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Electromechanical Flows



9.1 Introduction

The dynamics of fluids perturbed from static equilibria, considered in Chap. 8, illustrate mechan-
ical and electromechanical rate processes. Identified with these processes are characteristic times.
Approximations are then motivated by recognizing the hierarchy of these times and the temporal range of
interest. For example, if the response to a sinusoidal steady-state drive having the frequency w is of
interest, the range is in the neighborhood of T = l/w. Even for a temporal transient, where the natural
frequencies are at the outset unknown, approximations are eventually justified by seeing where the re-
ciprocal of a given natural frequency fits into the hierarchy of characteristic times.

In this chapter, it is steady flows and the establishment of such flows that is of interest.
Typically, the characteristic times from Chap. 8 are now to be compared to a transport time, Z/u.
The recognition of simplifying approximations becomes even more important, because nonlinear equa-
tions are likely to be an essential part of a model.

The requirement for a static equilibrium that force densities be irrotational is emphasized in
Sec. 8.2. Taken up in Sec. 9.2 is the question, what types of flow can result from application of such

force densities? This is the first of 11 sections devoted to homogeneous flows, where such properties
as the mass density and electrical conductivity are uniform throughout the flow region.

Some of the most practical interactions between fields and fluids can be represented by a force
density or surface force density that is determined without regard for the fluid motion or geometry.
Such imposed surface and volume force density flows are the subject of Secs. 9.3-9.8. In Sec. 9.3,
fully developed flows are described in such a way that their application to a wide range of problems
should be evident. By way of illustration, surface coupled and volume coupled electric and magnetic

flows are then discussed in Secs. 9.4 and 9.5. Liquid metal magnetohydrodynamic induction pumps
usually fit the model of Sec. 9.5.

To appreciate a fully developed flow, it is necessary to consider the flow development. In

Sec. 9.6, this is done by examining the temporal transient that results as a closed system is suddenly

turned on and the steady flow allowed to establish itself. Then, in terms of boundary layers, the

spatial transient is discussed. In addition to its application to surface coupled flows, illustrated

in Sec. 9.7, the boundary layer model is applied to a self-consistent bulk coupled flow in Sec. 9.12.

In Secs. 9.6 and 9.7, viscous diffusion is of interest, both fluid inertia and viscosity are import-

ant and times of interest are, by definition, on the order of the viscous diffusion time.

Illustrated in Sec. 9.8 are an important class of electromechanical models in which the bulk flow

is described by linear equations. Here, transport times are long compared to the viscous diffusion

time and "creep flow" prevails.

The self-consistent imposed field flows of Secs. 9.9-9.12 give the opportunity to broaden the

range of dynamical processes. In the first two of these sections, magnetohydrodynamic processes are

taken up. The magnetic diffusion time is short compared to the other times of interest, the viscous

diffusion time and the magneto-inertial time. These sections first illustrate how the field alters

fully developed flows and then considers how the electromechanics contributes to temporal flow develop-

ment. The electrohydrodynamic approximation discussed and illustrated in the last two sections of this

part is based on having a self-precipitation time for unipolar charges that is long compared to other

times of interest, for example, an electroviscous time.

With the introduction of inhomogeneity come more characteristic dynamical times. These are

illustrated for systems having a static equilibrium and abrupt discontinuities in properties in

Secs. 8.9-8.16. Typically, the associated characteristic times represent propagation of surface

waves. Smoothly distributed inhomogeneities, Secs. 8.17-8.18, give rise to related internal waves

with their characteristic times. The flow models developed in Sec. 9.13 and illustrated in Sec. 9.14

incorporate wave phenomena similar to those from Chap. 8. The wave phenomena show up in steady flow

situations through critical conditions, often expressed in terms of the ratio of a convective velocity
to a wave velocity, i.e., as a Mach number. In essence these numbers are the ratio of transport times

to wave transit times. Times of interest in these sections, which reflect the existence of waves, are

a capillary time 'T = y/'Pi2 (Sec. 8.9), a gravity time Tg = /g (Pb - Pa)/(Pb + Pa)9 (Sec. 8.9) and

various magneto- and electro-inertial times (Secs. 8.10-8.15).

In view of Sec. 8.8 on magneto-acoustic and electro-acoustic waves, it should be expected that

additional times introduced in the remaining sections on compressible flow are the transit times for

acoustic and acoustic related waves. Sections 9.15 and 9.17 bring into the discussion the additional

physical laws required to represent interactions with the internal energy subsystem of a gas. Here,

the energy equation is derived and thermodynamic variables needed in subsequent sections defined. These

laws are not only necessary for the description of thermal-to-electrical energy conversion (to be taken
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up in Secs. 9.21-9.23), but also can be used to describe convective heat transfer.

The quasi-one-dimensional model introduced in Sec. 9.19 is the basis for the various energy con-
version systems discussed in the remaining sections. Once again, even in steady flows, the role of wave
propagation is unavoidable. As in Sec. 9.14, flow through energy conversion devices is dependent on the
fluid velocity relative to a wave velocity. This time, the waves are acoustic related.

In Secs. 9.21 and 9.23, the energy conversion process is again highlighted. These models, which
include the thermodynamics as well as the electromechanics, hark back to the prototype magnetic and
electric d-c machines introduced in Secs. 4.10 and 4.14. The MHD and EHD energy converters combine

the functions of the turbine and a generator in a conventional power generating plant. Thus, they give
the opportunity to understand the overall thermodynamic limitations of the energy conversion process.

To fully appreciate the steady flows of inhomogeneous fluids, Sec. 9.14, and of compressible fluids,
Secs.9.20-9.22, flow transients predicted by the same quasi-one-dimensional models should be studied.

These are taken up in Chap. 12, where the method of characteristics is applied to nonlinear flows in-

volving propagating wave phenomena. In this chapter, nonlinear processes represented by quasi-one-

dimensional models are represented by systems of ordinary differential equations. Similarity solutions,

introduced in Sec. 6.9, are now extended to nonlinear equations.

9.2 Homogeneous Flows with Irrotational Force Densities

The static equilibria of Secs. 8.1-8.5 illustrate electrical to mechanical coupling approximated

by irrotational magnetic and electric force densities. In this section, yet another field configura-

tion that can be represented by a force density of the form F = -V9 is introduced. But more important,

steady flows are to be illustrated. The point in this section is that now, given boundary conditions

stipulating the fluid velocity, an irrotational force density interacts with the flow of a homogeneous

incompressible fluid to alter the pressure distribution, but not the flow pattern.

Inviscid Flow: Recall that for an irrotational inviscid flow, the velocity potential satisfies

Laplace's equation (Eq. 7.8.10)

V2E = 0; = -VO (1)

With boundary conditions on v specified over the surface enclosing the volume of interest, the flow is

therefore uniquely determined without regard for the force densities. However, through C, the force
density does contribute to the pressure distribution. From Eq. 7.8.11,

p = - 2 pv.v + pg.r - + n (2)

As an example of an irrotational force density, consider the MQS low magnetic Reynolds number flow in

two dimensions (x,y) through a region where a perpendicular uniform magnetic field, f = Holz, is imposed.

The current density is solenoidal with components in the x-y plane only. It is therefore represented

in terms of the z component of a vector potential (Cartesian coordinates, Table 2.18.1)

3A t 3A t (3)
ay x ax y

Because current induced by the motion is negligible compared to that imposed, throughout a region of uni-

form electrical conductivity, I is also approximately irrotational. Hence, within such a region

v2A = 0 (4)

This expression is justified provided that Rm :--au << 1, as is evident from a normalization of

Eq. 6.5.3 in the fashion of Eq. 6.2.9. The force density is expressed in terms of A by using Eq. 3

for I and approximating the field intensity as the imposed field:

F= xII H z = -VE ; = H0HA (5)

Remember that Ho is by assumption much greater than the field induced by J. From Ampere's law, this

requires that IJ A << Ho, where k is a typical length.

Uniform Inviscid Flow: The channel flow sketched in Fig. 9.2.1a has fluid entering at the left

with a uniform velocity profile and leaving at the right with the same profile. A flow satisfying

Eq. 1 and the additional boundary conditions that there be no normal velocity on the rigid upper and

lower boundaries is simply a uniform velocity everywhere, 0 = -Uy.

Secs. 9.1 & 9.2
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Fig. 9.2.1. (a) Electrolyte is channeled by insulating walls through region of uniform magnetic
field perpendicular to flow (£ositive in the y direction). (b) From Reference 7, Appen­
dix C, sketch of current and J x Bdensities in experiment with Ho positive and I negative.
(c) With Ho uniform, extremely nonuniform but irrotational force distribution of (b) leaves
plane flow undisturbed (shown by streamlines) but results in pressure rise (shown by mano­
meter). (d) With Ho nonuniform, strong acceleration caused by rotational force density is
evident in the stirring of the flow.

9.3 Sec. 9.2

Fig. 7.6.2. Because of surface tension,
fluid wetting pair of glass plates
rises to a height ~(r) determined

.' . by the surface tension y and local

::... ' : ::.~: :',':' .. distance between plates •. Experi~

.: .: :', :.:' ",: :'... :. ~. ., ment from film "Surface Tension in
.' :.: :.: ':',' . Fluid Mechanics" (Reference 9,

Appendix C).

Surface Force Density Related to Interfacial Deformation: Three commonly encountered interfacial
configurations are shown in Table 7.6.2. In "equilibrium," these are respectively planar, circular
cylindrical and spherical in shape. To describe the dynamics of the interface, the surface force density
due to surface tension must be expressed in terms of the perturbation ~ from these equilibria. This
could be done by evaluating Eq. 9, but is more easily accomplished by returning to Eq. 3.

Consider the volume, shown in Fig. 7.6.3, that is "cut out" by the surface segment A as it dis.:;
places an amount c~. For this volume V, enclosed by the surface S having the outward normal vector n 's
Gauss' theorem states that

(10)

The vector Cis arbitrary, and now chosen to be the vector ~
~ ~

normal to the
~

interface (not to the surface.
S enclosing the volume element).

~
Thus, n = ns

~
on the upper surface but n = +

-ns on the lower surface.
On the remaining sides, n is perpendicular to ns ' ·It follows that the right-hand side of Eq. 10 is the
re~uired change in area, cA. Because the area A is itself elemental, the left-hand side of Eq. 10 is
V'nAC~ and Eq. 10 becomes

cA
~

= V'nAC~ (11)

n

...
. .: . ~ ... ' :

Fig. 7.6.3

Elemental volume V enclosed
by surface S intersecting
interface between fluids.

Sec. 7.6 7.6

Courtesy of Education Development Center, Inc. Used with permission.

z

I I
I I

I I
, I

I " II, I
, I

I ,
I I

/ I
I I

I I
I

I
/

/
/



Electrodes embedded in the lower and upper walls are used to pass a current through the flow. As
sketched in Fig. 9.2.1b, the resulting force density, which has both vertical and horizontal components,
is complicated and nonuniform. Yet, it has been asserted that the flow pattern observed in the absence
of a current would be the same as seen after the current is applied. In the experiment shown in
Fig. 9.2.1c, the streamlines are in fact not appreciably different after the current is applied. What
does change is the pressure distribution, as suggested by the manometer. This is predicted by Eqs. 2
and 5, which show that for any two points (a) and (8),

Pa - p - v2 -v) - pg(x - x)- poHo (A a - Ak) (7)

Note that

Aa - AB = i (8)

where i is the current linked by a surface having unit length in the z direction and edges at (a) and (8)
(see Sec. 2.18). Thus, with a and B the locations c and b respectively in Fig. 9.2.1a, i is the total
current (per unit length perpendicular to the paper) I, and Eq. 7 becomes

1 2 2
P - Pb c b) - pg(Xc - xb - oHo (9)

For the conditions of Fig. 9.2.1c, vc i vb, Ho is positive and I is negative (as sketched in Fig. 9.2.1b)
so the pressure rise given by Eq. 9 is consistent with intuition.

A dramatic illustration that the fluid must accelerate if the magnetic field conditions for an
irrotational force density are not met is shown in Fig. 9.2.1d. The magnet imposes a uniform Ho over
the region to the left, but the region to the right is in the nonuniform fringing field.

Inviscid Pump or Generator with Arbitrary Geometry: The generalization of the configuration to a

channel flow through a duct of arbitrary two-dimensional geometry is shown by Fig. 9.2.2. To insure an

irrotational force density everywhere, the magnetic field need only be uniform over the region where

the current density is appreciable.

The interaction region is described by Eq. 9. To relate the flow conditions at positions (d) and
(a), the "legs" to the left and right are also-described by Bernoulli's equation,

1 2 2
Pd - PC - P(Vd - vc) - pg(xd - Xc) (10)

IdP( 2 2 (11)
.. - Pa = - 2 Q(vb Va) Pg(xb - Xa) (11)

Fig. 9.2.2

Magnetohydrodynamic pump

Xd or generator configura-
d tion with region of cur-

rent density permeated
by uniform H out of
paper.

.I
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Addition of these last three expressions gives the desired pressure-velocity relation for the entire
system:

1 2 2
Pd - Pa - (d - va) - pg(xd - xa) - oHI (12)

Again, note that this simple relation applies regardless of electrode geometry.

Viscous Flow: Finally, observe that if the force density is irrotational, and hence takes the form
= -V9, it can be lumped with the pressure gradient. For an incompressible homogeneous flow, the pres-

sure appears only in the force equation.

With the redefinition of the pressure, p - p + , the equations of motion are no different than in
the absence of the field. Thus, if the boundary conditions do not involve the pressure, it is clear
that the flow pattern must be the same with and without the field. In the experiment of Fig. 9.2.1,
the flow is probably more nearly fully developed (as defined in Sec.9.3) than inviscid and hence has
vorticity. Yet, the only effect of the irrotational magnetic force density is to revise the pressure
distribution.

FLOWS WITH IMPOSED SURFACE AND VOLUME FORCE DENSITIES

9.3 Fully Developed Flows Driven by Imposed Surface and Volume Force Densities

Fully developed flows are stationary equilibria established after either a temporal or a spatial
transient. Flow established by setting the coaxial wall of a Couette viscometer into steady rotation
is an example of the former. Typical of a spatial transient is steady flow through a conduit of uni-
form cross section. As the fluid first enters a pipe, the velocity profile is determined by the
entrance conditions. But, as an element progresses, the viscous shear stresses from the walls pene-
trate into the flow until they are effective over the entire cross section. At this point, the flow
becomes independent of longitudinal position and is said to be fully developed.

For a region of rectangular cross section, with its x dimension much less than the y dimension, the
fully developed flow is a special type of plane flow:

v = v(x)I (1)
y

Note that continuity is automatically satisfied, i.e., 4 is solenoidal.

The objective of this and the next two sections is an illustration of how viscous forces can
balance electric and magnetic forces imposed either at surfaces or throughout the fluid volume. By
"imposed," it is meant that the fluid motion does not play a significant part in determining the elec-
tromagnetic force distribution. Sections 9.4 and 9.5 illustrate the flow itself.

Because 8~/8t = 0 and (from Eq. 1) v.v = 0, there is no acceleration. The Navier-Stokes equa-
tion, Eq. 7.16.6, becomes

÷÷-
Vp = V(pg.r) + f + nV v (2)

The force density is only a function of x, so a scalar 8 can always be found such that Fx = -C (x)/ax.
Thus, the x component of Eq. 2 becomes ,

= 0; p' p - pigr + C(x) (3)

It follows that p' is uniform over the cross section. The x dependence of p is whatever it must be to

balance the transverse gravitational and electromagnetic force components.

In terms of p', the longitudinal component of Eq. 2 becomes

2
!L = F (x) + n v (4)
By 3ax2

Terms on the right are independent of z, so the longitudinal hybrid pressure gradient, ap'/az, must also
be independent of y.

Because the force density F is independent of y, it can be written in terms of a tensor divergence
which reduces to simply Fy a=Tyx/Lx.

Secs. 9.2 & 9.3



Integrated on x, Eq. 4 then represents the balance of electromagnetic and viscous shear stresses:

'- x = T (x) r T (0) + n[-(x) - (0)]
By yx yx ax ax

It is instructive to note the physical origins of this expression. It can also be obtained by
writing the y component of force balance for the fluid within a control volume of incremental length
in the y direction, unit depth in the z direction and with transverse surfaces at x = 0 and x = x,
respectively. In the absence of a hybrid pressure gradient, the fully developed flow is simply a balance
of viscous and electromagnetic shear stresses.

To determine the velocity profile, Eq. 5 is once again integrated from x = 0 where v = v to x = x,
and solved for v(x). The constant Bv/Bx(0) is determined by evaluating v(x) at x = A where it equals
va. The resulting velocity profile is the first of those given in Table 9.3.1.

The circulating flow and axial flow through a circular cylindrical annulus, also shown in the table,
are other examples where a fully developed flow is found by what amounts to the same stress balance as

exploited in the planar case. Note that for the circulating flow, the pressure gradient in the flow
direction is zero. Determination of the velocity profiles summarized in Table 9.3.1 is left for the

problems.

Table 9.3.1. Three fully developed flows.

a v(x) =v B (1 - ) + vt

+ x l2
Svx 2 ( 2 1 JT dx +x Tyxdx: 2n By n o yx x (a)

\VP z

I·

/ ·
/

r

(rr r T (b)+ a - dr - dr
v= _ I or- dr(ba r n r

.~ ..B .;-.,]B~r

in( aIn a.

v v a+v -

F.

(c)
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p' - p(g.r) +C(r); F d-r dr
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9.4 Surface-Coupled Fully Developed Flows

Fully developed flows are often used in quasi-one-dimensional models. Examples in this section
illustrate by using the results of Sec. 9.3 to describe liquid circulations. They also illustrate how
shearing surface force densities can act in consort with viscous shear stresses to give rise to volume
fluid motions. The example treated in detail is EQS, with the surface force density resulting from the
combination of a monolayer of charge and a tangential electric field at a "free" interterface. If the
magnetic skin depth is short compared to the depth of the fluid, similar flows can result from subjecting
the interface of a liquid metal to a magnetic shear stress, as suggested by Sec. 6.8. Consider first a
specific case study, after which it is appropriate to identify the general nature of the interactions
that it illustrates.

Charge-Monolayer Driven Convection: A semi-insulating liquid fills an insulating container to a
depth b. Electrodes to the right and left have the potential difference Vo . Provided the charge con-
vection at the interface is not appreciable, the resulting current density in the liquid is uniformly
distributed throughout the volume of the liquid. As discussed in Sec. 5.10, at least insofar as it
can be described by an ohmic conduction model, the liquid does not support a volume free charge density.
It also has a uniform permittivity. Hence, there is no volumetric electrical force. However, an elec-
trical force does exist at the interface, where the conductivity is discontinuous. In this "Taylor
Pump" the electrode above the interface is canted in just such a way as to make the resulting electric
shearing surface force density tend to be uniform over most of the interface. To see that this is so,
observe that, if effects of convection can be ignored, in the liquid

= V (Y- ) o (1)+
0 k ; E = - y; 0 < x < b (1)

Because a << k, the electric field between interface and slanted plate is essentially in the x direction
and given by the plate-interface potential difference divided by the spacing:

Voy/Y V
E= o i b<x<0 +b (2)

h(y) ix a x R

Note that, at the interface, the tangential electric field is continuous and there is no normal
electric field on the liquid side. Thus, the interfacial surface force density is

+ 1 2x
2 2Ey 1 /oI•\[ a o

T E - E i + cEEE i LE + A- (E - e ) i - o 1 (3)
2 x y x x y y 2 a 0 92 0 x o at y

and, as required for a fully developed model, both the normal and shear components are independent of y.

The normal component of I is equilibrated by the liquid pressure. With the pressure of the air
defined as zero, normal stress balance at the interface, where x = b + 5, requires that

Tx = -p(x = b + E) (4)

In the liquid bulk, where the flow is modeled as fully developed, Eq. 9.3.3 shows that p' is only a func-
tion of y. Here, p' is determined by substituting p' evaluated at x = b + E into Eq. 4. It follows
that

p' = pg(b + E) - + )2 (5 -) ) (5)

Here, ý(y) is yet to be determined. If this vertical deflection of the interface is much less than the
depth of the liquid layer, insofar as the flow is concerned, the fluid depth can be approximated as
simply b.

