRIC FIELD INTENSITY 

The Lorentz force law of Sec. 1.1 expresses the effect of electromagnetic fields 
on a moving charge. The remaining sections in this chapter are concerned with 
the reaction of the moving charges upon the electromagnetic fields. The first of 
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Fig. 1.3.1 General surface S enclosing volume V . 

Maxwell’s equations to be considered, Gauss’ law, describes how the electric field 
intensity is related to its source. The net charge within an arbitrary volume V that 
is enclosed by a surface S is related to the net electric flux through that surface by 

� 
�oE da = 

� 
ρdv 

S 

· 
V (1) 

With the surface normal defined as directed outward, the volume is shown in 
Fig. 1.3.1. Here the permittivity of free space, �o = 8.854 × 10−12 farad/meter, is an 
empirical constant needed to express Maxwell’s equations in SI units. On the right 
in (1) is the net charge enclosed by the surface S. On the left is the summation 
over this same closed surface of the differential contributions of flux �oE da. The · 
quantity �oE is called the electric displacement flux density and, [from (1)], has the 
units of coulomb/meter2. Out of any region containing net charge, there must be a 
net displacement flux. 

The following example illustrates the mechanics of carrying out the volume 
and surface integrations. 

Example 1.3.1.	 Electric Field Due to Spherically Symmetric Charge 
Distribution 

Given the charge and current distributions, the integral laws fully determine the 
electric and magnetic fields. However, they are not directly useful unless there is a 
great deal of symmetry. An example is the distribution of charge density 

r ; r < R	
� 

ρo Rρ(r) =	 (2)
0; r > R 

in the spherical coordinate system of Fig. 1.3.2. Here ρo and R are given constants. 
An argument based on the spherical symmetry shows that the only possible com­
ponent of E is radial. 

E = irEr(r)	 (3) 

Indeed, suppose that in addition to this r component the field possesses a φ com­
ponent. At a given point, the components of E then appear as shown in Fig. 1.3.2b. 
Rotation of the system about the axis shown results in a component of E in some 
new direction perpendicular to r. However, the rotation leaves the source of that 
field, the charge distribution, unaltered. It follows that Eφ must be zero. A similar 
argument shows that Eθ also is zero. 
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Fig. 1.3.2 (a) Spherically symmetric charge distribution, showing ra­
dial dependence of charge density and associated radial electric field 
intensity. (b) Axis of rotation for demonstration that the components 
of E transverse to the radial coordinate are zero. 

The incremental volume element is 

dv = (dr)(rdθ)(r sin θdφ) (4) 

and it follows that for a spherical volume having arbitrary radius r, 

r� πρo 4

ρdv = �0 
R �0 π �02π 

R
r� 

R 

R3 
(5)�

ρo 

�
(r� sin θdφ)(r�dθ)dr� = πρo ; R < r 

� �� r � π � 2π �
ρo 

�
(r� sin θdφ)(r�dθ)dr� = r ; r < R 

V 0 0 0 R 

To evaluate the left­hand side of (1), note that 

n = ir; da = ir(rdθ)(r sin θdφ) (6) 

Thus, for the spherical surface at the arbitrary radius r, 

2π� � π � 
2�oE da = �oEr(r sin θdφ)(rdθ) = �oEr4πr (7)· 

S 0 0 

With the volume and surface integrals evaluated in (5) and (7), Gauss’ law, (l), 
shows that 

2 πρo 4 ρor 
2 

�oEr4πr = r Er = ; r < R (8a)
R 

⇒ 
4�oR 

�oEr4πr2 = πρoR
3 ⇒ Er =

4

ρ

�
o

o

R

r

3

2 
; R < r (8b) 

Inside the spherical charged region, the radial electric field increases with the square 
of the radius because even though the associated surface increases like the square 



� 

Sec. 1.3 Gauss’ Integral Law	 15 

Fig. 1.3.3 Singular charge distributions: (a) point charge, (b) line charge, 
(c) surface charge. 

Fig. 1.3.4 Filamentary volume element having cross­section da used to de­
fine line charge density. 

of the radius, the enclosed charge increases even more rapidly. Figure 1.3.2 illus­
trates this dependence, as well as the exterior field decay. Outside, the surface area 
continues to increase in proportion to r 2, but the enclosed charge remains constant. 

Singular Charge Distributions. Examples of singular functions from circuit 
theory are impulse and step functions. Because there is only the one independent 
variable, namely time, circuit theory is concerned with only one “dimension.” In 
three­dimensional field theory, there are three spatial analogues of the temporal 
impulse function. These are point, line, and surface distributions of ρ, as illustrated 
in Fig. 1.3.3. Like the temporal impulse function of circuit theory, these singular 
distributions are defined in terms of integrals. 

A point charge is the limit of an infinite charge density occupying zero volume. 
With q defined as the net charge, 

q = lim ρdv	 (9)
ρ 
V 0
→∞	

V → 

the point charge can be pictured as a small charge­filled region, the outside of which 
is charge free. An example is given in Fig. 1.3.2 in the limit where the volume 4πR3/3 
goes to zero, while q = πρoR

3 remains finite. 
A line charge density represents a two­dimensional singularity in charge den­

sity. It is the mathematical abstraction representing a thin charge filament. In terms 
of the filamentary volume shown in Fig. 1.3.4, the line charge per unit length λl 

(the line charge density) is defined as the limit where the cross­sectional area of the 
volume goes to zero, ρ goes to infinity, but the integral 



� 

16	 Maxwell’s Integral Laws in Free Space Chapter 1 

Fig. 1.3.5 Volume element having thickness h used to define surface charge 
density. 

Fig. 1.3.6 Point charge q at origin of spherical coordinate system. 

λl =	 lim ρda (10)
ρ
A
→∞

0 A → 

remains finite. In general, λl is a function of position along the curve. 
The one­dimensional singularity in charge density is represented by the surface 

charge density. The charge density is very large in the vicinity of a surface. Thus, 
as a function of a coordinate perpendicular to that surface, the charge density is 
a one­dimensional impulse function. To define the surface charge density, mount a 
pillbox as shown in Fig. 1.3.5 so that its top and bottom surfaces are on the two 
sides of the surface. The surface charge density is then defined as the limit 

h� ξ+ 2 
σs = lim ρdξ (11) 

h
ρ
h
→∞
→0 ξ− 2 

where the ξ coordinate is picked parallel to the direction of the normal to the 
surface, n. In general, the surface charge density σs is a function of position in the 
surface. 

Illustration. Field of a Point Charge 

A point charge q is located at the origin in Fig. 1.3.6. There are no other charges. 
By the same arguments as used in Example 1.3.1, the spherical symmetry of the 
charge distribution requires that the electric field be radial and be independent of 
θ and φ. Evaluation of the surface integral in Gauss’ integral law, (1), amounts to 
multiplying �oEr by the surface area. Because all of the charge is concentrated at 
the origin, the volume integral gives q, regardless of radial position of the surface S. 
Thus, 

4πr2�oEr = q ⇒ E =
4π�

q 

or2 
ir	 (12) 
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Fig. 1.3.7 Uniform line charge distributed from − infinity to + in­
finity along z axis. Rotation by 180 degrees about axis shown leads to 
conclusion that electric field is radial. 

is the electric field associated with a point charge q. 

Illustration. The Field Associated with Straight Uniform Line Charge 

A uniform line charge is distributed along the z axis from z = −∞ to z = +∞, as 
shown in Fig. 1.3.7. For an observer at the radius r, translation of the line source 
in the z direction and rotation of the source about the z axis (in the φ direction) 
results in the same charge distribution, so the electric field must only depend on 
r. Moreover, E can only have a radial component. To see this, suppose that there 
were a z component of E. Then a 180 degree rotation of the system about an axis 
perpendicular to and passing through the z axis must reverse this field. However, 
the rotation leaves the charge distribution unchanged. The contradiction is resolved 
only if Ez = 0. The same rotation makes it clear that Eφ must be zero. 

This time, Gauss’ integral law is applied using for S the surface of a right 
circular cylinder coaxial with the z axis and of arbitrary radius r. Contributions 
from the ends are zero because there the surface normal is perpendicular to E. 
With the cylinder taken as having length l, the surface integration amounts to a 
multiplication of �oEr by the surface area 2πrl while, the volume integral gives lλl 

regardless of the radius r. Thus, (1) becomes 

λl
2πrl�oEr = λll E = ir	 (13)⇒ 

2π�or 

for the field of an infinitely long uniform line charge having density λl. 

Example 1.3.2.	 The Field of a Pair of Equal and Opposite Infinite 
Planar Charge Densities 

Consider the field produced by a surface charge density +σo occupying all the x− y 
plane at z = s/2 and an opposite surface charge density −σo at z = −s/2. 

First, the field must be z directed. Indeed there cannot be a component of 
E transverse to the z axis, because rotation of the system around the z axis leaves 
the same source distribution while rotating that component of E. Hence, no such 
component exists. 
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Fig. 1.3.8 Sheets of surface charge and volume of integration with 
upper surface at arbitrary position x. With field Eo due to external 
charges equal to zero, the distribution of electric field is the discontinu­
ous function shown at right. 

