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Statics and Dynamics of Systems
Having a Static Equilibrium




8.1 Introduction

‘In general, it is not possible for a fluid to be at rest while subject to an electric or magnetic
force density. Yet, when a field is used to levitate, shape . or confine a fluid, it is a static equi-
librium that is often desired. The next section begins by identifying the electromechanical conditions
required if a state of static equilibrium is to be achieved. Then, the following three sections
exemplify typical ways in which these conditions are met., From the mathematical viewpoint, the subject
becomes more demanding if the material deformations have a significant effect on the field. These
sections begin with certain cases where the fields are not influenced by the fluid, and end with models
that require numerical solution.

The magnetization and polarization static equilibria of Sec. 8.3 also offer the opportunity to
explore the attributes of the variqus force densities from Chap. 3, to exemplify how entirely different
distributions of force density can result in the same incompressible fluid response and to emphasize
the necessity for using a consistent force density and stress tensor,

Given a static equilibrium, is it stable? This is one of the questions addressed by the remaining
sections, which concern themselves with the dynamics that result if an equilibrium is disturbed. Some
types of electromechanical coupling take place in regions having uniform properties. These are exem-
plified in Secs. 8.6-8.8. However, most involve inhomogeneities. The piecewlise homogeneous models
developed in Secs. 8.9-8.16 are chosen to exemplify the range of electromechanical models that can be
pictured in this way.

The last sections, on smoothly inhomogeneous systems, serve as an introduction to a viewpoint
that could equally well be exemplified by a range of electromechanical models. Once it is realized
that the smoothly inhomogeneous systems can be regarded as a limit of the pilecewise inhomogeneous sys-
tems, it becomes clear that all of the models developed in this chapter have counterparts in this domain.

The five electromechanical models that are a recurring theme throughout this chapter are sum-
marized in Table 8.1.1.

Table 8.1.1. Electromechanical models.

Model Approximation
Magnetization (MQS) or polarization (EQS) No free current or charge
Instantaneous magnetization or polarization
Flux conserving (MQS) T << T
Charge conserving (EQS) T << T, or Tmig
Instantaneous magnetic diffusion (MQS) T > Tn
Instantaneous charge relaxation (EQS) T>> T, or Tmig

Magnetization and polarization models for incompressible motions require an inhomogeneity in mag-
netic or electric properties. The remaining interactions involve free currents or charges which gener-
ally bring in some form of magnetic diffusion or charge relaxation (or migration). How such rate .
processes come into the electromechanics is explicitly illustrated in the sections on homogeneous sys-
tems, Secs. 8.6 and 8.7. However, in the more complex inhomogeneous systems, the last four models of
Table 8.1.1 not only result in analytical simplifications, but give insights that would be difficult
to glean from a more general but complicated description. '"Constant potential" continua fall in the
category of instantaneous charge relaxation models. )

STATIC EQUILIBRIA

8.2 Conditions for Static Equilibria

Often overlooked as an essential part of fluid mechanics 1s the subject of fluid statics. A re-
minder of the significance of the subject is the equilibrium between the gravitational force density
and the hydrostatic fluid pressure involved in the design of a large dam. On the scale of the earth's
surface, where g is essentially constant, the gravitational force acting on a homogeneous fluid
obviously is of a type that can result in a static equilibrium.

Except for scale, electric and magnetic forces might well have been the basis for Moses' parting
of the Red Sea. Fields offer alternatives to gravity in the orientation, levitation, shaping or

8.1 Secs. 8.1 & 8.2
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Fig. 8.2.1. (a) Electric field used to shape a "lens" of conducting liquid resting on a pool of

otherwise controlling of static fluid configurations. Examples are shown in Fig. 8.2.1. g

liquid metal. Molten plastics and glass are sufficiently conducting that they can be re-
garded as "perfect" conductors. (b) Polarization forces used to orient a highly insulating
liquid in the top of a tank regardless of gravity. The scheme might be used for providing
an artificial bottom in cryogenic fuel storage tanks under the zero-gravity conditions of
space. (c¢) Liquid metal levitator that makes used of forces induced by a time-varying mag-
netic field. At high frequencies, the flux is excluded from the metal, and hence the fields
tend toward a condition of zero shearing surface force density. (d) Cross-sectional view

of axisymmetric magnetic circuit and magnetizable shaft with magnetizable fluid used to seal
penetration of rotating shaft through vacuum containment.

1-3

For what force distributions can each element of a fluid be in static equilibrium? If the ex-

ternal electric or magnetic force density is ?e, then the force equation reduces to

-V(p - pg-r) = F° (1)

This expression is a limiting form of Eq. 7.4.4 with the velocity zero. Even if effects of viscosity

1. J. R. Melcher, D. S. Guttman and M. Hurwitz, '"Dielectrophoretic Orientation," J. Spacecraft and
Rockets 6, 25 (1969).

2. E. C. Okress et al., "Electromagnetic Levitation of Solid and Molten Metals," J. Appl. Phys. 23,
545 (1952). "'

3. R. E. Rosensweig, G. Miskolczy and F. D, Ezekiel,

1968.
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are included in the model, because v = 0, Eq. 1 still represents the static equilibrium. Thus, it is
also the static limit of Eq. 7.4.4. The curl of a gradient is zero. So, the curl of Eq. 1 gives a
necessary condition on Fé for static equilibrium:

V¥ =0 (2)

To achieve a static equilibrium, the force density must be the gradient of a scalar, -VE. Then Eq. 1
becomes -

> >
V(p - pg'r +€) =0 3)
which will be recognized as Eq. 7.8.4 in the limit ¥ = 0.

More often than not, in an electromagnetic field a fluid does not reach a static equilibrium,
Electromagnetic forces do not generally satisfy Eq. 2. Fields designed to achieve an irrotational force
density are exemplified by Secs. 8.3-8.5.

These sections also illustrate that stress balance at interfaces is similarly restricted. A clean
static interface is incapable of sustaining a net electrical shearing surface force demsity. Formally,
this is seen from the interfacial stress balance, Eq. 7.7.6, which states that the normally directed
pressure jump and surface tension surface force density must be balanced by the electrical force density.

The last, Tij nj, is in general not normal to the interface.
To be specific about what types of interfaces do satisfy this requirement, consider an interface
having a normal vector in the x direction. Then, n, = 6, and for the directions i # x the surface

k| jx

force density is

0t 0=0gp, 0 =g0p.] (o)
(4)
0t,0 - [IHin I = Bx[] Hil] (MQS)

In writing the second equalities, advantage is taken of the continuity of tangential E (EQS) and normal
B (MQS). From Eq. 4a, two EQS idealizations are distinguished for having no electrical shearing surface
force density at the interface. First, the tangential electric field intensity can vanish, in which
case (4a) is satisfied. The interface is "perfectly" conducting. Secondly, the jump in electric dis-
placement at the interface can vanish, and again, there is no shear stress at the interface. The inter-
face then supports no free surface charge density. Two MQS circumstances exist for achieving no
shearing surface force density. First, the normal flux density can vanish at the interface. Physically,
this is realized if the interface is perfectly conducting. Alternatively, the jump in tangential H can
vanish, and this means that there is no surface current density on the interface.

The four static equilibria of Fig. 8.2.1 exemplify the four limiting situations in which there is
no electrical shearing force density at an interface, In Fig. 8.2.la, the lens is pictured as suffi-
ciently highly conducting that it excludes the electric field, and hence behaves as a perfect conductor.
Molten glass is more than conducting enough to satisfy this condition. Polarization forces are used to
orient highly insulating fluids with no free charge density either on the interface or in the bulk, as
illustrated in Fig. 8.2.1b. Metallurgists use high-frequency magnetic fields to make a crucible with
magnetic walls, as shown in Fig. 8.2.1c. Here, because of the high frequency used, the magnetic field
penetrates the liquid metal only slightly, and tends to the limit of no normal flux density. Thus, a
static configuration with the melt levitated in mid-air is in principle possible. Magnetic fluids are
being exploited as the basis for making vacuum seals for shaft penetrations as sketched in Fig. 8.2,1d.
Here, the magnetic field is used to orient the liquid in the region between shaft and walls. Generally,
the magnetizable fluids are highly insulating and so there is not only ng surface current to produce a
surface shearing force density, but also no volume force density due to J x B.

In all of the examples in Fig. 8.2.1, the electromechanical forces can be regarded as confined to
interfaces. This is clear for the free charge and free current interactions of parts (a) and (c) of
that figure, because there are no fields inside the material. In the polarization and magnetization
interactions, the properties are essentially uniform in the bulk. Thus, the force density expressed as
Eq. 3.7.19 or 3.8,14 is concentrated at the interfaces.

Some common static configurations involving volume forces are evident from symmetry. For example,
if the force density is in one direction and only depends on that direction, i.e., if

7 = F (01, (5)

then it is clear that the force density is the gradient of (-§):

8.3 Sec. 8.2



€= —I Fx(x)dx {6)

Similar arguments can be used if the force density is purely in a radial direction.

Other approaches to securing a static equilibrium using bulk force densities are illustrated in
Sec. 8.4.

8.3 Polarization and Magnetization Equilibria: Force Density and Stress Tensor Representations

For an incompressible fluid, the pressure is a dangling variable. It only appears in the force
equation. Its role is to be whatever it must be to insure that the velocity is solenoidal. As a con-
sequence, those external forces which are gradients of "pressures" have no influence on the observable
incompressible dynamics. Any "pressure" can be lumped with p and 4 new pressure defined. Although
true for dynamic as well as static situations, this observation is noy illustrated by two static
equilibria.

The first of these illustrates polarization forces, and is depicted by Fig. 8.3.1. A pair of
diverging conducting electrodes are dipped into a liquid having permittivity €. A potential differ-
ence V, applied between these plates results in the electric field

v

or

-’
= o= 14 1)
in the interior region well away from the edges. At any given radius r, the situation is essentially
the dielectric of Fig. 3.6.1, drawn into the region between parallel capacitor plates. Because the
field increases to the left, so also does the liquid height. What is this height of rise, E(x)?

There are two reasons that this experiment is a classic one. The first stems from the lack of
coupling between the fluid geometry and the electric field. The interface tends to remain parallel
with the 8-direction, and as a result the electric field given by Eq. 1 remains valid regardless of the
height of rise. As a result, the description is greatly simplified. The second reason pertains to
its use as a counterexample against any contention that the polarization force density is p E, where
pE is the polarization charge density. 1In this example, there is neither polarization charge in the
liquid bulk (in the region between the electrodes and even in the fringing field near the lower edges
of the electrodes in the liquid) nor is there surface polarization charge at the interface (where E is
tangential)., If ppﬁ were the force density, the liquid would not rise!

Illustrated now are two self-consistent approaches to determining the height of rise, the first
using Kelvin's force density and the second exploiting the Korteweg-Helmholtz force density.

Kelvin Polarization Force Density: The force density and associated stress tensor are in this
case (Table 3,10.1)

F=3 vE (2)
1
Tys = EgPy = 3 6448, FBk €))
The liquid is modeled as electrically linear with P and collinear,
P=(c-e)E (4)

Throughout the liquid, € is uniform. Hence, Eqs. 2 and 3 and the fact that E is irrotational combine
to show that the force density is

5E 3E
@-vh), = (= - £ E,s E:jl - (& - €K a—xi- - -¢) a_i: ¢ BE,) (5)

So long as the force density is only used where € is constant (in the bulk of the liquid or of the air)
Eq. 6 is in the form of the gradient of a pressure,
>

F=-ve gz-3(- e EE (6)

This makes it clear that the polarization force density is irrotational throughout the bulk. In the
bulk, Eq. 8.2.3 applies. With § evaluated using Eq. 1, it follows that in the bulk.regions

2
(e - eo)Vo

20tZ,_.Z

P + pgz - = constant 7

Secs. 8.2 & 8.3 8.4
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Courtesy of Education Development Center, Inc. Used with permission.

Fig. 8.3.1. (a) Diverging conducting plates with potential difference V, are immersed in
dielectric liquid. (b) Interfacial stress balance. (c) From Reference 12, Appen-
dix C; corn oil (e = 3.7 €,) rises in proportion to local E2, Upper fluid is com-
pressed nitrogen gas (€ = £€5) so that E can approach 107 V/m required to raise
liquid several cm. To avoid free charge effects, fields are 400 Hz a-c. The fluid
responds to the time-average stress. The interface position is predicted by Eq. 12.

Thus, with the interface elevation, £, measured relative to the liquid level well removed from the elec-
trodes, positions a and d in the air (where € = €5 and p = 0) and positions b and ¢ (in the liquid) are
joined by Eq. 7:

Py =By (8)
c - eo}vi -
= p
0.21'2

p, + P8t - 2

2

To complete the formulation, account must be taken of any surface force densities at the interface that
would make the pressure discontinuous at the interface. In general, the boundary condition is

Eq. 7.7.6, As discussed in Sec. 8.2, there is no free surface charge, so there is no shearing component
of the surface force density. If the electrodes are very close together, capillarity will contribute

to the height of rise, as described by the example in Sec. 7.8. Here the electrodes are sufficiently
far apart that the meniscus has a negligible effect.

If the local normal to the interface is in the x direction, the surface force density is ﬂ Tx ﬂ.
Because the electric field is entigely perpendicular to x and is continuous at the interface, it fo1lows

from Eq. 3 that [| Tyx[] = | - 5 €,E5[ = 0, so that there is no surface force demsity. Hence, the stress
equilibrium for the interface at locations a-b and c-d is simply represented by

P, =Py © 0 (10)

P, =Py = 0 (11)

The pressures are eliminated between the last four relations by multiplying Eq. 8 by (-1) and adding

8.5 Sec. 8.3



the four equations. The resulting expression can then be solved for £(r):

(e - € )V2

0" 0
g = 73 12)
20, pgr

This dependence is essentially that shown in the photograph of Fig. 8.3.1.

Korteweg-Helmholtz Polarization Force Density: It is shown in Sec. 3.7 that this force density
differs from the Kelvin force density by the gradient of a pressure. Thus, the same height of rise
should be obtained using (from Table 3.10.1) the force density and stress tensor pair

F=- %— E2Ve (13)
= 1
Tij = E:EiEj -3 GijeEkEk (14)

Now, there is no electrical force in the volume and the static force equation, Eq. 8.2.3, simply requires
that

P + pPgz = constant (15)

Thus, points a and d and points b and c are joined through the respective bulk regions by Eq. 15 to
obtain

Py =Py (16)

Py + PgE = P b))

c
By contrast with Eqs. 8 and 9 there is no bulk effect of the field. Now, the electromechanical coupling
comes in at the iInterface wheie € suffeis a step discontinuity and hence a surface force density exists.

At the interface, | Txxﬂ = - E{EO - €)Eg, so that the stress balances at the interface locations a-b and
c~-d are respectively

(Eo - s)Vi
Pa " P, """ 33 (18)

Multiplication of Eq. 16 by (-1) and addition of these last four equations eliminates the pressure and
leads to the same deflection as obtained before, Eq. 12.

Korteweg-Helmholtz Magnetization Force Density: The force density and stress temsor pair
appropriate if the fluid has a nonlinear magnetization are (from Table 3.10.1)

> o Sy

F= I Vi (20)
oy 0%k

Tij - HiBJ. - sijw' (21)

> >
where B and H are collinear:
2.
-]5 = u(al,az,---,am,n JH (22)
In the experiment of Fig. 8.3.2, the magnetic field

>
14 (23)

> I
H= o
1s imposed by means of the vertical rod, which carries the current I. The ferrofluid in the dish has
essentially uniform properties oy throughout its bulk, but tends to saturate as the field exceeds about
100 gauss.

The Korteweg-Helmholtz force density has the advantage of concentrating the electromechanical
coupling where the properties vary. In this example, this is at the liquid~air interface. Because

Sec. 8.3 8.6



Courtesy of Textron Corporation. Used with permission.
Fig. 8.3.2. A magnetizable liquid is drawn upward around a current-carrying wire in accordance
with Eq. 29. (Courtesy of AVCO Corporation, Space Systems Division.)

Eq. 20 is zero throughout the bulk regions, Eqs. 16 and 17 respectively pertain to these regions.