Three conditions are required to determine the variables v , v and 3p/3y in Eq. (a) of Table 9.3.1.
Two of these come from the facts that the velocity at the tank bottom is zero and that the net flow
through any x-y plane is zero:

v(x = 0) = 0 (6)

vdx = 0 (7)
o

The third follows from the shear stress equilibrium at the interface, where the electrical shear stress
is balanced by the viscous shear stress,

Sec. 9.4



2
-c V

oo av
a = 3 (x = b) (8)

It follows from Eq. 6 that v = 0. Then, substitution of Eq. (a) of Table 9 .1 into Eq. 7 gives the

longitudinal pressure gradient in terms of the surface velocity:

p' = 6n v (9)
Dy b 2

This result and Eq. 8 (evaluated using Eq. (a) of Table 9.3.1) then make it possible to evaluate the
surface velocity:

E V2b
00

v (10)

This velocity results from a competition between electric and viscous stresses, so it is no surpr se

that the transport time b/va is found to be on the order of the electro-viscous time TEV = n/co(Vo/ak).

Evaluated using Eqs. 9 and 10, the velocity profile follows from Eq. (a) of Table 9.3.1 as

E V2b
o0o 3 x 2 x

v= - [ ( ) - i (11)

This is the profile shown in Fig. 9.4.1a.

As a reminder of the vertical pressure equilibrium implied by the model, it is now possible to

evaluate the small variation in the liquid depth caused by the horizontal flow. Integration of Eq. 9

with va from Eq. 11 gives

2

p =a - () + constant (12)

where p' is also given by Eq. 5. The constant is set by equating these expressions and defining the

position where E = 0 as being y = 0. It follows that the depth varies as

3 V 2

= 3 0 0 (13)
2 abpg k

That the liquid depth is greatest at the left reflects the fact that the pressure is greatest at the

left. Thus, in the lower 2/3's of the liquid.(where there is no horizontal force density to propel

the liquid) the pressure propels the liquid to the right.

The field and charge distributions have been computed under the assumption that the effects of

material motion are not important. This is justified only if the fluid conductivity is large enough

that the interfacial convection of charge does not compete appreciably with the volume conduction in

determining the interfacial charge distribution. In retrospect, an estimate of the implied condition

is obtained by considering conservation of charge for a section of the interface near the left end.

Here, the surface velocity falls from its peak value to zero in a horizontal distance on the order of

the depth b. If the current convected at the interface is to be small compared to that conducted to

the electrode from the bulk, then

baV

IOfv l << I- I (14)

According to the approximate theory, the surface charge is given from Eq. 2 and Gauss' law as

of = CoVo/a, so that Eq. 14 is equivalent to

R = 0 << 1 (15)
e aba

Hence, the imposed stress model is valid in the low electric Reynolds number approximation. The

physical significance of Re, here the ratio of the charge relaxation time (Eo/a)(W/a) to the transport

time b/va, is discussed in Sec. 5.10. Too great a velocity or too small a conductivity results in an

electric stress in part determined by the fluid response.

Of course, the velocity in Eq. 15 is actually determined by the fields themselves, so a more

explicit statement can be made. From Eq. 10, v~ is related to the fields so that Re becomes

Sec. 9.4
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Fig. 9.4.1. (a) Cross section of liquid layer driven to the left at its interface by surface force
density. Electrodes at the left and above have zero potential relat{ve to the electrode at
the right, which has potential Vo • The liquid is slightly conducting and contained by an in­
sulating tank. (b) Time exposure of bubbles entrained in liquid show stream lines with experi­
mental configuration essentially that of (a). The liquid is corn oil, with depth of a few cm
and surface velocities at voltages in the range 10-20 kV on the order of 5 cm/sec. (For ex­
perimental correlation, see J. R. Melcher and G. I. Taylor, "Electrohydrodynamics: A Review
of the Role of Interfacial Shear Stresses," in Annual Review of Fluid Mechanics, Vol. 1,
w. R. Sears, Ed., Annual Reviews, Inc., Palo Alto, Calif •• 1969, pp. 111-146. The experi-
ment is ~hown in Reference 12, Appendix C.

b 2

H2 - 0 0 «1=-2-
e 4a ncr

(16)

.This more useful expression of the approximation is in terms of what will be termed the electric
Hartmann number, He. As tI:t~ square root of the ratio of the charee relaxation time E: o/cr, to the elec­
tr~-viscous time, n/E(Vo/a) , this number also appears in Sec. 8.6.

If the viscosity is too low, the fully developed flow is not observed. Rather, the shear force at
the interface cannot entrain the fluid near the bottom before an element has passed from one end of the
tank to the other. Then, only a boundary layer is set into motion. A suitable model is discussed in
Sec. 9.7.

9.9 Sec. 9.4
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At the ends, the "turn around" also involves accelerations. Under what conditions does the re-
sulting inertial force density, pv.V$, compete significantly with that from viscosity? With the spatial
derivatives characterized by the reciprocal length b- 1 , the ratio of acceleration to viscous force den-
sity is of the order

R = [(V )2/bl = P << 1

Y nva/b 2 T

(17)

Defined as the ratio of the viscous diffusion time, pb2/n, to the transport time, b/va , the Reynolds
number Ry is introduced in Sec. 7.18.

EQS Surface Coupled Systems: Two configurations that are very similar to the "Taylor pump" with
fully developed flows providing quasi-one-dimensional models are shown by Figs..9.4.2a and 9.4.2b. Note
that the experiments to which these models apply are shown in Fig. 5.14.4.

MQS Systems Coupled by Magnetic Shearing Surface Force Densities: In pumping liquid metals with
alternating fields, if the magnetic skin depth is short compared to the depth of the liquid, the surface-
coupled model exemplified in this section again applies. In the configuration of Fig. 9.4.2c, a trav;
eling wave is used to induce circulations in a liquid metal. Such a pump is useful in handling liquid
metals in open conduits, perhaps in metallurgical processing.

The MQS system of Fig. 9.4.2d is in a way the counterpart of the "Taylor pump." In the air gap,
the alternating magnetic field has essentially the same temporal phase throughout the air gap. However,
because this field is nonuniform in the y direction, a time-average shearing surface force density is
induced in the skin region of the liquid metal, with attendant circulations that can be modeled by the
fully developed flow.

VO exp j(wt-ky)

SC-.... . .b-
· ~ :f

(a)

. .00.. . Oy.O I
00000000 00."~.i . .

-iI

(b)

Fig. 9.4.2. (a) EQS traveling-wave-induced convection model for experiment shown in Fig. 5.14.4a.
(b) Model for experiment of Fig. 5.14.4b. (c) MQS MHD surface pump. Traveling wave of current
imposed above air gap induces currents in liquid metal with magnetic skin depth much less than b.
(d) Surface current in skin layer has the same temporal phase as a function of y, but because the
field is nonuniform there is a time-average surface force density driving liquid circulations.
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9.5 Fully Developed Magnetic Induction Pumping

The magnetic induction motor discussed in Sec. 6.6 is readily adapted to pumping conducting
liquids. The arrangement of driving current, magnetic material and fluid is typically like that of
Fig. 9.5.1 in a class of pumps that has the advantage of not requiring mechanical moving parts or elec-
trical contact with the liquid. The conduit can be insulating. A natural application is to the pumping
of liquid metals such as sodium, which can react violently when exposed.1

In the liquid metal pump, each x-y layer of the fluid is analogous to the conducting sheet of
Sec. 6.4. Induced currents result in both longitudinal and transverse traveling-wave forces. At a given
position, these forces are composed of time-average and second-harmonic parts. With the traveling-wave
frequency in the frame of the moving fluid (w-kvy) sufficiently high, the liquid (limited as it is by its
inertia and viscosity) usually can react only to the time-average part.

First, observe that the components of the magnetic stress have time averages that are independent
of y. For exampleKTyxt = ½ ReuoHx(x)H(x). Hence, the time-average magnetic force density is simply

S d + d 1 *xx>tt (p ReH H ) (1)

and takes the form assumed in Sec. 9.3, where

c+_KTxxt and T 1p ReH H*
x yx o x y

L --a- Go

...-..:' . i.."..,\...-..-t
'... Kz=Re Koexpj(wt-ky): - .a.

Ix

Fig. 9.5.1

Planar magnetohydro-
dynamic induction
pump.

At the walls, where x = 0 and x = a, the no-slip condition requires that vy E v vanish, and hence
with the identification of A + a, the velocity profile of Eq. (a) from Table 9.3.1 becomes

v = P(x2 - x) + V(x,w,k) (2ay

where x 1

V(x,w,k) - ReH1 H dx + x o Re H ydxo xy

and variables are normalized such that

H = HK k = k/a

p =211K w =W/lga

v = (ap K2o/2n)v (x,y) = (ax,ay)

Implicit is the assumption that the magnetic field distribution is not altered by the liquid motion.
In fact, to some extent, it must be. But, if the fluid velocity at all points is small compared to the
wave velocity, w/k, theni the fields are not dependent on the motion. This is suggested by the example
of the moving sheet in Sec. 6.4, where the sheet represents a liquid layer. The liquid velocity enters
in determining the time average force of Eq. 6.4.11 through Sm, as expressed by Ei. 6.4.7. Currents -
responsible for the force are induced because a magnetic diffusion time Tm = Vo is on the order of w-
whereas convective effects on this induction are ignorable because the magnetic Reynolds number based on

1. For extensive treatment, see E. S. Pierson and W. D. Jackson, "The MHD Induction Machine," Tech. Rep.
AFAPL-TR-65-107, Air Force Aero Propulsion Laboratory, Research and Technology Division, Air Force
Systems Command, Wright-Patterson Air Force Base, Dayton, Ohio, 1966.
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The convection velocity, Rm = poav£, is still small compared to unity. Note that of the two possible
lengths, a and 2w/k, the latter is used here to represent rates of change in the y direction.

In this limit of small Rm, the transfer relations (b) from Table 6.5.1 with U + 0 and A + a give
the magn~tic field distribution. Identification of a + a and 8 + b and use of the boundary conditions
H =-KoH1 = 0 specializes the relations to

A coth ya

Li 0-- (3)

A] [Jssinh ya]

where y• k2 + i. Substituted into Eqs. 6.5.6, these-coefficients give the distribution of A and
hence of Hx and Hy. In normalized form

^ =-'! cot sinh Yx sinh y(x - 1)i (4)
x y sinhy si nh 2

S=coth cosh yx cosh Y(x - 1) y 2 (5)+
y sinh snh2y 2

Substituted into Eq. 2, these expressions determine the velocity profile as a function of the pressure
gradient and the driving current.

Although now reduced to a straightforward integration, the explicit evaluation of the x dependence
is conveniently done numerically. The profiles shown in Fig. 9.5.2 reflect the tendency for the velocity
to peak near the driving windings. This results for two reasons. If the wavelengths are short compared
to the channel width, the fields decay exponentially in the x direction even if the frequency is suf-
ficiently low to give no induced currents. But even more, as the frequency is raised, the induced cur-
rents shield the magnetic field out of the lower fluid regions to further enhance this decay of the force
density. The details of the magnetic field diffusion are represented in Figs. 6.6.3 and 6.6.4. Note
that 6'/a as defined there is V2/1. For a pump having a width w in the z direction, the volume rate of
flow, Qv, is the integral of v over the x-y cross section. The relation between pressure gradient and
volume rate of flow thus follows by integrating Eq. 2,

vdx = - + Q(w,k); Q E VCx,w,k)dx (6)
o o

where

Qv=9 wa2poK2/2

1

.8

.6

.4
(a)

.2

O

x

,(b)

-.002 0 .004 0 .01 .02 .03 .04

V

Fig. 9.5.2. (a) Normalized velocity profile with pressure gradient as parameter. w = 50
(6'/a = 0.2) and k = 1. (b).Normalized velocity profile with zero pressure gradient

showing effect of frequency w. For w = 50, the force density is confined to upper
20% of layer so that profile in the region below is the linear one typical of Couette
flow.

I
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The pump characteristic therefore has the general

form illustrated by Fig. 9.5.3. The intercepts are fune-

tions of (m k) The de endence on a is t icall th f

the induction machine developed in Secs. 6.4 and 6.6 and
is illustrated in Fig. 9.5.4.

To achieve pumping over the entire cross section,
the design calls for making the wavelength and skin ap
depth large compared to the channel depth a. Mathemati- 9
cally, this is the limit ya << 1, and the limiting forms
taken by Eqs. 4 and 5 show that x is then uniform over
the cross section, while Hy decays in a linear fashion

from tne current sneet to hne magnetic wall below:

S= x (6) Fig. 9.5.3. Normalized pressure gra-
x 2' y dient as a function of normal- ?

Y ized volume rate of flow.

The integrations in Eqs. 2 and 6 are now carried out to
give

V(x,w,k)= wk (x - x2 (7)
2(k 4 + w2)

Q(k,k) A (8)
12(k + )

The approximate magnetic force density implied by the
magnetic field of Eq. 6 is uniform over'the channel cross
section. This is why the approximate long-wavelength long-
skin-depth velocity profile has the same parabolic x depend-
ence as if the flow were driven by a negative pressure gra-
dient.

In practice, "end effects" are likely to be important.

Such effects result from the spatial transient needed to es-
tablish the spatial sinusoidal steady state described in this
section. In the imposed force density approximation used here,
this transient is akin to those illustrated in Sec. 9.7, super-
imposed on a magnetic diffusion spatial transient.

Windings that could be used to drive the system are
illustrated in Sec. 4.7. The electrical terminal relations
are then found following the same approach taken in Sec. 6.b. 0 4 8

Fig. 9.5.4. Dependence of normalized
9.6 Temporal Flow Development with Imposed Surface and Volume Q (Fig. 9.5.3 and Eq. 6) on nor-

Force Densities malized frequency with k = 1.

Under what conditions is a flow fully developed? The answer to this question can either be one of
"when?" or "where?" If the configuration is reentrant, as for example in the Couette geometry of
Table 9.3.1, and volume and surface force densities which are uniformly distributed with respect to the
longitudinal directions are suddenly turned on, the question is one of, when? On the other hand, if a
steady state prevails in a system having a finite length and the fluid enters with some velocity profile
other than the fully developed one, the question is one of, where? In either case, the development is
governed by viscous diffusion.

In this section, the temporal transient is considered. The spatial transient is taken up in
Sec. 9.7.

Turn-On Transient of Reentrant Flows: Suppose that the plane flow considered in Sec. 9.3 (first

of the configurations in Table 9.3.1) is reentrant, so that there is no longitudinal pressure gradient,
ap'/ay = 0. Boundaries (or surface stresses) and volume force densities are applied when t = 0. How
long before the fully developed flow described by Eq. (a) of Table 9.3.1 pertains?

The incompressible mass conservation and momentum force equations can be satisfied by a time-
varying plane flow: 3 = v(x,t)ly. The longitudinal force equation is then

2

p 2= F (X) + - (1)
at y ax211-x
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for t > 0. Fully developed flow can be regarded as a particular solution, vfd(x). This solution both
balances the force distribution in the volume and satisfies the boundary conditions v(A) = va and
v(0) = vB . With the understanding that the total solution is v = vfd + vh(x,t), it follows that

2
9vh vh

P at = n 2 (2)
ax

where vh satisfies the boundary conditions v = 0 at x = A and x ='0.

In the terminology introduced in Sec. 5.15, the required solutions to Eq. 2 are the temporal modes
Revn(x)expsnt (with no longitudinal dependence and hence with ky = 0). Substitution converts Eq. 2 to

2
dv n 2 2 Psn

2+ nv = 0; Yn = - (3)
dx n

Solutions to Eq. 3 that satisfy the homogeneous boundary conditions are

v = Vnsin ynx (4)

where because sin YnA = 0,

nn n 2
n = n p n

Thus, the velocity distribution evolves at a rate determined by the sum of modes, each having a time
constant Tn = p(A/nT) 2 /n, the viscous diffusion time based on a length A/nr. The total solution is in
general

0st
v = v d(x) + E V sin (~ x)e n (5)

n=l

The coefficients Vn are determined by the initial conditions on the flow, v(x,0) = 0,

vfd= V sin (nnn x) (6)
n=l n

The temporal modes are orthogonal, in this case simply Fourier modes, so the coefficients are determined
from Eq. 5, much as explained in Sec. 2.15.

As an example, suppose that when t = 0, the upper boundary is set into motion with velocity U,
that the lower one is fixed and that there is no volume force density. Then, vfd = (x/A)U and it fol-
lows that the sum of the fully developed and homogeneous solutions gives

n st
+ 2(_1) n7 nv = x + 7 sin (nx)en (7)

U A nn=l
n=l

This developing flow is shown in Fig. 9.6.1.

The boundary conditions satisfied by the temporal modes are determined by the way in which the
transverse drive is applied. Suppose that the upper boundary is a "free" surface to which an electric
stress is suddenly applied when t = 0. An example would be the electrically driven flow of Fig. 5.14.4a,
but closed on itself in the longitudinal direction. (It is assumed that the traveling-wave velocity
is much greater than that of the interface, and that, in terms of variables used in that section, the
flow responds to the time-average surface force density To E<Tz, which is suddenly turned on when
t = 0.)

The fully developed flow is again simply (x/A)U. However, the surface velocity is in general a
function of time, U = U(t), and for the fully developed flow is determined by the condition that the
interfacial viscous shear stress balance the applied surface force density: nav/ax(x=A) = Toul(t).
Because the driving condition is balanced by the fully developed part, the homogeneous solution to Eq. 3
must now satisfy homogeneous boundary conditions: avh/3x(x=A) = 0 and vh(O) = 0. Thus, the temporal
modes are determined. The resulting solution is

x 2 -i)n s t

/(T A 1 2 sin[ (n + 21]en (8)
n=0 [7(n + ()]

Sec. 96 
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Fig. 9.6.1

Temporal transient leading to fully
developed plane Couette flow as
velocity in plane x=A is suddenly
constrained to be U. v,x and t
respectively, normalized to U,
A, and pA2 /Tr 2 .

Fig. 9.6.2

Temporal transient leading to fully
developed plane Couette flow initi-
ated by application of constant
surface force density, To, at free

upper interface. v,x and t respec-
tively normalized to AT o/n, A,
and pA2/2ff2 .

where
2

s = (n + 1)2
n 2 2

This transient, shown in Fig. 9.6.2, shows how both the interface and the fluid beneath approach the

fully developed plane Couette flow.
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9.7 Viscous Diffusion Boundary Layers

It is clear from the temporal viscous diffusion transients considered in Sec. 9.6 that in the early
stages of development, motions imparted by a boundary are confined to the adjacent fluid. Examples are
shown by Figs. 9.6.1 and 9.6.2. For times short compared to the viscous diffusion time based on the
channel width A, the second boundary is of no influence and the diffusion phenomenon effectively picks
out its own natural length. For the temporal transients considered, this length increases with time un-
til the diffusion reaches another boundary.

With increasing time, the viscous process remains confined to the neighborhood of a boundary in two
important situations. One is encountered in Sec. 7.19. There, bbundary excitations are in the sinusoidal
steady state and motions are confined to within a viscous skin depth of the boundary. In the second situ-
ation, there is a mean flow involved having a transport time through the volume of interest that is short
compared to the viscous diffusion time based on a typical dimension of that volume. Thus, the distance
into the flow that boundary effects can diffuse is limited to a viscous skin depth (based on the recip-
rocal transport time). Thus, there are two spatial scales. One, characterized by t, describes vari-
ations in the longitudinal (dominant flow) direction y. The other scale is typified by the boundary
layer thickness, which represents variations in the transverse direction. What makes the subject of
boundary layers require some foresight is that this characteristic transverse length, d, is at the out-
set unknown.

The approach now taken is akin to that introduced in Sec. 4.12, a space-rate-parameter expansion
is made in the ratio of lengths, y E (d/t)2 . The Navier-Stokes's equations (in two dimensions) and the
continuity equation are written in normalized form as

av av ax aV • 2a 2v
x +v v + --ap /av -x2

SV axy ax +ay2

at yayx a py ax2 -2 2av av av p vYav +_v +at x ax yay ay y pzUXU 2+Y y2 y

+ Y= o (3)

ax ay

where

v v d F =F pU2

x - xd Vx x "y Fx -x d

y v =yvU F-F oU2 (4)

t t(/U) p = 
ppU2

Formally, an expansion is now made of the normalized variables in powers of y. However, not only is this
space-rate parameter small, so also is the reciprocal Reynolds number based on the longitudinal length:
n/piU. That is, the viscous diffusion time pj2 /n is long compared to the transport time L/U. Thus, to
zero order, Eq. 1 is simply

x- = F (5)
ax x

This means that the transverse pressure distribution is determined without regard for the inertial and
viscous force densities. The flow outside the boundary layer, which is essentially inviscid, determines
the exterior pressure distribution. Because F, is imposed, from Eq. 13 it is deduced that the pressure
distribution, p(y,t), within the layer is therefore a given function. In ordinary fluid mechanics, p(y,t)
is usually determined by solving for the inviscid fluid motion in the volume subject to boundary condi-

In Eq. 2, it is clear dthat, to zero order in , the second term on the right can be dropped com-
pared to the first. But, because both y and n/pLU are small, the parameter (l/poU)/b is of the order of
unity, so that the first term on the right is retained. The continuity equation contains no parameters.