Because the source distribution is independent of x and y, Ez is independent of 
these coordinates. The z dependence is now established by means of Gauss’ integral 
law, (1). The volume of integration, shown in Fig. 1.3.8, has cross­sectional area A 
in the x − y plane. Its lower surface is located at an arbitrary fixed location below 
the lower surface charge distribution, while its upper surface is in the plane denoted 
by z. For now, we take Ez as being Eo on the lower surface. There is no contribution 
to the surface integral from the side walls because these have normals perpendicular 
to E. It follows that Gauss’ law, (1), becomes 

s 
A(�oEz − �oEo) = 0; −∞ < z < − Ez = Eo 

2 
⇒ 

s s σo
A(�oEz − �oEo) = −Aσo; − 

2 
< z < 

2 
⇒ Ez = − 

�o 
+ Eo (14) 

s 
A(�oEz − �oEo) = 0; < z < ∞⇒ Ez = Eo 

2 

That is, with the upper surface below the lower charge sheet, no charge is enclosed 
by the surface of integration, and Ez is the constant Eo. With the upper surface 
of integration between the charge sheets, Ez is Eo minus σo/�o. Finally, with the 
upper integration surface above the upper charge sheet, Ez returns to its value of 
Eo. The external electric field Eo must be created by charges at z = +∞, much as 
the field between the charge sheets is created by the given surface charges. Thus, 
if these charges at “infinity” are absent, Eo = 0, and the distribution of Ez is as 
shown to the right in Fig. 1.3.8. 

Illustration. Coulomb’s Force Law for Point Charges 

It is worthwhile to see that for charges at rest, Gauss’ integral law and the Lorentz 
force law give the familiar action at a distance force law. The force on a charge q 
is given by the Lorentz law, (1.1.1), and if the electric field is caused by a second 
charge at the origin in Fig. 1.3.9, then 

f = qE = 
q1q2 

ir (15)
4π�or2 

Coulomb’s famous statement that the force exerted by one charge on another is 
proportional to the product of their charges, acts along a line passing through each 
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Fig. 1.3.9 Coulomb force induced on charge q2 due to field from q1. 

Fig. 1.3.10 Like­charged particles on ends of thread are pushed apart 
by the Coulomb force. 

charge, and is inversely proportional to the square of the distance between them, is 
now demonstrated. 

Demonstration 1.3.1. Coulomb’s Force Law 

The charge resulting on the surface of adhesive tape as it is pulled from a dispenser 
is a common nuisance. As the tape is brought toward a piece of paper, the force 
of attraction that makes the paper jump is an aggravating reminder that there are 
charges on the tape. Just how much charge there is on the tape can be approximately 
determined by means of the simple experiment shown in Fig. 1.3.10. 

Two pieces of freshly pulled tape about 7 cm long are folded up into balls and 
stuck on the ends of a thread having a total length of about 20 cm. The middle of 
the thread is then tied up so that the charged balls of tape are suspended free to 
swing. (By electrostatic standards, our fingers are conductors, so the tape should be 
manipulated chopstick fashion by means of plastic rods or the like.) It is then easy 
to measure approximately l and r, as defined in the figure. The force of repulsion 
that separates the “balls” of tape is presumably predicted by (15). In Fig. 1.3.10, 
the vertical component of the tension in the thread must balance the gravitational 
force Mg (where g is the gravitational acceleration and M is the mass). It follows 
that the horizontal component of the thread tension balances the Coulomb force of 
repulsion. 

2 q (r/2) 
� 

Mgr32π�o 
= Mg q = (16)

4π�or2 l 
⇒ 

l 

As an example, tape balls having an area of A = 14 cm2, (7 cm length of 2 cm 
wide tape) weighing 0.1 mg and dangling at a length l = 20 cm result in a distance 
of separation r = 3 cm. It follows from (16) (with all quantities expressed in SI 
units) that q = 2.7 × 10−9 coulomb. Thus, the average surface charge density is 
q/A = 1.9×10−6 coulomb/meter or 1.2×1013 electronic charges per square meter. If 
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Fig. 1.3.11 Pillbox­shaped incremental volume used to deduce the jump 
condition implied by Gauss’ integral law. 

these charges were in a square array with spacing s between charges, then σs = e/s2 , 
and it follows that the approximate distance between the individual charge in the 
tape surface is 0.3µm. This length is at the limit of an optical microscope and may 
seem small. However, it is about 1000 times larger than a typical atomic dimension.2 

Gauss’ Continuity Condition. Each of the integral laws summarized in this 
chapter implies a relationship between field variables evaluated on either side of a 
surface. These conditions are necessary for dealing with surface singularities in the 
field sources. Example 1.3.2 illustrates the jump in the normal component of E that 
accompanies a surface charge. 

A surface that supports surface charge is pictured in Fig. 1.3.11, as having 
a unit normal vector directed from region (b) to region (a). The volume to which 
Gauss’ integral law is applied has the pillbox shape shown, with endfaces of area 
A on opposite sides of the surface. These are assumed to be small enough so that 
over the area of interest the surface can be treated as plane. The height h of the 
pillbox is very small so that the cylindrical sideface of the pillbox has an area much 
smaller than A. 

Now, let h approach zero in such a way that the two sides of the pillbox remain 
on opposite sides of the surface. The volume integral of the charge density, on the 
right in (1), gives Aσs. This follows from the definition of the surface charge density, 
(11). The electric field is assumed to be finite throughout the region of the surface. 
Hence, as the area of the sideface shrinks to zero, so also does the contribution of 
the sideface to the surface integral. Thus, the displacement flux through the closed 
surface consists only of the contributions from the top and bottom surfaces. Applied 
to the pillbox, Gauss’ integral law requires that 

n (�oEa − �oEb) = σs (17)· 

where the area A has been canceled from both sides of the equation. 
The contribution from the endface on side (b) comes with a minus sign because 

on that surface, n is opposite in direction to the surface element da. 
Note that the field found in Example 1.3.2 satisfies this continuity condition 

at z = s/2 and z = −s/2. 

2 An alternative way to charge a particle, perhaps of low density plastic, is to place it in the 
corona discharge around the tip of a pin placed at high voltage. The charging mechanism at work 
in this case is discussed in Chapter 7 (Example 7.7.2). 
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Fig. 1.4.1 Surface S is enclosed by contour C having positive direction de­
termined by the right­hand rule. With the fingers in the direction of ds, the 
thumb passes through the surface in the direction of positive da. 

` 1.4 AM ERE’S INTEGRAL LAW 

The law relating the magnetic field intensity H to its source, the current density J, 
is 

� 
H ds = 

� 
J da + 

d 
� 

�oE da 
C 

· 
S 

· 
dt S 

· 
(1) 

Note that by contrast with the integral statement of Gauss’ law, (1.3.1), the 
surface integral symbols on the right do not have circles. This means that the 
integrations are over open surfaces, having edges denoted by the contour C. Such a 
surface S enclosed by a contour C is shown in Fig. 1.4.1. In words, Ampère’s integral 
law as given by (1) requires that the line integral (circulation) of the magnetic field 
intensity H around a closed contour is equal to the net current passing through the 
surface spanning the contour plus the time rate of change of the net displacement 
flux density �oE through the surface (the displacement current). 

The direction of positive da is determined by the right­hand rule, as also 
illustrated in Fig. 1.4.1. With the fingers of the right­hand in the direction of ds, 
the thumb has the direction of da. Alternatively, with the right hand thumb in the 
direction of ds, the fingers will be in the positive direction of da. 

In Ampère’s law, H appears without µo. This law therefore establishes the 
basic units of H as coulomb/(meter­second). In Sec. 1.1, the units of the flux den­
sity µoH are defined by the Lorentz force, so the second empirical constant, the 
permeability of free space, is µo = 4π × 10−7 henry/m (henry = volt sec/amp). 

Example 1.4.1. Magnetic Field Due to Axisymmetric Current 

A constant current in the z direction within the circular cylindrical region of radius 
R, shown in Fig. 1.4.2, extends from − infinity to + infinity along the z axis and is 
represented by the density 

� 
Jo

� 
r 
�
; r < R J = R (2)

0; r > R 
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Fig. 1.4.2 Axially symmetric current distribution and associated ra­
dial distribution of azimuthal magnetic field intensity. Contour C is used 
to determine azimuthal H, while C� is used to show that the z­directed 
field must be uniform. 

where Jo and R are given constants. The associated magnetic field intensity has 
only an azimuthal component. 

H = Hφiφ (3) 

To see that there can be no r component of this field, observe that rotation 
of the source around the radial axis, as shown in Fig. 1.4.2, reverses the source 
(the current is then in the −z direction) and hence must reverse the field. But an 
r component of the field does not reverse under such a rotation and hence must be 
zero. The Hφ and Hz components are not ruled out by this argument. However, if 
they exist, they must not depend upon the φ and z coordinates, because rotation of 
the source around the z axis and translation of the source along the z axis does not 
change the source and hence does not change the field. 