Stress balance at the interface is represented by evaluating the surface force density acting
normal to the interface, to write

pa_pb=_ﬂwlﬂ (24)

Pe = Pg=0 (25)

for locations a-b and c-d, respectively. The pressures are eliminated between Eqs. 16, 17, 24 and 25
to obtain

E= = Jljilﬂ (26)

Pg

To complete the evaluation of £(r), the magnetization characteristic of the liquid must be specified.
As an example, suppose that
% & n
Bs —m  — + HGH (27)
a,vag + B2

where oy and o, are properties of the liquid. Then, the coenergy density (Eq. 2.14.13) is
-+

O
+ > 1 2 2 2.1 2
W' = I B+6H = EI uz + H E; + 2 HUH (28)
0o

and, in view of Eq. 23, Eq. 26 becomes

‘ o
£ == [i/az + (—1—)2——2:| (29)

Pg |y 2 2mr ul

As for the electric-field example considered previously, the relative simplicity of Eq. 26 origi-
nates in the independence of H and the liquid deformation. If there were a normal component of T at
the interface, the field would in turn depend on the liquid geometry and a self-consistent solution
would be more complicated.

8.7 Sec. 8.3



8.4 Charge Consérving and Uniform Current Static Equilibria

A pair of examples now illustrate how the free-charge and free-current force densities can be
arranged to give a static equilibrium,

Uniformly Charged Layers: A layer of fluid having uniform charge density qp, and mass density pp
rests on a rigid support and has an interface at x = &, A second fluid above has charge density Qg
and mass density pyz. Gravity acts in the -x direction. The objective is control of £(y) by means of
the potential V(z) applied to the electrodes above.

4
X Fig. 8.4.1

(e) Uniformly charged aerosols

~ entrained in fluids of dif-
Tfj(f) fering mass densities assume
e static equilibrium deter-
L E;::' mined by the applied poten-

R Ry u i tial V(y).
- y
As an example, the upper fluid might be air which is free of charge (qg = 0) and the lower one

a heavier gas such as CO9 with entrained submicron particles previously charged by ion impact. Thus,
the fluids have essentially the permittivity of free space and there is no surface tension.

The time-scales of interest are sufficiently short that migration of the charged particles
relative to the fluids is inconsequential. Thus, the charge is frozen to the gas. Because the gas
is incompressible (V:.v = 0), the charge density of a gas element is conserved. Regardless of the
particular shape of the interface, the charge densgities above and below remain uniform, q, and qp
respectively. It is for this reason and because % is irrotational that the force density in each fluid
is irrotational:

F = qf = -qV0 = -V(q®) @)
Thus, Eq. 8.2.3 shows that within a given fluid region
p + pgx + q® = constant (2)

Evaluation of the constant-at the points (e) and (f) adjacent to the interface where £ = Eo gives

e
ptogx+ql®=p +pgl +q2E);x>¢
£ 3)
prpogx+qd=p +pgl +q0CE);x<E

The force density suffers a step discontinuity at the interface. This means that there is no surface
force density, so that the pressure is continuous at the interface. Continuity of p also follows
formally from the stress jump condition, Eq. 7.7.6 with the surface tension Y = 0.

So that stability arguments can be made, an external surface force density Text(y) is pictured
as also acting on the interface. By definition Tgxt = O at location (e-f):

c d e £
P -p =T, P -p =0 @)

Subtraction of Eqs. 3a and 3b then gives

g€ - 50)(Pb - Da) + (qb - qa)IQ(E) - <I’(Eo)] = Text (5)
where ®(§) is the potential evaluated at the interface.

0f course, the potential distribution is determined by the presently unknown geometry of the
interface and the field equations. Here, the relation of field and geometry is simplified by con-
sidering long-wave distributions of the interface. The electric field is approximated as being
dominantly in the x direction. Thus, Poisson's equation reduces to simply

- q.: x> §
% _9 )
ax? S ! %Gt X <&

Sec. 8.4 8.8



Fig. 8.4.2

Graphical representation
of Eq. 9.

With the boundary conditions that @(d) = V(y), that [] ¢f] = 0 and [] 3¢/3x[ = 0 at the interface and that
$(0) = 0, it follows that

2

q q
28) = L+ 22 E@ - O+ o B2 - B) @
[o] (o]

Thus, with Toxt = 0, Eq. 5 becomes a cubic expression that can be solved for £(y) given V(y)

t

vE
8(E - §)(0y - 0) + (g - (% - )

(8)
+ (q,-q.) e [£(d-E)° - £_(d-€ )% - (£2(a-)-E2(d-E )1}=T
4,79, Zeod I o 2€°d o o’ “ext

Given a desired £(y), Eq. 8 can also be solved for the required V(y). If the field imposed by the elec-
trode potential V(y) is large compared to the space charge field, the last term in Eq. 8 can be ignored:
Then, the equilibrium is represented by

v E
8~ £y = 0) + (g - ) (B - 22) = 7, ©

To picture how the interface responds to V(y), it is helpful to use the graphical solution of Fig. 8.4.2.
The interfacial deflection is given by Taxt = 0. Increasing V has the effect of decreasing the inter-
cept and increasing the slope of the electrical "force" curve.

In this imposed field limit, Eq. 9 can be solved for the layer thickness as a function of the
imposed potential:

L (a, = q,)
T v

. THey e ' "

o

Illustrated in Fig. 8.4.3 is an example which represents what would happen if the potential shown were
imposed on a light layer over a heavier layer, with the upper one uncharged and the lower one negatively
charged.

Stability of the equilibrium can be argued from the dependence of 'I'ex on £, If

t
(o, - p) +3 (g - q) >0 (11
8Py a d *b a
a positive force is required to produce a positive deflection, much as if the interface were equivalent
to a spring with a positive spring constant. Thus, the condition of Eq., 11 is required for stability.

In terms of the normalized voltage used in expressing Eq. 10, the interface is stable where V > -1.

A more complete stability argument that includes the effects of space charge is given in Sec. 8.14.

8.9 Sec. 8.4



Fig. 8.4.3

Imposed field equilibrium
with ¥ = -0.7 sin(y).
Shape of charge layer is
given by Eq. 10.

Uniform Current Density: Static equilibrium with the free-current force density jf X uoﬁ dis-
tributed throughout the volume of a fluid is now illustrated. In the MQS system of Fig. 8.4.4, a layer of
liquid metal rests on a rigid plane at x = 0 and has a depth £(y). The system, including the fields
and currents, is assumed to have a uniform distribution with the z direction, so that the view shown
is any cross section.

The magnetic field is to be used in deforming the liquid interface. A d-c electromagnet produces
a magnetic flux density with components in the x-y plane. In addition, a voltage source drives a uni-
form current density J, in the z direction throughout the fluid volume. This current demnsity interacts
with the imposed flux density to produce a vertical component of magnetic force in the liquid, and a
resultant deformation of the interface. Note that because the fields are static, there are no surface
currents. Also, the liquid metal is not magnetizable, so there are no magnetization forces to consider.
Finally, effects of surface tension are ignored. Therefore, the interface is in stress equilibrium,
provided the pressure there is continuous.

The essential approximation in obtaining the irrotational force demsity throughout the volume
is that the imposed magnetic flux density is very large compared to the flux density induced by the
imposed current density J,. Thus, the force density takes the approximate form

> > > >

F=J1i x[Bd + Byiy] (12)
The vector potential is convenient for dealing with ﬁ, because if the substitution is made i =Vx K,
then Eq. 12 becomes ¥ = -V§, wherein

= -JOA(x,y) (13)

The imposed field approximation and the uniform imposed current result in the irrotational force density
required for static equilibrium. Given the particular field structure and the magnitude of the field
excitation, A(x,y) is known.

In an engineering application, the liquid metal might serve as a base for the casting of plastic
or glass products.l The magnetic field can be controlled so that there i1s a ready means of altering

the shape of the mold without a need for replacing the casting material. If a quiescent fluid state is
desirable, conditions for a static equilibrium are essential. From Eq. 8.2.3 and Eq. 13

p + pgx - JoA = constant (14)

There is no current density in the gas above the interface, and hence no force density. The depth
as y * -° ig defined as £, and A (x = £, y + -») ig defined as A,. Then, Eq. 14 shows that for points

1. See U.S. Patent #3,496,736, "Sheet Glass Thickness Control Method and Apparatus," February 24,
1970, M. Hurwitz and J. R. Melcher.

Sec. 8.4 8.10
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Fig. 8.4.4, Layer of liquid metal has the depth £(y) which is controlled by the
interaction of a uniform z-directed current density J, and a magnetic flux
density induced by means of the magnetic structure.

(a) and (a') of Fig. 8.4.4
p,r + 0,88, =p, + 0.8 (15)
and for points (b) and (b')

Pt P8BS, = J A, = Py t+ PpeE - J A (16)
Because the hydrostatic pressures are the same at the primed and unprimed positions, subtraction of
Eq. 15 from Eq. 16 gives a relation that can be solved for the height &(y):

€ =28,-J (A, - A)/glpy -p,) a7

The vector potential has the physical significance of being a flux linkage per unit length in the
z direction. To see this, define A(y) as the flux linked by a loop having one edge outside the field
region to the right, the other edge at the position y and height £ of the interface and unit depth in
the z direction. Then the flux linked per unit length is

A= J B-3da = [ R.d0 = A_ - A(E,y) (18)
s c

and in terms of this flux, Eq. 18 becomes

JOA
= JUR A 19
RN 19
The flux passing through the interface to the right of a given point determines the depression at that
point. Proceeding from right to left, the flux is at first increasing, and hence the depression is
increasing. But near the middle, additions to the total flux reverse, and the net flux tends toward
zero. Hence, § returns to &,, as sketched in Fig. 8.4.4. Even if used only qualitatively, Eq. 19
gives a picture of the interfacial deformation that is useful for engineering design. Measurements
can be used to determine A(x,y).

8.5 Potential and Flux Conserving Equilibria

Typical of EQS systems in which an electric pressure is used to shape the interface of a somewhat
conducting liquid is that shown in Fig. 8.5.la. Provided that the region between the cylindrical elec-
trode and the liquid i% highly insulating compared to the liquid, the interface is an equipotential.
Because the applied voltage is constant and the equilibrium is static, this is true even for what might
be regarded as relatively insulating liquids. Certainly water, molten glass, plasticizers and even
used transformer 6il will behave as equipotentials with air insulation between electrodes and interface.
The liquid is in a reservoir. By virtue of its surface tension, the interface attaches to the reser-
voir's edges at y = +%. Thus, continuity requires that the upward deflection of the interface under
the electrode be compensated by a downward deflection to either side. To be considered in this section
is how the static laws make it possible to account for such requirements of mass conservation.
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In the MQS system of Fig. 8.5.1b, the liquid is probably a metal. To achieve the conditions for
a static equilibrium, the driving flux source F, is sinusoidally varying with a sufficiently high
frequency that the skin depth is small compared to dimensions of interest. Thus, the normal flux den-
sity at the interface approaches zero. The liquid responds to the time average of the normal magnetic
stress.

Fig. 8.5.1. (a) EQS system; liquid interface stressed by d-c field is equipotential. (b) MQS
system; driving current has sufficiently high frequency that currents are on surfaces of
liquid and electrode. Liquid responds to time average of magnetic pressure.

This pair of case etudies exemplifies the free charge and free current static equilibria, from
Sec. 8.2, involving electromagnetic surface force densities. The EQS static equilibrium is possible
because there is no eleetric field tangential to the interface, while the MQS equilibrium results
because there is essentially no normal magnetic flux density.

Antiduals: The two-dimensional fields in the two systems have an interesting relationship. For
the moment, suppose that the geometry of the interfaces is known. Then, the electric field is repre-
sented by the potential, while the magnetic flux density is represented in terms of the z component
of the vector potential, as summarized by Eqs. (a)-(c) of Table 2,18.1. Thus, in the regions between
electrodes and interfaces,

v% = 0 v2a = 0 D)
Boundary conditions on .the respective systems are

¢

Vo on S1 A= Fo on S1 (2)

®=0o0nS A=20on Sy (3)

2
where S; is the surface of the electrode or bus above the interface and Sy is the interface and ad-
jacent surface of the container. By definition, Fy is the flux per unit length (in the z direction)
passing between the bus and the interface. Note that to make the magnetic field tangential to these
surfaces, A is constant on the interface and on the surface of the bus.

With the understanding that n denotes the direction normal to the local interface, the electric
and magnetic stresses on the interfaces are

2 2
1_2.1, (2 Clugo l.(La
Ton =% %P0 =32 & (3n) Ton =" 27 Wl =~ 3 uo(uo an) (4

Thus, if the interface had the same geometry in the two configurations, the magnetic stress would "push"
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on the interface to the same degree that the electric stress would "pull." The magnetic stress is the
negative of the electric stress and can be formally found by replacing €, * U, and 3%/3n > (3A/9n)/u,.

Although limited to two-dimensional fields, the antiduality makes it possible to extend the elec-
tromechanical description of one class of configurations to another by simply changing the sign of the
electromechanical coupling term. Provided that charge can relax sufficiently rapidly on the EQS inter-
face to render it an equipotential even under dynamic conditions, and provided that motions remain slow
compared to the period of the sinusoidal excitation for the MQS system (so that the interface responds
primarily to the time-average magnetic stress), the antiduality is valid for dynamic as well as static
interactions.

Bulk Relations: Bernoulli's equation, Eq. 7.8.7, applied to the air and liquid bulk regions, shows
that

= |1a . x>§&
p= I -pgx’ x<§ (5

where I, and Hb are constants. The mass density of the air is ignored compared to that of the liquid.

Stress Equilibrium: The normal component of the stress balance, Eq. 7.7.6, requires that

lel=1_ -2 6)

Evaluation of the pressure jump using Eqs. 5 and of Ven with o given by Eq. 7.5.3 gives

1
21" 2
. alde |, , (&
(M, -I) +pge =T +Y e [1 + (dy) } 7)

Evaluation of Surface Deflection: Suppose that in the absence of a field, the interface is flat,
Then, as the excitation V, or F, is raised, £(y) increasingly departs from this initial state, £ = 0.
One way to compute £(y) at a glven excitation is to find the deflections as the excitation is raised,
in stages, to this final value. Thus, T,,(y) in Eq. 7 is approximated by solving Eq. 1 with £(y) ap-
proximated by its shape at the previous somewhat lower level of excitation. Thus, Tp, 1s a known func-
tion of y and the new &(y) is approximated by integrating Eq. 7. Once this is done, the new £ (y) can
be used to refine the determination of the fields. This interaction can be repeated until a desired
accuracy is achieved. Then, the excitation can be incrementally raised and the process repeated.

For a system that is symmetric about the x axis boundary conditions appropriate to the solution
of the second-order differential equation, Eq. 7, are

4 ) =
5= (=0 @)
E(-L) =0 ¢))
In addition, mass conservation requires that
o
I Edy = 0 (10)
-

This condition translates into a determination of the pressure jump. In view of Eqs. 8 and 10, integra-
tion of Eq. 7 between y = -% and y = 0 shows that

(¢}
- N A T 1
Ty - T = ]_]_-Tnndy W( A+ uz) aD

y=-1

where normalized variables and dimensionless parameters are

_ 1 2,02, _

y=ay 0 -T = @, - L)GeVo/; E= 14

(12)
e d oA - wzleviig. = oeg’
anl. = (2 EOVO/RI )znn, W= 2 EOVO/YQ, G = pg2 /Y
and u is the slope of the interface, defined as
& _
dy 3
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In terms of u, Eq. 7 1s normalized and written as a first-order differential equation

d

. @+ uH?

[, - T)W + GE - WT_] (14)

This last pair of relations, equivalent to Eq. 7, take a form that is convenient for numerical incegra-
tion. (The integration of systems of first-—order nonlinear equations, given "initial conditioms,” is
carried out using standard computer library subroutines. For example, in Fortran IV, see IMSL Integra-
tion Package DEVREK.) With Tpn(y) given from the solution of Eqs. 1-3 (to be discussed shortly), the
integration begins at y = -1 where Eq. 9 provides one boundary condition. To make a trial integration
of Eqs. 12 and 13, a trial value of u(-~1l) is assumed. Thus, from Eq. 11, the value of I,-T, that in-
sures conservation of mass is determined. Integration of Eqs. 12 and 13 is then carried out and evalu-
ated at y=0. Using u(-1) as a parameter, this process is repeated until the condition u(0) = 0 (bound-
ary condition, Eq. 8) is satisfied. One way to close in on the appropriate value of u(-1) is by halving
the separation of two u(-1)'s yielding opposite-signed slopes at y = 0.