--- =+vF+ Vy +ni-+ (56)

at x ax y ay p ay P ax 2 p y (6)
iSec9.7ll 9.16ndbovn orteivsi li oto ntevlm ujett onaycni
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av ýv
x+ = 0

5x 3y

In these last two expressions, p is to be regarded as a predetermined function. If F is known, they com-
prise two equations for determining vy and vx .

Linear Boundary Layer: Suppose that liquid fills the half-space x < 0, has a "free surface" in the
plane x = 0 and, in the absence of electrical excitations, undergoes a uniform translation to the right
with velocity U. An electric or magnetic structure, sketched in Fig. 9.7.1, is used to impose a surface
force density that is turned on when t = 0 and extends from y = 0 to the right. There is no bulk imposed
force density. What is the perturbation in velocity or viscous stress distribution induced in the liquid
by this excitation? Effects of the gas above the liquid will be ignored.

x I,structure

Y

The imposed pressure is zero. The velocity can be written as
indicate perturbations. Thus, for small amnlitudes, Eq. J14 reduces

G2v ,

+U --Dv' = n y
T y/ y P x2

-7
and Eq. ~ determines v' once v' is known.

x y

Fig. 9.7.1

Fluid moving uniformly to right
encounters imposed surface force
density where y > 0. Structure
might induce electric or magnetic
surface force density, as sug-
gested in Secs. 5.14 and 6.8,
respectively.

v = v'i + (U + v')i , where primes
to a finear expre si n in vy alone:

(8)

The boundary condition at x = 0 is that nqv /Dx S = T u (t)u (y), so it is convenient to take
the derivative of Eq. 8 and introduce the stress Ls the dxpendent variab e:

aS a2SSyx D D a 2p x(- + U )Syxx

Here, t' is the rate of change with respect to time for an observer moving with the velocity U. This
expression and the associated initial value and boundary value problem is the viscous analogue of the
magnetic diffusion example treated in Sec. 6.9. Compare Eqs. 6.9.3 for example. Thus, the picture of
temporal and finally spatial boundary layer evolution given there, for example by Fig. 6.9.3 with
Hy - Syx, pertains equally well here.

The notion of an electric or magnetic surface force density implies that the coupling is confined
to a region that is thin compared to that of the viscous boundary layer. In the case of a magnetic skin-
effect coupling, the magnetic skin depth must be short compared to the viscous skin depth if the model
suggested here is to be appropriate.

Stream-Function Form of Boundary Layer Equations: So that the continuity equation, Eq. 7, is auto-
matically satisfied, it is convenient to introduce the stream function (from Table 2.18.1)

@A DA

v =-i -- i
xyx 3x y

(10)

Substitution converts the longitudinal force equation, Eq. 6, to

22A
vt

atax

DA 2A
v v

ay Dx2

ax

ýA 2A
v v

Bx axay

3A
p v 1P 1 +

P x3 p ay p ypx

(11)

This expression is now applied to two examples in the remainder of this section.

Sec. 9.7
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Irrotational Force Density; Blasius Boundary Layer: Suppose that, as in Sec. 9.2, the imposed force
density is irrotational; f = -Vs. Also, steady conditions prevail, so ý( )/3t = 0. Thus, the boundary
layer describes the first stages of steady-state flow development adjacent to a planar boundary. Perhaps
the fluid makes an entrance with uniform velocity profile (at y = 0) to the region of interest, as shown
in Fig. 9.7.2.

Conditions in the core of the flow are determined fromU

the inviscid laws. Given that the flow enters free of vor-
ticity, Bernoulli's equation, Eq. 7.8.11, shows that

p +g P = l - pv (12) Y

where H is a constant. Fig. 9.7.2. Viscous diffusion boundary
layer near entrance to channel.

The transverse component of the boundary layer equa-
tion, Eq. 9.7.5, requires that across the boundary layer

- (P) = 0 (13)
3x

so it follows that within the boundary layer, P = P(y). From Eq. 12, the particular dependence of P(y)
is determined by the bulk flow velocity distrubtion.

Because it follows from Eq. 10 that p = P -E and F = -Vs, the longitudinal force equation,
Eq. 11, reduces to

DA 92AV A D2AV 3A
v v v v r v 1 dP

= - - (14)
@y x2 Dx axy p 3 p dy

Consider now a flow that enters at y = 0 in Fig. 9.7.2 with a uniform velocity profile v = U1.
In the core, where the inviscid laws apply, the flow remains uniform with this same velocity. Thus,
because v in Eq. 12 is independent of y, it follows that the pressure gradient on the right in Eq. 14
is zero. By introducing a similarity parameter, such as illustrated for magnetic diffusion in Sec. 6.9,
it is then possible to reduce Eq. 14 to an ordinary differential equation.

By way of motivating the similarity parameter, observe that at a location y fluid has had the
transit time T = y/U for viscous diffusion. The rate of this process is typified by the viscous dif-
fusion time, Tv = p(x/2) 2 /n, based on half of the transverse position x of interest. Thus, it is plau-
sible that viscous diffusion will have proceeded to the same degree at locations (x,y) preserving the
ratio

v _== X (1 5)

This similarity parameter is the analogue of the magnetic diffusion parameter given by Eq. 6.9.9.

With a function f(Q)defined such that Av = -f(C)J;U'y/, Eq. 14 then reduces to the ordinary dif-
ferential equation

3f+ f -- = 0 (16)
d3 

dC

This third order expression is equivalent to the three first-order equations

d[]
d~ ] = h] 

(17)

f

Appropriate boundary conditions for flow over the flat plate are

vx(O,y) = 0 => f(0) = 0, vy(0,y) = 0 = g(0) = 0, vy(,y) + U => g(-) - 2 (18)

Numerical integration of Eqs. 18 subject to these boundary conditions is conveniently carried out
using standard library subroutines. (Used here was the IMSLIB routine DVERK.) To satisfy the condition
as -- -, h(0) is used as an iteration parameter and found to be 1.328.
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The velocity profile vy = -(U/2)df/dE is shown in Fig. 9.7.3. Note that eighty-five percent of
the free stream velocity is obtained at E = 1.5. (For demonstration of this boundary layer, as well

as exposition of layers with free stream pressure gradients, their transition to turbulence and tur-

bulent boundary layers, see Reference 5, Appendix C.)1

The viscous stress on the flat plate then follows as

Syx (0,y) = U h(O) = 0.332UTn (19)

This y dependence is shown in Fig. 9.7.4a. Stream lines are illustrated by Fig. 9.7.4b. Even though

the boundary layer approximation breaks down at the leading edge, the total viscous force, fy, on a
plate of width w and length L, found by integrating Eq. 19, is well behaved:

(20)fy = w Syx(O,y)dy = 0.664wUVpýUH
oyx

Syx
i-

I

.4 .8
g()/2 =vy/U -

Fig. 9.7.3. Velocity profile
Blasius boundary layer
function of similarity
parameter 5, defined by
Eq. 15.

O . .' .... .6 .Ab
(b)

Fig. 9.7.4. (a) Distribution of viscous stress with longi-

tudinal position y = y/L. S 2S U pU/fIL.
-yx x E(x/

(b) Streamlines with Av A /InUL/p, x-2 (x/2)/pU/Lf.

What is there to be learned from this classical similarity solution that can serve as a guide in
attacking the next example? First, observe that the similarity parameter can be thought of as an alter-
native coordinate. Lines of constant ý form a family of parabolas in the x-y plane. One similarity
coordinate is perpendicular to this family. In the x-y plane this similarity coordinate has the shape
of an ellipse, as exemplified. by Fig. 9.7.5. Not only does the boundary layer equation become an
ordinary differential equation in this coordinate, but the boundary conditions are also a function of
E alone.

1. Standard references on boundary layers are: A. Walz, Boundary Layers of Flow and Temperature, The
MIT Press, Cambridge, Mass., 1969; and H. Schlichting, Boundary Layer Theory, McGraw-Hill Book
Company, New York, 1960.
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In Fig. 9.7.5, boundary conditions at-A (the flat plate) and C
(the free stream) are the same as at A' and C'. Otherwise, the
solution found by integrating Eq. 17 along AC and A'C' would
not give the same result at B as at B'. Because f = f(Q), the
value of f must be the same at these two points.

A rational procedure for seeking a similarity parameter
as well as the y dependence of Av would begin by letting
ý = clxyn and Av = c2 f(O)ym, where n and m are to be determined.
It follows from the assumed form for Av that vy = -c2ym+ndf/dE.
If this velocity is to be the same constant, U, in the free
stream regardless of the trajectory in the x-y plane, it follows
that m = -n. To make the boundary layer equation reduce to an
ordinary differential equation, it is then necessary that
m = -1/2. Thus, the assumed forms for C and Av are deduced.

Stress-Constrained Boundary Layer: Typical of boundary
layer development with an imposed surface force density is the
system shown in Fig. 9.7.6. The electrode structure imposes a
time-average surface force density To at the interface to the
right of y = 0. Well below the interface, the fluid is essen-
tially quiescent, and so the only motion is the result of the
electromechanical drive. A typical electromechanical coupling
is that of Fig. 5.14.4a, where a time-average surface force den-
sity acts on that part of the interface under the electrode struc-
ture. For the boundary layer model now developed to apply, the
fluid should be doped Freon, which is about 100 times less vis-
cous than the fluid shown (see Reference 12, Appendix C).

t
X

Fig. 9.7.5. Lines of constant
similarity parameter, 5,
in (x-y) plane.

First observe that, in terms of the normali-
zation given by Eq. 9.7.4, the viscous stress is

yxav 
v

yx d y ax

Thus, in the boundary
the viscous stress is
the two derivatives.
tion, the stress then

82A
Syx = -nyx 2

ax

(21)

layer approximation (y small),
approximated by the second of
In terms of the stream func-
becomes

(22)

What is desired is a similarity parameter and
stream function defined so that the condition Fig.
that Syx be constant at x = 0 for all y > 0 is
met by evaluating f(E) at one value of 5. Thus,
Syx must be a function of the similarity parameter
alone. With m and n at the outset unknown and cl and c2

,C = lxy ; Av = c2f( m

It follows from Eq. 22 that if Syx is to
Substitution into Eq. 14 then shows that
dP/dy = 0, reduces to

9.7.6. A uniform surface force density is
applied to interface for 0 < y. Develop-
ing velocity profile is vy.

normalizing parameters, trial forms are

(23)

be a function of the similarity parameter alone, m + 2n = 0.
n = -1/3. Thus, the boundary layer equation, Eq. 14 with

f g

g = h

Sg 2 2fh
3 9 3 f
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where Sy~ is normalized to To so that (this similarity solution was identified for the author by /
Mr. Richard M. Ehrlich while a graduate student)

1/3

2=•T-1 xy (25)

1/3

A =- 2 f(O)y2/3 (26)

Boundary conditions consistent with having a constant surface force density To acting in the y direc-
ion, no vertical velocity at the interface and a stagnant-free stream are

vx(O,y) = 0 =!>f(O) = 0, Syx(0,y) = To0 *h(0) = -1, vy(,y) - 0 =g(-) - 0 (27)

To match the boundary conditions as 5-+, g(0) is used as an iteration parameter which is adjusted
to make g+0 as ý-+o with the other two conditions at C=0 satisfied. From this iteration it follows that

g(0) = 1.296. The universal profiles f(C) and g(C) are shown in Fig. 9.7.7. The velocity profile,
recovered by using the relation vy = (T2/pf)l/3g(C)yl/

3 , is as exemplified in Fig. 9.7.6. With in-

creasing longitudinal position y, the interface has increasing velocity and the motion penetrates
further into the bulk.

The velocity of the interface is

simply
1/3

v = - (1.296)y1/3 (28)
=(28)

and is shown in Fig. 9.7.8.

Streamlines help to emphasize that
the fluid is being drawn into the boundary

layer from below. These lines of constant
Av, given by Eq. 26, are illustrated in
Fig. 9.7.9. 0 .4 .8

U
In retrospect, what is the physical

origin of the difference between similarity
parameters for the constant velocity and

the imposed stress boundary layers?
In fact C as defined by Eq. 25 is again

the ratio of a time for viscous diffusion
in the x direction to a transport time

in the y direction. However, with the

stress at the interface constrained, the 2
transport velocity in fact varies as

yl/3 . Based on a transport time con-
sistent with this variation in velocity,
it is again found that C is the square
root of the ratio of the viscous diffu-
sion time to the transport time.

4

Fig. 9.7.7. Universal profiles of f(ý) and g(C)

as function of similarity parameter for

boundary layer with uniform surface force

density.
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Fig. 9.7.8. Interfacial velocity of interface Fig. 9.7.9. Streamlines for stress-constrained

subject to uniform surface force density boundary layer, as would result in configu-

To . vy and y normalized to (T2L/pn)1/3 ration of Fig. 9.7.6. Variables are
and L respectively. normalized.

9.8 Cellular Creep Flow Induced by Nonuniform Fields

Low-Reynolds-number models are often used to describe fluid circulations where, if it were not
for a relatively high viscosity or for a relatively low velocity, the nonlinear acceleration term would
make the mathematical description difficult. The main virtue of this approximation, which is discussed
in Secs. 7.18 and 7.20, is that the flow is then described by linear differential equations. Thus, a
Fourier-type decomposition of surface force densities results in a flow that can be represented by
responses, in a way exemplified by many spatially periodic examples from previous chapters.

Illustrated in this section are such circulating imposed surface density flows. They are of
interest in their own right, but also are useful in developing models where the surface force density
is in fact dependent on the flow.

Magnetic Skin-Effect Induced Convection: The layer of liquid metal shown in Fig. 9.8.1 rests on
a rigid bottom and has a "free" interface. Separated from the interface by an air gap, windings backed
by a perfectly permeable material impose a tangential magnetic field that takes the form of a standing
wave. The frequency w is high enough that the magnetic skin depth 6 in the liquid (Eq. 6.2.10) is much
less than the liquid depth b. Associated with this skin region are both normal and shearing time-
average surface force densities acting on the material within the layer (Eqs. 6.8.8 and 6.8.10). At
relatively low applied fields, gravity maintains an essentially flat interface in spite of the normal
surface force density. However, the shearing component establishes cellular motions, as now derived.

First, the imposed time-average magnetic shearing surface force density is computed. A region
having thickness of the order of 6 near the interface is pictured as subject to a force per unit area
which is the time average of the force density I x poH integrated over the thickness of the layer.
Because the magnetic field below the layer is zero, this shearing surface force density is

S = Sde BdHd> (1)

Because the excitation is a standing wave, there is no net force on a section of the skin region one
wavelength long in the y direction. Rather, there is a spatially periodic distribution of the time-
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average surface force density that has twice the periodicity of the imposed field.

To exploit the complex-amplitude transfer relations, observe that the excitation surface current
can be written as the sum of two traveling waves:

Kz = ReK cos ye = Re(Ke-jy + ejYy)ejwt; o/2 (2)

The backward wave is gotten from the forward one by replacing 8 1 -0. Using this decomposition, Eq. 1
becomes

fRe ~( ed + d e e y +y-e d

<T· t Re de + dXe )(Hde + Hd*e-J o)

1 Re[1d - +d*+d d* + d -d*j 2 y d -d*e-J 2 By] (3)
2 eBHy+ x-Hy- x-y+ x+y-

The normal and tangential fields above the interface are related by the skin-effect transfer
relations, Eq. 6.8.5. The upper sign is appropriate because it is assumed that the peak interfacial
velocity is still much less than wm/. Thus, substitution for d+ and ~d shows that the space average
part of Eq. 3 cancels out while the remaining terms give

Tt Re + 4j) 6 d id*ej28y + (1+ j)B1 6Hd Hd* e-j2By (4) kh ••L
t Re4 + J)+oy 

0+-(

Use can be made of the air-gap transfer relation to represent Hd in terms of the driving current Ko.
For simplicity it is assumed that B << 1, so that the tangential field imposed by the surface current
at (Q is essentially experienced at (A) as well:

fd . -c o (5)

Thus, the time-average magnetic surface force density of Eq. 4 is simply

poBsl o12
A T = 8 o sin 2By (6)

This is the distribution sketched at the interface of Fig. 9.8.1.

Fig. 9.8.1

Cross section of liquid metal layer
set into cellular convection by
spatially periodic a-c magnetic field
inducing magnetic shear stress in skin
layer at interface.

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\'\\\\\\\\\\\

Now that the imposed magnetic surface force density has been determined, the flow response can be
computed. In Sec. 7.20, this too is represented in terms of complex amplitudes, so the drive, Eq. 7,
is again decomposed into traveling-wave parts:

Ty>t = Re(e -j2By + Tej2B); + jo6Ko 2 /16 (7)

That the interface,modeled here as having a thickness several times 6,be in shear stress equi-
librium requires that

e -SYe = T+ (8)

With the assumption that gravity holds the interface essentially flat in spite of the normal magnetic
surface force density goes the boundary condition
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-e
v = 0

x
(9)

At the rigid lower boundary, both velocity components are zero:

-.f
v

x
-f

O' v, y o (10)

The stress-velocity relations for the layer, Eq. 7.20.6, can now be used to represent the bulk fluid
mechanics. In particular, Eq. 7.20.6c is evaluated using Eq. 8 on the left and Eqs. 9 and 10 on the
right. Solved for the interfacial shear velocity, that expression becomes:

1[4 sinh(4Sa) - SQ](8S)

2 2
[sinh (2Sa) - (2Sa) ]

(11)

Note that P33 is an even function of k and hence the same number whether evaluated with ~
~ = -2Sa.

2Sa or

The last three equations specify all of the velocity amplitudes, so that equations 7.20.4 and
7.20.5 can be used to reconstruct the x-y dependence of the flow field if that is required. At the
interface, it follows from Eq. 11 that the y dependence is

Re ___1__ (T e-2jSy T_e2jSY) =
V So Ii 12

+ o 0 sin 2Sy (12)v
8nP

33y nP
33 +

Thus, the flow pattern is as sketched in Fig. 9.8.1.

The hydromagnetic convection modeled here is akin to that obtained in the quasi-one-dimensional
configuration of Fig. 9.4.2d. There the field nonuniformity is obtained by using a shaped bus. Here,
the windings are used to shape the field.

a

Fig. 9.8.2. Semi-insulating liquid
layers stressed by static
spatially periodic potential.

Fig. 9.8.3

(a) Streak lines of bubbles entrained
in flow induced in configuration shown
in Fig. 9.8.2. Upper fluid has prop­
erties £ = 3.1£0' 0 = 5xlO-ll mhos/m
while lower one has £ = 6.9£0' and
o = 3xlO-9 . (b) Theoretical stream­
lines in limit where upper boundary
is at infinity. In the experiment
shown in (a), the cells in the upper
region actually interact appreciably
with the upper wall.

(a) b (7Jb , E b, O"'b)

____ t _J:=_ Y9.~~~J?Y:>.. _

(b)

Charge-Monolayer Induced Convection: Surface charge induced convection, akin to that of Fig. 9.4.1,
takes a cellular form in the EQS experiment of Figs. 9.8.2 and 9.8.3. In the model developed in Prob.
9.8.1, the flow is slow enough that it has ne Ii ible effect on the field.l X

1. See C. V. Smith and J. R. Melcher, "Electrohydrodynamically Induced Spatially Periodic Cellular
Stokes-Flow," Phys. Fluids 10, No. 11, 2315 (1967).
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SELF-CONSISTENT IMPOSED FIELD

9.9 Magnetic Hartmann Type Approximation and Fully Developed Flows

Approximation: In typical laboratory situations involving the flow of electrolytes, liquid metals
or even some plasmas through a magnetic field, magnetic diffusion times are short compared to times of
interest. Nevertheless currents induced by the motion can make an appreciable contribution to the mag-
netic force density. The magnetic field associated with induced currents is then small compared to the

imposed field.