The current is independent of time and so we assume that the fields are as 
well. Hence, the last term in (1), the displacement current, is zero. The law is then 
used with S, a surface having its enclosing contour C at the arbitrary radius r, as 
shown in Fig. 1.4.2. Then the area and line elements are 

da = rdφdriz; ds = iφrdφ (4) 

and the right­hand side of (1) becomes 
�� 2π � r r Jor 32π� 

Jo R
rdφdr = 

3R 
; r < R 

J · da = �0
2π �0 

R r rdφdr = JoR22π ; R < r 
(5) 

S 0 0 
Jo R 3 

Integration on the left­hand side amounts to a multiplication of the φ independent 
Hφ by the length of C. 

2π 

H ds = Hφrdφ = Hφ2πr (6)· 
C 0 
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Fig. 1.4.3 (a) Line current enclosed by volume having cross­sectional area 
A. (b) Surface current density enclosed by contour having thickness h. 

These last two expressions are used to evaluate (1) and obtain 

Jor 
32π Jor 

2 

2πrHφ = Hφ = ; r < R 
3R 

⇒ 
3R 

JoR
22π JoR

2 

2πrHφ = Hφ = ; r < R (7)
3 

⇒ 
3r 

Thus, the azimuthal magnetic field intensity has the radial distribution shown in 
Fig. 1.4.2. 

The z component of H is, at most, uniform. This can be seen by applying the 
integral law to the contour C�, also shown in Fig. 1.4.2. Integration on the top and 
bottom legs gives zero because Hr = 0. Thus, to make the contributions due to Hz 

on the vertical legs cancel, it is necessary that Hz be independent of radius. Such a 
uniform field must be caused by sources at infinity and is therefore set equal to zero 
if such sources are not postulated in the statement of the problem. 

Singular Current Distributions. The first of two singular forms of the current 
density shown in Fig. 1.4.3a is the line current. Formally, it is the limit of an infinite 
current density distributed over an infinitesimal area. 

i = lim J da (8) 
J| |→∞

A 

· 
A 0→ 

With i a constant over the length of the line, a thin wire carrying a current i 
conjures up the correct notion of the line current. However, in general, the current 
i may depend on the position along the line if it varies with time as in an antenna. 

The second singularity, the surface current density, is the limit of a very 
large current density J distributed over a very thin layer adjacent to a surface. In 
Fig. 1.4.3b, the current is in a direction parallel to the surface. If the layer extends 
between ξ = −h/2 and ξ = +h/2, the surface current density K is defined as 

h 
2 

K = lim Jdξ (9) 
J h| |→∞

0 2h→ − 
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Fig. 1.4.4 Uniform line current with contours for determining H. Axis of 
rotation is used to deduce that radial component of field must be zero. 

By definition, K is a vector tangential to the surface that has units of am­
pere/meter. 

Illustration. H field Produced by a Uniform Line Current 

A uniform line current of magnitude i extends from − infinity to + infinity along 
the z axis, as shown in Fig. 1.4.4. The symmetry arguments of Example 1.4.1 show 
that the only component of H is azimuthal. Application of Ampère’s integral law, 
(1), to the contour of Fig. 1.4.4 having arbitrary radius r gives a line integral that 
is simply the product of Hφ and the circumference 2πr and a surface integral that 
is simply i, regardless of the radius. 

i 
2πrHφ = i Hφ = (10)⇒ 

2πr 

This expression makes it especially clear that the units of H are ampere/meter. 

Demonstration 1.4.1. Magnetic Field of a Line Current 

At 60 Hz, the displacement current contribution to the magnetic field of the exper­
iment shown in Fig. 1.4.5 is negligible. So long as the field probe is within a distance 
r from the wire that is small compared to the distance to the ends of the wire or 
to the return wires below, the magnetic field intensity is predicted quantitatively 
by (10). The curve shown is typical of demonstration measurements illustrating the 
radial dependence. Because the Hall­effect probe fundamentally exploits the Lorentz 
force law, it measures the flux density µoH. A common unit for flux density is the 
Gauss. For conversion of units, 10,000 gauss = 1 tesla, where the tesla is the SI unit. 

Illustration. Uniform Axial Surface Current 

At the radius R from the z axis, there is a uniform z directed surface current 
density Ko that extends from ­ infinity to + infinity in the z direction. The sym­
metry arguments of Example 1.4.1 show that the resulting magnetic field intensity 
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Fig. 1.4.5 Demonstration of peak magnetic flux density induced by line

current of 6 ampere (peak).


Fig. 1.4.6 Uniform current density Ko is z directed in circular cylin­
 
drical shell at r = R. Radially discontinuous azimuthal field shown is
 
determined using the contour at arbitrary radius r.
 

is azimuthal. To determine that field, Ampère’s integral law is applied to a contour
 
having the arbitrary radius r, shown in Fig. 1.4.6. As in the previous illustration,
 
the line integral is the product of the circumference and Hφ. The surface integral
 
gives nothing if r < R, but gives 2πR times the surface current density if r > R.
 
Thus,
 

� 
0; r < R 

� 
0; r < R 

2πrHφ = Hφ = R (11)
2πRKo; r > R 

⇒ Ko r 
; r > R 

Thus, the distribution of Hφ is the discontinuous function shown in Fig. 1.4.6. The
 
field tangential to the surface current undergoes a jump that is equal in magnitude
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Fig. 1.4.7 Ampère’s integral law is applied to surface S� enclosed by a rect­
angular contour that intersects a surface S carrying the current density K. In 
terms of the unit normal to S, n, the resulting continuity condition is given by 
(16). 

to the surface current density. 

Ampère’s Continuity Condition. A surface current density in a surface S 
causes a discontinuity of the magnetic field intensity. This is illustrated in Fig. 1.4.6. 
To obtain a general relation between fields evaluated to either side of S, a rectan­
gular surface of integration is mounted so that it intersects S as shown in Fig. 1.4.7. 
The normal to S is in the plane of the surface of integration. The length l of the 
rectangle is assumed small enough so that the surface of integration can be consid­
ered plane over this length. The width w of the rectangle is assumed to be much 
smaller than l . It is further convenient to introduce, in addition to the normal n 
to S, the mutually orthogonal unit vectors is and in as shown. 

Now apply the integral form of Ampère’s law, (1), to the rectangular surface 
of area lw. For the right­hand side we obtain 

� � 
∂

J da + �oE da � K inl (12) 
S� 

· 
S� ∂t 

· · 

Only J gives a contribution, and then only if there is an infinite current density 
over the zero thickness of S, as required by the definition of the surface current 
density, (9). The time rate of change of a finite displacement flux density integrated 
over zero area gives zero, and hence there is no contribution from the second term. 

The left­hand side of Ampère’s law, (1), is a contour integral following the 
rectangle. Because w has been assumed to be very small compared with l, and H 
is assumed finite, no contribution is made by the two short sides of the rectangle. 
Hence, 

l is (Ha − Hb) = K inl (13)· · 
From Fig. 1.4.7, note that 

is = in × n (14) 
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The cross and dot can be interchanged in this scalar triple product without affecting 
the result (Appendix 1), so introduction of (14) into (13) gives 

in n × (Ha − Hb) = in K (15)· · 
Finally, note that the vector in is arbitrary so long as it lies in the surface S. Since 
it multiplies vectors tangential to the surface, it can be omitted. 

n × (Ha − Hb) = K (16) 

There is a jump in the tangential magnetic field intensity as one passes through 
a surface current. Note that (16) gives a prediction consistent with what was found 
for the illustration in Fig. 1.4.6. 

1.5 CHARGE CONSERVATION IN INTEGRAL FORM 

Embedded in the laws of Gauss and Ampère is a relationship that must exist 
between the charge and current densities. To see this, first apply Ampère’s law to 
a closed surface, such as sketched in Fig. 1.5.1. If the contour C is regarded as 
the“drawstring” and S as the “bag,” then this limit is one in which the “string” is 
drawn tight so that the contour shrinks to zero. Thus, the open surface integrals of 
(1.4.1) become closed, while the contour integral vanishes. 

� 
d 

�
J da + �oE da = 0 (1) 

S 

· 
dt S 

· 

But now, in view of Gauss’ law, the surface integral of the electric displacement 
can be replaced by the total charge enclosed. That is, (1.3.1) is used to write (1) as 

� 
J da + 

d 
� 

ρdv = 0 
S 

· 
dt V (2) 

This is the law of conservation of charge. If there is a net current out of the 
volume shown in Fig. 1.5.2, (2) requires that the net charge enclosed be decreasing 
with time. 

Charge conservation, as expressed by (2), was a compelling reason for Maxwell 
to add the electric displacement term to Ampère’s law. Without the displacement 
current density, Ampère’s law would be inconsistent with charge conservation. That 
is, if the second term in (1) would be absent, then so would the second term in (2). If 
the displacement current term is dropped in Ampère’s law, then net current cannot 
enter, or leave, a volume. 