Evaluation of Stress Distribution: To provide Ty, (y) at each step in the determination of the
surface deflection which has just been described, it is necessary to solve Eq. 1 using the boundary con-
ditions of Eqs. 2 and 3. A numerical technique that is well suited to this task _resultg in the direct
evaluation of the surface charge denmsity Oy on the interface. Because T, = €°E§/2 = o%/2€°, this is
tantamount to a direct determination of the desired stress distribution.

In the two-dimensional configuration of Fig. 8.5.2, the solution of Laplace's equation can be
represented by a potential (at the location ¥) that is the superposition of potentials due to incremen-
tal line charges per unit length Ogds':

=1
6(?) = —2; J O'f(?') lnllt - ?' lds' (_1_5_)
This expression is normalized such that
soVo
=V Op=—p O s=1Is (16)

Although 1n |T - ?l = 1n Ij - ZI + 1n %, so long as the net charge in the system is zero, integration
of the 1n £ term gives no contribution and so is omitted from Eq. 15. The desired (normalized) surface
charge is gy and dg' is the (normalized) incremental segment of boundary.

The integral equation is solved numerically by approximating the
integral by a sum over segments of the boundaries. These are denoted
by the index n, as shown in Fig. 8.5.3. The first N segments are on
the zero potential interface, the next 2M are on the surrounding zero
potential plane and the remaining P segments are on the cylindrical
electrode, and hence have the potential & = 1. Thus, the potential at
the mth segment is the superposition of integrations over each of the

charge segments. Because the latter have a length As that is small, Fig. 8.5.2. Potential given
the surface charge on each segment can be approximated as constant by Eq. 15 at r is su-
and the integration carried out analytically. For example, the con- perposition of poten-
tribution to the potential of the mth segment from the surface tials due to line
charge 0 on the nth segment is (see Fig. 8.5.4), charges at T'.
o s_+As
¢m =-E% [ n in di + s2 ds a”n
n

Thus, Eq. 15 becomes

+2M+P
¢ = L a o €8:))
n ‘mn n

n=1

where

_ 1,1 2, 2,

&0 = " o {E{As +8 )In[(As + 8 )" +d 1 - As
AS+_S s
-%sn ln[_st2‘+d31]+drl tanl( 3 ﬂ)-dntan'ld—“} Q9

Now, Eq. 18 can be written for each of the N+2M{4P segments. Thus, it represents a set of N+2M4P
equations, linear in as many unknowns On. These equations are then inverted to obtain the desired op's.
(Matrix inversion is carried out using standard computer library subroutines. For example, in Fortran IV
see IMSL Matrix Inversion Routine LINVIF.)
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Because T__ = 92/2, the normalized stress distribution on each segment follows. So that the
numerical integration of the surface equations, Eqs. 13 and 14, can be carried out with an arbitrary
step size, the discrete representation of T,, on the interface is conveniently converted to a smooth
function by fitting a polynomial to the values of Tpn. (Polynomial fit can be carried out using a Least
Square Polynomial Fit Routine such as the Math Library Routine LSFIT.)

m th segment
/ n th segment __--7%

o %, \seamen! .-

h ; \\ S /Jc/ o
\ n .- n
— AY -
NeMel  |Ne2M | Ne2Ms N Nd 0 Nom “
L, R N ' [ /1 A & Enet
x= -] N = [&y'_4
= X=
Fig. 8.5.3. Definition of segments and geometry for Fig. 8.5.4, Typical segment on inter-
numerical solution. face.

Typical results of the combined numerical integration to determine Tp,(y) and the interfacial de-
formation are shown in Fig. 8.5.5. (These computations were carried out by Mr. Kent R. Davey.) The
procedure begins with a modest value of W and a flat interface and starts with a determination of Tpy,.
Then, Eqs. 13 and 14 are integrated and this integration repeated until the boundary condition u(Q) = 0
is satisfied. Using this revised distribution of £(y), the distribution of Tp, is recalculated, followed
by a recalculation of the interface shape. This process is repeated until a desired accuracy is achieved.

004

Fig. 8.5.5
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With W raised to a somewhat higher value, the previously determined shape is used as a starting
point in repeating the iteration described.
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HOMOGENEOUS BULK INTERACTIONS

8.6 TFlux Conserving Continua and Propagation of Magnetic Shear Stress

Alfvén waves that propagate along magnetic field lines in the bulk of a highly conducting fluid
result from the tendency for arbitrary fluid surfaces of fixed identity to conserve their flux linkage.
The physical mechanisms involved are apparent in the one-dimensional motions of a unlformly conducting
incompressible fluid permeated by an initially uniform magnetic field intensity Holx, as in Fig. 8.6.1la.
By assumption, each fluid particle in a y-z plane executes the same motion.

@

Fig. 8.6.1. (a)Perfectly conducting fluid initially at rest in uniform magnetic field.
(b) For flux conservation of loops of fixed identity initially lying in x-z planes,
translation of layer in y~z plane requires induced currents shown. (c¢) Force den-
sities associated with currents induced by initial motion. (d) Translation of
layers resolves into wave fronts propagating along magnetic field lines.

Consider the consequences of using an external force density Fexl (Fig. 8.6.1b) to give a
y-directed translation to a layer of fluid in one of these y-z planes. Because of the translation,
fluid elements initially in any x-z plane form a surface that would be pierced twice by the initial
field Hy,. It is shown in Sec. 6.2 that if the fluid is perfectly conducting, the total flux linked
by such a surface of fixed identity must be conserved. As a result of material deformation, a current
density (sketched in Fig. 8.6.1b) is induced in just such a way as to create the y component of mag-
netic field required to maintain the net field tangential to each material surface initially in an
x-y plane.

Note that because charge accumulation is inconsequential, the current density is solenoidal, so
that current in the z direction must be returned in the -~z direction in adjacent planes. The force
density associated with these return currents is also shown in Fig. 8.6.1b. Because these currents are
proportional to the displacement of a layer, the external force is retarded by a "spring-like" force
proportional to the magnitude of the displacement. Similarly, the returning currents in adjacent y-z
layers cause magnetic forces above and below, but here tending to carry these layers in the same direc-
tion as the original displacement. Thus, fluid layers to either side tend to move in the same direc-
tion as the layer subjected to the external force. Adjacent layers in the y~z planes are coupled by
a magnetic shear stress representing the force associated with currents induced to preserve the con-
stant flux condition.

In the absence of viscosity, the magnetic shear stress on adjacent layers is only retarded by
inertia. There is some analogy to the viscous diffusion (Sec. 7.19), with the interplay between
viscosity and inertia now replaced by one between magnetic field and inertia. The viscous shear stress
of Sec. 7.19 is proportional to the shear-strain rate. By contrast, the magnetic shear stress in the
perfect conductor is proportional to the shear strain (the spatial rate of change of the material dis-
placement rather than velocity). Thus, rather than being diffusive in nature, the motion resulting
from the magnetic shear stress in a perfect conductor is wave-like. As suggested by Fig. 8.6.1lc, the
motion propagates along the lines of magnetic field intensity as a transverse electromechanical wave.
Just how perfectly the fluid must conduct and how free of viscosity it must be to observe these waves
is now determined by a model that includes magnetic and viscous diffusion.
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A layer of fluid having conductivity o, vis-
cosity n and thickness A is shown in Fig. 8.6.2.
In static equilibrium, it is permeated by a uni-
form x directed magnetic field intensity H,. (
Because the magnetic flux density is solenoidal,
it is written in the form B = uH T+ V x R, where 7‘71—:._‘__:";—-—‘_,'____--_-___-7,7'_‘_,:—7__7_'___27'—7'.'

is governed by the magnetic diffusion equation,
Eq. 6.5.3. Fluid deformations that are now con-
sidered are independent of z and confined to x-y CUN e T
ﬁlaneg, and so only the z component of X exists; s NI

= Ai,., Moreover, motions are taken as inde- f,:l'
pendent of y, so vV = vy(x,t)_{y and A = A(x,t). == N
Thus, (AFQB) y

vy
1 a2A 3 Fig. 8.6.2. Layer of liquid metal or plasma

A . p . .
TG E;E =3 + uHovy (1) with ambient magnetic field H,.

e L e e e e e

where [Eq. (b) of Table 2.18.1}]

H = -
y

The fact that motions are independent of y and that % is solenoidal combine to show that By is inde-

pendent of x, and hence By = WH, even as the motion occurs. There is no linearization implied by the

last term of Eq. 1.

(2)

=+
18

For the one~dimensional incompressible motions, conservation of mass is identically satisfied and
only the y component of the force equation is pertinent. With the magnetic stress substituted into
Eq. 7.16.1, it follows from Eq. 2 that

2
ov BZA 0V .
prt=-H <5 +n—2F 3)
at 0 4.2 2
ox ox
where the magnetic shear stress is Tyx = uHoHy and the viscous shear stress is
v
Syx L “)

The self-consistent coupling between field and fluid is expressed by Eqs. 1 and 3. Thesg repre-
sent the one-dimensional response of the layer shown in Fig. 8.6.2. Giyen the amplitudes [AQ,AB,V%,VB]
at the boundaries, what are the transfer relations for the amplitudes [HZ, B,S%X,S x] in these same
planes? (Note that these relations are the limit k + O of more general transfer relations for traveling
wave dependences on y. For the two-dimensional motions implied by such a dependence, vy becomes an
additional variable, and the normal stress Syyx is its complement. Thus, the more general two-dimensional
transfer relations relate two potentials and four velocity components to two tangential fields and four
stress components, evaluated at the o and B surfaces.)

For complex amplitude solutions of the form A = Re K(X) exp(jwt), Eqs. 1 and 3 become differential
laws for the x dependence:

2/\
1 d°A o~ ~A
o dxz - jwA UHovy =0 (5)
a% . 2,
n-—-—z—jwpv -H — =0 (6)
dx2 y ° dx2

These constant coefficient expressions admit solutions A « exp(yx) and Gy « exp(Yx). Substitution shows
that Y must satisfy the relation (YA = Y):

T T
o - qut ) (% - jut) —< 2”’> Y =0 @
M1

Thus, the spatial distribution with x is determined by the magnetic diffusion time, 1, the viscous
diffusion time, Ty, and the magneto-inertial time, Ty

/ 2
=2 p/uH0 (8)

= 2 _ 2
T, = HOAT; T, = [JAAH Ty
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In the absence of the equilibrium magnetic field (H, = 0), Eq. 7 shows that what remains is vis-
cous diffusion (Secs. 7.18 and 7.19) and magnetic diffusion (Secs. 6.5 and 6.6). The parameter ex-
pressing the coupling in Eq. 7, the ratio of the geometric mean of the magnetic and viscous diffusion
times to the magneto-inertial time is defined as the Magnetic Hartmann number Hy = "TmTv/TMI =
AuH,vo/n. With the coupling, there are three characteristic times that determine the dynamics.

Even so, the biquartic form of Eq. 7 shows that there are still dnly four solutions to Eqs. 5
and 6, Y = +y; and Y = +Y,, where

1/2
N P 1, 4 2 2 2

Y =13 |:1-1m + Jw('rm + TV)] + 2\/[Hm w ('rm - 'rv) ] + 2_’|¢Jo('rm + 'l'V)Hul )

2
Thus, in terms of coefficients Kl---34, the solution is

A= Kl sinh Y;x + &, sinh v;(x - 8) + A5 sinh Y,x + A, sinh v,(x - 4) (10)
Equation 5 shows how to find Gy in terms of these same four coefficients:

24
v = —2}-— d—‘; - jwuoA (11)
y M HOG dx

Given the potential and velocity in the o and B planes, Eqs.10 and 11 become four expressions that can
be inverted to determine Al"'ﬁlp Fortunately, A; and Aj are determined by the o variables alone, and
A, and A, by the B variables alone, so this task is not all that difficult. In fact, with a bit of hind-
sight, the desired linear combination of solutions can be written by inspection:

inh v.x sinh v, (x-A)
3 - 2_s 00y A% 2E oo L o | (v 2o sun0) AB-p 2y 088 |
A= [—(Yz JWUO) A+ Hocvy:| Sinh YlA + [(Y2 JWUO) A"~ Hocvy] S1om YlA
(12)
[ sinh Y. x sinh Y, (x-4)
2 . A0 2 AQ 2 2 ~B,. 2 ~B 2 2 2
+ L(Yl-quo)A ~u Hoovy:'———smh T, + [ =(y;-juuo) A"+ Ho""y P ey A A V)
Now, by use of Eqs. 11 and 12 in 2 and 4, the transfer relations follow:
PI\ 7 ’_A ]
i N
y
& i
o | = [ | (13)
Syx vy
Lsyx Lvyd

where with Y F ykA and qlzc = 112( - jmquz, k=1 or 2:
h v cosh vy
1 2 (o5 N1 2 2
My =M T [1’1‘12 < -1 R Yy = Ypap | g Csinh Y /F

2 cosh Yl cosh YZ-
U HOGA Y1 -1 sinh 'Y2 - Y_2 -1 sinh YI /F

M, 3, = =M,/ 4, =
1G) T 72
~cosh Y -cosh 'Y'
22 1 2
M]__-M2=J——qq‘ysinhY_< >'I sinh‘Y< E/F
3(2) 4(1) LIZHOUAz 1721'1 2 1 2 1 1

5 [cosh YZ\ o [cosh Yy’
n quz -1 )Sinh Yl = 1q1 -1 sinh Y2 /F

F = A(Y% - Yg)sinh Y1 sinh Y,

M, 3, =-M, 4
3) T TG
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Temporal Modes: Suppose that the layer is excited in the o and B planes by perfectly conducting
rl&id boundaries that (perhaps by dint of a displacemeng in the y direction) provide excitations
2 ,vg) The perfect conductivity assures A% =0 and A = 0 (Eq. 6.7.6). Thus, the electrical and
mechanical variables on the right in Eq. 13 are determined. The temporal modes for this system (that
represent the homogeneous response to initial conditions and underlie the driven response) are then
given by F = 0. The roots of this equation are simply

Yl = jnm; Yz =jom, n = 1,2, (Ll*_)

With these values of Yy, Eq. 7 can be solved for the eigenfrequencies

2 2
" =j5ﬂ[%+%]i%w) jﬂ( ) (15)
m

n 2 m v T Ty
MI
In the extreme where Tn and Ty are.long compared to Tyr®
il
w =z -'T’— (16)
MI

This oscillatory natural frequency is the result of an Alfven wave resonating between the boundaries.
The wave transit time is Tyy = A/v,, so vz = JuHZ/p is the velocity of this Alfvén wave.

Typical of an experiment using a sodium~based liquid metal are the parameters

o = 10% mhos/m A=0.1m T, = 10*
p = 10° kg/m? WH =1 tesla T, =1.25x 1072 sec a7
n= 10_3 newton—sec/m? Ty = 3.53 x 10_3 sec

Thus, the characteristic times have the ordering Tmy < T, < T, with the magnetic diffusion time far
shorter than the viscous diffusion time. (The ratio of these times is sometimes defined as the mag-
netic Prandtl number Py = T,/T, = nuo/p. For the numbers given by Eq. 17, Pp=1.25x 10-6.) Thus,
in Eq. 15, 1/7, can be neglected compared to 1/T, and it is seen that the natural frequency will dis-
play an oscillatory part if

Tm nm
> 18)
MI

That the transit time for the Alfvén wave be short compared to the time for appreciable magnetic dif-
fusion underscores the flux-conserving nature of the wave dynamics. For the numbers of Eq. 17,

T /TMI 3.54, As a practical matter, Alfvén waves observed in the laboratory are relatively damped.
Note that as A increases, the inequality of Eq. 18 is better satisfied. The dependence of the natural
frequency on the mode number n reflects how damping increases with the wave number jY in the x direction.
Near the origin in Fig. 8.6.3, the linear relation of frequency and mode number is typical of nondis-
persive wave phenomena. As the mode number increases, magnetic (and possibly viscous) diffusion damps
the oscillations, which then give way to totally damped modes. The oscillatory modes would of course
appear as resonances in the sinusoidal steady-state driven response.