The appropriate approximations to the magnetohydrodynamic equations are seen by writing those
equations in normalized form:

Vx E = - -- (1)at

Vx• (E=v( x H) (2)

V- 0 (3)

v• +m T+ + + + T 2+(4
3 - 2>7t+ vv+p . (E+vxt)xH+-Vv (4)t+ v vp T Tat MI MI V

V-v = 0 (5)

It is assumed that the fluid is an ohmic conductor with characteristic conductivity a0 and
essentially the permeability of free space. The normalization used here, summarized by Eqs. 2.3.4b,
takes the electric field as being of the order p 0iA'/T, as it would be if induced by the motion. The
three characteristic times

= 2 • o= o£2 2;,2 (6)V n ' m o MI = 2 (6)

are the viscous diffusion time, magnetic diffusion time and the magneto-inertial time, respectively,
familiar from Sec. 8.6.

In the imposed field approximation, these times have the order shown in Fig. 9.9.1, and times of
interest, t, are long compared to Tm but arbitrary relative to TMI and TV. Of course, for steady flows
the characteristic time is a transport time 1/u. Then, the approximation requires that the magnetic
Reynolds number be small, but that the Reynolds number TV/T =
p£u/n and the ratio of fluid velocity to Alfv6n velocity

MI/T = u/I/ r be arbitrary.

Because Tm/T is small, the induced currents on the right I I T

in Eq. 2 are negligible. The magnetic field is imposed by Tm TMIM V
means of currents in external windings. (More generally, there
might be contributions from imposed volume currents which would Fig. 9.9.1. Ordering of character-
arise from an electric field greater in order than P £3 /T,, as istic times in magnetic im-
presumed in the normalization of Eq. 2.) posed field approximation.

Note that to zero order in Tm/T, the divergence of Eq. 2 still requires that the divergence of the
induced current density vanish. Thus, Eqs. 2 and 3 reduce to expressions that determine H,

V x l = 0 (7)

V. 0H =0 (8)

and with the understanding that 9 is the imposed field only,

V x =- (9) Xat

V*1 = 0; J = a(E + v x P H) (10)

+
av + x + 2+

p(T-+ v*Vv) + Ipx H + nV v (11)
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4.
V.v = 0 (12)

The simple dimensional arguments given here presume that there is only one characteristic length R.
In general, more lengths and perhaps more than one characteristic time might be involved, and then ap-
proximations must hinge on a more detailed knowledge of the physical situation. The fully developed
flow now considered involves one characteristic length, the transverse dimension d of the channel.

Fully Developed Flow: The magnetohydrodynamic pumping or generating configuration of Fig. 9.9.2
is an adaptation of the d-c kinematic (rotating machine) interaction from Sec. 4.10 and a refinement
of the model introduced in Sec. 9.2. What is new is the internal redistribution of velocity caused by
the magnetic force density.

Fig. 9.9.2

Configuration for Hart n flow.
The aspect ratio d/w.>--1 so
that the velocity is essentially
a function only of x: thus so
also is the current density Jzz

4w -A

A conducting fluid moves in the y direction through the rectangular channel (Fig. 9.9.2) having
a width w much greater than the depth d. Hence, the viscous shear from the upper and lower walls
dominates that due to the side walls and the velocity profile can be considered a function of x alone.

The side walls are conducting electrodes that make electrical contact with the fluid and are con-
nected to an external load or excitation. With the application of a transverse magnetic field Ho in
the x direction, there is a magnetic force density J x B in the y direction tending to retard or
accelerate the flow. Effects qf gravity are absorbed in the pressure p. In this configuration, external
currents generate the imposed H which is uniform and the constant Ho. Thus, Eqs. 7 and 8 are satisfied
and the right-hand side of Eq. 9 is zero. Even if the flow is time-varying, the electric field is ir-
rotational. If flow and field quantities are to be independent of z, it follows from the y component
of Faraday's law that

E = E (t) = (13)a z w

independent of x.

With tfe objective of finding a plane flow solution, v = v (x,t) , note that the current density
is

J = a(E - vyH ) (14)

so that the y component of Eq. 11 reduces to

2av 82v
p + =po H E - (poHo)2oav + Y (15)

at ay 0 0z 00 y 23x
Also, Eq. 12 is automatically satisfied. The x component of the force equation, Eq. 11, shows that p
is independent of x. In fully developed flow, the longitudinal pressure gradient, Bp/By, is also
independent of y.

Temporal flow development is considered in the next section. For the remainder of this Section,
consider the flow to be steady, so that Eq. 15 reduces to

2 2
d v a(p H ) v V aH

_2 'o=y - o Ez + (16)
dxwhere thete n the z rof

where the terms on the right are independent of x.
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Boundary conditions for the configuration of Fig. 9.10.2 require that the velocity vanish at
x = + d/2. Solution of.Eq. 16 then gives

F= 2 E Fcosh(Hm2x/d) 
(17)

y 4 T ay L cosh H
m

where the Hartmann1 number, Hm, is defined as

Hm = poHo d (18)

The velocity profile given by Eq. 17 is illustrated in Fig. 9.9.3. In the absence of a magnetic
field, plane-Poiseuille flow prevails and the profile is
a parabola. The tendency of the magnetic field to
flatten the vrofile should have been expected. The cur-

rent density has a direction determined by Ez, the term
in brackets in Eq. 14. Wherever the velocity is so
great that the "speed" field poHovy exceeds Ez, the force
density tends to retard the motion. Thus, there is a
tendency for the fluid bulk to suffer a rigid-body motion,
with the strain rate confined to fully developed boundary
layers. It follows from Eq. 16 that this "Hartmann layer" X
has an exponential profile with a thickness 6 = d/2Hm. d

The Hartmann number indicates the degree to which
the field competes with the viscosity in determining the
fully developed profile. By one definition, the magnetic
Hartmann number is the square root of the ratio of that
part of the magnetic force density attributable to the

1 U L .3 4 V
mater a mot on to t e v scous orce ens ty. LoUm

Eq. 14, the motion-dependent part of J Z OpoVyHa, so
that the magnetic force density is of the order Fig. 9.9.3. Velocity profile of Hart-
(oaovoyHo)(.ioHo). Using as a typical length d/2, the vis- mann flow (Hm = 10) and plane-
cous force density is of the order nv /(d/2) 2 . The square Poiseuille flow (Hm = 0).
root of the ratio of these two quantilies is Hm as defined
by Eq. 18. This dimensionless number is alternatively defined in Sec. 8.6 as the square root of the
ratio of a magnetic diffusion time to a magneto-viscous time.

The Hartmann flow was originally studied as a model for a liquid metal pump. The electro-
mechanical terminal relations help to emphasize the energy conversion issues.

In practice, it is difficult to make an electrical contact between a liquid metal and a metallic
electrode that does not have an appreciable contact resistance. However, with the understanding that
v is the voltage across the fluid (the contact resistance might then be included in the external
circuit equations), Ez = v/w. On the mechanical side,the pressure gradient is the pressure rise Ap
divided by the length of the system in the flow direction, A. Thus, Eq. 17 can be used to deduce the
electromechanical terminal relations for the system by integrating over the x-z cross section to obtain
the volume rate of flow Qv:

d

23 tanh H tanh H
v dx = V m d m v (19)

d y 4nHm m oHo Hm
d m H

2

The electrical counterpart of this relation between the "terminals" of the system is obtained by using
Eq. 17 in Eq. 14 to evaluate vy and integrating the latter expression over the area of the input elec-
trode:

.Gd poHoki= V- Qv (20)w w v

With the volume rate of flow, Qv, and voltage, v, constrained, it is convenient to solve Eq. 19 for the
pressure rise and express the mechanical power output of the flow as

1. J. Hartmann and F. Lazarus, Kgl. Danske Videnskab. Selskab., Mat.-Fys. Medd. 15 , Nos. 6 & 7 (1937)
I
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4lgl2 ( H2011 m +V
A' 2Hm tanh H - Hwd m m

where V = (v/Qv)d 2 4/n72.

The electrical power input is similarly expressed by using Eq. 20:

vi = 2 .F VQ (V - Hm)

(21)

(22)

In these last two expressions, Hm represents the magnetic field. It plays the role of the field
current, if, in the d-c machine of Sec. 4.10. The modes of energy conversion obtained by varying the
field are seen from the dependences given by Eqs. 21 and 22 and illustrated by Fig. 9.9.4. The
energy conversion regimes are as would be expected from those for the prototype machine from Sec. 4.10
(Fig. 4.10.5). The new brake regime to the left and the expanded one to the right reflect the new loss
mechanism, the viscous dissipation.

gene

Fig. 9.9.4. Regimes of energy conversion for fully developed Hartmann flow with V = 10.

9.10 Flow Development in the Magnetic Hartmann Approximation

In the absence of electromechanical interactions, the viscous diffusion time determines the time
(or distance) for flow development. With the imposition of a magnetic field come processes character-
ized by the magneto-inertial time (Fig. 9.9.1). Because TMI < TV, there is now a stronger mechanism
than viscous diffusion for establishing a fully developed flow.

To illustrate how induced currents can result in the establishment of fully developed flow at a
rate that can be more rapid than would be expected on the basis of viscous diffusion alone, consider the
configuration shown in Fig. 9.10.1. The system of Fig. 9.9.2 is essentially "wrapped around on itself"
in the y direction. The annulus is thin enough compared to the radius (a - b - d << a) that the planar
model from Sec. 9.9 can be used. The annulus of what amounts to a Couette viscometer is filled with a
liquid metal and subjected to a radial magnetic field,Ho . Motion is imparted by the rotation of the
inner wall, which has a velocity U. Azimuthal fluid motion therefore induces currents in the z direction,

as shown in the figure.

___
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Fig. 9.10.1. Couette Hartmann flow. Inner Fig. 9.10.2. Fully developed profile in Couette

wall rotates while outer one is fixed. Hartmann flow of Fig. 9.10.1.

A filmed experiment (Reference 7, Appendix C) shows how the liquid responds as the inner wall is
suddenly set into steady motion. Because the upper and lower surfaces of the annular region of liq-
uid metal are bounded by insulators, the current that flows in the z direction over the region of the
annulus well removed from the end circulates through the end regions. Thus, the net current in the
z direction at any instant is zero. Questions to be answered here include, what is the fully de-
veloped velocity profile and what characteristic times govern in its establishment?1

The channel closes on itself in the azimuthal direction, and hence the pressure gradient in that
direction is zero. This is the y direction in the planar model, and hence Eq. 9.9.15 reduces to

2

Dt Dy2lt---= po0HoEz 0(Ho)2ovy + n Y2 (1)
Px

Because the net current in the z direction must be zero, the integral of Jz over the cross section
must be zero. With Jz given by Eq. 9.9.14, it follows that Ez is related to vy by the condition

d

Ez 2v dy (2) X

dd Y

2

Representation of the temporal transient leading to the fully developed flow is carried out as
in Sec. 9.6. The fully developed flow plays the role of a particular solution. It follows from Eq. 1
with avy/Dt - 0 and Eq. 2 together with the boundary conditions that vy(d/2) = 0 and vy(-d/2) = U, that

vU [ sinh(H 2x/d) (3)
y 2 sinh H

where H Ep H (d/2)vo7r. (This expression follows using the same steps as lead to Eq. 9.9.17.) The

profilemis shown in Fig. 9.10.2.

To.satisfy the initial conditions, superimposed on this fully developed flow are the temporal modes.
These are solutions to Eqs. 1 and 2 with the homogeneous boundary conditions vy(+d/2) = 0.

1. For model in circular geometry, see W. H. Heiser and J. A. Shercliff, "A Simple Demonstration of

the Hartmann Layer," J. Fluid Mech. 22, 701-707 (1965).
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The temporal modes are assumed to take the form vy = Re vy(x)exp(st). Thus, Eq. 1 becomes

2-
d v 2. pooHo-Tv E (4)

dx2 y n z

where
22H22

2 = sp 0 0
y -

n n

Solutions to Eq. 4 are the sum of a particular solution and two homogeneous solutions

oHoa
= -i E- + A sinh yx + C cosh yx (5)

nY

This expression is substituted into Eq. 2 to find Ez in terms of the coefficient C:

So
H sinh(dy/2)

E =C (6)
z 

_dy[1 - H2/(d2]

Thus, Eq. 5 becomes

H2 sinh(dy/2)
S= A Isinh yx + (d/23 - H/(dy 2 + cosh yx (7)

(dy/2)3 1 - H2/(dy/2)2]

The coefficients A and C are now adjusted to insure that vy = 0 at x = + d/2. Because these co-
efficients can respectively be identified with the odd and even temporal modes, it is possible to
determine the eigenvalues and associated eigenmodes by inspection. Odd modes can be made to satisfy
the boundary conditions by having C = 0 and the coefficient of A vanish at either of the boundaries:

sinh ( = 0 (8)

Here, o is used to denote the odd eigenvalues. Similarly, the even modes follow from Eq. 7 as resulting
if A = 0 and the coefficient of C vanishes at either of the boundaries:

2 dYe
H2 sihh (--) yed

-m 2+ cosh (-) = 0 (9)
dye dY 2 2
( ) - 2/"(e2
2 m 2

Thus, the total solution, the sum of the fully developed profile from Eq. 3 and the transient solution
given by Eq. 7, is

F sinh(H s-)]st [dcosh( - eoet
.Vy= - md + Re E A sinh(x)e + Re C - cosh e (10)

y 2 sinh Hm o1 0 0 e e e 2

Here, the coefficient of C has been simplified by using Eq. 9. The eigenfrequencies so and se of the
even and odd modes follow from the definition of y given with Eq. 4. Roots of Eq. 8 are simply

yod/2 = jolr, and hence the odd modes have the eigenfrequencies

S= - [H + (or) 2]; o = 1,2,... (11)
o TV m

where Tv is the viscous diffusion time (p/n)(d/2)2 based on the annulus half-width. These modes are so
simply described because the condition on Ez is automatically satisfied by the odd modes with Ez = 0.
Thus it is that temporal modes found here are a limiting case of those found in Sec. 8.6. That is, in
the limit Tm << TMI, Eq. 8.6.15 reduces to Eq. 11, where H TmTV/MI.

To find the eigenvalues, ye, and eigenfrequencies, s , of the even modes, it is convenient to
replace ye eJ e and write Eq. 9 as
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0 2 4 6 8 10 0 1 2
fd/2--- yd/2 -

(a) (b)
Fig. 9.10.3. Graphical solution of Eq. 12 for eigenvalues yed/2 E jBed/2 of even temporal modes.

tan BH2 =
m

(12)

so that a graphical solution, Fig. 9.10.3a, gives the required modes. For these modes, the eigenvalues
are themselves a function of H. From the definition of y2 (Eq. 4) the even-mode eigenvalues thus
determined then give the eigenfrequencies:

(13)

The even modes, e 0 1, have eigenvalues that are essentially independent of Hm: Bed/2 = 3w/2,
57r/2,*... These even modes therefore have characteristic times having much the same nature as for the
odd modes. With the magnetic field raised to a level such that Hm exceeds several multiples of w, the
lower order modes have decay rates that are of the order TV/Hm = 'MI(TMI/Tm). These modes represent the
relative adjustment of the profile so that the core of the fluid suffers essentially rigid-body transla-
tion. One way to envision the magnetic damping represented by these eigenfrequencies is to select a
contour of fixed identity as shown in Fig. 9.10.4. Any vorticity results in an increasing flux linkage
for such a loop. The current induced in response to the resulting rate of change of flux linkage results
in a force tending to flatten the profile.

Although the magnetic field has a strong effect on the rate
at which rigid-body motion is seen in the fluid bulk, the fluid
nevertheless comes up to speed at a much slower rate. This proc-
ess is represented by the lowest even mode, e=1. As H2 is raised,
the eigenvalue decreases to zero (at H = 3) and then Vecomes
purely real with a graphical solution gotten by plotting Eq. 12
with jBe Ye. The graphical solution is illustrated in
Fig. 9.10.3b. As H becomes large, this root can be approximated
by (dy/2)2 H2 - m. Then the associated eigenfrequency is

m oHS= - -= - (d/2)
Sp(d/2)

J

Fig. 9.10.4. Contour of fixed
identity in fluid.

(14)

Thus, the time required to get the rigid translating core of the fluid up to its steady velocity U/2 is
TV/Im , which is longer than the dominant time for the relative motion to establish itself, TV/Hf .

There is a simple picture to go with the transient represented by this lowest even mode. With Hm
large, the profile consists of Hartmann boundary layers connected by a uniform profile. In the neighbor-
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hood of the boundary, the steady profile is exponential with a decay length

6 = d/2Hm (15)

The viscous stress imparted to the fluid by the wall is of the order nvwall/6. This stress must accel-
erate the core of the fluid to half of the velocity at the wall, and hence must be equal to spdvwall/2 .
Balancing of the inertial and viscous stresses results in a characteristic frequency consistent with
Eq. 14.

Because currents circulate within the fluid, there is no net magnetic force on the fluid to con-
tribute directly to its acceleration. The magnetic field plays a role in Eq. 14 only because it
determines the thickness of the boundary layer, and hence the shear rate and the viscous stress.

9.11 Electrohydrodynamic Imposed Field Approximation

With the material motion prescribed, the imposed field approximation with unipolar conduction is
as ihtroduced in Sec. 5.3. In the region of interest, the electric field is largely due to external
charges, perhaps on electrodes bounding the volume. The validity of the approximation hinges on the
self-precipitation time Te being longer than the charge migration time Tmig. This characteristic time
interpretation of the approximation is discussed in Sec. 5.6. It can be stated formally by observing
that the pertinent EQS equations of motion (Eqs. 11, 10 and 9 of Sec. 5.2, written for one species and
no diffusion), together with the force and continuity equation for an incompressible fluid, take the
normalized form

V x E = 0; E = -V (1)

T .

V.E = Pf (2)
T
e

ap f T 2

at . Vpf + Pf 0 1 (3)

+ --2 (4)mag e+ v.Vv + (--2) Vp O( E + I-Pf
at EI TEl V

V-v - 0 (5)

Here, the normalization is as used in connection with Eqs. 4a, p0 and gare typical of the free charge
density and imposed electric field, and the times that have been identified are

T o _ p-£
e po'b mig b ~; V ' El Po6)

In the imposed field approximation, times of interest, T, are short compared to the self-precipita-
tion time T e. If processes involve viscous diffusion, particle migration and electromechanical coupling
to the fluid, then for the imposed approximation to be appropriate, the associated characteristic times
must all be shorter than Te. But, regardless of the ordering of times, Tmig must be shorter than Te if
the approximation is to apply (Fig. 9.11.1). This means that the volume charge density term on the
right in Eq. 2 is also ignorable, as is also the last (self-precipitation) term in Eq. 3.

In summary, the electric field is approximated as
being both irrotational and solenoidal. The charge den-
sity is governed by the same rules as outlined in I
Sec. 5.3. Thus, Pf is constant along characteristic I
lines (Eqs. 5.3.3 and 4.3.4). Unless processes re- TEl Tmig TV Te
presented by the viscous diffusion and electro-inertial
times can be ignored, the mechanical laws are represented Fig. 9.11.1. Ordering of character-
by the Navier-Stokes equation, with the force density istic times in the EQS im-
PfE, and the condition that v be solenoidal. posed field approximation.
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9.12 Electrohydrodynamic "Hartmann" Flow

The competition between viscous and magnetic stresses that establishes the fully developed

Hartmann flow illustrated in Sec. 9.11 has as an EQS analogue the fully developed flow in the
"ion drag" configuration of Fig. 9.12.1. Charged particles, uniformly injected at the inlet where
z = 0, might be ions generated upstream by a corona discharge, or might be charged macroscopic
particles. They are collected by a screen electrode at z = Z. Although it might be used as a pump
in the conventional sense, practical interest in the interaction illustrated would more likely come
from a need to account for fluid-mechanical effects on the transport of macroscopic particles. With-
out a self-consistent representation of the effect of the field on the material motion, the inter-
action is developed in Sec. 5.7. There, space-charge effects are included, whereas here the electric
field is approximated by the imposed field. The objective here is to illustrate the reaction of the
field on the flow.

The conduction law and force density for charge carriers that individually transmit the electrical
force to a neutral medium are discussed in Secs. 3.2, 3.3 and 5.2. In terms of the mobility b, the
current density in the z direction is

Jz = Pf(bE + v ) (1)

where bEz is the particle velocity relative to the air, and the fluid is itself moving at the velocity
vz . There is only one species of particles, and effects of diffusion and generation are negligible.