The conservation of charge is consistent with the intuitive picture of the rela­
tionship between charge and current developed in Example 1.2.1. 

Example 1.5.1. Continuity of Convection Current 
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Fig. 1.5.1 Contour C enclosing an open surface can be thought of as the 
drawstring of a bag that can be closed to create a closed surface. 

Fig. 1.5.2 Current density leaves a volume V and hence the net charge must 
decrease. 

Fig. 1.5.3 In steady state, charge conservation requires that the cur­
rent density entering through the x = 0 plane be the same as that 
leaving through the plane at x = x. 

The steady state current of electrons accelerated through vacuum by a uniform 
electric field is described in Example 1.2.1 by assuming that in any plane x = con­
stant the current density is the same. That this must be true is now seen formally by 
applying the charge conservation integral theorem to the volume shown in Fig. 1.5.3. 
Here the lower surface is in the injection plane x = 0, where the current density is 
known to be Jo. The upper surface is at the arbitrary level denoted by x. Because 
the steady state prevails, the time derivative in (2) is zero. The remaining surface 
integral has contributions only from the top and bottom surfaces. Evaluation of 
these, with the recognition that the area element on the top surface is (ixdydz) 
while it is (−ixdydz) on the bottom surface, makes it clear that 

AJx − AJo = 0 ρvx = Jo (3)⇒ 

This same relation was used in Example 1.2.1, (1.2.4), as the basis for converting 
from a particle point of view to the one used here, where (x, y, z) are independent 
of t. 

Example 1.5.2. Current Density and Time­Varying Charge 
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Fig. 1.5.4 With the given axially symmetric charge distribution pos­
itive and decreasing with time (∂ρ/∂t < 0), the radial current density 
is positive, as shown. 

With the charge density a given function of time with an axially symmetric spatial 
distribution, (2) can be used to deduce the current density. In this example, the 
charge density is 

ρ = ρo(t)e
−r/a (4) 

and can be pictured as shown in Fig. 1.5.4. The function of time ρo is given, as is 
the dimension a. 

As the first step in finding J, we evaluate the volume integral in (2) for a 
circular cylinder of radius r having z as its axis and length l in the z direction. 

l 2π r 
r 

ρdv = ρoe
− 

a dr(rdφ)dz 
V 0 0 0 (5) 

r r 
= 2πla2

�
1− e− 

a 
�
1 + 

��
ρo 

a 

The axial symmetry demands that J is in the radial direction and indepen­
dent of φ and z. Thus, the evaluation of the surface integral in (2) amounts to a 
multiplication of Jr by the area 2πrl, and that equation becomes 

r 

2πrlJr + 2πla2
�
1− e− 

a 
�
1 + 

r �� dρo 
= 0 (6) 

a dt 

Finally, this expression can be solved for Jr. 

a 2 r r dρo
Jr = 

�
e− 

a 
�
1 + 

� 
− 1

� 
(7) 

r a dt 

Under the assumption that the charge density is positive and decreasing, so 
that dρo/dt < 0, the radial distribution of Jr is shown at an instant in time in 
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Fig. 1.5.5 When a charge q is introduced into an essentially grounded 
metal sphere, a charge −q is induced on its inner surface. The inte­
gral form of charge conservation, applied to the surface S, shows that 
i = dq/dt. The net excursion of the integrated signal is then a direct 
measurement of q. 

Fig. 1.5.4. In this case, the radial current density is positive at any radius r because 
the net charge within that radius, given by (5), is decreasing with time. 

The integral form of charge conservation provides the link between the current 
carried by a wire and the charge. Thus, if we can measure a current, this law provides 
the basis for measuring the net charge. The following demonstration illustrates its 
use. 

Demonstration 1.5.1. Measurement of Charge 

In Demonstration 1.3.1, the net charge is deduced from mechanical measurements 
and Coulomb’s force law. Here that same charge is deduced electrically. The “ball” 
carrying the charge is stuck to the end of a thin plastic rod, as in Fig. 1.5.5. The 
objective is to measure this charge, q, without removing it from the ball. 

We know from the discussion of Gauss’ law in Sec. 1.3 that this charge is the 
source of an electric field. In general, this field terminates on charges of opposite 
sign. Thus, the net charge that terminates the field originating from q is equal 
in magnitude and opposite in sign to q. Measurement of this “image” charge is 
tantamount to measuring q. 

How can we design a metal electrode so that we are guaranteed that all of 
the lines of E originating from q will be terminated on its surface? It would seem 
that the electrode should essentially surround q. Thus, in the experiment shown in 
Fig. 1.5.5, the charge is transported to the interior of a metal sphere through a hole 
in its top. This sphere is grounded through a resistance R and also surrounded by 
a grounded shield. This resistance is made low enough so that there is essentially 
no electric field in the region between the spherical electrode, and the surrounding 
shield. As a result, there is negligible charge on the outside of the electrode and the 
net charge on the spherical electrode is just that inside, namely −q. 

Now consider the application of (2) to the surface S shown in Fig. 1.5.5. The 
surface completely encloses the spherical electrode while excluding the charge q at 
its center. On the outside, it cuts through the wire connecting the electrode to 
the resistance R. Thus, the volume integral in (2) gives the net charge −q, while 
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contributions to the surface integral only come from where S cuts through the wire. 
By definition, the integral of J da over the cross­section of the wire gives the current · 
i (amps). Thus, (2) becomes simply 

i + 
d(−q) 

= 0 i = 
dq 

(8)
dt 

⇒ 
dt 

This current is the result of having pushed the charge through the hole to a 
position where all the field lines terminated on the spherical electrode.3 

Although small, the current through the resistor results in a voltage. 

dq 
v � iR = R (9)

dt 

The integrating circuit is introduced into the experiment in Fig. 1.5.5 so that the 
oscilloscope directly displays the charge. With this circuit goes a gain A such that 

vo = A vdt = ARq (10) 

Then, the voltage vo to which the trace on the scope rises as the charge is inserted 
through the hole reflects the charge q. This measurement of q corroborates that of 
Demonstration 1.3.1. 

In retrospect, because S and V are arbitrary in the integral laws, the experi­
ment need not be carried out using an electrode and shield that are spherical. These 
could just as well have the shape of boxes. 

Charge Conservation Continuity Condition. The continuity condition asso­
ciated with charge conservation can be derived by applying the integral law to the 
same pillbox­shaped volume used to derive Gauss’ continuity condition, (1.3.17). It 
can also be found by simply recognizing the similarity between the integral laws of 
Gauss and charge conservation. To make this similarity clear, rewrite (2) putting 
the time derivative under the integral. In doing so, d/dt must again be replaced by 
∂/∂t, because the time derivative now operates on ρ, a function of t and r. 

� � 
∂ρ 

J da + dV = 0 (11) 
S 

· 
V ∂t 

Comparison of (11) with Gauss’ integral law, (1.3.1), shows the similarity. The role 
of �oE in Gauss’ law is played by J, while that of ρ is taken by −∂ρ/∂t. Hence, 
by analogy with the continuity condition for Gauss’ law, (1.3.17), the continuity 
condition for charge conservation is 

3 Note that if we were to introduce the charged ball without having the spherical electrode 
essentially grounded through the resistance R, charge conservation (again applied to the surface 
S) would require that the electrode retain charge neutrality. This would mean that there would 
be a charge q on the outside of the electrode and hence a field between the electrode and the 
surrounding shield. With the charge at the center and the shield concentric with the electrode, 
this outside field would be the same as in the absence of the electrode, namely the field of a point 
charge, (1.3.12). 
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Fig. 1.6.1 Integration line for definition of electromotive force. 

n (Ja − Jb) +
∂σs = 0 · 
∂t (12) 

Implicit in this condition is the assumption that J is finite. Thus, the condition 
does not include the possibility of a surface current. 

1.6 FARADAY’S INTEGRAL LAW 

The laws of Gauss and Ampère relate fields to sources. The statement of charge 
conservation implied by these two laws relates these sources. Thus, the previous 
three sections either relate fields to their sources or interrelate the sources. In this 
and the next section, integral laws are introduced that do not involve the charge 
and current densities. 

Faraday’s integral law states that the circulation of E around a contour C 
is determined by the time rate of change of the magnetic flux linking the surface 
enclosed by that contour (the magnetic induction). 

� 
d 

� 

C 

E · ds = − 
dt S 

µoH · da 
(1) 

As in Ampère’s integral law and Fig. 1.4.1, the right­hand rule relates ds and 
da. 

The electromotive force, or EMF, between points (a) and (b) along the path 
P shown in Fig. 1.6.1 is defined as 

� (b) 

Eab = E ds (2) 
(a) 

· 

We will accept this definition for now and look forward to a careful development of 
the circumstances under which the EMF is measured as a voltage in Chaps. 4 and 
10. 