Spatial Structure of Sinusoidal Steady-State Response: The penetration of a sinusoidal excitation
from the surfaces into the bulk is determined by Y, and vY,, Eq. 9. As the magnetic field is raised,
the viscous and magnetic skin effect are taken over by the electromechanical coupling. In Fig. 8.6.4,
the transition of these complex wave numbers is shown, with the magnetic Hartmann number H; representing
the magnetic field. In terms of characteristic times, H; 1s increased until the magneto-inertial time
becomes sufficiently short that the Alfvén wave can penetrate the layer before the flux diffuses to its
original uniform distribution. The magnetic shear stress 1s then able to penetrate the layer (tending
to set the whole of it into motion) to a greater extent than would be possible via the magnetic or
viscous diffusion alone. This is indicated by the lower of the roots shown, which has an imaginary
part Y = +,/TuTy/AHy = HwTyp/A as Hy becomes large. In this same limit of large Hp, the other branch
becomes strongly decaying, with value Y = +Hyp/A. The physical nature of the dynamics represented by
this mode is recognized by observing that Hp ’w/Tm/va: where Tyy is the magneto-viscous time. The
electrical analogue of this time, which expresses the rate at which a process occurs involving a compe—
tion of viscous and magnetic stresses, will play an essential role in the next section. An experiment
demonstrating Alfvén waves is sketched in Fig. 8.6. 5.

1. See also J. R. Melcher and E. P. Warren, "Demonstration of Magnetic Flux Constraints and a Lumped
Parameter Alfvén Wave," IEEE Transactions on Education, Vol. E-8, Nos. 2 and 3, June-September,
1965, pp. 41-47.

8.19 Sec. 8.6



'} T T 1
3000} i J 2
_ 4
l'l I‘\ "
N W4
2000} g 1 t
w - T n |
| ] Y, .
ooo} 2 jw(tn+7,)/2Hn
L . §~‘~~~~\ ///jw/THW/Hm
0
6|8
-1000} 1

Fig. 8.6.3. Eigenfrequencies of temporal Fig. 8.6.4, Real ( —— ) and imaginary ( --- ) parts of
modes as a function of mode number Y1 and Y, (Eq. 9) as functions of Hy = AuHy/o/n.
for Tyy = 0.01, T, = 0.1, and Low- and high-H, approximations are shown. Note
T, = 1. w, > Wy . Hp=31.6. that the Alfvén wave branch is represented by

JWTgTy/Hy = juTyr.
Ho X

Fig. 8.6.5

Alfvén wave, as demonstrated by Shercliff
in film "Magnetohydrodynamics" (Reference 7,
Appendix C). Liquid NaK (sodium-potassium
eutectic) fills conducting circular metal
container having coaxial inner and outer
walls, .Wave is excited at bottom by radial
driving current and detected at middle by
coil that senses the change in magnetic
field accompanying the passage of the up-
ward-propagating electromechanical wave.

As viewed radially inward, layers of liquid
metal undergo shearing motions depicted by
Fig. 8.6.1.

Jx B driving current

8.7 Potential Conserving Continua and Electric Shear Stress Instability

In an electric counterpart to the magnetic flux conserving fluid introduced in Sec. 8.6, a fluid
element having fixed identity tends to retain its potential even as it moves. Under what physical
circumstances could a homogeneous continuum tend to conserve its potential in this way? Figure 8.7.1
gives a schematic illustration (see Prob. 5.12.1 for charge relaxation in anisotropic conductors).

Initially, the volume is filled with static layers of miscible fluid having the same mechanical
properties. Alternate layers are rendered conducting, perhaps by doping the same fluid as used for the
other layers. At the upper and lower extremities, the conducting layers make electrical contact with
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Fig. 8.7.1. (a) Example of potential conserving fluid made from numerous conducting layers
buffered by relatively insulating layers. On a macroscale, a given fluid region tends
to retain its potential as it deforms. (b) Shearing displacement causing elevation of
potential in plane (i) relative to that at the same position y in planes (ii) and (iii).
(c) Charge density implied by potential conservation, showing electrical force in-
duced by the motion in adjacent layers.

surfaces having a linear potential distribution in the y direction. Thus, there is an initial
ambient electric field £ = E&I throughout the volume. What would be termed an isotropic inhomo-
geneous system on a microscale’ typified by the interlayer dimensions, is an anisotropic homogeneous
system on the macroscale considered here. On this macroscale, a material element tends to retain its
initial potential. In the model considered here, the conducting layers are of finite conductivity,
but the layers between are considered perfect insulators. Just how faithfully the potential is con-
served therefore depends on the electrical relaxation time of the composite.

By way of forming an intuitive impression of why the electric field induces instability, consider
motions that are purely y-directed but depend on x. Suppose that the external force density FextI is
used to translate a fluid layer in the y-z plane, denoted by (i) in Fig. 8.7.1b. To begin with, tze
potential of this and the adjacent layers decreases linearly in the y direction. So, at a given posi-
tion along the y axis, the translation results in the potential in the plane (i) becoming elevated with
respect to that of the adjacent layers (ii) and (1ii). The adjacent layers form capacitor plates with
the (i) layer which, in accordance with the relative potentials, are charged as sketched in Fig. 8.7.lc.

The field- and deformation-induced charge of the initially displaced layer, (i), are such that it
is subject to an electrical force tending to further encourage the deformation. Thus, with the adjacent
layer fixed, the external force would act against a negative spring constant. However, the adjacent
layers are not fixed and experience electrical forces tending to carry them in a direction opposite
that of the original displacement. There is an electrical shear stress acting between adjacent layers
that is proportional to the negative of the strain. By contrast with the magnetic shear stress that
gives rise to Alfvén waves, the electric stress tends to cause instability.

The laws needed to formulate a model begin with a constitutive law for the conduction. With A
defined as a unit normal to a material surface of fixed identity that is initially in an x-z plane,
as shown in Fig. 8.7.1b, the component of the electric field that is tangential to this surface is
- x%xE Thus, if the average conductivity in the plane of the conducting layer is O, the current
density in a stationary sample of the anisotropic material is

j% =-cAxAxE (1)

-y
Because jf =J} + pf;, it follows that the statement of charge conservation, Eq. 2.3.25a, is

9p
Vo[-0 x B x E) + 0 9] + 5L =0 )
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The normal vector can be eliminated from this expression by first expressing it in terms of the surface

= E(x,t)

Nhﬂ

Aed - Eigne &Y | 3)

X

and then recognizing that because this surface is of fixed identity, the function F = y - £ must have a
convective derivative that is zero (Sec. 7.5):

ag ]
T 9t vx 3% (4)

<

In Eq. 2, ; can be replaced by Eq. 3, where £ is in turn related to v by Eq. 4.

Before carrying out this elimination for the case at hand, note that because the electric field is
irrotational and the perturbation quantities only depend on x, the electric field in the y direction is
not a function of x. Pinned at E; in any y-z plane, Ey remains this value even as the fluid deforms:
E= EOI& - (3¢/8x)1& As a result Gauss' Law becomes

2 e

2% P¢

S_E --— (5)
X -

The motions considered are only in the y direction: V=v (x,t)i,. With this understdnding,
Eqs. 2, 3 and 4 are linearized and combined to eliminate &, andyEq. 5 1s substituted for pg, to obtain

S5 [Ev -3 @+2 5] =0 _ 6) -

This statement of the effect of the motion on the fields reduces to the linearized version of D®/Dt = 0
in the limit where the charge relaxation time, €/0, is short compared to times of interest. If the
charge can relax instantaneously, the potential of an element of fluid is conserved even as it deforms.

The y component of the force equation, Eq. 7.16.6 with V.¥ = 0 and féx represented by the diver-
gence of the stress tensor (given with Eq. 3.7.22 of Table 3.10.1), is

2
2
—1_-eE L2+n—l @)
° ox Bx

The x—component simply determines the pressure distribution required to equilibrate the x -component of
the electrical force density. Equations 6 and 7 represent the electromechanical coupling.

The quantity in brackets in Eq. 6 is zero throughout the volume when the fluid is in static equi-
librium. Hence, the two constants resulting from integrating Eq. 6 twice on x are zero. Then, with
the substitutions vy Rev (x)eiWt and @ = ReQ(x)ejwt Eqs. 6 and 7 become

A Jwe,s _ .
Eovy = jwll +<==10 = 0 | (8)
2 24
(jU)p n —-)V + €E sl'% =0 ) 9
dx dx

By contrast with the magnetohydrodynamic system represented by Eqs. 8.6.5 and 8.6.6, the system is only
second order in x, so that there are only two boundary conditiong that can be imposed on a layer having
the thickness A (Fig. 8.6.2). Imposing a boundary condition on ¢ is (through Eq. 8) tantamount_. to a

condition on vy. Substitution into Egs. 8 and 9 of solutions having the form ¥ = exp(yx) and @ = exp(Yx)
gives a pair of homogeneous relations

E, —jw(l + l‘;ﬁ)

y
=0 (10)

2 ~n
jwp - rwz €E Y ?

and the requirement that the determlnant of the coefficients vanish gives an expression for the allowed
values of ¥y:
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= . = ——j——e—————w
Y=, Y= (11)
1 1 jeEg

n + ———
w(l + J%)

The situation is now no different than in dealing with Laplace's equation, where solutions take the
form of Eq. 2.16.15 with vy > Yq- Thus, the transfer relation for the layer is (Table 2.16.1):

ﬁz —cosh(YlA) 1 3
Y€
preYony) a2
~B 2B
Dx -1 cosh(YlA) ]
In terms of these variables, the mechanical variables follow from Eq. 8 as
v o =dw Jwe,s
vy 3 [1+ 5 19 (13)
d< 2 :
§ ep—X-dwn Jue, do
Syx n dx E° 1+ g ] dx (14)

Temporal Modes: Because the system is unstable, the temporal modes are of most interest. For a
system bounded by planes maintaining the linear equilibrium distribution in potential (constraiged go
zero pgrturbatlon potential), the condition on w resulting from there being a finite solution (D%,D§
with (9%, 3 ) =01is sinh(YlA) = 0. Thus, the eigenvalues are

Y, = jom, n = 1,2,3... (15)

The eigenfrequencies follow by substituting y; from this expression into Eq. 11, The result is a cubic
equation which determines the allowed frequencies we

2 2 2
3 2.((am) 1 (M) j(@m°~
W - w J[—?—— + = ] - W —— =0 (16)
v e ve e v EV

. 2 N

T =R . =& L .. D

v n’® e o EV eEZ

o

As a function of the mode number nm, the solutions s, = jw of this expression are illustrated in
Fig. 8.7.2., For each sinusoidal distribution represented by a given n, there are three temporal
modes, one unstable and two decaying.

Typical of a 2-cm liquid layer having 50 times the viscosity of water, the density of water,
an electrical relaxation time of 1072 sec and Eo =2 x 105 V/m are the times given in the caption.
Note that T, < Tgy < Ty.

The roots to Eq. 16 in the limit T, + O give a good idea of what is happening on time scales
long compared to T,. The quadratic limit of Eq. 16 can then be solved to give

2 4Tv

an
Ty (am) 2

Thus, there are roots s, > 0 representing an exponentially growing instability. The fastest growing
modes are those having the largest number of wavelengths in the x direction. In the limit nT - o,

this mode has a growth rate TEy- (In fact, there would be a finite mode exhibiting the maximum rate
of growth, since wavelengths in the x direction shorter than the distance between layers are not de-
scribed by the model.) By contrast with the electro-viscous nature of the short-wavelength insta-
bility, the long wavelengths (small mode numbers) are electro-inertial in nature. In the limit nmw - O,
Eq. 17 reduces to s, = 1/Tgy, where Tgy = YTyTEy = AVPEE2. Until its rate of decay becomes comparable
to Tes the decaying mode can also be approximated using Eq. 17. At short wavelengths, the basically
viscous diffusion mode and charge relaxation mode couple to produce a pair of modes that are damped in
a sinusoidal fashion.
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-100

Fig. 8.7.2, Frequencies of temporal eigenmodes, sy = jw; --- (sp)p, — (sn)i.
For each n there are three modes. T, = 10-2 sec, Tgy = 0.1 sec, Ty = 10 sec.

The instability is fundamental to many situations where electric fields are used to augment mass,
heat and momentum transfer. Usually a more complicated model is required even to recognize the linear
stages of instability. Shown in Fig. 8.7.3 is an example for which the illustration given in this sec-
tion 18 itself a useful model. The Couette mixer exploits a rotating inner cylinder to promote large
scale mixing. Two liquids entering at the bottom are typically the highly viscous components of a
polymer. Because of the rotation, these form laminae of relatively insulating and conducting liquids
that work their way upward to the exit. With the application of a radial electric field, instability
leads to mixing. The electrohydrodynamic instability provides mixing on a length scale that bridges the
gap between what can be efficiently produced by the mechanical stirring and what is required to insure

mixture

Fig. 8.7.3

Couette mixer exploiting in-
‘_ stability of components
. stressed by electric field.
conducting
liquid

insulating
liquid
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genuine molecular scale mixing.l For successful operation the residence time of the liquids must at
least exceed Tgy = n/eEz. Even in its nonlinear stages and on length scales shoEtgr than the distance
between layers, Tgy is %ound to scale the rate at which mixing processes occur,”? In practical appli-
cations, the "insulating" component actually is itself semi-insulating so the growth rate for instability
is reduced by a factor reflecting the ratio of the component conductivities..

8.8 Magneto—-Acoustic and Electro-Acoustic Waves

Electromechanical coupling through dilatational deformation is illustrated in this section.
First considered as one-dimensional examples are perfectly conducting limits of the MQS and EQS
continua of Secs. 8.6 and 8.7, respectively. Then, the incremental motions of a system of magnet-
izable particles randomly suspended in a uniform magnetic field are modeled.

Both the MQS and EQS configurations are shown in Fig. 8.8.1. Also shown in each case are the dis-
tributed elements that embody the same physical phenomena as represented by the continuum models. With-
out electromechanical coupling, the one-dimensional acoustic wave propagates through a continuum of
masses (represented by the perfedtly conducting plates) interconnected by layers of fluid comprising
the springs.

X

TQJ)
Hg h,(x,1)

—_—

(a) (b)

Fig. 8.8.1. One-dimensional compressional motions. (a) Magneto-acoustic waves in
perfectly conducting liquid across uniform magnetic field. (b) electro-
acoustic waves in potential conserving continuum along uniform electric field.
Lumped models emphasize salient features of dynamics.

In the magnetohydrodynamic case, the fluid is uniform and perfectly conducting. When at rest,
it is permeated by a uniform magnetic field H, directed transverse to the direction of propagation.
Compression of the fluid results in a decrease in enclosed area for a contour such as C which is
attached to the fluid. To retain the same flux linkage, a current is induced around this contour.
The associated force density tends to counteract the dilatation, thus having the effect of a magnetic
spring between elements. It is not surprising that the magnetic field tends to increase the velocity
of propagation of waves.

1. €. A. Rotz, "A Generalized Approach to Increased Mixing Efficiency for Viscous Liquids,"
S.M. Thesis, Department of Mechanical Engineering, Massachusetts Institute of Technology,
Cambridge, Mass., 1976.

2. J. H. Lang, J. F. Hoburg and J. R. Melcher, "Field Induced Mixing Across a Diaphragm," Phys.
Fluids 19, 917 (1976).

3. J. F, Hoburg and J. R. Melcher, "Electrohydrodynamic Mixing and Instability Induced by Collinear
Fields and Conductivity Gradients," Phys. Fluids 20, 903 (1977).
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In the electrohydrodynamic case, a given element of fluid conserves its potential, as described
in Sec. 8.7, Either the fluid is a stratification of insulating and conducting components, or it
actually consists of thin conducting sheets dispersed through the fluid. Because the motions are com—
pressional, such sheets would not inhibit the motions. The equivalent distributed lumped parameter
system, shown in Fig. 8.7.1b, consists of perfectly conducting layers constrained to have the same
potential difference even as their relative spacing changes. As a "plate'" approaches one of its
neighbors, the intervening electric field increases. So also does the electric force associated with
the charge on that side of the plate. Thus, the electric field is equivalent in its effect to a spring
with a negative spring constant. It has the effect of diminishing the stiffness of the "spring"
separating a pair of plates. The field is expected to reduce the velocity of a wave propagating in the
x direction.

Now, consider the interactions in analytical terms. In both cases, the linearized longitudinal
force equation is simply

ov ' oT
X, 8 xx
Po ot + 9x 9x @®

where p, is the equilibrium mass density, p' is the perturbation pressure, and Txx 1s the Maxwell stress.
With the assumption that pressure is only a function of density, Eq. 7.11.3 can be used to replace the
perturbation pressure with the perturbation density,

p' = azp' (2)
where a is the acoustic velocity. The permeability and permittivity in the respective situations are

taken as constant. Thus, with h and € the perturbations in H and B respectively, to linear terms,
Tyx becomes simply (Table 3.10.1, Eqs. 3.7.22 and 3.8.14)

« .1 2"'—l 2— :l zzl 2
Txx h 2 (Ho+hz) - 2 uﬂo uHohz Txx 2 l':(Eo"'ex) 2 eEo_-"eEoex 3)
These last three equations combine to become
v oh ov ' de
~X a2 g 2 X2 g X
Po 3t ta 5 = uHo ox Po Bt ta 3y = €, 3% )
To linear terms, conservation of mass, Eq. 7.2.3, requires that
dv
op' X
3t T Po Bx - 0 )

These last two statements represent the mechanics, including the effect of the fields.