Because the electric field induced by charges in the fluid is negligible compared to that im-
posed by means of the electrodes,

- V -t
SEEi = - i (2)

oz Z z

and Gauss' law is ignored in further developments, Note that Eq. 2 is consistent with there being no
current density normal to the insulating walls. Fully developed solutions are of the form

v = vz(r)iz; Pf = Pf(r)
(3)

Jf = J(r)i = constantzf ÷z

and hence v and Jf are automatically solenoidal so that mass and charge conservation are insured.
Effects of gravity are lumped with the pressure, and therefore only the z component of the Navier-
Stokes equation remains to be satisfied:

av
S +E (r z(4

ýz Pfo r •-r

The current density, Jf, has a radial
dependence determined at the inlet. Here, z=O z=2
Jf = Jo is taken as uniform over the cross
section so that Eq. 1 is solved for the
charge density and substituted into Eq. 4
to obtain a differential equation for the

velocity profile:

JE dv \
0 0oo + r z(5)

ýz (bE + v ) r dr -dr

This nonlinear expression is reduced to a
linear one by restricting attention to
circumstances when bE >> v, so that
(bEo + vz) - 1 -•(bEo) - vz(bEo)- 2 and
Eq. 5 can be written as a linear equation
but with space varying coefficients:

Fig. 9.12.1. Circular cylindrical conduit

dv J J having insulating wall supportingi d z o l o
(r d-) 0E -- --z ) (6) screens at z = 0 and z = Z. Charged

rdr WbE v bZ particles are injected at left and
0 pulled through the fluid to provide

Homogeneous solutions to Eq. 6 are zero order electrohydrodynamic pumping. Flow
modified Bessel's functions (introduced in is electric analogue of Hartmann flow.
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Sec. 2.16, Eqs. 2.16.19 and 2.16.25). Because r = 0 is included in the flow, the singular solution is
excluded. The particular plus homogeneous solution to Eq. 6 that makes vz(Ro) = 0 is then

R2 oI(H e r

v b I (7)
YnH2 az Io(He_

e

where the electric Hartmann number is He = AoR2/nb2EO. Note the analogy between this profile and that
for the magnetic Hartmann flow represented by Eq. 9.10.17. Here, H2 is the ratio of that part of the
electric force density that is proportional to the fluid velocity to the viscous force density. An
alternative interpretation comes from recognizing that He = VTmig'TEV where Tmig = Ro/bEo (the time
for a particle to migrate the radius Ro relative to the fluid) and TEV E nb/JoRo. The electro-viscous
time, TEV' assumes the form n/EE2 familiar from Sec. 8.7, provided that Jo' pfbEo and one of the E's
is recognized from Gauss' law to be of the order pfRo/E.

The pump characteristic is obtained by integrating Eq. 7 over the channel cross section, defining
Qv as the volume rate of flow and recognizing that the pressure rise Ap through a channel of length 9
is k(ap/3z) [from Eq. 2.16.26a, the integral of xIo(x) is XIl(x)],

27rR Jo[ j (He 1Q 0= e (8)Qv 2 b e oe).2
e

The velocity profile given by Eq. 7 has the dependence on the electric Hartmann number illustrated
in Fig. 9.12.2. Because ý is taken as constant throughout, the force density is proportional to the
charge density. With a constant current density, it is seen from Eq. 1 that the charge density is
least where the velocity is the most. In spite of the viscous retarding stresses, the tendency is for
elements near the wall to catch up with those nearer the center.

I n

t

r
R-

0 2 .5
V/ -P

Fig. 9.12.2. Velocity profile with electric Hartmann number as a param-
eter for configuration of Fig. 9.12.1.
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9.13 Quasi-One-Dimensional Free Surface Models

Channel flows, such as in rivers, canals and aqueducts, are a hydrodynamic example of the class
of mechanical and electromechanical flow configurations considered in this and the next section.
Thus, as an example, homogeneous incompressible fluid, typically water, rests on a bottom having the
elevation b(z), as shown in Fig. 9.13.1. The interface at x = C(z,t) forms the upper "wall" of a
natural conduit for the flow. Gravity confines the fluid to the neighborhood of the bottom. The height
of this upper channel boundary, g(z,t), is itself determined by the fluid mechanics.

A=6-b ; = pg 2- V22 0(a-)

Fig. 9.13.1. Gravity flow with constant potential interface stressed by electric field. Quasi-
one-dimensional model expressed by Eqs. 11 and 12 reduces to classic gravity-wave model
if V = 0. The hydromagnetic flux conserving antidual of this potential conserving con-
tinuum is suggested by Sec. 8.5.

In the purely hydrodynamic context, a canoeist might ask of a long-wave model, given a down-
stream rock hidden at the bottom of the river [represented by b(z)], can he expect the surface
he sees above the rock to be elevated or depressed? In the next section, it will be seen that the
answer to such a question depends on the upstream flow conditions relative to the velocity of propa-
gation of a gravity wave. Questions to be asked, where electric or magnetic forces alter or replace
gravity, are similar. By way of illustration, an electrode is placed over the flow in Fig. 9.13.1 to
impose an electric stress on the interface. The charge relaxation time in the liquid is presumed
short enough that the interface can be regarded as retaining a constant potential. However, the elec-
tric surface force density is determined by not only V and a(z), but by the position of the interface
as well. Of course, it is hardly on the scale of a canoe that the electric field could compete with
effects of gravity. But on a scale somewhat larger than a Taylor wavelength, variations in a(z) can
affect the flow in a way that depends on the upstream flow relative to a wave velocity altered by the
electric field.

The electromechanical coupling due to the electric stress is typical of a wide range of electro-
mechanical interactions that can be modeled using the prototype laws derived in this section. The
configuration of Fig. 9.13.1 is typical because the fluid is subject to a volume force density (due
to gravity) that can be represented as the gradient of a pressure and because the surface force den-
sity (due to the surface free-charge force density) acts normal to the interface.

Many seemingly different mechanical and electromechanical configurations have in common the
following properties:

a) The dominant flow is in an axial direction, usually denoted here by z. The viscous skin
depth is small compared to the transverse dimensions of the flow. Effects of viscosity are therefore
ignored compared to inertial effects, and the longitudinal flow velocity is essentially independent
of the transverse coordinates:

v = vT(x,y,z,t) + v(z,t)i z (1)

Because the interfaces are not subject to shear stresses, this approximation is especially appropriate
for free surface flows.

b) In the absence of flow, the free surface can assume a shape such that the conditions for a
_tatic equilibrium as defined in Sec. 8.2 prevail. Thus, electrical force densities are of the form
F = -VS and surface force densities act normal to the interface.
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c) Variations of the configuration with respect to the longitudinal direction are sufficiently
slow that a quasi-one-dimensional model is appropriate.

A formal derivation of the canonical equations of motion for this class of flows is based on the
space-rate parameter expansion introduced in Sec. 4.12 and applied to the Navier-Stokes and continuity
equations (in two dimensions) in Sec. 9.7. With k aqd d respectively representing typical dimensions
in the longitudinal and transverse directions, (d/k) << 1. What approximations are appropriate in the
laws of fluid mechanics follow from a review of Eqs. 9.7.1 - 9.7.4.

Longitudinal Force Equation: First, the transverse force equation is approximated by a balance
between the pressure gradient and any volume force density that is present. To first order in (d/Z)2

VT( p + C - pg*r) = 0 (2)

as illustrated in two dimensions by Eq. 9.7.1. Here VT is the gradient in the transverse directions
(x,y). In the large, at the interface and in the bulk, the cross section at any given longitudinal
position is in a state equivalent to a static equilibrium. Within the fluid,

p + E - pgr = f(z,t) (3)

where f is determined by the normal stress balance at the interface. With the presumption that the
velocity takes of the form of Eq. 1, the longitudinal force equation for the fluid becomes simply

av ýv af
p(-+t + = 0 (4)

At each z-t plane, the pressure, p, and surface force density (if any) must balance. This uniquely
specifies the cross-sectional geometry and f in terms of one scalar function, the transverse area
A(z,t):

p + p- pg-r = f(A) (5)

This hybrid pressure function serves to evaluate Eq. 4, which then becomes one of two mechanical equa-
tions of motion in the variables (v,A). If electromechanical coupling is involved, the pressure of
Eq. 5 will also be dependent on electric or magnetic variables.

M C iLc All fl h c

in the statement of mass conservation are
of the same order in (d/Z) 2 . (For example,
see Eq. 9.7.3.) Thus, all terms are re-
tained. Because the fluid is homogeneous
and incompressible, the integral statement
of mass conservation for a section on the
fluid having incremental lengths Az, shown
in Fig. 9.13.2, is

v.nda = Az v.ndk + A(z+Az)v(z+Az)

S C

- A(z)v(z) = 0 (6)
ow

Portions or tne transverse surrace bS are aries
bounded by rigid walls, while others are, and free

the free surface. Integrations over the

cross-sectional surfaces S2 and S3 , which

have fixed locations z + Az and z, account for the last two terms in Eq. 6. By definition, the sur-

face S1 deforms with the interface, so the velocity in the integrand of the first term on the right
in Eq. 6 is the interfacial velocity. To first order in the incremental length Az, the integration on

S1 is reduced to an integration around the contour C multiplied by the length Az.

The simple geometric significance of the contour integral in Eq. 6 is seen by using the volume
form of the generalized Leibnitz rule for differentiation of an integral over a time-varying volume.

With C = 1, and applied to a right cylinder having the cross section A (not the volume element of
Fig. 9.13.2, but rather a right cylinder with fixed ends), Eq. 2.6.5 becomes

dt dV = Az vfndk (7)dt V C
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The longitudinal length of the volume in Eq. 7 is fixed, so it follows that this expression is equi-
valent to

dA ( + +
Az dt Az v*ndi (8)

z C

The desired quasi-one-dimensional statement of mass conservation follows by substituting the contour
integral of Eq. 8 into Eq. 6 and taking the limit Az + 0,

M+ 9 (Av) = 0 
(9)

Tt 9z

In the derivation, z has been considered a fixed quantity. Because A is not only a function of t, but
of z as well, the temporal partial derivative (the time derivative holding z fixed) is now used in
Eq. 9.

Gravity Flow with Electric Surface Stress: As a specific application of the long-wave model, con-
sider the configuration of Fig. 9.13.1. In the long-wave approximation, the zero order electric field
in the gap between interface and upper electrode is (see Sec. 4.12 for a formal space-rate expansion):

+ > V
E = i (10)

x a(z) - ý(z,t)

To zero order, this is also the electric field, En, normal to the interface. Balance of stresses at the
interface requires that p(o) = 2EEn, where, because the mass density of the upper fluid is much less
than that below, the pressure above is defined as zero. Gravity causes the only force density in the
fluid volume, so p- pg'r = pgx. Thus, evaluation of Eq. 3 at the interface gives f = p(C) + pg§. This
result makes it possible to express the longitudinal force equation, Eq. 4, in terms of (v,C):
of (v,C):

S z 1 (a V2_ _ (11)
P( + v ) + pgý - -o 0

Because the flow is independent of y, the flow area is taken as an area per unit length in the y direc-
tion, A -* - b. Thus, Eq. 9 becomes

+ [v(5 - b)] = 0 (12)
at az

With a(z) and b(z) prescribed, these last two nonlinear expressions comprise the quasi-one-dimensional
model. With the removal of the voltage, they become the classic equations for gravity waves and flows.

A second configuration having a small enough scale that capillary effects dominate those due to
gravity is shown in Fig. 9.13.3.1 Here, polarization forces augment and stabilize the tendency of the
capillary forces to provide a flow having most of its surface "free." Such "wall-less" flow structures
provide for a gravity-independent channeling of a flowing liquid while permitting the interface to be
active in heat or mass transfer processes.

It is instructive to linearize Eqs. 11 and 12. With the electrode and bottom flat, so that a and b
are constants, and for perturbations from a static equilibrium in which the fluid depth is constant, the
dispersion equation must agree with what is obtained from a linear (small-amplitude) theory as would
develop following the approach of Sec. 8.10. Illustrated once again is the equivalence between a
linearized quasi-one-dimensional model and a long-wave limit of a linearized model (Fig. 4.12.2).

Steady flow phenomena predicted by the models developed in this section are illustrated in
Sec. 9.14. Nonlinear temporal transients are taken up using the method of characteristics in Chap. 11.
That even steady-state phenomena depend on the causal effect of wave propagation is already evident
in Sec. 9.14.

9.14 Conservative Transitions in Piecewise Homogeneous Flows

Piecewise irrotational steady flows are illustrated in this section with a quasi-one-dimensional
model that can be applied to a variety of interactions with fields. Typical is the configuration shown
in Fig. 9.14.1. Liquid flows in the y direction with variations in the depth ý(y) slow enough that

+ -f

the velocity profile is essentially independent of depth: v = vi . (The longitudinal coordinate is taken
as y rather than the z used in Sec. 9.13.) Y

1. See T. B. Jones, Jr., and J. R. Melcher, "Dynamics of Electromechanical Flow Structures," Phys.
Fluids 16, 393-400 (1973).
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Fig. 9.13.3

Tall-less" pipe in which fluid is
,nfined by means of capillary and
3larization forces. The electric
.eld also stabilizes the transverse
juilibrium against the pinch in-
Lability caused by surface tension.
Ipractice the applied field should
a-c having a high enough frequency
avoid free charge and mechanical

:sponse at twice the applied fre-
lency.

A magnetic field is imposed in the x-y plane. The fluid is an electrolyte or even a liquid metal,
so that a uniform current density, Jo, can be imposed in the z direction. However, the flow velocity
and conductivity are low enough that the magnetic Reynolds number is small. Currents induced by the
motion through the imposed magnetic field can therefore be ignored. So also can the magnetic field
generated by Jo.

Given the velocity v, and depth ,, where the fluid enters at the left, what are these quantities
as a function of y? For purposes of illustration the magnetic field is imposed by a two-dimensional
magnetic dipole adjacent to the channel bottom (at the origin).

First, observe that the magnetic field and current configuration are the same as illustrated in
the last part of Sec. 8.4. Thus, the magnetic force density takes the form P = -VE where, if Jo and
A(x,y) are respectively the z-directed current density and vector potential for the imposed magnetic
field, f= -JoA (Eq. 8.4.13). For an N-turn coil with elements having the spacing s, as shown in
Fig. 9.14.1, a driving current, i, results in the vector potential

sNi sin 6
A = (1)

27 r

Transformed to Cartesian coordinates, this function becomes

sNi x
A= (2)

2tr 2 2
x +y

Steady-state conservation of mass, as expressed by Eq. 9,13.9, requires that the volume rate of

flow he the same over the cross section at any position y:

vy = Ev (3)

In the longitudinal force equation, Eq. 9.13.4, -pg.r = pgx and 3/Dt = 0; and, by recognizing that
vDv/Dy = D(1 v 2 )/ay, it follows that

1 1 2 + f ] = 0 v2 + f (4)
DY V _ýPPY' =
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This is the same expression that is objained from
Bernnoulli's equation, Eq. 7.8.11, if v avi .

At the interface there are no surface currents
Also the fluid has negligible magnetizability, so
there is no magnetic surface force density. Vari-
ations of the interface are on a scale long enough
(compared to the Taylor wavelength, Eq. 8.9.15) that
surface tension can be ignored. Thus, interfacial
stress balance shows that the pressure is continuous
at the interface. Because the mass density and cur-
rent density above the layer are negligible, the
pressure there is constant and can be defined as
zero. Thus, evaluation of Eq. 9.13.3 at the inter-
face, where p = 0, gives f, and Eq. 4 becomes

1 2
I PV + PgE + V(.,y) = H

r
IX

sl -- dipole

Fig. 9.14.1. Cross section of fluid flowing
to right through imposed magnetic
dipole. Uniform current density is
imposed into paper.

(5)

For any given flow, the "head" II is conserved. By using Eqs. 2 and 3, Eq. 5 is converted to an im-
plicit expression for E(y) as a function of y:

1 M sNi _ =_
S+ Pg - 2 Jo 2 + 2

'I ( + y

The viewpoint now used to understand the implications of Eq. 6 would be familiar to a hydraulic
engineer. But rather than being concerned with variations in the depth of a river, perhaps caused by
an obstruction in the bottom, interest here is in the effect on the depth of the nonuniform magnetic
field.

With the flow conditions, mass density, and currents i and
plotted as a function of E with the longitudinal position y as a
Fig. 9.14.2 where, because ý measures a vertical distance, it is

2

C)
0 I 2

Jo set, the left side of Eq. 6 can be
parameter. An example is shown in
the ordinate. Flow conditions

5
Fig. 9.14.2. Head diagram representing graphical solution of Eq. 6.

p(.v.)2/2 = 1, pg = 1, and sNiJo/2Tr = 1.
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to the left establish H. For the value shown, the entrance depth is either at A or B. The same head
is established by a relatively deep but slowly moving entrance as by a shallower but more rapidly
moving flow. The dependence of 5 on y can now be sketched by observing that flow entering at A or at
B must conserve H. Thus, entrance at depth A leads to a depth that increases between y=l and y=O
to the values obtained by the intersections of the appropriate curves with the constant head line.
Having reached the point directly over the dipole at y = 0, the depth further downstream returns to
its original value at A. The result is shown in Fig. 9.14.3a.

For the entrance conditions of B in Fig. 9.14.2, the fluid depth is decreased rather than in-
creased by the interaction. The profile is illustrated in Fig. 9.14.3b.

OD :j

,X

/11

Fig. 9.14.3. Conservative transition of steady flow carrying uniform current

density in z direction as it passes through field of magnetic dipole:
(a) subcritical entrance; (b) supercritical entrance.

What evidently distinguishes the two entrance conditions, A and B, is their being above and
below a critical depth, c', defined as the depth where the head function at y - -- is a minimum.
This critical depth is found from Eq. 6 by taking the limit y -+- m , then taking the derivative with
respect to C, setting that expression equal to zero and solving for the depth, C c. The important
point is that the flow velocity obtained from Eq. 3 for this depth is

v = 1gc (7)

This is also the velocity of a shallow gravity wave on the surface of an initially stationary fluid
having the depth Cc (see Eq. 8.9.16 with y - 0, pa + 0, and b -- Q). It follows that the case of

Fig. 9.14.3a is typical of what happens if the fluid enters at a velocity less than that of a gravity
wave. Such an entrance flow is termed subcritical. Supercritical flow at the entrance results in a
depression of the depth, as in Fig. 9.14.3b.

Shallow gravity waves propagate on the moving fluid with velocity v + VgC. If the flow is sub-
critical, waves propagate to left and right in the entrance region and the one propagating upstream
provides a mechanism -for communicating the effect of the downstream field to the entrance. With super-
critical flow, both gravity waves propagate to the right and there is no such mechanism. Hence, it
might be expected that the steady flow established from a transient condition would depend intimately
on the convection velocity relative to the wave velocity.

Any of the configurations discussed in Secs. 8.3 - 8.5 which resulted in static equilibria suggest
steady flows that can be represented by quasi-one-dimensional conservative flow transitions. Examples
are shown in Figs. 9.13.1 and 9.13.3.

Sec. 9.14
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Any of the configurations discussed in Secs. 8.3 - 8.5 which resulted in static equilibria
suggest flows that can similarly undergo conservative transitions. Examples are shown in
Figs. 9.13.1 and 9.13.3. If fields exist in the entrance region, there are in general electro-

mechanical contributions to the criticality condition, reflecting the effect of the field on the
propagation velocity of surface waves.

Compressible flow transitions through ducts have much in common with those described in this
section. Acoustic related waves play the role of the surface waves in this section for determining
the criticality conditions.

GAS DYNAMIC FLOWS AND ENERGY CONVERTERS

9.15 Quasi-One-Dimensional Compressible Flow Model

Gas flow through ducts having slowly varying cross-sectional areas is not only of interest in
regards to understanding the performance of nozzles and diffusers, but also basic to magnetohydro-
dynamic and electrohydrodynamic energy conversion configurations. The basic model is developed in this
section with sufficient generality that it can be applied directly to these problems in the following
sections.

The duct with its rigid walls is depicted schematically in Fig. 9.15.1. In the same spirit as
in Sec. 9.13 on free surface flows, the formulation is to be reduced to one involving the single in-
dependent spatial variable z. The model hinges on having a cross-sectional area A(z) that varies
slowly with z. Even though there is some motion transverse to the z axis, the dominant flow is in
the z direction with the transverse flow of "higher order." Effects of viscosity are ignored, and
hence the fluid is allowed to slip at the walls. Thus, it is assumed at the outset that the dominant
velocity component, as well as the pressure and mass density, are independent of the cross-sectional
position:

v = v(z)1_; p = p(z), p = p(z) (1)Z

The integral laws of mass, momentum and
energy conservation, used in conjunction with
the incremental control volume of Fig. 9.15.1,
are the basis for deriving the quasi-one-
dimensional differential equations. Consider
first the steady form of mass conservation,
Eq. 7.2.2 with ap/3t = 0 and S the surface
of the incremental volume. Because there is
no velocity normal to the channel walls,

[pvA]z+Az - IpvA] zj 0 (2)

In the limit of vanishing Az, Eq. 2 becomes the Z Z-4cZ
first of the laws listed in Table 9.15.1. Fig. 9.15.1. Schematic view of duct having slowly

varying cross section A(z).