Electric Field Intensity with No Circulation. First, suppose that the time 
rate of change of the magnetic flux is negligible, so that the electric field is essentially 
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Fig. 1.6.2 Uniform electric field intensity Eo, between plane parallel 
uniform distributions of surface charge density, has no circulation about 
contours C1 and C2. 

free of circulation. This means that no matter what closed contour C is chosen, the 
line integral of E must vanish. 

� 
E · ds = 0 (3) 

C 

We will find that this condition prevails in electroquasistatic systems and that all 
of the fields in Sec. 1.3 satisfy this requirement. 

Illustration. A Field Having No Circulation 

A static field between plane parallel sheets of uniform charge density has no circu­
lation. Such a field, E = Eoix, exists in the region 0 < y < s between the sheets of 
surface charge density shown in Fig. 1.6.2. The most convenient contour for testing 
this claim is denoted C1 in Fig. 1.6.2. 

Along path 1, E ds = Eody, and integration from y = 0 to y = s gives sEo for· 
the EMF of point (a) relative to point (b). Note that the EMF between the plane 
parallel surfaces in Fig. 1.6.2 is the same regardless of where the points (a) and (b) 
are located in the respective surfaces. 

On segments 2 and 4, E is orthogonal to ds, so there is no contribution to 
the line integral on these two sections. Because ds has a direction opposite to E on 
segment 3, the line integral is the integral from y = 0 to y = s of E ds = −Eody.· 
The result of this integration is −sEo, so the contributions from segments 1 and 3 
cancel, and the circulation around the closed contour is indeed zero. 4 

In this planar geometry, a field that has only a y component cannot be a 
function of x without incurring a circulation. This is evident from carrying out this 
integration for such a field on the rectangular contour C1. Contributions to paths 1 
and 3 cancel only if E is independent of x. 

Example 1.6.1. Contour Integration 

To gain some appreciation for what it means to require of E that it have no circu­
lation, no matter what contour is chosen, consider the somewhat more complicated 
contour C2 in the uniform field region of Fig. 1.6.2. Here, C2 is composed of the 

4 In setting up the line integral on a contour such as 3, which has a direction opposite to that 
in which the coordinate increases, it is tempting to double­account for the direction of ds not only 
be recognizing that ds = −iydy, but by integrating from y = s to y = 0 as well. 
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semicircle (5) and the straight segment (6). On the latter, E is perpendicular to ds 
and so there is no contribution there to the circulation. 

E ds = E ds + E ds = E ds (4)· · · · 
C 5 6 5 

On segment 5, the vector differential ds is first written in terms of the unit vector 
iφ, and that vector is in turn written (with the help of the vector decomposition 
shown in the figure) in terms of the Cartesian unit vectors. 

ds = iφRdφ; iφ = iy cos φ− ix sin φ (5) 

It follows that on the segment 5 of contour C2 

E ds = Eo cos φRdφ (6)· 

and integration gives 

π� � 
πE ds = Eo cos φRdφ = [EoR sin φ]0 = 0 (7)· 

C 0 

So for contour C2, the circulation of E is also zero. 

When the electromotive force between two points is path independent, we call 
it the voltage between the two points. For a field having no circulation, the EMF 
must be independent of path. This we will recognize formally in Chap. 4. 

Electric Field Intensity with Circulation. The second limiting situation, 
typical of the magnetoquasistatic systems to be considered, is primarily concerned 
with the circulation of E, and hence with the part of the electric field generated by 
the time­varying magnetic flux density. The remarkable fact is that Faraday’s law 
holds for any contour, whether in free space or in a material. Often, however, the 
contour of interest coincides with a conducting wire, which comprises a coil that 
links a magnetic flux density. 

Illustration. Terminal EMF of a Coil 

A coil with one turn is shown in Fig. 1.6.3. Contour (1) is inside the wire, while 
(2) joins the terminals along a defined path. With these contours constituting C, 
Faraday’s integral law as given by (1) determines the terminal electromotive force. 
If the electrical resistance of the wire can be regarded as zero, in the sense that 
the electric field intensity inside the wire is negligible, the contour integral reduces 
to an integration from (b) to (a).5 In view of the definition of the EMF, (2), this 
integration gives the negative of the EMF. Thus, Faraday’s law gives the terminal 
EMF as 

d 
� 

Eab = 
dt

λf ; λf ≡ 
S 

µoH · da (8) 

5 With the objectives here limited to attaching an intuitive meaning to Faraday’s law, we 
will give careful attention to the conditions required for this terminal relation to hold in Chaps. 
8, 9, and 10. 
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Fig. 1.6.3 Line segment (1) through a perfectly conducting wire and 
(2) joining the terminals (a) and (b) form closed contour. 

Fig. 1.6.4 Demonstration of voltmeter reading induced at terminals of 
a coil in accordance with Faraday’s law. To plot data on graph, normalize 
voltage to Vo as defined with (11). Because I is the peak current, v is 
the peak voltage. 

where λf , the total flux of magnetic field linking the coil, is defined as the flux 
linkage. Note that Faraday’s law makes it possible to measure µoH electrically (as 
now demonstrated). 

Demonstration 1.6.1. Voltmeter Reading Induced by Magnetic Induction 

The rectangular coil shown in Fig. 1.6.4 is used to measure the magnetic field 
intensity associated with current in a wire. Thus, the arrangement and field are the 
same as in Demonstration 1.4.1. The height and length of the coil are h and l as 
shown, and because the coil has N turns, it links the flux enclosed by one turn N 
times. With the upper conductors of the coil at a distance R from the wire, and the 
magnetic field intensity taken as that of a line current, given by (1.4.10), evaluation 
of (8) gives 

z+l R+h� � 
i 

� 
µoNl 

� 
h

�� 

λf = µoN drdz = ln 1 + i (9)
2πr 2π R 

z R 

In the experiment, the current takes the form 

i = I sin ωt (10) 
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where ω = 2π(60). The EMF between the terminals then follows from (8) and (9) 
as 

v = Voln
�
1 + 

h � 
cos ωt; Vo ≡ 

µoNlωI 
(11)

R 2π 

A voltmeter reads the electromotive force between the two points to which it is 
connected, provided certain conditions are satisfied. We will discuss these in Chap. 
8. 

In a typical experiment using a 20­turn coil with dimensions of h = 8 cm, 
l = 20 cm, I = 6 amp peak, the peak voltage measured at the terminals with a 
spacing R = 8 cm is v = 1.35 mV. To put this data point on the normalized plot of 
Fig. 1.6.4, note that R/h = 1 and the measured v/Vo = 0.7. 

Faraday’s Continuity Condition. It follows from Faraday’s integral law that 
the tangential electric field is continuous across a surface of discontinuity, provided 
that the magnetic field intensity is finite in the neighborhood of the surface of 
discontinuity. This can be shown by applying the integral law to the incremental 
surface shown in Fig. 1.4.7, much as was done in Sec. 1.4 for Ampère’s law. With J 
set equal to zero, there is a formal analogy between Ampère’s integral law, (1.4.1), 
and Faraday’s integral law, (1). The former becomes the latter if H E, J 
0, and �o µoH. Thus, Ampère’s continuity condition (1.4.16) becomes theE → − 

→ → 

continuity condition associated with Faraday’s law. 

n× (Ea − Eb) = 0 (12) 

At a surface having the unit normal n, the tangential electric field intensity is 
continuous. 

1.7 GAUSS’ INTEGRAL LAW OF MAGNETIC FLUX 

The net magnetic flux out of any region enclosed by a surface S must be zero. 

� 
µoH da = 0 

S 

· 
(1) 

This property of flux density is almost implicit in Faraday’s law. To see this, consider 
that law, (1.6.1), applied to a closed surface S. Such a surface is obtained from an 
open one by letting the contour shrink to zero, as in Fig. 1.5.1. Then Faraday’s 
integral law reduces to 

d 
� 

µoH da = 0 (2)
dt S 

· 

Gauss’ law (1) adds to Faraday’s law the empirical fact that in the beginning, there 
was no closed surface sustaining a net outward magnetic flux. 

Illustration. Uniqueness of Flux Linking Coil 
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Fig. 1.7.1 Contour C follows loop of wire having terminals a − b. 
Because each has the same enclosing contour, the net magnetic flux 
through surfaces S1 and S2 must be the same. 

Fig. 1.7.2 (a) The field of a line current induces a flux in a horizon­
tal rectangular coil. (b) The open surface has the coil as an enclosing 
contour. Rather than being in the plane of the contour, this surface is 
composed of the five segments shown. 

An example is shown in Fig. 1.7.1. Here a wire with terminals a − b follows the 
contour C. According to (1.6.8), the terminal EMF is found by integrating the 
normal magnetic flux density over a surface having C as its edge. But which surface? 
Figure 1.7.1 shows two of an infinite number of possibilities. 

The terminal EMF can be unique only if the integrals over S1 and S2 result 
in the same answer. Taken together, S1 and S2 form a closed surface. The magnetic 
flux continuity integral law, (1), requires that the net flux out of this closed surface 
be zero. This is equivalent to the statement that the flux passing through S1 in the 
direction of da1 must be equal to that passing through S2 in the direction of da2. 
We will formalize this statement in Chap. 8. 