The reciprocal effects of the deformation on the fields follow from

the requirement that the flux linked the requirement that the potential,d, of
by a surface of fixed identity be an element of fixed identity be constant,
constant, Eq. 8.6.1. To linear terms Eq. 8.7.1. To linear terms
ov oh
X z 0o’ _
Bk = o 3t~ EoVx = 0 7 (6)
where e_ = -Vo'
x

To combine these last three statements, take the time derivative of Eq. 4 and the space derivative of
Eqs. 5 and 6 and eliminate p and h, or ey:

2 2 2 2
] Ve 2 9 Ve ] A 2 9 Ve

28,7 2 2~ % .2 @
ot % ot ox

These wave equations make it clear that the effect of the fields is to replace the acoustic velocity
with a magneto-acoustic velocity:

a = az +—2 a -\ az - — (8)
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Acoustic velocities, given in Table Z.ll 1, are typically 300 m/sec in gases and 1500 m/sec in
liquids. In gases, the Alfvén velocity, pH /po, can be made to dominate in its contribution to the
magneto—acoustic velocity. In liquid metals the magnetic contribution to a, is greatly reduced by the
increased mass density, although it is still possible for it to be significant. But in the electro-
acoustic wave, electrical breakdown limits the effect of the electric field to a level that would make
it difficult to even measure the effect.

Magnetization Dilatational Waves: Although electromechanical effects on dilatational motions in
natural materials are likely to be small, continua formed from "molecules" that are actually macro-
scopic in their dimensions can give rise to significant electromechanical effects. As an example, mag-
netizable spheres are suspended in a random array, with the voidage a gas or even vacuum. Interest is
confined to deformations characterized by lengths that are large compared to the distance between par-
ticles. Unperturbed, the system is uniform on the macroscopic scale, and is subjected to a uniform
z~directed magnetic field intensity H,. Because the spheres can interact with each other only through
the magnetic field, the pressure is taken as zero.

Perhaps determined experimentally, the effective permeability of the continuum has been related
to the mass density through a constitutive law, Y = u(p). Thus, the force density of Eq. 3.8.17 from
Table 3. 10 1is appllcable ngh perturbations from the equilibrium mass density and magnetic field,
po and H 1z, denoted by p' and h, respectively, this force density is linearized to become

¥ = p vin G2 55 o +—H<——‘i>p1 9
Q
Because there are no free currents, H is irrotational and hence ﬁ'= Ho?é - VW. Thus, the force equation,
Eq. 7.4.4 written with p = 0, is
p3—3=-oﬂ< )v<—\“~)+ 2(“)Vp (10)
o ot ap’o

Mass conservation is represented by a linearized version of Eq. 7.2.3:

9p'
St + p Vv =0 (11)

>
In terms of the scalar potential, ), the linearized statement that UH is solenoidal is

o)V + H ) 3

50’0 Bz =0 (12)

To obtain an expression for p' alone, the divergence of Eq. 10 is taken. Then Eq. 11 eliminates V-V,
while the 93( )/3z of Eq. 12 can be used to eliminate Y. Thus, the expressions combine to give

2
320t P au2 0%t Po 2 8% 2,
2 "0k B 2 T2 Bl P (13)
at o dz 3p”°
A possible relation between permeability and mass density is the Clausius-Mossotti law:
v
G=-1
H oy _ M NG T 2 -2
Dt R G F DG - D D= G- DG+ 2o (14)
(ﬁ— + 2) o o 3p o o
o

where C is determined by the nature of the spheres.

It follows from Eqs. 13 and 14 that compressional motions across the field lines (in the x direc-
tion) are unstable, while those in the direction of the field propagate with the velocity

2
poHo 2 U u 2 Y
aM—JT g G tRE-DTE | (1)

(o) o (o]

1. J. A. Stratton, Electromagnetic Theory, McGraw-Hill Book Company, New York, 1941, p. 140.
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PIECEWISE HOMOGENEOUS SYSTEMS

8.9 Gravity-Capillary Dynamics

The incompressible dynamics of fluids that are inhomogeneous in mass density are as commonplace
as wave motions in a teacup or at the interface between sea and atmosphere. At the interface, the
mass density suffers a step discontinuity. Fundamentally, the pertinent laws express the fact that
the mass density in the neighborhood of a particle of fixed identity remains constant, Eq. 7.2.4, that
mass is conserved, Eq. 7.2.5, and that inertial and pressure forces balance. For the present purposes
the fluid is represented as being inviscid, and hence the pertinent force law is Eq. 7.4.4 with the
external force density that due to gravity, ex = Pg.

Because inhomogeneities in electrical properties are often accompanied by variations in mass den-
sity, electromechanical interactions with inhomogeneous systems are commonly interwoven with the fluid
mechanics resulting from effects of gravity. In this section, the mechanics of a fluid interface
illustrates effects of gravity in systems that are inhomogeneous in mass density. If the interface is
between immiscible fluids, effects of capillarity are also important.

In the configuration shown in Fig. 8.9.1, planar layers of fluid each have uniform properties
designated by the subscripts "a" (above) and "b'" (below), respectively, and a common interface at
x = £(y,z,t). The lower fluid rests on a rigid boundary while the upper one consists of a deformable
structure. The system is driven from this structure by the traveling-wave excitation shown in the
figure. What is the response of the fluids, and in particular of their interface?

b X

. iffﬁ‘; —fi“'i‘f,ji‘%jifr_i~—————f_--j-f

e

Fig. 8.9.1. Fluids of differing mass densities have interface at §

and are driven by structure at =

In the absence of the excitation, the fluids are in static equilibrium with the gravitational
force density. Thus, the fluid velocity ¥ = 0 and the pressure balances the gravitational force den-
sity. From the force equation, Eq. 7.8.3, applied to each region:

-pgx+II ;3 x>0
p={f ° * @
~Pp8% + Hb; x <0

Perturbations from this static equilibrium are represented in terms of complex amplitudes. To
linear terms the pressure and velocity are

p=-pgx +II + p'(x,y,z,t); p' = Rep(x)exp j(wt-kyy - k,z) (2)

>
v

ReV (x)exp j(wt - kyy - k,2) (3)
Within a given fluid region the mass density is uniform. Thus, the complex amplitudes in the respective

planes designated in Fig. 8.9.1 are related by the transfer relations for an inviscid fluid given by
Eq. (c) of Table 7.9.1:

1 e ~e

-coth (ka) T~ AY - 1 ~e
. sinh(ka) x P coth(kb) ——=r—l|v
_ ue, jup, sinh(kb) | | Vx
4 k > = & (4)
5 . ~d ~f -1 )
P simh(ka) ~ coth(ka) | v, P Tty coth@n) ||5f
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Complex amplitudes are evaluated in the equilibrium planes. But, the jump conditions apply wherever the
interface is actually located and that location is in fact yet to be determined! This difficulty is
sidestepped by linearizing the jump conditions in such a way that they are expressed in terms of per-
turbation variables evaluated at the equilibrium positions of the boundaries.

Taking boundary and jump conditions from top to bottom, observe first that the position of the
deformable upper structure is related to the velocity of the adjacent fluid by Eq. 7.5.5, which to linear
terms is
v = jwE (5)

where it is appropriate to use the complex amplitude evaluated at the equilibrium position because the
difference between that and Gx (x = a + E) is second order in the perturbation amplitude, Z.

Similarly, at the interface the velocities are related to the interfacial deformation by

A,

Gi = jmé; v: = ng (6)

Again, this jump condition, which expresses mass conservation for the interface, has been written in
terms of amplitudes evaluated at the equilibrium interfacial position. Stress balance for the inter-
face is represented by Eq. 7.7.6, which has only a normal component. To linear terms, this is repre-
sented by the 1 = x component

/2 2
[~p 88 + I + p'(xeb)1-[-p, g8 + T, + p'®(x=E)] = Y<‘;—y§z * 2—z§~> @

where the surface tension force density is given by Eq. (c) of Table 7.6.1. For static equilibrium,
Ia-ll, = 0. Also, to linear terms the perturbation pressures evaluated at the perturbed position & are
equal to these pressures evaluated at the equilibrium position of the interface. Thus, Eq. 7 reduces
to

~d A & 22

% - 5% = gE(p, - p,) - YKE (®)
It is because the fluid is inviscid that the other two components of the interfacial stress balance
equation are, to linear terms, identically satisfied. Finally, on the rigid lower boundary

~f
V.

x = 0 ¢)]

The boundary and jump conditions, Eqs. 5, 6, 8 and 9, are now used to "splice" together the bulk
solutions regresented by Eqs. 4. Of the four equations summarized by these relations, the expressions
for B¢ and PT simply serve to determine these pressures once the fluid motions have been determined.
The other two, Eqs. 4b and 4d, are evaluated using the boundary conditions, Eqs. 6, 7 and 10, and sub-
stituted into the stress balance condition, Eq. 9, to obtain

2
2 w-p -
- o lp, coth(ka) + p coth(kb)IE + [Yk + (0, - P, = - ToTarceay & (10)

This relation has the same form as would be used to describe the deflections of a spring attached
to a mass at one end and to a displacement source at the other. The "mass" reflects the inertia of the
fluids to either side of the interface while the '"spring" results from the combined gravitational and
capillary forces.

From Eq. 10, it follows that the complex amplitude of the interfacial response is

2

~ wop 2
a )
= - T eimh(ka) D(,K) (11)
where the dispersion equation, D(w,k), is
w2 2
D(w,k) = - 3~ [p, coth(ka) + p, coth(kb)] + [Yk" + g(p, - p,)] (12)

Driven Response: The response having the same wave number and frequency as the drive would repre-
sent all of the motions if .the system were reentrant in the direction of the traveling wave and suf-
ficient time had elapsed for a temporal sinusoidal state to be established. (This presumes that the
temporal natural modes are stable.) Under the assumption that Yk2+g(pb - Pg) > 0 (which is assured
regardless of wavelength if the lower fluid 1s the heavier), the frequency response of the interface is
as shown in Fig. 8.9.2. Because there are no dissipation mechanisms included in the model, the inter-
face is either in phase or 180° out of phase with the excitation.
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Gravity-Capillary Waves: The resonance comes
at that frequency that gives synchronism between
the phase velocity W/k of the drive and phase
velocity of a gravity-capillary wave propagating
on the interface. Solution for w/k of Eq. 13
set equal to zero identifies the phase velocity
of these waves as

Yk + g(py = p)/k
Yp {p, coth(ka) + p, coth(kb)

N\

@13)

Long waves are dominated by gravity while
short ones are of a capillary nature. Often,
the waves are short enough that effects of the
transverse boundaries are not significant,
lak| >> |bk| >> 1. Then, Eq. 13 reduces to

v_ = / e 4 iipb . pa; (14)
P P, + Py Pp P,
This makes it evident that there is a wave
number for minimum phase velocity, found by
setting the derivative with respect to k of
Eq. 14 equal to zero. The wavelength, 27/k,

of this minimum will be termed the Taylor
wavelength, Ap:

= ,_Y__
Ap = 2m glp, - 0) 1)

ol

W ——
At wavelengths longer than AT, gravity waves
prevail, while shorter wavelengths represent Fig. 8.9.2. Driven response of gravity-
capillary ripples., For an air-water interface, capillary wave system.

Ar = 1.7 cm.

In the opposite limit of long waves, |ka| << 1 and |kb| << 1, the phase velocity becomes

Y2 + glp, - p,)
Yp T T(o,/2) + (o, /b) (16)

and the gravity wave (which is likely to dominate in a long-wave situation) propagates without dis-
persion. A quasi-one-dimensional model for long gravity waves results in the wave equation with a
velocity given by Eq. 16 without the capillary term.

Temporal Eigenmodes and Rayleigh-Taylor Instability: Temporal transients, initiated from conditionms
that are periodic in the horizontal plane, are described by D(w,k) = O with k real and jw the eigenfre-
quencies S;,. The role of the temporal modes in this chapter is very much as introduced in Sec. 5.15.

The roots of D(sp,k) = 0 are either purely real or imaginary. Resonance in the driven response results
from the coincidence of the natural frequency and the driving frequency., Of most interest is the in-
stability resulting from having the heavier fluid on top and sufficiently long wavelengths that

yk? < glp, - ) a7

Note that this condition prevails for wavelengths longer than the Taylor wavelength defined with Eq. 15.
The eigenfrequencies can be pictured as poles in the complex s plane, with the density difference pp-P,

a variable parameter. For pp > Py, the poles are conjugates on the imaginary axis. With decreasing
density difference and long enough wavelength, the poles migrate to the origin, and as the condition of
Eq. 17 prevails, the poles separate on the real axis. The instability is incipient at zero frequency.

In general, there might be an infinite set of eigenfrequencies. If all pass into the right-half s plane
through the origin, the principle of exchange of stabilities applies. That is, the incipient condition
could be identified by setting w = 0 at the outset and asking for the condition on py - that makes

it possible for all of the fluid mechanics laws to be satisfied. Here, as in Sec. 5.15 wﬁere the

charge relaxation eigenfrequencies for a step discontinuity in electrical properties is considered, there
are a finite number of eigenfrequencies (two). There it is shown that a smooth distribution of elec-
trical properties leads to an infinite set of temporal modes. It should come as no surprise that a
smoothly distributed density distribution similarly leads to an infinite set of eigenmodes. In that case,
taken up in Sec. 8.18, the principle of exchange of stabilities also applies.
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Fig. 8.9.3a. Heavy liquid is stabilized on top
of lighter fluid by means of polarization
forces induced by applying potential dif-
ference to the diverging glass plates.
These plates have a thin transparent
coating that renders them conducting.

The inviscid model is especially justified for predicting the incipience, because there are then
no temporal rates involved. Thus the effects of viscosity vanish.

In the example of this Rayleigh-Taylor instability shown in Fig. 8.9.3,1 polarization forces are
used to stabilize a static equilibrium with a heavy liquid on top of a lighter one. (The electro-
mechanics is developed in Sec. 8.11.) When the field is removed, the unstable temporal eigenmode is
evident. Some fluid rises so that some can fall. The sinusoidal deflection predicted by the linear
theory gives way to a plume extending into the lighter liquid. It is characteristic of this purely
mechanical instability that the nonlinear "process" initiated by the instability becomes blunted in its
advanced stages. The bulbous plume can itself be unstable if the viscosity is low. This characteristic
appearance, which is commonly seen "upside down' as warm air rises into the atmosphere, is in sharp
contrast with the electromechanical forms of Rayleigh-Taylor instability considered in the following
sections.

Spatial Eigenmodes: Spatial modes are introduced in Sec. 5.17. With longitudinal boundary condi-
tions, the sinusoidal steady-state response consists not only of a part having the same wave number as
the transverse drive, but an infinite set of eigenmodes having the same frequency as the drive, each
with its own wave number. These are in general complex, k = k_ + jkij, and found by solving the disper-
sion equation D(w,k) = O for k, given that w is the same as for the drive. In general this expression
is transcendental, so that it must be solved numerically. Here, an infinite set of eigenvalues can be
identified by a simple graphical solution. First, there are the two propagating modes in which k = kr
and the dispersion equation becomes

2
g [Ykr + g(pb ~ Da)]kr
Pa coth(kra) + 0y coth(krb)

w (18)

A graphical solution is obtained by finding the intersection of curves representing the right and left
sides of this expression as a function of (ak.). This is shown in Fig. 8.9.4a. An infinite set of
modes are evanescent, k = jk;. With k purely imaginary, the dispersion equation is again purely real
(coth jx = -j cot x):

2
Pa cot(kia) + Py cot(kib)

so that graphical solution gives rise to an infinite set of k;'s, as illustrated in Fig. 8.9.4b. The
functions on the right in these last two expressions are even in the wave number, so for each positive
root there is a negative one as well. The two propagating modes have an exponential dependence on depth,
while the evanescent modes are sinusoidal in their depth dependence, with a number of zero crossings in
the x direction that increases with the mode number.

w (19)

1. See J. R. Melcher and M. Hurwitz, "Gradient Stabilization of Electrohydrodynamically Oriented Lig-
uids," J. Spacecraft and Rockets 4, 864-881 (1967).
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(Figure 8.9.3 continued)

Fig. 8.9.3b. Side view of apparatus shown
in Fig. 8.9.3a. (a) Equilibrium
with field on. (b)-(e) Sequential
view of developing instability.