The integral form of conservation of momen-
tum, given by Eq. 7.3.3 with 83/at = 0, P + - p + and -fvVp dV = ýiSnda, becomes

pv A]z+Az - [v + +z + p Azn dk = AF Az (3)

Note that included is an integration over the walls of that component of the normal force acting in the
z direction. An incremental section of the wall is sketched in Fig. 9.15.2. For a slowly varying
cross section,

z
p ý Azn dk = -ptA(z + Az) - A(z)] (4)

Now, substitution of Eq. 4 into Eq. 3 gives in the limit Az - O,the differential expression

d 2A) d(pA) dAdz (pv A) + dz - p = AFz (5)
dz dz dz z

The momentum conservation equation of Table 9.15,1 follows if the conservation of mass statement, Eq. (a)
of the table, is used to simplify the first term. Subscripts are dropped from both Vz and Fz for con-
venience.

Secs. 9.14 & 9.15
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Table 9.15.1. Summary of quasi-one-dimensional flow eouations for ideal
gas subject to force density F and power density JE.

Equation

Mass conservation d (pvA) = 0
dz

Momentum conservation

Energy conservation

Mechanical state equation

Thermal state equation

pv z+ = F
dz dz

d 1 2
pv dz (HT +v ) = EJ

p = pRT

6H = c 6T
T p

Fig. 9.15.2

Incremental control volume showing
normal vector n at duct walls and
cross section enclosed by contour C.

contour C

Note that the quasi-one-dimensional momentum conservation law would be correctly obtained by
simply writing the one-dimensional z component of the differential equation of motion. The misleading
inference of this finding might be that the quasi-one-dimensional model is obtained by simply writing
the one-dimensional differential laws. However, the mass conservation law gives clear evidence that
such is not the case: Eq. (a) of Table 9.15.1 is certainly not the one-dimensional form of V.pv = 0
unless A is constant.

The appropriate integral form representing conservation of energy follows from integration of
Eq. 7.23.7 over the incremental volume. There is no velocity normal to the walls of the incremental
volume, and hence

1 2 1 2
[p(H + - v )VA]z+ - [p(H + v2 )vA] = AEJAz

[(HT 2 z+Az T 2

Here, E and J represent dominant components of 2 and f. If the limit of vanishing Az is taken first,
and then Eq. (a) of Table 9.15.1 exploited, Eq, (c) of that table follows.

To have a summary of the model, the mechanical and thermal equations of state for an ideal gas
are also listed in Table 9.15.1. Given the duct geometry A(z), and the field induced quantities F,
E and J, the quasi-one-dimensional model is complete.

9.16 Isentropic Flow Through Nozzles and Diffusers

By definition, a duct shaped to accelerate a gas serves as a nozzle, while one that functions as a
diffuser decelerates the flow. The actual variation of cross section depends on the gas velocity
relative to the acoustic velocity, i.e., on whether the flow is subsonic or supersonic. An immediate
objective in this section is an understanding of the relationship between duct geometry and the steady
flow evolution in a purely aerodynamic situation.
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But in a broader context, the study illustrates once again how propagation effects can influence
steady flow phenomena. The analogy to free surface gravity channel flows from Secs. 9.13 to 9.14
is often cited. There, gravity waves replace acoustic waves in propagating disturbances and concern
is with the variation of the fluid depth ý rather than the mass density p. But just as a given vari-
ation in the duct cross-sectional area A can lead to either an increased or a decreased mass density
(depending on whether the flow is subsonic or supersonic), a variation in the height of the channel
bottom can lead to an increased or decreased liquid depth.l

The wide variety of free surface electromechanical flows from Secs. 9.13-9.14 are also analogous
in their behavior to the flow of compressible gas. The role of acoustic waves is played by electro-
mechanical waves.

For the purely aerodynamic situation considered in this section, F = 0 and J = 0 in the equations
of Table 9.15.1. This makes it possible to find integrals of the flow. In any case, conservation of
mass as expressed by Eq. (a) of that table shows that

pvA = pvA (1)

where subscripts o denote variables evaluated at a given position s . The energy conservation and
thermal state equations of Table 9.15.1 show that o

12 1 2
c T + - v = cT + - v (2)
p 2 po0 2 0

As a representation of momentum conservation, Eqs. (b)-(e) of Table 9.15.1 combine to give the equation
of state

PP-Y = PoPY (3)

This manipulation is carried out without making the quasi-one-dimensional approximation with
Eqs. 7.23.8-7.23.13. Recall also that the acoustic velocity is related to the local temperature by
Eq. 7.23.6:

a = Vii (4)

This last relation should be regarded only as a definition of a. Its use in the following develop-
ments in no way implies that the equations have been linearized.

The subscripts used in defining the constants of the flow are now identified with a particular
position along the duct. Given vo, Po, To and Po, the flow velocity, pressure, temperature and density
at points downstream in the flow are to be determined. It is convenient to define the Mach number
of the flow at the point o as

M = v/a o = v /'yR-T (5)

The objective is a relationship between the velocity v and the area A, with the other flow vari-
ables eliminated. Thus, from Eq. 1 the density is eliminated by writing

p vA
P vA (6)

In turn, it follows that Eq. 3 can be used to find the pressure from v and A:

v -Y A -Y
P = ( -) ( ) (7)

o 0

The temperature follows from the perfect gas law and Eqs. 6-7

T = To•1-y ( (8)
o o

Now, if this last expression is introduced into Eq. 2, it can be'solved for the area ratio as a func-
tion of the velocity ratio with the Mach number at the point o as a parameter:

M2 
2 /-

A M0 [ - v1lv- 2 (9)

o -

1. For a discussion in depth, see A. H. Shapiro, Compressible Fluid Flow, Vol. I, Ronald Press
Company, New York, 1953, pp. 73-105.
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Given an area ratio and Mach number, Eq. 9 defines v/vo . The remaining flow variables follow
from Eqs. 6-8.

For a given gas (given y), Eq. 9 can be represented by curves in the v/vo - A/Ao plane with Mo as
a parameter. Illustrated in Fig. 9.16.1 are curves typical of flows that are supersonic and subsonic
at the point o. The point (1,1) represents the flow condition at point o. Consider the subsonic flow
with the Mach number at o equal to /-.T. If the area decreases, the M2 = 0.5 trajectory requires that
the velocity must increase, because the trajectory is from o to a in Fig. 9.16.1. The section behaves
as a nozzle in that it increases the flow velocity. Similar arguments for trajectories b-d motivate
the appearance and function of the ducts shown in Fig. 9.16.1.

Note that a supersonic flow behaves in a
fashion that is just the reverse of what would
be expected from simple incompressible flow
concepts. An increase in the local area gives
rise to an increase in the flow velocity, the
duct functions as a nozzle, while the diffuser
function is obtained by making a converging
channel.

It is the slope of the v/vo - A/Ao curve
at (1,1) that determines whether the velocity
increases or decreases with increasing cross-
sectional area. That slope is found from V
Eq. 9 to be

d(A/A°)
= M2- 1 (10)

d(v/v) /vo=

an expression which makes it clear that the
velocity-area relationship reverses as the Mach

number is increasea tnrougn unity. 0 0.5 I 1.5 2
A/Ao

The trajectories of Fig. 9.16.1 make it
clear that the laws used to describe the flow Fig. 9.16.1. Velocity-area relationship in flow
cannot pertain if the area is decreased by transition from position "o": "a" sub-
more than a critical ratio (Ac/Ao). It can be sonic Nozzle, "b" supersonic nozzle,
seen that as the area is reduced to this criti- '1z" supersonic diffuser, and "d" subsonic
cal ratio, the flow approaches unity Mach number diffuser. Trajectories indicated in the
(see Prob. 9.16.1). The flow is then said to be v/vo - A/Aa plane have the physical inter-
choked. The existence of a greater area ratio pretation shown by the channel cross
negates the assumptions basic to the model. sections.

The choking crisis can be responsible for generation of shocks, highly dissipative discontinuities
in the flow. To understand transitions from subsonic to supersonic flow requires combining the con-
servative flow transitions of this section with the shock relations to be derived in the problems.

The Laval nozzle of Fig. 9.16.2 provides the means of accelerating a stationary gas to supersonic
velocities and illustrates one consequence of choking. The channel converges to a smallest cross-
sectional area Ac at the throat, and then diverges. Gas enters from a large room at the left and leaves
under vacuum at the right. The manometer heights record the pressure. From Eq. (b) of Table 9.15.1,
it is clear that a falling pressure implies an increasing velocity and vi&e versa. With the pressure
at the left constant, the pressure at the right is decreased by opening a valve.

The conservative transition through the channel is understood in terms of the velocity-area curves
of Fig. 9.16.3. A reduction in outlet pressure causes an increase in the Mach number at the upstream
position o, and hence an alteration of the curves as shown. With low pressure drop, M2 = H2 < 1, say,0 1
and the trajectory is b in the figure. The velocity first increases until the throat is reached and
then decreases until the original pressure is very nearly recovered. The transition is "conservative."
However, as the outlet pressure is reduced, the flow at the throat becomes sonic, as in trajectory c.
It is not possible to further increase the Mach number at o. Rather a further decrease in the out-
let pressure results in supersonic flow beyond the throat. This is shown, experimentally in
Fig. 9.16.2c because the velocity continues to increase beyond the throat. In the supersonic region,
upstream boundary conditions prevail. Hence, the supersonic region just to the right of the throat
isolates the flow upstream from that downstream, and upstream flow remains essentially the same even
as the outlet pressure is further reduced. But, if the supersonic region is controlled by upstream
conditions, how then does the gas adjust its flow so as to match the outlet flow conditions? The
shock shown to the right of the throat in Fig. 9.16.2 solves this dilemma by making an abrupt transition
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(a)

Courtesy of Education Development Center, Inc. Used with permission.(b) (c)

Fig. 9.16.2. Laval nozzle. (a) Cross section with flow from left to right; (b) subsonic trans­
tion; (c) subsonic-to-supersonic transition with shock discontinuity beyond throat seen
by Schlieren optics. From film "Channel Flow of a Compressible Fluid." (Reference 1,
Appendix C).

from supersonic-to-subsonic flow. After the shock, the velocity decreases
rather than increases, just as is expected for a subsonic flow in a diverg­ v
ing section. After the shock, the channel behaves as a subsonic diffuser.

V ) ,
An observation to be made from the Laval nozzle is that if the flow is to o ---- - --:-~,
make a transition from subsonic to supersonic, then this must be done at ,, u',
the throat and the flow there must be sonic. I ,

,, I,
, I

: : IPhenomena illustrated in this section have analogues in the flows I ,

developed in Sec. 9.14. In the inhomogeneous incompressible flows, Ac/Ao A/Ao
there are also "subcritical-to-supercritical" transitions and the ana­
logue of the shock is a "jump," or sudden change in the flow accompanied Fig. 9.16.3. Velocity-area
by dissipation, usually through the agent of turbulence. Shocks are taken diagram showing tra­
up in Sec. 9.20, and the analogies explored in the problems. jectories of flow cor­

responding to "b" and
"c" of Fig. 9.16.2.

9.17 A Magnetohydrodynamic Energy Converter

The magnetohydrodynamic generator shown in Fig. 9.17.1 combines the magnetic d-c interactions of
Sec. 4.10 with the compressible channel flows of Sec. 9.15. The gas is rendered electrically con­
ducting by ionization in a combustion process, and the object is to convert the thermal. energy to elec­
trical form. The interaction region serves as both the turbine and the generator in a conventional
plant. From the combustion zone, the gas is accelerated to velocity V at the entrance to the con­o
version section by use of a nozzle, as discussed in Sec. 9.16. By virtue of its conductivity, the gas
can play the role of the armature conductors of a d-c machine as it passes through a transverse mag­
netic field imposed by an external magnet. Electrical continuity through the moving gas and an external
circuit connected to the load is provided by electrodes placed on the walls. These play the role of

lbrushes in a rotating d-c machine.

One of the most significant problems in making magnetohydrodynamic generators practical is the
relatively low electrical conductivities that can be attained. The conductivity is relatively small

1. For an in-depth treatment, see G. W. Sutton and A. Sherman, Engineering Magnetohydrodynamics,
McGraw-Hill Book Company, New York, 1965.
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even at extremely high temperatures, and
although seeding of the gas and other tech-
niques are used to increase the degree of
ionization, the gas is far too low in con-
ductivity at reasonable outlet temper-
atures to make the generator a practical
substitute for existing turbine-generator
systems. As a result, such generators are
being currently developed as "topping"
units, with conventional systems used to
convert some of the significant amount of
energy remaining in the gas as it leaves
the MHD generator exit.

MHD Model: Because the conductivity
is relatively low, the flow can be regarded
as occurring at low magnetic Reynolds num-
ber. The effect of the flow on the mag-
netic field and current distributions is
small. The electrodes constrain the walls to Fig. 9.17.1. Magnetohydrodynamic generator
the same voltage V over the channel length: configuration.

t÷ + V
E i E(z) = - i (1)

y y w(z)

and because the upper and lower walls are magnetic surfaces, with a constant magnetomotive force
(the ampere turns driving the external magnetic circuit)

H= i (2)
x d(z)

The generator is constructed with a constant aspect ratio, so that if the width increases, so also does
the height:

w = constant 
(3)

d

The objective is to determine the electrical power output, given the inlet conditions of the gas, and
either the geometry of the converter or the desired flow process. Because the power conversion den-
sity is correctly expressed as EJ, the quasi-one-dimensional model of Table 9.15.1 is applicable once
the force density F is stipulated.

The flow is at low magnetic Reynolds number so the magnetic force is essentially imposed,

F = -JB (4)

Thus the magnetoquasistatic laws for the fields do not pome into the formulation. However, to relate

J to E, Ohm's law for the moving fluid, as expressed by Eq. 6.2.2, is required. In terms of the model
variables,

J = a(E + vB) (5)

Given the voltage (or a relationship between V and the current as imposed by the external load),
E is known. Then, Eq. 5 provides the additional law needed because the additional unknown, J, is
introduced by the MHD coupling.

The electrical load connected to each pair of segments is characterized by a "loading factor" K
defined by

E '
K H -v (6)

vB

If the object is as much electrical power output as possible, the resistance of the load on each
segment should be adjusted to make K = 1/2. This can be argued by recognizing that in terms of K,

J = avB(l - K) (7)

and hence the output power from a section of the electrodes having unit length in the z direction is

JVd = -J(wE)d = wdav2B2(1 - K)K (8)

With the imposed field and local flow velocity held fixed, the output power per unit length is maximum

Sec. 9.17 9.46



with K= 1/2. (Note that in fact the current in turn can alter the velocity, so that the actual optimum
K could be somewhat different from 1/2. Nevertheless, it is useful to think of the loading as being
in the range of K = 1/2.) It is now assumed that the load is adjusted over the generator length to make
K a constant.

Constant Velocity Conversion: Most likely, the geometry is considered fixed and the flow vari-
ables are to be determined. However, the generator can be designed such that one of the flow vari-
ables assumes a desired distribution throughout the generator. Following this latter approach, con-
sider now the particular case in which the flow velocity v is to be maintained constant throughout
and A(z) determined accordingly.

Because v = v = constant throughout, Eqs. (a) - (e) of Table 9.15.1 [with Eq. (b) augmented by
Eqs. 4 and 6 and Eq? (c) supplemented by Eqs. 6 and 7] become

pA = p A (9)
oo

= -av B (1 - K) (10)
dz o

dT 2
pc = - v B (1 - K)K (11)

p dz o

p = pRT (12)

The last three of these relations combine to show that (y c /c and c cv =R)

Kdp= y dT (13)p y - T(13)

Thus, integration relates the pressure and temperature:

y/[(y-l)K]
P-= I\o (14)

From Eq. 12, the density can be related to T:

T [y-(y-l)K]/[(y-l)K]

_=_ _o= (15)
p p T T

In turn, the area follows from Eq. 9:

A o T•-[Y-(y-l)K]/[(y-l)K] (16)

- p =T (16)

With these last three equations, it is clear that a determination of T(z) would lead to a specification
of all flow variables. The temperature is simply obtained from Eq. 11 which can be written as

dT av(AB2)(l - K)K (17)
dz (Ap)cp

and since Ap and AB2 are constants (see Eqs 9, 2 and 3), the term on the right is constant. Integra-
tion therefore gives a linear dependence of temperature on distance:

SH2
T= 1 - (ovo Z) (- K)K( ) (18)

The pressure, density and area then follow from Eqs. 14 - 16. With a loading factor K = 0.5 and
y = 1.5, the exponential in Eq. 15 is 5. Thus, the gas density decreases while, from Eq. 16, the
channel area must be made to increase. The electrical power out per unit length is given by Eq. 8.
Because B varies inversely with d and the aspect ratio is constant, the power out per unit length is
independent of z. Thus the total power output is obtained by evaluating Eq. 8 at the inlet and multi-
plying by the channel length k:

V dJdz = (wodo)(oivioo)v poH2(1 - K)K (19)
o 

9
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Here, the power output is written as the product of an "active" area wodo, a magnetic Reynolds number
based on the channel length, a product of magnetic pressure and velocity and a dimensionless factor
representing the degree of loading. Thus, the generator output takes the form of an area-velocity-
magnetic-pressure product, familiar from Sec. 4.15. The modifying factor of the magnetic Reynolds
number is present because it is the alteration in magnetic stress caused by the current that accounts
for the interaction with the field. The magnetic Reynolds number is the ratio of the induced-to-the-
imposed magnetic field. Thus, one component of Ho in the magnetic pressure term represents the im-
posed field, and the product of the other value of Ho and Rm represents the spatial variations in H
induced by the motion.

Given the temperature Td at the generator outlet where z = k, the electrical power output is
alternatively evaluated using Eq. (c) of Table 9.15.1. The negative of the right-hand side, in-
tegrated over the generator volume, is the total electric power output, while the integral of the
left side is simply mass rate of flow multiplied by the drop in specific enthalpy. Hence, because
pvA is constant

V dJdz = pooA (Ho - Hd) (20)

where HT(z = £) E Hd. For an ideal gas, HT = cpT, and with the use of Eq. 18 for the temperature,
Eq. 20 is identical to Eq. 19. As seen from Eq. (c) of Table 9.15.1, if the generator operates with a
variable velocity, then it is the stagnation specific enthalpies H1 = HT + 1v2 that appear in Eq. 20.
Why is it that even though there is ohmic heating accounted for by JE, all of the drop in enthalpy
turns up as electrical power output? The answer comes from recognizing that the electrical heating
is of the gas itself. Hence, heating at one position results in thermal energy storage which can be
recovered downstream. Ohmic heating in the electrodes or external conductors that is removed from
the system is another matter and subtracts from the right-hand side of Eq. 20.

There is of course a price paid even for
Lle h 11ILi1 4i P 1- 4 lf h iA.
LL e o m c eat ng o t e gas use . slT canl

best be appreciated by inserting the generator
into a thermodynamic cycle and seeing how the
increase in entropy caused by the ohmic dissipa-
tion dictates an increased heat rejection and
hence a diminished overall efficiency. This is
discussed in Sec. 9.19.

The increase in entropy through the gener-
ator is evaluated by using the pressure and den-
sity ratios found with Eqs. 14 and 15 in the
entropy equation of state for a perfect gas,
T 7 9 19.

q. . ' ' V . .4 Z/. ..

So0 -c (1-K) (21) Fig. 9.17.2. Flow evolution through MHD gener-
S - S - c (l- In -) (21)
T T p K T ator of Fig. 9.17.3 with A(z) and hence

o
a(z) designed to give constant velocity.