Example 1.7.1. Magnetic Flux Linked by Coil and Flux Continuity 

In the configuration of Fig. 1.7.2, a line current produces a magnetic field intensity 
that links a one­turn coil. The left conductor in this coil is directly below the wire 
at a distance d. The plane of the coil is horizontal. Nevertheless, it is convenient to 
specify the position of the right conductor in terms of a distance R from the line 
current. What is the net flux linked by the coil? 

The most obvious surface to use is one in the same plane as the coil. However, 
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in doing so, account must be taken of the way in which the unit normal to the 
surface varies in direction relative to the magnetic field intensity. Selection of another 
surface, to which the magnetic field intensity is either normal or tangential, simplifies 
the calculation. On surfaces S2 and S3, the normal direction is the direction of the 
magnetic field. Note also that because the field is tangential to the end surfaces, S4 

and S5, these make no contribution. For the same reason, there is no contribution 
from S6, which is at the radius ro from the wire. Thus, 

λf µoH da = µoH da + µoH da (3)≡ 
S 

· 
S2 

· 
S3 

· 

On S2 the unit normal is iφ, while on S3 it is −iφ. Therefore, (3) becomes 

l R l d� � � �
λf = µoHφdrdz − µoHφdrdz (4) 

0 ro 0 ro 

With the field intensity for a line current given by (1.4.10), it follows that 

λf = 
µoli�

ln 
R − ln 

d � 
= µo 

li 
ln

� R� 
(5)

2π ro ro 2π d 

That ro does not appear in the answer is no surprise, because if the surface S1 had 
been used, ro would not have been brought into the calculation. 

Magnetic Flux Continuity Condition. With the charge density set equal to 
zero, the magnetic continuity integral law (1) takes the same form as Gauss’ integral 
law (1.3.1). Thus, Gauss’ continuity condition (1.3.17) becomes one representing the 
magnetic flux continuity law by making the substitution �oE µoH. → 

n (µoHa − µoHb) = 0 (6)· 

The magnetic flux density normal to a surface is continuous. 

1.8 SUMMARY 

Electromagnetic fields, whether they be inside a transistor, on the surfaces of an 
antenna or in the human nervous system, are defined in terms of the forces they 
produce. In every example involving electromagnetic fields, charges are moving 
somewhere in response to electromagnetic fields. Hence, our starting point in this 
introductory chapter is the Lorentz force on an elementary charge, (1.1.1). Repre­
sented by this law is the effect of the field on the charge and current (charge in 
motion). 

The subsequent sections are concerned with the laws that predict how the 
field sources, the charge, and current densities introduced in Sec. 1.2, in turn give 
rise to the electric and magnetic fields. Our presentation is aimed at putting these 
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laws to work. Hence, the empirical origins of these laws that would be evident from 
a historical presentation might not be fully appreciated. Elegant as they appear, 
Maxwell’s equations are no more than a summary of experimental results. Each of 
our case studies is a potential test of the basic laws. 

In the interest of being able to communicate our subject, each of the basic 
laws is given a name. In the interest of learning our subject, each of these laws 
should now be memorized. A summary is given in Table 1.8.1. By means of the 
examples and demonstrations, each of these laws should be associated with one or 
more physical consequences. 

From the Lorentz force law and Maxwell’s integral laws, the units of variables 
and constants are established. For the SI units used here, these are summarized 
in Table 1.8.2. Almost every practical result involves the free space permittivity 
�o and/or the free space permeability µo. Although these are summarized in Table 
1.8.2, confidence also comes from having these natural constants memorized. 

A common unit for measuring the magnetic flux density is the Gauss, so the 
conversion to the SI unit of Tesla is also given with the abbreviations. 

A goal in this chapter has also been the use of examples to establish the 
mathematical significance of volume, surface, and contour integrations. At the same 
time, important singular source distributions have been defined and their associated 
fields derived. We will make extensive use of point, line, and surface sources and 
the associated fields. 

In dealing with surface sources, a continuity condition should be associated 
with each of the integral laws. These are summarized in Table 1.8.3. 

The continuity conditions should always be associated with the integral laws 
from which they originate. As terms are added to the integral laws to account for 
macroscopic media, there will be corresponding changes in the continuity condi­
tions. 
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TABLE 1.8.1 

SUMMARY OF MAXWELL’S INTEGRAL LAWS IN FREE SPACE 

NAME INTEGRAL LAW EQ. NUMBER 

Gauss’ Law 

Ampere’s Law 

Faraday’s Law 

Magnetic Flux 
Continuity 

Charge 
Conservation 

�
S 

�oE · da = 
�

V 
ρdv 

�
C 

H · ds = 
�

S 
J · da + d 

dt 

�
S 

�oE · da 
�

C 
E · ds = − d 

dt 

�
S 

µoH · da 
�

S 
µoH · da = 0 

�
S 
J · da + d 

dt 

�
V 

ρdv = 0 

1.3.1 

1.4.1 

1.6.1 

1.7.1 

1.5.2 
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TABLE 1.8.2 

DEFINITIONS AND UNITS OF FIELD VARIABLES AND CONSTANTS 

(basic unit of mass, kg, is replaced by V­C­s2/m2) 

VARIABLE 

OR 

PARAMETER 

NOMENCLATURE BASIC 

UNITS 

DERIVED 

UNITS 

Electric Field Intensity 

Electric Displacement 
Flux Density 

Charge Density 

Surface Charge Density 

Magnetic Field Intensity 

Magnetic Flux Density 

Current Density 

Surface Current Density 

Free Space Permittivity 

Free Space Permeability 

E 

�oE 

ρ 

σs 

H 

µoH 

J 

K 

�o = 8.854 × 10−12 

µo = 4π × 10−7 

V/m 

C/m2 

C/m3 

C/m2 

C/(ms) 

Vs/m2 

C/(m2s) 

C/(ms) 

C/(Vm) 

Vs2/(Cm) 

V/m 

C/m2 

C/m3 

C/m2 

A/m 

T 

A/m2 

A/m 

F/m 

H/m 

UNIT ABBREVIATIONS 

Ampère A Kilogram kg Volt V 

Coulomb C Meter m 

Farad F Second s 

Henry H Tesla T (104 Gauss) 
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TABLE 1.8.3 

SUMMARY OF CONTINUITY CONDITIONS IN FREE SPACE 

NAME CONTINUITY CONDITION EQ. NUMBER 

Gauss’ Law 

Ampère’s Law 

Faraday’s Law 

Magnetic Flux 
Continuity 

Charge 
Conservation 

n · (�oE
a − �oE

b) = σs 

n × (Ha − Hb) = K 

n × (Ea − Eb) = 0 

n · (µoH
a − µoH

b) = 0 

n · (Ja − Jb) + ∂σs 
∂t 

= 0 

1.3.17 

1.4.16 

1.6.14 

1.7.6 

1.5.12 
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P R O B L E M S 

1.1 The Lorentz Law in Free Space∗ 

1.1.1∗	 Assuming in Example 1.1.1 that vi = 0 and that Ex < 0, show that 
by the time the electron has reached the position x = h, its velocity is �
−2eExh/m. In an electric field of only Ex = 1v/cm = 10−2 v/m, show 

that by the time it reaches h = 10−2 m, the electron has reached a velocity 
of 5.9× 103 m/s. 

1.1.2	 An electron moves in vacuum under the same conditions as in Example 
1.1.1 except that the electric field takes the form E = Exix + Eyiy where 
Ex and Ey are given constants. When t = 0, the electron is at ξx = 0 and 
ξy = 0 and the velocity dξx/dt = vi and dξy/dt = 0. 

(a) Determine ξx(t) and ξy(t). 
(b) For Ex > 0, when and where does the electron return to the plane 

x = 0? 

1.1.3∗	 An electron, having velocity v = viiz, experiences the field H = Hoiy and 
E = Eoix, where Ho and Eo are constants. Show that the electron retains 
this velocity if Eo = viµoHo. 

1.1.4	 An electron has the initial position x = 0, y = 0, z = zo. It has an 
initial velocity v = voix and moves in the uniform and constant fields 
E = Eoiy, H = Hoiy. 

(a) Determine the position of the electron in the y direction, ξy(t). 
(b) Describe the trajectory of the electron. 

1.2 Charge and Current Densities 

1.2.1∗	 The charge density is ρor/R coulomb/m3 throughout the volume of a spher­
ical region having radius R, with ρo a constant and r the distance from the 
center of the region (the radial coordinate in spherical coordinates). Show 
that the total charge associated with this charge density is q = πρoR

3 

coulomb. 

1.2.2	 In terms of given constants ρo and a, the net charge density is ρ = (ρo/a2) 
(x2 + y2 + z2) coulomb/m3. What is the total charge q (coulomb) in the 
cubical region −a < x < a, −a < y < a, −a < z < a? 