(From Complex Waves II, Reference 11,
Appendix C.)

(a)

(b) @)

(¢) (e)

Courtesy of Education Development Center, Inc. Used with permission.
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As an example, a gravity-capillary resonator might be constructed with rigid walls in the planes
y=0and y =y and z = 0 and z = %,. These propagating and evanescent modes would in general also be
excited by the transverse drive. In general, the evanescent modes are required to insure there being
no normal velocity on the longitudinal boundaries. With the surface tension comes still another bound-
ary condition. For example, by virtue of the surface tension, the interface can cling to a sharp edge.
Note that for pp > Pa the lowest evanescent mode in fact exists because of the surface tension. It
represents the effect of the surface tension reaching out into the interfacial region from the longi-
tudinal boundary. The higher order modes are more closely connected with the inertia and mass conserva-
tion represented by Laplace's equation in the fluid bulk.

8.10 Self-Field Interfacial Instabilities

If a magnet is held over or under the free surface of a ferrofluid so that the field is normal to
the interface, sprouts of liquid will be seen to extend into the air. With the magnet fixed, the sprouts
are fixed. Even if stressed by an initially perfectly uniform magnetic field (so that hydrostatic pres-
sure can balance the magnetic forces to maintain a static equilibrium with the interface flat), the
sprouts represent a new static equilibrium preferred by the fluid. The electromechanical form of
Rayleigh-Taylor instability that takes place as the planar interface, stressed by a uniform magnetic
field, gives way to the new configuration, is one of the results from the model now developed. The con-
figuration, shown in Fig. 8.10.la, consists of planar layers having different permeabilities (Ma,Up),
mass densities (ps,pp) and equilibrium thicknesses (a,b). The common interface is at x = g, while rigid
boundaries (infinitely permeable pole faces) bound the layers from above and below. The liquids are
water based or even hydrocarbon based ferrofluids. Hence, in MQS terms, the materials are essentially
insulating. Only the magnetization force density, Eq. 3.8.14 with jf = 0, is responsible for the elec-
tromechanical coupling.

/_5 _Re ,EAej(wT—kyy_kzZ)

_%_Rel}ej(wt-kyy-k,z)
< . .

(a) (b)

Fig. 8.10.1. (a) Layers of magnetizable fluid are stressed by a uniform normal
magnetic flux density, By. Polarizable liquid layers are stressed by a
normal electric displacement, Dy.
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The time and space-varying drive is taken as imposed on the upper transverse boundary by means of
a coil structure. Thus, the magnetic potential in this surface is an equilibrium value :;%'(relative R
to the lower surface) representing the magnet field plus a traveling wave having the complex amplitudgﬁ??

The EQS system, consisting of layers of insulating polarizable fluid as shown in Fig. 8.10.1b, is
described with the same model by simply identifying M + €, By * D, and, +§%f There is an important
physical difference between the two systems. To obtain a purely polarization coupling, it is necessary
to use an alternating electric field having a high enough frequency to guarantee that free charge does
not enter into the electromechanics. This field can be considered as being essentially static provided
the frequency is also high enough to insure that the fluid responds to its rms value. In the respective
regions the magnetic field is taken as having the form of an equilibrium plus a perturbation:

A= T +8; B=-w @
B

The equilibrium magnetic flux density in each region is related to the equilibrium magnetic potential
difference between the pole faces by

Fo

By = MgHy = Ml = [@/u) + (/)] ' @

The magnetization force density is confined to the interface, where it acts on the equilibrium
interface as a normal surface force density. The equilibrium pressure difference Ha - I, then holds
the interface in static equilibrium. In the bulk regions, the magnetic field is uncoupled from the
fluid nechanics. Thus, the perturbation mechanics of each layer is described by the inviscid pressure-
velocity relations from Table 7.9.1, Eqs. 8.9.4., Similarly, the perturbation magnetic field is de-
scribed by the flux-potential transfer relations, Egs. (a) of Table 2.16,1 (k = ky + k%)

i 1 ~c ~e 1 ne
Ml et smEpmay || Y| [P | o™ sy || Y

T | = 3)
~d -1 ~d ~f -1 Af
he| | siamcay ~ coth(ka) || ¥ By raay | coth) || ¥

The essence of the electromechanics is in the boundary conditions, which must be consistent with
the electromagnetic and mechanical laws used in the model. Proceeding from top to bottom in
Fig. 8.10.1a, the magnetic potential must be that of the drive at the upper boundary. The boundary is
rigid, so

oc

vy iﬁ?‘ 4)
=0 (5)
At the interface, continuity requires that

~d
v

MR jwE . (6)

The x component of the stress balance jump condition, Eq. 7.7.3, is to linear terms equivalent to the
normal component of the stress balance. With i = x, that jump condition is evaluated using the stress
tensor with Eq. 3.8.14 in Table 3.10.1:

[-p,gx + I + p'd]x=g - [-ppex + T, +2"%1, -
2 2
L1 4, 1 e 2 3% ok
=[5 My (g + ) - 5 (B + 871, o+ Y(_ayz + —azz)

where, remember, all quantities are evaluated at the actual position of the interface. The normal
vector is written in terms of £ by means of Eq. (a) from Table 7.6.1. Terms from the stress that are
nonlinear in the perturbation amplitudes have already been dropped in writing Eq. 7. To linear terms,
the perturbation quantities evaluated at x = § are the same as 1f evaluated at the equilibrium inter-
facial position x = 0. Also, the equilibrium magnetic field is uniform (not a function of x like the
equilibrium pressure), so these terms are the same at x = 0 as at x = §. The equilibrium part of

Eq. 7 expresses the condition for static equilibrium,

1 2 2 1
1-[a - IIb = E(uaHa - ubﬂb) = E'Bo(ﬂa - Hb) @)
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and the perturbation part becomes the required jump condition representing stress balance at the inter-
face:
-

¢ - 5% + Ealop - pp) = B (A1 - B2 - WE )

The conditions of Eqs. 6 and 9 guarantee that the mechanical laws are satisfied through the interface.
Similarly, on the magnetic side, H is ir_z;otational and B is solenoidal, so a x [[ﬁ ﬂ = 0 and E-[Iuﬁ ]]= 0
(Eqs. 21 and 22 of Table 2,10.1). With n again given by Eq. (a) of Table 7.6.1, either the y or z com-
ponents of the condition that tangential % be continuous reduces to

/\d /\e A
¥o-¥ = E(H - H) (10)
while the continuity of normal flux density is to linear terms given>by
~d _ le
Hahy = Wphy an

Finally, there are the mechanical and magnetic conditions at the lower rigid and infinitely permeable
boundary:

<>
rh
L}

0 (12)

<>
HhoX
]

0 : (13)

With the objective of finding the driven response and in the process deducing the dispersion
equation, the stress and field continuity conditions, Eqs. 9, 10 and 11, are now written with the p's
and hy's substituted from the bulk equations, Eqs. 8.9.4 and 3. These latter relations are themselves
first written using the remaining simple boundary conditions. Thus, Eqs. 9, 10 and 11 respectively
become

«Fr 1 r A

[ 2 2 £ Lot

T [pgcoth(ka) + pycoth(kb) - glpy-p )-k7y  kBjcoth(ka)  kB,coth(kb)|| & sinh (ka)
. -1 +1 @d - |o (14)

a
s
~e a
0 Hpkeoth(ka)  pykeoth(b) || ¥ | ‘sinh(ka)

A

Solution for & gives

KB_ (W - ua)co:h(kb)j*

£ 1
&=- sinh(ka)[ubcoth(kb) + uacoth(ka)] D(w,k) ' o (15)
where
2
Dw,k) = = = [p_coth(ka) + pycoth(kb)] + [YK” + g(p - p,)]

2 2
kBO (Ub - ]Ja)

- uaub[ubtanh(ka) + y_tanh(kb)]

(16)

The many types of information that can be gleened from Eq. 15 are illustrated in Sec. 8.9. Con-
cerning the driven response, it is here simply observed that its frequency dependence is similar to
that illustrated by Fig. 8.9.2, with the frequency of the resonance occurring as the excitation phase
velocity coincides with that of a field coupled surface wave having the phase velocity

\
2 2
Y - Yk + g(p =P )/k — B_(y-U.) /u My (W tanh(ka) + U tanh(kb)]

a7)
P oacoth(ka) +'obcoth(kb)

The effect of the field is to reduce the gravity-capillary phase velocity and hence the frequency. This
phenomenon is a "self-field" effect, in the sense that a deformation of the interface distorts the mag-
netic field and this in turn creates a magnetization perturbation surface force density that tends to
further increase the deflection.

1. For experimental documentation of resonance frequency shift with magnetic field, see R. E. Zelazo
and J. R. Melcher, "Dynamics and Stability of Ferrofluids: Surface Interactions," J. Fluid Mech.
39, 1 (1969).

8.35 Sec. 8.10



N

The tendency for this self-field coupling to precipitate instability makes the temporal modes of
particular interest. In the short-wave limit ka <<'1 and kb << 1, solution of the dispersion equation
D(w,k) = 0 for w* results in JEP RN

k™Y

2.2 2
2 gk(py = p,) . 3 _ KB () = M)
C P, t oy Pa t Py MM +u ) (o, + o)

W (18)

Even with the lighter fluid on top (say air over a ferroliquid) so 0, > py, the magnetic field can make
w2 > 0 and hence one of the eigenmodes unstable. Figure 8.10.2 shows w2 as given, by Eq. 18 as a func-
tion of k. As By is raised, there is a critical value at whic? the curve just kigses the w2 = 0 axis.
Under this condition, instability impends at the wave number k", For greater values of B,, wave numbers
between the roots of Eq. 18 with w? = 0, k, and kg, are unstable. These roots coalesce as the dis-
criminant of the quadratic formula vanishes. Thus, the incipient condition is

2

2 2

BO(H, - M) ) 4gloy = 0)
MMy (ua+ub)Y Y

(19)

The critical wave number is what remains from the quadratic formula, which in view of Eq. 19 is

&y /B8P " P (20)
Y
2
Bo
5 . 2
w critical Bo

Fig. 8.10.2

Dependence of wz(k) as given by
Eq. 18 with Bg as a parameter,

Note that the first perturbations to become unstable as the field reaches the level predicted by Eq. 19
have the Taylor wavelength given by Eq. 15.2

What happens if the field is raised above the value consistent with Eq. 19? The initial rate of
growth is given by the linear theory, although because a rate process is now involved, this may be
strongly influenced by the viscosity. But, the ultimate state will depend on the nature of the electro-
mechanical coupling. In the magnetization example at hand, the interface typically reaches a new state
of static equilibrium., The protrusions shown in Fig., 8.10.3 are typical. Consistent with the fact
that the interface is always free of a shearing surface force density, they are perfectly static.

As discussed in the introduction to this section, to obtain a similar instability in the EQS polari
zation configuration of Fig. 8.10.1b, it is usually necessary to use an alternating field.3 If the fre-
quency of this field is low enough that the natural modes can interact with its pulsating component, para
metric instabilities can also result. By contrast with the coupling described here, these instabilities

2. Conditions for instability are studied by M. D. Cowley and R. E. Rosensweig, J. Fluid Mech. 30,
721 (1969). -

3. E. B. Devitt and J. R, Melcher, "Surface Electrohydrodynamics with High-Frequency Fields,” Phys.
Fluids 8, 1193 (1965).
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Courtesy of Ferrotec USA Corp., Bedford, NH. Used with permission.
Fig- 8.10.3. System of static fluid sprouts repre- Fig, 8.10.4. Rj_gid plane—parallel electrodes

sents a new static equilibrium formed once bound liquids having common interface.
planar interface in perpendicular field The upper liquid is insulating relative
becomes unstable. (Courtesy of Ferrofluidics to the lower one.

Corp., Burlington, Mass.)
are dynamic in character and can result in splattering or atomization of the interface.4

To appreciate the perfectly static equilibrium of the polarization sprouts resulting from the in-
stability of the flat interface, consider by contrast some of the possibilities resulting when the inter-
face of a conducting fluid bounded by a relatively insulating one is stressed by a normal electric field
E,. The configuration is shown in Fig. 8.10.4. For example, the upper fluid might be air and the lower
one water (or any other liquid having a charge relaxation time €/0 short compared to times of interest).5

The boundary condition at the interface is that
it sustains no tangential electric field. This is
formally equivalent to the (analogous) magnetic field
situation in the limit where the lower fluid is infini-
tely permeable. That is, in the limit pp + «, the
interfacial tangential magnetic field just above the
interface of Fig. 8.10.la must vanish. The magnetic
field above this infinitely permeable fluid then
satisfies the same boundary conditions as the elec-
tric field does in the physically very different
situation of Fig. 8.10.4.

It follows from Eq. 19 with the substitution
Uy > E, W+ and B, + E,/€ = 9%!3 that the volt-
age required to just induce instability of the
interface is

4glpy = P )Y|1/4
7, =a|——a— (21)
E
The danger in exploiting the formal equivalence of
the infinitely permeable and the "infinitely" con-
ducting lower fluid is that the physics of the two
situations will be confused. In the case now con-
sidered, the surface force density acting upward on
the interface is due to free surface charges. That
these are free to conduct accounts for the diverse Fig. 8.10.5.
processes that can be triggered by the instability.

Nonlinear stages of surface
instability caused by applying
30 kV d-c between electrode above

A typical appearance shortly after incipience is and glycerine interface below.
shown in Fig. 8.10.5. An extremely sharp spike has Insulation is mixture of air and
formed. In the neighborhood of this point, the non- gaseous Freon.

linear stages of instability are generally dynamic, and
often involve dielectric breakdown in some region of the insulating fluid. Depending on properties and
breakdown strength, it is very likely that simultaneous spraying and corona discharge will be observed.

4. T. B. Jones, "Interfacial Parametric Electrohydrodynamics of Insulating Dielectric Liquids," J. Appl.
Phys. 43, 4400 (1972).

5. For experiments and a more general treatment of stability conditions, see J. R. Melcher, Field-
Coupled Surface Waves, The M.I.T. Press, Cambridge, Mass., 1963, Chaps. 3 and 4.
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8.11 Surface Waves with Imposed Gradients

The electromechanical coupling exemplified in Sec. 8.10 is entirely caused by the distortion of the
initially uniform field that results from a deformation of the interface. It is this perturbation field
that creates the change in surface force density tending to destabilize the interface. The "self-field"
origin of the coupling is reflected in the dependence of the coupling on the square of the jump in elec-
trical properties [(Uy - ub) in the last term of Eq. 8.10.16]. The perturbation self-field is propor-
tional to W, - Up and the surface force density is proportional to this field multiplied by (My - Wp).

The net effect is proportional to the product of these and hence to (¥, - ub)

The surface force density can also vary simply because the interface moves in a nonuniform equi-
1ibrium field. Because the change in field experienced by the deforming interface is independent of the
jump in property, it can be expected that this imposed field type of coupling is linearly proportional
to the property jump.

To exemplify Imposed field effects and at the same time highlight electromechanical surface waves
that propagate along field lines, the electromechanics of the configuration shown in Fig. 8.9.3 is now
considered. Both fluids can be regarded as perfectly insulating so that the relevant force density is
given by Eq. 3.7.22 of Table 3.10.1. How is it that the polarization interaction can stabilize the
initial equilibrium with the heavier liquid on top? What is the role of self-field effects when the
equilibrium electric field is tangential to the interface? 4

The cross section of the system is shown in Fig. 8.11.1. Di-
verging transparent electrodes (which are tin oxide coated glass in
Fig. 8.9.3a) are used to impose the field

1.1, %

09 ¢ ¢D)
0

on fluids with an interface essentially at r = R. Note that Eq. 1
gives the exact solution, provided that the interface approximately
has this equilibrium radius.