Thus, the decrease in temperature predicted by
Eq. 18 is accompanied by an increase in the specific entropy, ST '

To summarize, the area distribution has been designed to make v = vo throughout, with the
other flow conditions represented by Eqs. 14, 15, 18, and 21. Evolution'of the flow is typified by
Fig. 9.17.2. The temperature decreases with z in a linear fashion. For y = 1.5 and K = 1/2, the
area ratio A/Ao and specific volume are then proportional to (T/To)-5 and hence increase with z.
According to Eq. 3, this means that d/do is proportional to (T/To)-5 /2 . The pressure varies as
(T/To)6 and hence drops even more rapidly than the temperature. Some of the implications of these
characteristics for an energy conversion system are explored in Sec. 9.19.

Finally, observe that because the acoustic velocity is proportional to T2 (Eq. 7.23.14) and hence
increasing with z, while v is constant, the Mach number is increasing. This suggests the alternative
mode of operation of Prob. 9.17.1.

9.18 An Electrogasdynamic Energy Converter

Just as the MHD convertor of Sec. 9.17 is a variation on the d-c magnetic machines of Sec. 4.10,
the electrogasdynamic or EGD device of Fig. 9.18.1 is closely related to the Van de Graaff machine
of Sec. 4.14.

Electromechanical coupling is through the free charge force density pfE. With the objective of
obtaining a net space charge, and hence an electrical force density on the gas, charged particles are
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injected at the left and removed at the right, thus giving rise to the generator current I. Although
ions can be used, charged solid particles or droplets are used to achieve small electrical losses.

These particles are of sufficient size to insure that their slip velocity relative to the gas is small

compared to the gas velocity. Once charged, the particles can be modeled as having a velocity propor-

tional to the electric field intensity, with the constant of proportionality the mobility b. In the

frame of the gas, the current density is f = pfbEf', and hence in the laboratory frame the electro-quasistatic transformations give

Jf = pf(bE + v) (1)

The first objective in this section is a substantive discussion of the electric field alternative

to MHD energy conversion. A second is the illustration of how the quasi-one-dimensional modeling
extends into the electrical side of the interaction when the effects of the motion on the field are

dominant. Thus, by contrast to the low magnetic Reynolds number limit used in Sec. 9.17,considered here

are interactions with entrained particles of sufficiently low mobility that the distribution of charge
is strongly influenced by the motion. This necessitates a self-consistent electromechanical formula-

tion and the augmentation of the quasi-one-dimensional mechanical equations formulated in Sec. 9.15.

Because of limits on achievable electric pressure imposed by electrical breakdown, it is difficult to
demonstrate much of a reaction on the flow from the electrical forces. Nevertheless no restrictions
are made in that regard.

The EGD Model: The development of a model serves to further describe the nature of the interaction.
It hinges on there being no interest in the distribution of the charge over the channel cross section.
In fact, the flow is likely to be turbulent with an associated mixing that makes the charge density
uniform over a given duct cross section. The generated field Ez - E(z) is also assumed to be constant
over the cross section. The radial field E, is defined as that evaluated adjacent and normal to the
wall. The cross section is circular with radius 5 so that A(z) = g2(z).

Conservation of charge for the control volume of incremental length Az in Fig. 9.18.1b requires
that

[pf (bE+ v)A]+A [f(bE + v)A] z + PfbEr21Az = 0 (2)

The first two terms account for charged particles leaving and entering the volume in the z direction
traveling with the velocities bE + v. With the last term, it is recognized that in the gas, unlike on
the belt of a conventional Van de Graaff machine, a transverse electric field Er can cause particle
motion relative to the gas with as much ease as the axial field E. Thus, there is in general a current
to the wall represented by the last term in Eq. 2.

To understand what determines the radial field E , it is necessary to specify the physical nature
of the wall. Here it is modeled as having a surface conductivity as, so that current carried to the
wall is then carried along the walls to the electrical terminals. The conservation of charge equation,
now applied to an annular volume with surface S2 enclosing the section of wall having length Az, requires
that

pfbEr27Az = [21aosE]z+Az - [2nOsE]z (3)

A further and important relation between E and the space-charge density is written using the
integral form of Gauss' law for the surface S1 of Fig. 9.18.1b:

[Er2E] +Az - [ 72E]z + c 2TErAz = pf 2Az (4)
o +z o z o rAZf~A

int~

(b)

S, asElzwiz)
Fig. 9.18.1

Cross section of circular EGD conversion

J(z+Az) channel having walls with surface con-
-- t ductivity a. (a) Charge is injected

---- at the left and removed at the right.
(b) Incremental volume element for

Z4Z deriving quasi-one-dimensional model

(b)
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A further and important relation between E and the space-charge density is written using the

integral form of Gauss' law for the surface S1 of Fig. 9.18.lb:

[80~52 ~3~+8. [c~n52E] Z + ',2'SEnz p~ngaz (4)
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The first two terms account for electric displacement through the surfaces with normals in the +z direc-
tions, while the third is the net radial flux.

The differential equations describing the electrical side of the coupling are found by taking the
limits Az - 0 of Eqs. 2-4, and are summarized now by

dz [1f(bE + v)C2r] + 2 p fbEr = 0 (5)

d
a (ýE) - PfbE r = 0 (6)

d 2 Pf
d (E E) + 2EE - = 0 (7)

Without raising the order of Eqs. 5 and 7, Er is eliminated in these equations by using Eq. 6:

dz [Pf(bE + v)T 2 + 2sra E] = 0 (8)

d 2E) + 2s d f
(d2E) + ( SE ) = (9)

dz p b dz C

In addition to these two statements, representing the electrical side of the interaction, there are the
mechanical relations from Table 9.15.1, with F = p E and EJ reflecting the fact that the wall is ther-
mally insulated and insulating, so that electrical heat losses in the wall are also available to the
gas. Thus, the incremental volume used in deriving the quasi-one-dimensional model (Fig. 9.15.2 and
Eq. 9.15.6) includes a section of wall having length Az,

d (pvT 2 ) = 0 (10)
dz

Pv dv + d = pE (11)
dz dz f

20 E2

d 1 2 (
pv (cT+ _ v ) = + v) + (12)

dz p(c 2 PfE(bE

p = pRT (13)

Given F(z), these last six expressions describe the evolution of the flow in terms of the six independeni
variables pf, E, v, p, p and T. The terminal variables are then given by evaluating

I =pf(bE + v)t 2 + 2rosE (14)

V = - Edz (15)
o

Note that according to Eq. 8, I is the same evaluated at any position, z.

In view of Eqs. 10, 14 and 15, the energy equation, Eq. 12, can be multiplied by the area i2 and
integrated from the entrance to the exit to show that

2 12(H 12 J
C pov [(HT +- v ) - (H + -i v ) ] = I Edz = -VI (16)

That is, the difference between entrance and exit enthalpy plus kinetic energy is equal to the electrical
power output. Electrical heating, due to particle slip in the gas and ohmic heating in the wall, is to
some extent recovered downstream. However, the ohmic heating does show up as an increase in entropy at
the outlet.

Problem 9.18.3 illustrates how the equations are written in a form convenient for numerical
integration. The formulation is similar to that for the MHD generator in Sec. 9.17. However, because
the field variables are as much a part of the coupling as are the flow variables, E and pf play roles
on a par with p, v, etc. The channel geometry can be regarded as given and the flow determined, or
the dependence of one of the field or flow variables on z can be specified and the geometry determined
along with the other variables.
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Electrically Insulating Walls: Physically, Eq. 8 requires that the sum of the total convection
and conduction currents in the gas and the conduction current in the wall passing any position z must
be the same at any other z. Equation 9 is Gauss law, written to the exclusion of Er so as to make
possible a comparison between radial and longitudinal electric fields in accounting for the space
charge. If the wall equivalent conductivity as/E is large compared to the equivalent bulk conductivity
pfb, then most of the images for the space charge are at the same axial position on the duct walls. But
in the opposite extreme where

20
-- «-<< 1 (17)
Pfb

space charge results mainly in the divergence of an axial field E and the radial field is negligible.
If, in addition to Eq. 17, the wall current is negligible compared to that in the gas,

pf(bE + v)M2 >> 2sa E (18)

then the last term in Eq. 8 is ignorable. If the wall is sufficiently electrically insulating com-
pared to the volume that both Eqs. 17 and 18 are satisfied, then the radial electric field can be
ignored in Eqs. 5 and 7. Physically, this is because a surface charge of the same polarity as the
space charge builds up on the walls. This surface charge is just that required to make the electric
field be tangential to the wall.

Although the quasi-one-dimensional model presumes that the channel cross section is a slowly
varying function of z, it does not presume that the channel is short. Geometrically, the channel
would be made to look similar to a Van de Graaff generator. But what has been learned is that using
a homogeneous substance such as the gas to replace the belt of a Van de Graaff machine results in a
steady-state space-charge field that is of necessity in the same direction as the generated field.
This is in contrast to the Van de Graaff machine. The only way to make the space-charge field pre-
dominantly perpendicular to z is to make the wall compete for an appreciable fraction of the generated
current. This may be practical for the generation of high voltages, but because it implies an elec-
trical loss in the walls on the same order or greater than that generated, it is impractical in
making bulk power.

Note that the inequality of Eq. 1) also justifies ignoring the last term in the energy equation,
Eq. 12, compared to the first term on the right. Thus, for an insulating wall the appropriate model
is represented by Eqs. 8-13 with as + 0.

Zero Mobility Limit with Insulating Wall: For efficient generation, it is desirable that the
mobility be sufficiently small that

IbEl << v (19)

in which case bE can be ignored in Eqs. 8 and 12. Limitations on wall conductivity implied by Eq. 17
become even more stringent as it is again assumed that terms in Eqs. 8, 9 and 12 proportional to as
are negligible.

With zero mobility, conservation of charge and mass, Eqs. 8 and 10, show that

f I
p- = 2 (20)

PdSd•vd

where the subscript d denotes variables evaluated at the downstream end of the generator where z = R.
Thus, the force equation, Eq. 11, becomes

S1 2 + I+ +• =dm0 (21)
dz 2 p dz

PdedrVd

where the potential, 0, is defined by E m -de/dz. Similarly, the energy equation, Eq. 12, becomes

d Ic T + 2 2 @] = 0 (22)

These last two expressions make it clear that the duct flow with no electrical coupling is equivalent
to that with coupling if we replace ½ v2 _ (½ v2 + IO/pd a"d). Thus, the flow is isentropic, as can
be seen by manipulating Eqs. 21 and 22, together with tHe mechanical equation of state to obtain
Eq. 7.23.13:

Sec. 9.189.51



S= ( ) = (23)
Pd Pd Pd Td

Of course, this must be true because the rate of heat generation is zero in the limit os + 0 and then
b + 0.

Constant Velocity Conversion: Suppose that the channel is designed to implement a constant gas
velocity v = vd throughout. Then Eqs. 8 and 10 show that

2 2 2 2pf = 2pfdS; pC2 = PdCd (24)
Pf Pfd d' dd (24)

and the right-hand side of Eq. 9, representing Gauss' law, is constant, so that that expression can be
integrated to obtain

2E = - 2 d fd ( - £) (25)Sdz d
o

Here, the generator is designed (5 prescribed) for constant velocity operation with E at the outlet
adjusted to zero. This is motivated by an interest in generator operation and hence a desire to im-
pose as large a net electric force in the -z direction as possible.

The temperature is related to the area variation by combining Eqs. 23 and 24b:

T = d 2 (y-1)
Td = \1 (26)Tdd

The quantity in brackets in Eq. 22 is constant, and hence relates the temperature of Eq. 26 to the
potential. Thus, the potential is defined as V at z = £ and also written in terms of C2 .

2 d2 T2(y-1)
Pddvd pPd d d - (27)

f V + (Td-T) V + I E (27)

Now, by substituting Eq. 27 for the potential in Eq. 25, an expression is obtained for the cross sec-
tion as a function of z. Integration, and the condition that E(L) = Cd' gives

-=1 - (1 ) (28)
C2 2Eo de Td(Y-1)

2
where the definition of I pfdlwdvd has been used. With this result, Eqs. 24-27 give the dependence
of Pf, p,E, T and 4 on z. The normalized distance upstream from the exit is (1 - z/J). Thus, the duct
radius is least at the inlet and increases to its maximum at the exit. The temperature therefore de-
creases in accordance with Eqs. 26 and 28, as it must if the velocity is to remain constant and yet
electrical power is to be removed.

The major limitation on an electric field device is likely to be the maximum electric stress that
can be developed without causing sparking. From Eq. 25 it is clear that the most critical point in
this regard is at the inlet where E = Eo is evaluated using Eqs. 25 and 28 with z = 0. From Eq. 25, it
followb that Pfd = -(CEo/Eo)(Eo/Ed)2 . Then, if that result is used in Eq. 28 also evaluated at z = 0,
and it is recognized from Eqs. 26 and 23 that Td = To(CO/Fd)2 (-1l) and hence pd = P (go/Ed)2 , it follows
that the area ratio and largest electric pressure (normalized to the entrance enthalpy) are related by

2 L 2
EE2/2=Y1 2d
P = c - (29)

o

Given the thermal entrance conditions and y, the maximum electric field consistent with electrical break-
down serves to determine the area ratio. In turn, all of the other parameters are then determined.
For example, the ratio of electrical power out to thermal power entering the duct is found from com-
bining Eqs. 26, 27 (evaluated at z = 0 where T = To and 4D= 0) and 29:

VI (EoE2/2) (30)

2 - pcT (30)
pcTV0 p o j
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Thus, the entrance ratio of electric pressure to thermal energy per unit volume determines the fraction
of thermal energy that can be extracted in a single stage device. To see that the electrical power
output is again approximated by an area-velocity-electric-pressure product, consider the particular
case where y = 1.5 (compared to 1.4 for air). Then, Eq. 30 becomes

VI = ¶r2vl E2) [1 + 2'To (31)

The factor modifying the expected form Av(' e E ) insures that as the electric pressure is increased,
the output saturates and never exceeds the avaidable thermal power.

In practice, even with the use of high pressures and electronegative gases to prevent sparking,
the electric pressure is likely to be small compared to pocpTo. One way to scale the conversion mag-
nitude upward in spite of this is to use many of the individual converters in series, so as to extract
a reasonable fraction of the available energy. However, frictional losses (which are ignored here) are
likely to give pressure drops on the order of ½ eoE2, and create a source of entropy that cannot easily
be made manageable by multiple staging. Frictional losses are reduced if the walls are essentially
removed and the charged stream is allowed to expand in a "natural" fashion. Some developments are
along these lines, 1 with momentum transferred from the expanding stream to a second recirculating flow.

9.19 Thermal-Electromechanical Energy Conversion Systems

To appreciate the limitations imposed on engines that convert heat into electrical power through
an electromechanical process, the converter must be seen in the overall context of a steady-state
cycle. Use made of thermal energy available in a fuel depends primarily on thermodynamic considerations,
and cycle refinements such as reheat loops are essential to the achievement of efficiencies such as are
found in modern power systems. Objectives in this section are served by considering a basic system,
with refinements a subject in itself.

In the steady state, a process can be characterized by what happens to enthalpy, volume and
entropy of a given mass as it passes through its cycle. Thus, the specific extensive variables HT,p-1
and ST are used along with pressure, temperature and velocity to represent the state of a system at a
given position in the cycle. The understanding is that the enthalpy, for example, passing a given loca-
tion in time At is (AvAt)pHT.

d-c electrical power out
Eitner the Mnu or EGD converter

can be the generator in the cycle of
Fig. 9.19.1. The state of a unit mass
of the fluid as it passes a given sta-
tion denoted by a-e in Fig. 9.19.1 is
given by the state-space trajectories
of Fig. 9.19.2.

Regardless of the cycle, it is im-
portant to first recognize the relation-
ship between variables implied by the
state equation for a perfect gas. The
entropy and mechanical state equations,
Eqs. 7.23.12 and 7.22.1, relate T to ST
with p as a parameter, as required for
the T-ST diagram:

T = (p_) ))e Fig. 9.19.1. Open cycle with either MHD or EGD
T0 Po ycv generator.

Hence, the lines of constant pressure shown in Fig. 9.19.2a. For Fig. 9.19.2b the same state equations
are solved for the pressure as a function of the specific volume p-1 with ST as a parameter:

p - S -ST0
= (P-) exp (2)

o v

1. M. O. Lawson and J. A. Decaire, "Investigation on Power Generation Using Elecrofluid-Dynamic
Processes," Intersociety Energy Conversion Engineering Conference, Miami Beach, Florida,
August 13-17, 1967 (participating societies including ASME, IEEE and AIAA).
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Fig. 9.19.2

(a) Temperature-specific entropy
trajectory for cycle of Fig. 9.19.1.
Broken lines are at constant pres-
sure; (b) pressure-specific volume
trajectory, broken lines are at
constant entropy.

ST - I

(a) (b)
The physical position in the cycle of a unit mass of the gas and its state at each position are

now described beginning with a. The cycle might be "open," in that ambient air is taken in at a with
temperature and pressure thereof pinned to atmospheric conditions. Open cycle or not, it is desirable
to make the compression from a to b essentially isentropic.

Combustion involves the working gas as a primary constituent and results in heat addition from
b to c. At this point the gas is essentially at rest. From c to o the nozzle converts some of the
thermal energy into kinetic form, ideally through an isentropic expansion. The developments of
Sec. 9.16 therefore describe the nozzle and, subsequently, the diffuser. According to Eq. 9.16.2,

.c o 1 2
HT = HT + v (3)

where -is the "stagnation enthalpy" in the combustor and o denotes entrance conditions to the
generat r (nomenclature consistent with Secs. 9.17 or 9.18).

From o to d is described in the previous two sections. For example, in the MHD interaction
the T-ST relation through the generator is Eq. 9.17.21, and the p - p-1 relation follows from
Eqs. 9.17.14 and 9.17.15:

T (ST - ST )T = exp (4)

S-y/[y-(y-1)K]

P -1
o p

The thermodynamic state reflected in the plots is not the whole story., There is also a change in
kinetic energy in the transitions from c - e. Upon reaching d, the gas has a residual kinetic energy
and to complete the cycle the process by which it is brought to rest with the same ambient conditions
as a must be specified. First the gas is brought to rest, d. e, in as nearly an isentropic manner
as possible using a subsonic diffuser. Again, using Eq. 9.16.2,

d 1 2 e
T + vd = HT (6)

Then, by means of a heat exchanger, or simply by expelling the gas to the atmosphere, the gas is
returned to ambient temperature and pressure. For the latter, heat rejection from e + a represents
a loss of energy and a major contribution to the-o-veall inefficiency. A regeneration system recovering
some of the rejected heat is described in(Prob. 9.19.12

-' .An overview of the energy conversion cycle comes from representing the system by the specific
enthalpy. To this end, note that in the steady state, the combined internal and kinetic energy con-
servation statement for a volume V enclosed by a surface S is the integral form of Eq. 7.23.7. Vis-
cous and thermal losses are neglected, so that

SE.JfdV- p(HT 1 vv).nda (7)

V S

STbc

O·~ 0 d--- .e
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As derived, the left side of this expression is the sum of the total ohmic heating and work done by
external forces (Eq. 7.23.1 or 7.23.2).

First, think of the ohmic heating as equivalent to the heat of combustion and apply Eq. 7 to the
combustor. In the combustor, the kinetic energy is ignorable and therefore Eq. 7, divided by the mass
rate of flow, becomes

Apy(He - H b
thermal energy input/unit time A T )- c b

mass/unit time Av T - T

Second, Eq. 7 is applied to the converter section, where the left-hand side

of the electrical power output:
becomes the negative

electrical power output
mass/unit time

VI
= = ApvApy

1 2 (Hd 1 2
2 o 2 d

Here, the third equality brings in the nozzle and diffuser functions, represented by Eqs. 3 and 6.

Third, Eq. 7 is used to represent the compressor. This time, the left side
work done by an external force density of mechanical origin:

compressor energy input/unit time b a
mass/unit time HT HT

represents mechanical

(10)

Finally, with the neglect of electrical losses (other than in the NHD or EGD generator), heat transfer
losses and frictional losses, the overall efficiency can be written as

(__ - He)-(Hb - Ha
electrical power out - compressor power T T T (11)

thermal power in c b
SHT -H

Written as it is in terms of the specific enthalpy, this relation is quite general. For an ideal gas
HT = cvT and Eq. 11 takes a form emphasizing the importance of having a high combustor temperature:

(Tc - Te) - (Tb - Ta)
n1= T -

c - Tb
(12)

It is now possible to see why an entropy increase in the generator implies a loss of efficiency.
If the generator operated isentropically, then points e and d in Fig. 9.19.2a would become points e
and d; thus Tc - Te would be increased in Eq. 12 with the result an improvement in efficiency.