∗ An asterisk on a problem number designates a “show that” problem. These problems are 
especially designed for self study. 
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1.2.3∗	 With Jo and a given constants, the current density is J = (Jo/a2)(y2 + 
z2)[ix + iy + iz]. Show that the total current i passing through the surface 
x = 0, −a < y < a, −a < z < a is i = 8Joa

2/3 amp. 

1.2.4	 In cylindrical coordinates (r, φ, z) the current density is given in terms of 
constants Jo and a by J = Jo(r/a)2iz (amp/m2). What is the net current 
i (amp) through the surface z = 0, r < a? 

1.2.5∗	 In cylindrical coordinates, the electric field in the annular region b < r < a 
is E = irEo(b/r), where Eo is a given negative constant. When t = 0, an 
electron having mass m and charge q = −e has no velocity and is positioned 
at r = ξr = b. 

(a) Show that, in vacuum, the radial motion of the electron is governed 
by the differential equation mdvr/dt = −eEob/ξr, where vr = dξr/dt. 
Note that these expressions combine to provide one second­order dif­
ferential equation governing ξr. 

(b) By way of providing one integration of this equation, multiply the first 
of the first­order expressions by vr and (with the help of the second 
first­order expression) show that the resulting equation can be written 
as d[ 12mvr 

2 + eEob lnξr]/dt = 0. That is, the sum of the kinetic and 
potential energies (the quantity in brackets) remains constant. 

(c) Use the result of (b) to find the electron velocity vr(r). 
(d) Assume that this is one of many electrons that flow radially outward 

from the cathode at r = b to r = a and that the number of electrons 
passing radially outward at any location r is independent of time. The 
system is in the steady state so that the net current flowing outward 
through a surface of radius r and length l, i = 2πrlJr, is the same 
at one radius r as at another. Use this fact to determine the charge 
density ρ(r). 

1.3 Gauss’ Integral Law 

1.3.1∗	 Consider how Gauss’ integral law, (1), is evaluated for a surface that is not 
naturally symmetric. The charge distribution is the uniform line charge of 
Fig. 1.3.7 and hence E is given by (13). However, the surface integral on 
the left in (1) is to be evaluated using a surface that has unit length in the 
z direction and a square cross­section centered on the z axis. That is, the 
surface is composed of the planes z = 0, z = 1, x = ±a, and y = ±a. Thus, 
we know from evaluation of the right­hand side of (1) that evaluation of 
the surface integral on the left should give the line charge density λl. 

(a) Show	 that the area elements da on these respective surfaces are 
±izdxdy, ±ixdydz, and ±iydxdz. 
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(b) Starting with (13), show that in Cartesian coordinates, E is 

λl 

�	 
x y 

�
E =	 

2π�o x2 + y2
ix + 

x2 + y2
iy	 (a) 

(Standard Cartesian and cylindrical coordinates are defined in Table 
I at the end of the text.) 

(c) Show that integration of �oE da over the part of the surface at x = a · 
leads to the integral 

a� 
λl 

� 1 � 
a 

�oE	 da =	 dydz (b)· 
2π 0 −a a

2 + y2

(d) Finally, show that integration over the entire closed surface indeed 
gives λl. 

1.3.2	 Using the spherical symmetry and a spherical surface, the electric field 
associated with the point charge q of Fig. 1.3.6 is found to be given by (12). 
Evaluation of the left­hand side of (1) over any other surface that encloses 
the point charge must also give q. Suppose that the closed surface S is 
composed of a hemisphere of radius a in the upper half­plane, a hemisphere 
of radius b in the lower half­plane, and a washer­shaped flat surface that 
joins the two. In spherical coordinates (defined in Table I), these three 
parts of the closed surface S are defined by (r = a, 0 < θ < 1π, 0 ≤ φ <2 

2π), (r = b, 1π < θ < π, 0 ≤ φ < 2π), and (θ = 1
2π, b ≤ r ≤ a, 0 ≤2	 

φ < 2π). For this surface, use (12) to evaluate the left­hand side of (1) and 
show that it results in q. 

1.3.3∗	 A cylindrically symmetric charge configuration extends to infinity in the 
±z directions and has the same cross­section in any constant z plane. Inside 
the radius b, the charge density has a parabolic dependence on radius while 
over the range b < r < a outside that radius, the charge density is zero. 

� 
ρo(r/b)2; r < b	ρ = 0; b < r < a 

(a) 

There is no surface charge density at r = b. 

(a) Use the axial symmetry and Gauss’ integral law to show that E in 
the two regions is 

� 
(ρor

3/4�ob
2)ir; r < b	E = (ρob

2/4�or)ir; b < r < a 
(b) 

(b) Outside a shell at r = a, E = 0. Use (17) to show that the surface 
charge density at r = a is 

σs = −ρob
2/4a	 (c) 
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1.3.4	 

1.3.5∗	 

1.3.6	 
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(c) Integrate this charge per unit area over the surface of the shell and 
show that the resulting charge per unit length on the shell is the 
negative of the charge per unit length inside. 

(d) Show that, in Cartesian coordinates, E is 

ρo 

� 
[x(x2 + y2)/b2]ix + [y(x2 + y2)/b2]iy; r < b E =

4�o b2x(x2 + y2)−1ix + b2y(x2 + y2)−1iy; b < r < a 
(d) 

Note that (r = 
�

x2 + y2 , cos φ = x/r, sin φ = y/r, ir = ix cos φ + 
iy sin φ) and the result takes the form E = Ex(x, y)ix + Ey(x, y)iy. 

(e) Now, imagine that the circular cylinder of charge in the region r < b 
is enclosed by a cylindrical surface of square cross­section with the z 
coordinate as its axis and unit length in the z direction. The walls 
of this surface are at x = ±c, y = ±c and z = 0 and z = 1. (To be 
sure that the cylinder of the charge distribution is entirely within the 
surface, b < r < a, b < c < a/

√
2.) Show that the surface integral on 

the left in (1) is 

c� 

S 

�oE · da = 
ρo

4 
b2

� � 

−c 

� 

c2 +
c

y2 
− 

c2 

(−
+
c

y 

) 
2

�
dy 

(e)c 

+
� �	 

x2 +
c

c2 
− 

x

(
2

−
+
c) 

2

�
dx

� 

c−c 

Without carrying out these integrations, what is the answer? 

In a spherically symmetric configuration, the region r < b has the uniform 
charge density ρb and is surrounded by a region b < r < a having the 
uniform charge density ρa. At r = b there is no surface charge density, 
while at r = a there is that surface charge density that assures E = 0 for 
a < r. 

(a) Determine E in the two regions. 
(b) What is the surface charge density at r = a? 
(c) Now suppose that there is a surface charge density given at r = b of 

σs = σo. Determine E in the two regions and σs at r = a. 

The region between the plane parallel sheets of surface charge density 
shown in Fig. 1.3.8 is filled with a charge density ρ = 2ρoz/s, where ρo 

is a given constant. Again, assume that the electric field below the lower 
sheet is Eoiz and show that between the sheets 

2Ez = Eo − 
σ

�o

o + 
�

ρ

o

o 

s 

�
z − (s/2)2

�	 
(a) 

In a configuration much like that of Fig. 1.3.8, there are three rather than 
two sheets of charge. One, in the plane z = 0, has the given surface charge 
density σo. The second and third, respectively located at z = s/2 and 
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z = −s/2, have unknown charge densities σa and σb. The electric field 
outside the region − 1s < z < 1 s is zero, and σ = 2σb. Determine σa and2 2 a


σb.


1.3.7	 Particles having charges of the same sign are constrained in their positions 
by a plastic tube which is tilted with respect to the horizontal by the angle 
α, as shown in Fig. P1.3.7. Given that the lower particle has charge Qo and 
is fixed, while the upper one (which has charge Q and mass M) is free to 
move without friction, at what relative position, ξ, can the upper particle 
be in a state of static equilibrium? 

Fig. P1.3.7 

1.4 Ampère’s Integral Law 

1.4.1∗	 A static H field is produced by the cylindrically symmetric current density 
distribution J = Jo exp(−r/a)iz, where Jo and a are constants and r is 
the radial cylindrical coordinate. Use the integral form of Ampère’s law to 
show that 

Hφ = 
Joa

2 �
1− e−r/a

�
1 + 

r ��	
(a) 

r	 a 

1.4.2∗	 In polar coordinates, a uniform current density Joiz exists over the cross­
section of a wire having radius b. This current is returned in the −z direction 
as a uniform surface current at the radius r = a > b. 

(a) Show that the surface current density at r = a is 

K = −(Job
2/2a)iz	 (a) 

(b) Use the integral form of Ampère’s law to show that H in the regions 
0 < r < b and b < r < a is 

� 
(Jor/2)iφ; r < b 

H = (Job
2/2r)iφ; b < r < a 

(b) 

(c) Use Ampère’s continuity condition, (16), to show that H = 0 for 
r > a. 
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1.4.3	 

1.4.4∗	 
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(d) Show that in Cartesian coordinates, H is 

Jo 

� −yix + xiy;	 r < b 
H =

2 −b2y(x2 + y2)−1ix + b2x(x2 + y2)−1iy; b < r < a 
(c) 

(e) Suppose that the inner cylinder is now enclosed by a contour C that 
encloses a square surface in a constant z plane with edges at x = ±c 
and y = ±c (so that C is in the region b < r < a, b < c < a/

√
2). 