Because gravity does not act exactly in the radial directiom,
the equilibrium geometry of the interface is in fact somewhat field
dependent. The essential physics are retained in a Cartesian model
that pictures the interface as flat, but subject to a nonuniform
imposed field. 1In static equilibrium the x-directed polarization
surface force density is balanced by the jump in equilibrium pressure
i HB. In terms of the coordinates defined in Fig. 8.11.1, r = R - x.
The equilibrium electric field in the neighborhood of the interface
(which is the only seat of electromechanical coupling) is therefore
approximated by

SRR RE

E=Tr@+3; E % (2) Fig. 8.11.1. . G ecti
= yEo R)’ o " P R g. 8.11.1, - Cross section

o of experiment shown
in Fig. 8.9.3a with
Cartesian coordinates
for planar model.

Because of the quasi-Cartesian approximation, this equilibrium field is
not irrotational.

Bulk Relations: Perturbations in thé electric field are both irrota-
tional and solenoidal in the uniform bulk of the fluids. In applying the flux-potential transfer rela-
tions representing Laplace's equation above and below the interface (Eqs. (a) of Table 2.16.1), perturba-
tions on the interface having wave number k =/ 2+ k2 are assumed short enough that boundaries above
and below the interface can be considered as being at X = + ©, Thus, with the understanding that Rek > 0,
perturbation fields evaluated at the equilibrium interfacial position are related by

“a

- k0% 3)
x
ab o k3P %)
X

In the bulk regions, the pressure balances the gravitational force demsity. Hence, in each region the
pressure takes the form

=1 - pgx + p'(%,y,2,t) ()

From the inviscid pressure-velocity transfer relations (Eqs. (c) of Table 7.9.1) the perturbation part
of Eq. 5-evaluated at the equilibrium interfacial position is related to the velocity there by
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Jump Conditions: To assure that the laws defining the model prevail through the interface, there
are two electrical boundary conditions. First, n x ] = .0 is evaluatgd at the interface using § ex-

pressed in terms of £ (Eq. (a) of Table 7.6.1) and ey = jEy¢ or ez = jk,® to obtain
32 3b Cnyiy *"w-l* y'@ by 1y N . e
" - -9 =0 - .}1 e (8)

H q‘«:"/
o
Second, by assumption there is no free surface charge so n-ﬂ 3 ﬂ = 0, which to linear terms requires
that
> éb + ik EE (e -¢€
x T3 y> o' a

)

a%x ~ %p =0 (9)

In addition, two mechanical conditions are required, the first representing continuity

0% = juf = 9P (10)

and the second force equilibrium. To linear terms, the normal force balance is the x component of
Eq. 7.7.6 with the surface tension contribution given by Eq. (b) of Table 7.6.1,

[0, - p,8E + p'2(x = 0] - [I - pygE + p'>(x = 0)]

2. .2
-- %-ea[Eo(l + %) + e;(x=0)]% + % e, [E (1 + %9 + e;(x-O)]z —y g;%-+ %;% (11)

The balance of the equilibrium surface force density by the equilibrium pressure is represented by the
equilibrium part of Eq. 11:

2
JE (12)

=L -
I, - L, = 7(€y = &
so that in terms of complex amplitudes evaluated at the equilibrium position of the interface, the per-
turbation stress balance requires that
E2

~d Ab [ ~a ~b 22
) 1{ £ - jkyEo(eaQ - st ) - Yk'g- (13)

P =P + g(pb - pa)g = (ab - Ea

Dispersion Equation: Of the possible types of information about the dynamics that can be gleaned
from this model, it is the temporal modes that are of interest here. One way that they can be identi-
fied is to find the response to a transverse drive in the form of Eq. 8.9.11 for example. Then the con-
dition is D(w,k) = 0. Here, there is no drive and the temporal modes are identified by asking for the
relation between w and k that makes it possible for surface distortions to exist, consistent with all
the laws, but with homogeneous boundary conditions. To this end, Eqs. 3 and 4, 6 and 7 and 9 are sub-
stituted into Eq._, 13 using Eqs. 8 and 10 in the process. The resulting expression is of the form
D(w,k)E = 0. If £ is to be finite, it follows that D(w,k) = 0. This relation,

2 2
KE, 9.2 (&5 - &)

2 3
Wilegtey) = k(pye) + VKT ¥ (Ee) Tt B T T e 1t

is an expression of the fact that the inertia of the fluid above and below the interface is equi-
librated by forces due to gravity, surface tension, imposed fields and self-fields.

Temporal Modes: In addition to the now familiar gravity and capillary contributions to the phase
velocity, w/k, there are now the polarization contributions. In the absence of an imposed gradient the
effect of the fileld is to stabilize perturbations with peaks and valleys running perpendicular to the
electric-field. To see why, consider the perturbation fields resulting from the deformation of the
interface shown in Fig. 8.11.2a. With g, < € the equilibrium field, E, induces polarization surface
charges. As shown, these in turn give rise to the perturbation fields. Remember that the polarization
surface force density on an interface stressed by a tangential field acts in the direction of decreasing
permittivity. Thus, at the downward peaks where the perturbation field reinforces the applied field
there is an increase in the upward directed surface force density, and this tends to restore the inter-
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Fig. 8.11.2. (a) Perturbation fields for waves propagating along lines of electric field.
(b) Perturbation fields are absent for waves propagating across E lines.

face to its equilibrium position. That perturbations propagating in the z direction are not influenced
by the self-fields is evident from the fact that the equilibrium field remains unaltered by such deforma-
tions of the interface.

Note that the self-field stiffening cannot stabilize the interface with the heavy fluid on top;
modes appearing as in Fig. 8.11.2b, sometimes called exchange modes because the fluid can be displaced
without an assoclated change in stored electric energy, are unstable despite a uniform imposed field.

However, the imposed gradient can be used to stabilize all wavelengths. Regardless of wave
number, the interface is stable provided that

EZ

(e, - &) 7— > 8o, - pp) (15)

So, by making the upper fluid have the greater permittivity, the equilibrium can be made stable even
with the heavier fluid on top.

In the experiment of Fig. 8.9.3, the region between the electrodes is sealed. Thus, hydrostatic
pressure maintains the equilibrium, while the electric field stabilizes it. If too much of the upper
fluid is run into the region between the electrodes, it simply breaks through the interface until enough
is lost to satisfy Eq. 15.1

Considerations of stability are essential to the design of systems for orienting liquids. An

example is the use of polarization forces for orienting liquid fuels in the zero gravity environments
of space.2 Magnetization interactions with ferrofluids are analogous to those described here.3

8.12 Flux Conserving Dynamics of the Surface Coupled z-0 Pinch

The magnetic field levitation of a liquid metal, sketched in Fig. 8.2.lc, is based on time-average
forces caused by currents induced because the field is oscillating with a period short compared to a mag-
netic diffusion time. Transient, rather than steady-state forces, are similarly induced if the field
is abruptly switched on. The confinement of a highly ionized gas in many fusion experiments1 is based
on this tendency for the plasma to behave as a "perfect conductor" over several magnetic diffusion times.
Not only does the magnetic field "bottle up" the plasma, but it can also be the means of compressing the
gas. The stability of the pinch configuration shown in Fig. 8.12.1 is examined in this section.

An axial current on the surface of the cylindrical conductor gives an azimuthal magnetic field, H,,
and hence a surgace force density that compresses the conductor radially inward. An example is shown
in Fig. 8.12.2.% If the conductor is an ionized gas, this pressure will evidence itself in the con-
striction of the conducting volume, thereby producing an increase in the plasma density and local con-
ductivity. In turn, because the magnetic field intensity in the neighborhood of the conducting path is
inversely proportional to the radius of the conductor, the magnetic pressure is itself increased. As
a scheme for heating of plasmas for thermonuclear experiments, the magnetic field serves the dual
purpose of compressing and confining the plasma column.

1, J. R. Melcher and M. Hurwitz, "Gradient Stabilization of Electrohydrodynamically Oriented Liquids,"
J. Spacecraft and Rockets 4, 864 (1967).

2. J. R. Melcher, D. S. Guttman and M. Hurwitz, "Dielectrophoretic Orientation,” ibid., 6, 25 (1969).

3. R. E. Zelazo and J. R. Melcher, "Dynamics and stability of ferrofluids: surface interactions,"
J. Fluid Mech. 39, 1-24 (1969).

1. See, for example, D. J. Rose and M, Clarke, Jr,, Plasmas and Controlled Fusion, The MIT Press and
John Wiley & Sons, New York, 1961, p. 336.

2, See F. C. Jahoda. E. M. Little, W, E. Quinn, F. L. Ribe and G. A, Sawyer,''Plasma Experiments with a
570~kJ Theta-Pinch," J. Appl. Phys. 35, 2351-2363 (1964).
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Image removed due to copyright restrictions.] O
Four images taken at 2.4 sec., 3.6 sec., 4.9 sec. and 6.1 sec.
As the plasma cross-section compresses, the number of dark and light rings decreases

Fig. 8.12.1. Plasma column showing
equilibrium radius R and
equilibrium magnetic fields.

compression coil

Fig.8.12.2

Theta-pinch experiment showing magnetic compression of plasma
cross section as viewed by means of interferometer. Peak mag-
netic field is about 100 kgauss. (Courtesy of Los Alamos Scien

. . ; -tificLaboratory.
direction of interferograms ¥)
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The axial or z pinch, with the current in the direction of the columnar axis and the induced mag-
. netic field azimuthally directed, is inherently unstable: a fact that emphasized early in the fusion
effort that the stability of confinement schemes was of primary importance. The theta pinch of

Fig. 8.12.2 avoids the inherent tendency toward instability by using currents that flow azimuthally
around the column. These are induced by a magnetic field applied suddenly in the axial direction. The
applied magnetic field has the virtue of being uniform in the region around the plasma, and thus the
magnetic stress at the surface of the column is independent of the radial position of the interface. As
will be seen, it is the 1/r dependence of the equilibrium magnetic field that makes the axial pinch
naturally unstable. The imposed field gradient is destabilizing. The combined axial and theta pinch
configuration, shown in Fig. 8.12.1, is sometimes termed the "screw pinch" because of the helical shape
of the magnetic field lines.

Equilibrium: The plasma column is modeled as a perfectly conducting cylinder of incompressible and
inviscid fluid. Although the equilibrium is pictured as static, the fields are nevertheless applied and
the column motion of interest completed in times that are short compared to the time for the field to
diffuse into the column. Thus, surface currents are just those required to shield the applied fields
from the column: :

R > b g
= - B ig + H 1 _ (1)

where H, and H_ are, respectively, the axial and theta fiélds at the equilibrium surface of the column.
The equilibrium surface current on the column is therefore

> > -»>
K=-Hi +HI1 (2)
Stress equilibrium requires that the equilibrium pressure jump balance the magnetic surface force density:

coly e
nc—nd--zuo(nt+ua) 3)

Bulk Relations: With the column surface represented in the complex amplitude form & = Refexpj(wt -
m8 - kz), perturbations in the magnetic field around the column, h = -V¥, where ¥ satisfies Laplace's
equation. Thus, the flux potential relations, Eq. (c) of Table 2.16.2, pertain to the region between
column and wall:

ob ~b
¥ F (R,a) G (a,R)||h)

= (4)
g G (R,a) F_(a,R)||hg

There is no perturbation magnetic field inside the columm.

The perturbation mechanics of the column are represented by the inviscid model of Sec. 7.9. The
pressure-velocity relations, Eq. (f) of Table 7.9.1 in the limit where B - O, show that

2% = jupr_(0,R)%¢ )

That the region surrounding the column is essentially vacuum means that it is filled with fluid of
negligible density and hence zero perturbation pressure: pc = 0,

Boundary and Jump Conditions: Because the equilibrium i is nonuniform, the field evaluated at the
perturbed position of the interface is to linear terms

<>

> >
H + Haiz + h(r =R + &)

R ?

=T+ E Bele
(6)

- > T §' -+ > -
= Htie + Haiz R Htie + h(r = R)
The effect of the mechanics on the magnetic field is represented by the condition that there be
no magnetic flux linked by contours lying in the deforming perfectly conducting interface. With the
normal vector related to £ by Eq. (e) of Table 7.6.1, it follows that to linear terms
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hr = ~j (—R- + kﬂa)E €]

where ﬁi is evaluated at the unperturbed position of the interface.

The physical nature of the outer wall will be left open. For noy, it is presumed that there is some
normal magnetic field at the outer wall having the complexramplitudq;%zﬁ

A A~ ’ '

h = (8)

To express the effect of the fields on the mechanics, continuity requires that

I\d . A
X
Then, stress equilibrium is represented by Eq. 7.7.6. As applied to plasmas, the model need not include
the surface tension. Of the three components of the stress condition, only the normal component is
appropriate. Fundamentally, this is because a perfectly conducting interface sustains no magnetic shear
stress (see Sec. 8.2). To linear terms, it is the radial component of the stress condition that repre-
sents the normal stresses. Thus, in view of Eq. 6 (ﬁz = jkY¥, ﬁe = jm¥/R)
u B

-8 - ‘;t £ - juo(% H, + kH )¥C (10)

where 3¢ = 0.

Dispersion Equation: Equations 4b and 5 are evaluated using Eqs. 7, 8 and 9 and substituted into
Eq. 10 to obtain

2
ot
R

A ~ 2 ~ A
wZor (0,0 = 2 & - u @ u + ki )’F, (a,R0F - gu, & B, + k)6, R,a)F ()
In particular, if the outer wall is perfectly conducting, Eq. 11 shows that the appropriate dis-
persion equation is
2
oHt
R

2
~u?oF (O,R) = - %E+u @H, +11)’F, (a,R) a2)
It is shown in Sec. 2.17 that Fp(O,R) = 1/£,;(0,R) < O (see Fig. 2.16.2b for typical behavior) and
Fp(a,R) > 0.

The first term on the right in Eq., 12 arises from the imposed gradient in azimuthal magnetic field.
That it tends to make the equilibrium unstable is not surprising because the inward directed magnetic
surface force density associated with the imposed 6 field decreases as the interface moves outward. The
question of stability hinges on whether or not the self-field coupling represented by the last term in
Eq. 12 "saves the day."

Certainly, the self-fields stiffen the interface. However, for deformations having azimuthal and
axlal wave numbers related by (m/R)/k = -H,/H;, this stiffening is absent. To appreciate the origins
of this result, observe that a vector perpendicular to crests and valleys of the surface perturbation
is = @/R)T, + kt,, as shown in Fig. 8.12.3. Also, as a vector in the (6R,z) plane, the equilibrium
magnetic fielg is given by Eq. 1. The perturbations that produce no self-field effect have p*H = 0 in
the surface of the column. Thus the modes that cause no perturbation in H propagate across the lines
of equilibrium field. If the equilibrium field circles the z axis in the clockwise direction shown in
Fig. 8.12.3, the perturbations that produce no self-fields have crests and valleys that also follow
these helical lines, as shown in Fig. 8.12.3b. Note that for the z pinch, where Hy = 0, these are the
sausage modes m = 0. These modes that have no self-fields, sometimes called exchange modes, are similar
to the polarization and magnetization modes of Sec. 8.11.

From another point of view, it is Alfvén surface waves propagating along the lines of magnetic
field intensity that are described by Eq. 12. The flux conserving dynamics is similar to that for the
bulk interactions. However, the phase velocity of waves is now dependent on k, the surface waves are
dispersive.

The theta pinch (Hy = 0) is at worst neutrally stable. Only the self-field remains on the right
in Eq. 12. However, for "exchange" perturbations with crests running in the axial direction, this term
is zero, so that the frequency is zero, and the system is on the verge of instability. 1In fact, the
theta pinch has been found to be a useful approach to obtaining confinement for extremely short periods
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Fig. 8.12.3

(a) Equilibrium'ﬁ and propaga-
tion vector in (R6,z) plane

at r = R. (b) Exchange modes
showing 3.3 = 0 and hence lines
of constant %hase parallel to
equilibrium H.

(a) (b)

of time. Experiments are illustrated by Fig. 8.12.2, From the hydromagnetic viewpoint, the stability
of the theta pinch depends on effects not included here, such as the necessary curvature of the imposed
fields if the column is closed on itself. Internal modes associated with volume distributions of
current are thought to come into play in pinch devices and especially in the tokamaks. Such modes are
taken up in Secs. 8.17-8.18. In any case, there are many other forms of instability associated with a
highly ionized gas that are not described by a hydromagnetic theory.