By writing Eq. 11 in the equivalent form

(Hc - Hb (He - Ha
T( - H)- (HT T- heat in - heat rejected

Hc Hb heat in
T T

it is seen that the entropy increase requires a greater heat rejection
efficiency.

Note that the rejected heat could be put to useful purposes, for
erating buildings. The high priority put on increasing the efficiency
the presumption that the heat rejected is indeed wasted.

(13)

and for that reason a decreased

example in heating or refrig-
as defined by Eq. 13 reflects
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Problems for Chapter 9

For Section 9.3:

Prob. 9.3.1 Plane Couette flow exists in a planar channel if there are no electromagnetic stresses
and no longitudinal pressure gradients. (This would be the case if the channel were a model for a
reentrant flow.)

(a) What is the velocity profile?

(b) With both boundaries fixed and no electromagnetic stresses, the flow is driven by the pressure
gradient and called plane Poiseuille flow. Describe the velocity profile and use it to relate
the volume rate of flow, Qv, through a channel of length I and width w to the pressure drop.

Prob. 9.3.2 Carry out the derivation of Eq. 9.3.5 described in the paragraph following that equation.

Prob. 9.3.3 The circulating flow shown in Table 9.3.1 is reentrant, and hence has no azimuthal hybrid
pressure gradient. Show that the radial dependence of the azimuthal velocity is given by Eq. (b) of
that table.

Prob. 9.3.4 In the absence of electromagnetic forces, a rotor having radius b rotates with the angular
velocity %b. It is surrounded by a viscous fluid in an annulus with an outer wall at the radius a having

angular velocity 2a. Hence, with l = 0, the configuration is that of the Couette viscometer shown in
Fig. 7.13.1.

(a) Find the viscous torque acting on the inner rotor.

(b) Show that in the limit where b >> (a-b), the flow reduces to plane Couette flow (Prob. 9.3.1).

Prob. 9.3.5 Axial flow through an annular region with circular cylindrical boundaries is depicted in

Table 9.3.1. Show that the velocity profile is as summarized by Eq. (c) of the table.

Prob. 9.3.6 A pipe has radius R.

(a) Use Eq. (c) of Table 9.3.1 to deduce the velocity profile as a function of the pressure gradient.

This is Couette flow in cylindrical geometry.

(b) Find the relationship between pressure drop and volume rate of flow Q for a pipe having length k.

For Section 9.4:

Prob. 9.4.1 A tank, shown in Fig. 9.4.2a, is made of insulating material and holds a semi-insulating
liquid so that it forms a layer of depth b with a free surface at x = 0. At a distance a above the

interface, an electrode structure runs parallel to the interface and imposes the traveling wave of

potential Re Vo expj(wt-ky). Thus, the experiment shown in Fig. 5.14.4a is modeled. The time aver-

age surface force density is derived in Section 5.14. Using the fully developed flow model, find an

expression for the velocity profile as a function of the system parameters and the imposed voltage

amplitude.

Prob. 9.4.2 In the configuration of Fig. 9.4.2b, the electrodes are immersed in the liquid. The

model is for the experiments shown in Fig. 5.14.4b. Thus there is a layer of liquid above the stracture

having a depth a; a free upper surface; and a layer of the returning liquid below having a depth b and
bounded from below by a rigid equipotential surface. Take the lower surface of the box to be an equi-
potential surface, and the region of the free interface as extending to infinity. Use fully developed

flow models for the regions above and below the electrodes to approximate the volume rate of flow for

the circulation around the electrode structure.

Prob. 9.4.3 A layer of liquid metal has an interface carrying skin currents induced by means of a

traveling wave of surface current backed by an infinitely permeable material, as shown in Fig. 9.4.2c.

Use the sinusoidal steady-state skin-effect model of Section 6.8 and the fully developed flow model to

find the surface velocity of the liquid in the tank.

Prob. 9.4.4 The configuration shown in Fig. 9.3.2d is a model for ciFulation in liquid metals by non-k

uniformities in a high frequency imposed magnetic field. The magnetic skin depth is much less than b.

Fluid motions are slow enough that they have little effect on the fields. The upper bus-electrode is

designed in Prob. 6.9.2 to give a uniformly distributed surface force density. Using the stress derived

in that problem, find the interfacial velocity induced by the nonuniformity in field.
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For Section 9.5:

Prob. 9.5.1 The planar fluid layer shown in Fig. (a) of Table 9.3.1 is a liquid metal driven by a
traveling magnetic-field wave that imposes a tangential field .• = Re ^ expj(wt-ky) at the upper
surface. The structure used to produce this field might be like that of Fig. 9.5.1, or the layer
might be embedded in a heterogeneous system. The skin depth 6 /=2/p7a is much less than both the
layer width A and the wavelength 27r/k.

(a)With the velocities at the upper and lower surfaces and the pressure gradient left arbitrary, show
that the velocity profile is approximately

S^2 [ lkIfaI 2S2 2(x-A)2 2k 22IHv = v (1- 2) + + 3 - 8yn -
A 2T Ay t 18A

(b) Sketch the magnetic contribution to this profile and compare it to the high frequency profile shown
in Fig. 9.5.2.

Prob. 9.5.2 The cross section of a liquid metal induction pump is
shown in Fig. P9.5.2. As the circular analogue of the planar config-
uration considered in this section, it consists of liquid metal in
the annulus between highly permeable coaxial cylinders. The inner
cylinder has outer radius b while the outer one has inner radius a.
A winding, disposed essentially on the surface at r = a, imposes a
surface current k = 1z Re KO exp j(wt-mG) so that the fluid is
pumped azimuthally. Use the velocity profile of Table 9.3.1,
Eq. b, and the magnetic diffusion relations summarized by
Eq. 6.5.10 and Table 6.5.1 to determine the velocity of the
fluid in the annulus. Set up the integrations so that they
can be evaluated numerically, as in this section. Include
an evaluation of the volume rate of flow.

Prob. 9.5.3 Table 9.3.1c shows the geometry of a circular
induction pump. The liquid metal is in the annulus between Fig. P9.5.2
coaxial walls at r = a and r = b. The region inside the inner
wall can be taken as infinitely permeable while that outside the outer wall is a traveling wave structure
backed by an infinitely permeable material. The winding is excited so that at r = a there is a surface
current = Re Ko ej(wt-kz)^i. The fluid is pumped in the axial direction. Use the velocity profile of
Table 9.3.1, Eq. c, and the magnetic diffusion relations summarized by Eqs. 6.5.15 and Table 6.5.1 to
determine the fully developed velocity profile. Set up the integrations so that they may be convenient-
ly evaluated numerically, including the relation between pressure gradient and volume rate of flow.

For Section 9.6:

Prob. 9.6.1 A reentrant flow is mgdeld as in this section by a plane flow. When t = 0, the fluid is
static and a uniform force density F = Foiy is suddenly applied. Walls at x = 0 and x = A are fixed.
Find the fluid response.

Prob. 9.6.2 Find a force density profile Fy(x) such that the fluid velocity profile has the same rel-
ative distribution as the fluid comes up to speed. Assume that this force density is suddenly applied
when t = 0 and remains constant in time thereafter.

For Section 9.7:

Prob. 9.7.1 There are electromechanical situations where a fluid essentially "slips" relative to a
fixed boundary. An example results when a double layer exists between an insulating boundary plate
and an electrolyte and a tangential electric field is applied. The resulting flow, which is taken
up in Chap. 10, is dominated by viscous stresses within the double layer. Insofar as the bulk flow
is concerned, the fluid in the vicinity of the plate is moving with a uniform velocity vy = U (i.e.,
the velocity is independent of y). Suppose that vy(0,y) = U for y > 0, that the rigid plate requires
that vx(O,y) = 0 and that the fluid is stagnant as x + -. Formulate the similarity problem. What is
the viscous stress acting on the plate and what is the total force acting on a length L of the plate?

Prob. 9.7.2 For the stress-constrained boundary layer, what is the transit time between y = 0 where
the stress begins and y = y for a particle on the surface? Show that the similarity parameter, Eq. 25,
is the square root of the ratio of the viscous diffusion time to this transit time.
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Prob. 9.7.3 The fluid interface shown in Fig. 9.7.6 is subject to the imposed surface force density
T(y) = To(y/a)k, where To, and k are constants.

(a) Show that appropriate similarity parameter and function are

A (Tn 1/3
v 2ak

k+2
f(S)y 3.

(b) Show that the boundary layer equations are

f g

2k+l 2 k+2)fh
h (i g -)h

(c) Argue that appropriate boundary conditions are given by Eq. 27.

Prob. 9.7.4 'The configuration shown in Fig. P9.7.4 ~=-V,y/2
has a planar layer of relatively inviscid ohmic
liquid having depth b and charge relaxation time
short compared to transport times of interest.
The liquid has a "free" surface at x = 0 which,
because the mass density of the liquid is much
greater than that of the air above, is held flat
by gravity. Electrodes in the plane x = b constrain
the potential of the liquid as shown in the figure, - ' '
where Vb and b are constants.

(a) Show that in the liquid the electric potential is

n-rn '-
--= -u

-Vb(b-.y )2b'

---
X

Fig. P9.7.4

= -b(x_-y )
2b

(b) At a distance a above the interface, electrodes constrain the potential to be as shown in the figure.
Assume that a is small enough so that Ex in the air can be approximated as the voltage divided by
the spacing. What is the electric shearing surface force density acting on the interface?

(c) Show that the boundary layer resulting from this surface force density can be represented as in
Prob. 9.7.3. Assume that b is so much greater than the boundary layer thickness that the fluid
outside this layer can be regarded as stagnant. What is the value of k?

For Section 9.8:

Prob. 9.8.1 Two semi-insulating liquid layers having ohmic conductivities (Ya~ab), permittivities

(Ca,Eb) and viscosities (na,lb), respectively, are shown in Fig. 9.8.2. Assume that the flow has
little effect on the distribution of fields, that gravity holds the interface flat and that the
Reynolds number is small.

(a) What is the shearing surface force density Ty(y) due to the field?

(b) Sketch the expected cellular flow pattern.

(c) What is the velocity of the interface vy(y) as a function of the driving voltage Vo?

(d) What conditions must prevail to insure that effects of motion on the field are negligible and
that Ry is small?

For Section 9.9:

Prob. 9.9.1 Fully developed Hartmann flow exists in the half-space x > 0. In the plane x = 0 there
is an insulating rigid flat plate. Throughout the fluid, there is a uniform electric fieldE = Ezi
and the pressure gradient in the y direction is constant. Determine the velocity profile v = v(x .
What is the thickness of the Hartmann boundary layer? y
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For Section 9.14:

Prob. 9.14.1 Flow over an uneven bottom is shown in

Fig. 
P9.14.1.

(a) Write the quasi-one-dimensional 
e uations of motion

in terms of E(y,t) and vy(y,t). t
(b) Draw a "head" diagram analogous to Fig. 9.14.2 and 4m

discuss the steady transition of the fluid depth
as it passes over an elevation in the bottom.

P* . P .,(V

How does the profile depend on the entrance veloc-
ity relat-ive to the velocity of a gravity wave? Fig. P9.14.1

Prob. 9.14.2 An alternative to the deduction of the quasi-one-dimensional derivation given herf is
to use the space-rate expansion illustrated in Sec. 4.12. For a gravity flow, where 0= 0 and pg-r
= -pgx, normalize variables such that

x = dx, y = ky, t = Zt/ , p = dgpp

y = v, vx x

and deduce the quasi-one-dimensional model by expanding the dependent variables in powers of the space-
rate parameter (d/2) 2 . See Fig. P9.14.1 for the configuration.

Prob. 9.14.3 The cross section of an electromechanical flow structure is shown in Fig. P9.14.3. The
applied voltage is high frequency a-c, so that free charge cannot accumulate in the highly insulating
liquid. Under the assumption that the mechanical response is only to the time average of the field,
Va is taken as the rms of the applied voltage and henceforth regarded as being d-c. The flow dynamics
in the z direction is to be described under the assumption that as the fluid cross section varies the
interfaces remain in the regions to right and left, respectively, well removed from the position of
minimum spacing between electrodes.

(a) For static equilibrium in directions transverse to z, what are p(ýa) and the cross-sectional area
A(Ca)? (Assume p = 0 exterior to the liquid.)

(b) Show that the quasi-one-dimensional
equations of motion are

@E2 2
a 2+ v 2a

.t a -+ Ev =0

tv av 1 (E-+o) V2 a82)
P +V z + 2 2,_2.2 a -- =0

a (r, a) Vig. ±.4.3

For Section 9.16:

Prob. 9.16.1 Derive the area-velocity relation of Eq. 9.16.9.

Prob. 9.16.2 Along the trajectories a and o of Fig. 9.16.1, in both the subsonic nozzle and supersonic
diffuser, the area ratio decreases in the direction of flow. Show that as the channel reaches the crit-
ical area ratio, defined as the minimum ratio consistent with isentropic steady flow, the Mach number
is unity.

Prob. 9.16.3 Use Eqs. (b)- (e) of Table 9.15.1, with no external coupling (F = 0, J = 0) to show
that

S(pp-
) = 0

for the quasi-one-dimensional flow described in this section.

For Section 9.17:

Prob. 9.17.1 Because constant velocity implies an increasing Mach number, the flow discussed in this
section approaches sonic velocity even if initially subsonic. To avoid the associated losses in the
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Prob. 9.17.1 (continued)

subsequent diffuser, used to bring the gas to rest after passage through the MHD duct, it can be advan-
tageous to make A(z) such that the Mach number remains constant: M 2 =v 2/yRT = M2. Assume that B is
also constant with respect to z and observe that vdv = yRM2 dT/2. Use conservation of energy and momen-
tum to show that

o o
PO0 0

In turn, find p, p and v in terms of T. Then find and integrate a differential equation for T.
Finally, what is A(z) and the specific entropy ST(z)?

Prob. 9.17.2 In general, the z dependence of flow variables cannot be found in analytical form.
However, numerical integration of the equations from given inlet conditions is relatively straight-
forward once the differential equations have been written as a system of first order equations.

The loading is allowed to be arbitrary so that E is now independent of vB. Write the quasi-one-
dimensional laws in the systematic form (p' H dp/dz)

3
pv3

M2(y-1)

P
p

p

v
V

T'
T

M
2

A'
-pv

A

-OB (E+vB)

OE (E+vB)

0

0

where, from top to bottom, these equations represent mass, momentum and energy conservation, the differ-
ential forms of the mechanical equation of state and definition of M2 . Under the assumption that A(z)
is given, invert these equations and show that written in terms of "influence coefficients" they are

M2 _ 1
p

yM2 - [1+M2(Y_1p

2 M2 (y-l)M (y-l) -

M2 (y-1)+2
-M2(y-1)-2 p

(Y-1)
Yvp

)] M2 (Y-1)
pv

yvp

S(y-l)(YM
2 -l)

ypv

(yM2+1) (y-l)
ypv

Discuss how these equations would be integrated numerically. Describe a systematic approach to speci-
fying A(z) such that one of the flow variables has a prescribed evolution with z.

Prob. 9.17.3 The three modes of operation for a d-c machine with a
Fig. 4.10. To say whether the MHD duct as a whole gives generation,
tion of flow variables and load must be determined. In general, for

rigid conductor are summarized in
braking or pumping, the distribu-
a compressible conductor, solutions
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Prob. 9.17.3 (continued)

to the equations found in Prob. 9.17.2 are required. Consider here the local interaction, the effect
of specifying E and B at a given location by means of segmented electrodes. Use the results of
Prob. 9.17.2 specialized to a channel of uniform cross section to find the signs of the rates of
change of flow parameters for the following cases:

(a) Generator operation with local electrical power out, EJ < 0, and a retarding magnetic force, JB > 0,
for M 2 i1.

(b) Pump or accelerator operation with EJ > 0 and JB < 0 for M2 > i.

(c) In both of the above, identify those cases where acceleration is reversed from what would be
expected for the assigned JB and explain.

For Section 9.18:

Prob. 9.18.1 Use the procedure outlined before Eq. 9.18.23 to show that the zero mobility flow is

isentropic and hence satisfies Eq. 9.18.23.

Prob. 9.18.2 The zero mobility generator is to be designed for constant temperature throughout.

Show that the pressure and mass density are then also constant. Given the outlet conditions denoted
by subscripts d, find v and D in terms of the channel area A = C2. In turn, show that the area is
governed by the equation

2

d2 -1 fd d
2 3

dz o(AdpdVd)

Show that this expression can be integrated, with boundary conditions E(Z) = 0 and A(k) = Ad, to obtain
the implicit dependence of A on z:

[ 2 1/2
x2 pfd

F(x)ex = (Z-z) Pfd

6o dd

2x2 x x2 Ad 1/2
F(x) e f x dx ; x E [n(-)

o

where F(x) is tabulated as the Dawson integral.1 Use subscripts to denote inlet variables and show
that

2
E E2/2
PoV o

Show that the electrical output power VI can be written in terms of the inlet electric pressure as

vA

VI 0 E )[I - exp(-r)]

where

1 2 1 v
r (-oEo o(-op

Prob. 9.18.3 A systematic approach to writing the quasi-one-dimensional equations in terms of influence

coefficients is outlined in Prob. 9.17.2. Consider here the analogous electrohydrodynamic flow with
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Prob. 9.18.3 (continued)

finite mobility and wall conductivity. Write the appropriate flow equations in a form analogous to the
first equations in Prob. 9.17.2. The geometry can be taken as given so that E'/5 is known, and the un-
knowns are p'f/pf, E'/E, v'/v, P'/P, p'/P, T'/T and (M2)'/M2. Invert this system of seven equations to
show that the influence-coefficient representation of the equations is

p'/pf
1

M2-1 IA jI

pfE/p

pfE -
-. iY 1 ) ( b E + v)
Pv Y

-2(bE + v +
OE

s
5affOf

where

A14 = A15 A24 = A25 = A34 = A35 = A51 = A52 = A53 = A54 = A64 = A65 = A74 = A75 = 0

A12 = 1-A3= A41= -A42 = A43 = -A62 = A63 =1; -A71 = A7 2 = M2(y-) + 2

A11= A61 = M2;

A22= -M2(y-1) - 1;

33 73 My- ;
20

A4 5 = -(M2-1) E(b + -);45 v EPf

A21 = A23 M2

A31= -A32 =M2(Y-1)

A44 = s

A = M2 -55

. and

Q E-2(1 +• b)

Prob. 9.18.4
right with no
&(z) required
distribution?

' Pf/ oE

l+(2as/Epfb)

In the configuration of Fig. 9.18.1, ions are injected at the left and collected at the
gas flow (v = 0). The total current is I and the inlet radius is Co. Determine the radius
to keep the electric field E = E0 independent of z. What is the associated space-charge

For Section 9.19:

Prob. 9.19.1 In the diffuser, from d to e, it is assumed that the pressure rises. Show that if the
flow at the generator outlet is subsonic, pe > pd"

Prob. 9.19.2 In a "conventional" thermal power plant, shaft power from a turbine is used to drive a
synchronous alternator which generates electrical power. Thus the generator of Sec. 4.7 integrates into
a system fundamentally like that of Fig. P9.19.2a. The turbine plays a role in this Rankine steam cycle
analogous to that of the MHD generator, directly producing shaft rather than electrical power.2 The
steam cycle is summarized by the T-ST plot, which shows the demarcation between liquid, wet vapor and

2. The analogy to a turbine extends to the manner in which frictional heat generated at one stage can be
partially recovered downstream with the inefficiency showing up through the entropy production (ignored
in this problem). See E. F. Church, Steam Turbines, McGraw-Hill Book Co., 1950, Chap. 14.

v'/v

p'/p

T'/T

bE +
v

E'/E

p'/p

M2'/M 2

I

'i'
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Prob. 9.19.2 (continued)

superheated gas phase. Clearly the perfect gas model is not appropriate. Use the enthalpy function
defined at the marked stations, and assume that the turbine acts isentropically. Find the overall
efficiency, defined as the electrical power output divided by thermal power input. Assume that the
generator has an efficiency nT for mechanical to electrical conversion and that the compressor is not
used. Now the MHD generator §as the disadvantage that relatively high outlet temperatures must be
maintained in order that the thermal ionization responsible for the gas conductivity remains effective.
Thus the cycle of Fig. 9.19.1 is operated as a topping unit with the rejected heat used to drive the
steam cycle of Fig. P9.19.2a. Find the overall efficiency of the combined system in terms of the
enthalpy function. Show that it can be written in the form of Eq. 9.19.13 where the heat rejected is
that rejected by the steam cycle.

P9.19.2a P9.19.2b
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