Show that the contour integral on the left in (1) is 

c� 

C 

H · ds = 
� 

−c 

Jo

2 
b2

� 

c2 +
c

y2 
− 

c2 

(−
+
c

y 

) 
2 

�
dy 

�	
Job

2
� 

c (−c) 
� (d)c 

+	 dx
2 x2 + c2 

− 
x2 + c2 −c 

Without carrying out the integrations, use Ampère’s integral law to 
deduce the result of evaluating (d). 

In a configuration having axial symmetry about the z axis and extending 
to infinity in the ±z directions, a line current I flows in the −z direction 
along the z axis. This current is returned uniformly in the +z direction in 
the region b < r < a. There is no current density in the region 0 < r < b 
and there are no surface current densities. 

(a) In terms of I, what is the current density in the region b < r < a? 
(b) Use the symmetry	 of the configuration and the integral form of 

Ampère’s law to deduce H in the regions 0 < r < b and b < r < a. 
(c) Express H in each region in Cartesian coordinates. 
(d) Now, consider the evaluation of the left­hand side of (1) for a contour 

C that encloses a square surface S having sides of length 2c and the z 
axis as a perpendicular. That is, C lies in a constant z plane and has 
sides x = ±c and y = ±c with c < a/

√
2). In Cartesian coordinates, 

set up the line integral on the left in (1). Without carrying out the 
integrations, what must the answer be? 

In a configuration having axial symmetry about the z axis, a line current I 
flows in the −z direction along the z axis. This current is returned at the 
radii a and b, where there are uniform surface current densities Kza and 
Kzb, respectively. The current density is zero in the regions 0 < r < b, b < 
r < a and a < r. 

(a) Given that Kza = 2Kzb, show that Kza = I/π(2a + b). 
(b) Show that H is 

I 
� 

1/r; 0 < r < b H = − 
2π 

iφ 2a/r(2a + b); b < r < a 
(a) 
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1.4.5	 Uniform surface current densities K = ±Koiy are in the planes z = ± 12s, 
respectively. In the region − 1s < z < 1 s, the current density is J = 2 2 

2Joz/siy. In the region z < − 1 s, H = 0. Determine H for − 1s < z.2	 2 

1.5 Charge Conservation in Integral Form 

1.5.1∗	 In the region of space of interest, the charge density is uniform and a given 
function of time, ρ = ρo(t). Given that the system has spherical symmetry, 
with r the distance from the center of symmetry, use the integral form of 
the law of charge conservation to show that the current density is 

J = 
r dρo	ir	 (a)− 
3 dt 

1.5.2	 In the region x > 0, the charge density is known to be uniform and the 
given function of time ρ = ρo(t). In the plane x = 0, the current density is 
zero. Given that it is x directed and only dependent on x and t, what is J? 

1.5.3∗	 In the region z > 0, the current density J = 0. In the region z < 0, J = 
Jo(x, y) cosωtiz, where Jo is a given function of (x, y). Given that when 
t = 0, the surface charge density σs = 0 over the plane z = 0, show that 
for t > 0, the surface charge density in the plane z = 0 is σs(x, y, t) = 
[Jo(x, y)/ω] sin ωt. 

1.5.4	 In cylindrical coordinates, the current density J = 0 for r < R, and J = 
Jo(φ, z) sin ωtir for r > R. The surface charge density on the surface at 
r = R is σs(φ, z, t) = 0 when t = 0. What is σs(φ, z, t) for t > 0? 

1.6 Faraday’s Integral Law 

1.6.1∗	 Consider the calculation of the circulation of E, the left­hand side of (1), 
around a contour consisting of three segments enclosing a surface lying in 
the x − y plane: from (x, y) = (0, 0) (g, s) along the line y = sx/g; from →
(x, y) = (g, s) (0, s) along y = s and from (x, y) = (0, s) to (0, 0) along 
x = 0. 

→ 

(a) Show that along the first leg, ds = [ix + (s/g)iy]dx. 
(b) Given that E = Eoiy where Eo is a given constant, show that the line 

integral along the first leg is sEo and that the circulation around the 
closed contour is zero. 

1.6.2	 The situation is the same as in Prob. 1.6.1 except that the first segment of 
the closed contour is along the curve y = s(x/g)2 . 



50	 Maxwell’s Integral Laws in Free Space Chapter 1 

(a) Once again, show that for a uniform field E = Eoiy, the circulation 
of E is zero. 

(b) For E = Eo(x/g)iy, what is the circulation around this contour? 

1.6.3∗	 The E field of a line charge density uniformly distributed along the z axis 
is given in cylindrical coordinates by (1.3.13). 

(a) Show that in Cartesian coordinates, with x = r cos φ and y = r sin φ, 

λl 

�	 
x y 

�
E =	 

2π�o x2 + y2
ix + 

x2 + y2
iy	 (a) 

(b) For the contour shown in Fig. P1.6.3, show that 
� 

E ds = 
λl 

� � g 

(1/x)dx +
� h y 

dy 
C 

· 
2π�o	 k 0 g2 + y2

� g x 
� h y 

� (b) 

− 
k x2 + h2

dx − 
0 k2 + y2

dy 

and complete the integrations to prove that the circulation is zero. 

Fig. P1.6.3 

Fig. P1.6.4 

1.6.4	 A closed contour consisting of six segments is shown in Fig. P1.6.4. For 
the electric field intensity of Prob. 1.6.3, calculate the line integral of E ds · 
on each of these segments and show that the integral around the closed 
contour is zero. 

1.6.5∗	 The experiment in Fig. 1.6.4 is carried out with the coil positioned hori­
zontally, as shown in Fig. 1.7.2. The left edge of the coil is directly below 
the wire, at a distance d, while the right edge is at the radial distance R 
from the wire, as shown. The area element da is y directed (the vertical 
direction). 
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(a) Show that, in Cartesian coordinates, the magnetic field intensity due 
to the current i is 

i 
� −ixy iyx 

�
H = +	 (a)

2π x2 + y2 x2 + y2 

(b) Use this field to show that the magnetic flux linking the coil is as 
given by (1.7.5). 

(c) What is the circulation of E around the contour representing the coil? 
(d) Given that the coil has N turns, what is the EMF measured at its 

terminals? 

1.6.6	 The magnetic field intensity is given to be H = Ho(t)(ix + iy), where Ho(t) 
is a given function of time. What is the circulation of E around the contour 
shown in Fig. P1.6.6? 

Fig. P1.6.6 

1.6.7∗	 In the plane y = 0, there is a uniform surface charge density σs = σo. In the 
region y < 0, E = E1ix + E2iy where E1 and E2 are given constants. Use 
the continuity conditions of Gauss and Faraday, (1.3.17) and (12), to show 
that just above the plane y = 0, where y = 0+, the electric field intensity 
is E = E1ix + [E2 + (σo/�o)]iy. 

1.6.8	 Inside a circular cylindrical region having radius r = R, the electric field 
intensity is E = Eoiy, where Eo is a given constant. There is a surface 
charge density σo cos φ on the surface at r = R (the polar coordinate φ is 
measured relative to the x axis). What is E just outside the surface, where 
r = R+? 

1.7 Integral Magnetic Flux Continuity Law 

1.7.1∗	 A region is filled by a uniform magnetic field intensity Ho(t)iz. 

(a) Show that in spherical coordinates (defined in Fig. A.1.3 of Appendix 
1), H = Ho(t)(ir cos θ − iθ sin θ). 

(b) A circular contour lies in the z = 0 plane and is at r = R. Using the 
enclosed surface in the plane z = 0 as the surface S, show that the 
circulation of E in the φ direction around C is −πR2µodHo/dt. 
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(c) Now compute the same circulation using as a surface S enclosed by 
C the hemispherical surface at r = R, 0 ≤ θ < 1π.2 

1.7.2	 With Ho(t) a given function of time and d a given constant, three distri­
butions of H are proposed. 

H = Ho(t)iy	 (a) 

H = Ho(t)(x/d)ix	 (b) 

H = Ho(t)(y/d)ix	 (c) 

Which one of these will not satisfy (1) for a surface S as shown in Fig. 1.5.3? 

1.7.3∗	 In the plane y = 0, there is a given surface current density K = Koix. In the 
region y < 0, H = H1iy + H2iz. Use the continuity conditions of (1.4.16) 
and (6) to show that just above the current sheet, where y = 0+ , H = 
(H1 − Ko)iy + Hziz. 

1.7.4	 In the circular cylindrical surface r = R, there is a surface current density 
K = Koiz. Just inside this surface, where r = R, H = H1ir. What is H 
just outside the surface, where r = R+? 