One approach to stabilizing the equilibrium is to sense the position of the interface and feed-
back fields to a structure located on the outer wall., For example, in the limit of a continuum of
samples and feedback stations, the normal magnetic field gt the wall might be made proportional to the
deflection of the interface at the same (8,z) location, #= Af., With this expression introduced into
Eq. 11, the revised dispersion equation follows. But, note that no matter what the nature of the feed-
back scheme, the last term in Eq. 11 has a factor [(m/R)Ht + kH;]. No matter what the feedback, in
the framework of this linear model, it will not couple to the exchange modes. The origins of this dif-
ficulty are clear from the stress balance, Eq. 10, which shows that field perfurbations perpendicular
to the imposed field result in no perturbation stress. This is true whether ¥¢ (Eq. 4b) 1s the result
of the self-field (Eq. 7) or caused by the feedback at the outer wall,

8.13 Potential Conserving Stability of a Charged Drop: Rayleigh's Limit

Charged drops and droplets are exploited in devices such as ink jet printers that use electric
fields to deflect and direct the ink, charged droplet scrubbers for air pollution control and electro-
static paint sprayers. Of possible importance in these applications is the limiting amount of charge
that can be placed on a drop without producing mechanical rupture. It is this Rayleigh's limit,l
determined as it is by considerations of stability, that is an objective in this section, The example
gives the opportunity to put to work relations derived in Chaps. 2 and 7 in spherical coordinates.

The drop, perhaps of water, is assumed to be perfectly conducting and to have the equilibrium
radius R and surface tension Y. Its interface has the radial position r = R + £(08,¢,t), as sketched
in Fig. 8.13.1. The drop is initially in static equilibrium with a total charge, q, evenly distribute@
over its surface. Thus, an equilibrium electric field

2

> {R 2

k= Eo(;) 3 q = 4me R'E, (1)
surrounds the drop with the radial electric surface force density EES/Z balanced by the jump in equi-
librium pressure I, - l; and the surface tension force demsity -2Y/R.

Surface deformations take the form

g = RegPE(cos G)ejQ»t - ) (2)

1. Lord Rayleigh, "On the Equilibrium of Liquid Conducting Masses Charged with Electricity," Phil.
Mag. 14, 184-186 (1882).
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with normal vector and surface tension force den-
sity summarized in Table 7.6.2.

Bulk Relations: With the perturbation in
electric field from that given by Eq. 1 repre~
sented by € = -V®, the Laplacian nature of the
fields surrounding the drop is represented by
the flux-potential transfer relation, Eq. (d) of
Table 2.16.3:

& - (“—;11 %° 3)

Similarly, the inviscid fluid within is repre-
sented by the pressure-velocity relation,
Eq. (i) of Table 7.9.1 in the limit B -+ O,

ad R .d
P

- Ad—__ -_—
- jprn;(O'R)vr = -jwe TV,

(4)

Boundary Conditions: The electrical boundary
condition at the drop interface requires that there
be no tangential electric field: % xE=0. This
condition prevails if frequencies of interest are

low compared to the reciprocal charge relaxation Fig. 8.13.1. Spherically symmetric equilibrium
time of the drop. With the objective of evaluating for a drop having total charge q uni-
the electric field at the perturbed position of the formly distributed over its surface.

interface, note that to linear terms Eq. 1 is evalu-
ated at the interface as

2

2(z) £, -5 - (5)
o r=R+E o
L3

Then, Eq. (:6 of Table 7.6 :?is used to represent o and, to linear terms in £ and hence &, the boundary X
condition is written in terms of amplitudes evaluated at the unperturbed interfaces 4};;(%

c_ . .

= EE (6)
Continuity requires that (Eq. 7.5.5 to linear terms)
o8 = ju )

Stress equilibrium for the interface, in general given by Eq. 7.7.3, is written with the perturba-
tion pressure outside the drop ignored because the density there is negligible compared to that of the
drop. Thus,

2
n n e . +() =3¢’ - 2€°E° E+¢€Eel + (), (8)
. c - P ri%j s’r 2 oo oor
_The equilibrium terms balance out, so that with the complex amplitude of (Tg), given by Eq. (%)
of Table 7.6.2,
d 2€°E

£+ soEoer - ;YE (o -1+ 2)€ 9)

2
o

Dispersion Relation and Rayleiggrs Limit: All terms in the stress balance, Eq. 9, are written in
terms of § by using Eq. 6 in Eq. 3 for eg, and Eq. 7 in Eq. 4 for pd. The factor multiplying g in the
resulting homogeneous equation is the dispersion equation:

w?or? = (n - Dalf @+ 2) - e ] (10)

The surface deflections are pictured with the help of Tablé 2.16.3. Conservation of mass excludes the
= 0 mode. From Eq. 10, the two n = 1 modes are neutrally stable. These are pure translationms,
either along or transverse to the z axis.

The first modes to become unstable as E, is increased are the three n = 2 modes. This is seen
by solving Eq. 10 for the E, that makes the term in brackets vanish and recognizing that this is first
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. true for the lowest allowed value of n, n = 2. Thus, because E, = q/4ﬂ§BZ, it follows that Rayleigh's

limit on the total drop charge consistent with a stable equilibrium is
q = 8n/eyr3 (11)

From this result, slowly increasing the net charge causes the drop to burst by fissioning into two drops.
In most situations, the instability is dominated by the most rapidly growing of a spectrum of unstable
modes with growth rates predicted by Eq. 10.

8.14 Charge Conserving Dynamics of Stratified Aerosols

If charge can relax instantaneously on the time scale of interest, an interface and even bulk
material of fixed identity can preserve its potential. Examples are given in Secs. 8.13 and 8.7, In
the opposite extreme are motions that conserve the charge density in the neighborhood of material of
fixed identity. A physical example is the transport of submicron charged particles entrained in air.
By virtue of applied or self-fields, these particles migrate according to the laws investigated in
Sec., 5.6, But there, the gas flow was assumed to be known. What if the force transmitted to the gas
by the charged particles results in a gas motion that dominates the migration of the particles relative
to the gas? 1In fact, because of their extremely low mobilities, fine particles of high density can
result in a sufficient force on the gas that the resulting fluid motions dominate over migration in
determining the transport of the particles. Typically, what is observed is transport of particles by
turbulent mixing with its origins in the electrohydrodynamic instability examplified in this sectionm.

If flulid convection dominates over migration (or relaxation) in the transport of charged particles
by an incompressible fluid, then the charge density is related to the fluid flow by

Do

5t - O W

In Sec. 7.2, this same statement was made for the mass density of an incompressible fluid. The general
laws and relations subsequently developed in Secs. 7.8 and 7.9 bear on the motions of a mass density
stratified fluid in a gravitational field much as does this section on motions of a charged fluid in an
electric field. The discussion of gravity-capillary dynamics, Sec. 8.9, exemplifies the dynamics of
fluids stratified in mass density, and is an example of how plecewise continuous models represent sys-
tems that are inhomogeneous in mass density.

At least as discussed here, where effects of self-gravitation are ignored, § in the gravitational
force density is constant, whereas the electric field E in the electric force density is a function of
the distribution of the field source, in this case pg. But, in regions where the charge density is con-
stant, say pg = q, the force density transmitted to the fluid by the charged particles nevertheless
takes the form of the gradient of a pressure:

<> >

F=pE=-pV0 = -VE; £= q? 2

Note that this statement prevails only where psf is constant. It cannot be used to deduce a stress
tensor at a boundary where py is discontinuous, for example.

That the force density in regions of uniform charge density is the gradient of a pressure effec-
tively uncouples the bulk fluid mechanics from the electromagnetics. The inviscid equations of motion
are as given in Sec. 7.8, with § as defined by Eq. 2. Thus, in the bulk, vorticity is conserved by a
surface of fixed identity, and Eqs. 7.8.10 and 7.8.11 determine the velocity and pressure of motions
initiated from a state of zero vorticity.l

Planar Layer: Suppose that a planar layer is embedded in a system in such a way that the equi-
librium fields generated by the space charge are x-directed, as shown in Fig. 8.14.1. Because the
following comments are general, for the moment consider the layer to have an equilibrium uniform
translation in the z direction with velocity U. With § defined by Eq. 2, the pressure follows from
Bernoulli's equation, .Eq. 7.9.4, as

p () = - 2 0% - qo_ + T - pex
P = po(x) + P' (XQY;z:t); 3 3 (3)
p' = oG + U 500" - q@'

1. The piecewise uniform approximation used here is developed in various geometries by M. Zahn,
"Space Charge Coupled Interfacial Waves," Phys. Fluids 17, 343 (1974).
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where primes indicate the time varying perturbation. A hybrid
perturbation pressure is now defined,

w' = p' + qd' (4)
It follows from Eq. 3 that m is related to the velocity potential
by

= 3o - k)0 (5)
Thus, T now has the same relationship to the velocity potential
as did § in Sec. 7.9 (Eq. 7.9.6). Here, as in Sec. 7.9, ©

satisfies Laplace's equation. Thus, the pressure-velocity
relations of Table 7.9.1 apply with § -+ f.

Fig. 8.14.1. Uniformly charged planar

On the electrical side, Poisson's equation must be layer of charge conserving fluid.

satisfied at every point in the bulk. However, because ps is
constant, the equilibrium field equilibrates the charge density in Poisson's equation and perturbations
in the potential must satisfy Laplace's equation. Thus, fields take the form

~ j(wt-k y-k z) dE dé
= y z°, _°_.49. = - —2 (6)
¢ =0 (x) +Red e 5 e - E‘l; E, =

A

where the flux-potential transfer relations of Table 2.16.1 apply to the perturbation, ®.

Boundary Conditions: The electromechanical coupling occurs in the regions of singularity between
layess of uniformly charged fluid. Interfacial boundary conditions representing the mechanical equa-
tions come from continuity, which requires that

9, = 0k | %)

and stress equilibrium. The charge density has a step discontinuity at the interface, but there is no
surface charge. Further, there is no discontinuity in the permittivity at the interface. Thus, the
surface force density, represented by the first term on the right side of Eq. 7.9.6, is zero. For
layers of charged aerosol, it is appropriate to ignore the surface tension, so the boundary condition is’
simply

'ﬁﬂ p]] =0 (8)

In view of Eq. 3, this condition 1s represented by its x-component evaluated to linear terms on the inter-
face at x = § (say) to give

ok, - pel €+ (7]~ [ae] =0 9
where E, is now the equilibrium electrical field evaluated at the unperturbed interface.

The potential must be continuous at the perturbed interface. Because there is no surface charge

and no discontinuity in permittivity, it is also true that E Eoﬂ = 0, so this condition requires that

[8] =o (10)

Because there 1s no surface charge even on the perturbed interface, a further boundary condition reflect-
ing Poisson's equations is that'ﬁ-ﬂ 56§" = 0, so this condition requires that

[al€+elel=0 - a1)

where Eq. 6 is used to replace deoEo/dx by (q). The four boundary conditions, Egs. 7, 9, 10 and 11, are
evaluated at the unperturbed position of the interface.

Stability of Two Charge Layers: As a specific example, consider the motions of the layers shown
in Fig. 8.14.2. In the bulk, the mechanics in each layer is represented by Eqs. (c) of Table 7.9.1
with p + fi:

c 1 aC.

f 1o -coth(ka) sinh(ka) A
= 2 . (12)

d -1 Ad

q m coth(ka) vx
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[.ﬂe- 1 [ A€

—coth(kb) st || Yx
jwey,
=— (13)
f "1 Af
f 1ok (k) coth(kb) v,
. . L
Similarly, the fields follow from Egs. (a) of Table. 2.16.1;
Fécq [ —-coth(ka) . — 1 $°-
X sinh(ka)
=k (14)
Ad —1 Ad
e — coth(ka) || ¢ Fig. 8.14.2. Fluid layers of different
x sinh(ka) .
L L dL J uniform charge and mass densities
- r 1 U A have an interface, d-e, and are
ae _ ze bounded by rigid electrodes.
e, coth(kb) SInh(kb) o
=k (15)
Af -1 Af
Lex Lsinh(kb) coth(kb) LQ.J

Boundary conditions at the top electrode are

6; =0 (16)
¢ =0 17)

at the interface are Eqs. 5, 7, 8 and 9:

oi = 92 = uf (18)
[E, (a,-q,) - 8(0,-0,)1E + (A%-4%) - (,8%-q,8%) = 0 (19)
4 -8 =0 (20)
(q, - q)E+e @ -8 =0 (21)

and at the bottom electrodes are

Af
Vx =0 (22)
3t =0 (23)

It is a simple matter to substitute Eqs. 16-18,20,22, and 23 into the bulk relations. Substitution of
the resulting Eqs. 14b and 15a into Eq. 21 then shows that

’ ~(q,-q,)€
~d - a ‘b
B eok[coth(ka)+ coth(kb)] (24)

¢ = 3®

The force-equilibrium boundary condition, Eq. 19, is finally evaluated using Eqs. 12b and 13a and Eq. 24
to obtain the dispersion equation

(qa - qb)z

Eok[coth(ka) + coth(kb)]

2
G [P coth(ka) + py coth(kb)] = glpy=p,)+E (a,-q,) + (25)

Remember that E, is the equilibrium electric field evaluated at the unperturbed position of the inter-
face. The equilibrium fields imply that the voltage V, is related to E, and the charge densities by
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2 2
Vo qbb - q.a

B " tve T 2_(ath) (26)

The last "self-field" term in Eq. 25 is positive regardless of the relative charge densities, and
hence tends to stabilize all wavelengths. However, for short waves (ka >> 1 and kb >> 1) its contribu-
tion is negligible compared to the gravitational and "imposed field" term. Thus, a necessary and suf-
ficient condition for all wavelengths to be stable is that the first two terms on the right in Eq. 25
be positive,

8o, - p) +E (a, - q) >0 @7)

The static arguments used in Sec. 8.4 lead to a similar condition, Eq. 8.4.11, because instability is
incipient at zero frequency.

If the inequality of Eq. 27 is not satisfied, Eq. 25 shows that the growth rate of instabilities
increases linearly with the wave number. Actually, there is a wavelength for maximum rate of growth
that would be predicted if the model included effects of viscosity (which come into play at short
wavelengths) or recognized the finite structure of the discontinuity in charge density.

The model of a charge density that is frozen to the fluid is of course relevant only if the
processes described take place on a time scale short compared to the migration time of the charged
particles. To what physical situations might the model apply?

Suppose that the electromechanical waves are of interest and V, is adjusted to make E; = 0. For
a fluid of uniform mass density (p, = Py = p), according to Eq. 25, short waves have the frequency

Iqa - qbl
«Aeop

(Note that this is a reciprocal electro-inertial time.) For particles having charge q, number density n
and mobility b, the self-precipitation time due to migration is To = €5/nqb) (Eq. 5.6.6). The frozen
charge model is valid if the electro-inertial frequency given by Eq. 28 is high compared to the recipro-
cal of the self-precipitation time. That is, for |qa-qb7 = nq, it is valid if :

W =

(28)

1 Jeolp
wTe =33 >> 1 (29)

The summary of typical mobilities given by Table 5.2.1 makes it clear that the model does not apply to
ions in a gas. However, it could apply to charged macroscopic particles in air2 and to ionms in
liquids.3,4 1In fact, as a consequence of the electrohydrodynamic instability that prevails when Eq. 27
is not satisfied, the electrically induced convection can be a dominant charge transport mechanism.

The effect of the instability on transport of an aerosol is demonstrated by the experiment shown
in Fig. 8.14.3.7 Generated by dry ice immersed in water, the aerosol passes from left to right as a
layer, bounded from below by an electrode and from above by clear air. Thus, the configuration is
essentially that of Fig. 8.14.2 with the upper region uncharged. The aerosol is negatively charged
by ion impact at the left. From the picture center to the right, the layer is subjected to a vertically
applied electric field. In Fig. 8.14.3a, the applied field is upward and hence the configuration is
stable. Some migration is observed, but little convection. In Fig. 8.14.3b, the field is reversed.
Electrohydrodynamic instability is apparent in its contribution to the transport of charge out of the
gas stream. For this experiment,v€,/p/2b > 10, so effects of convection are expected to be important.

2, R. S. Withers, J. R. Melcher and J. W. Richmann, "Charging, Migration and Electrohydrodynamic
Transport of Aerosols," J. Electrostatics 5, 225-239 (1978)

3. P. K. Watson, J. M. Schneider and H. R. Till, "Electrohydrodynamic Stability of Space-Charge-
Limited Currents in Dielectric Liquids," Phys. Fluids 13, 1955 (1970).

4., E. J. Hopfinger and J. P. Gosse, "'Charge Transport by Self-Generated Turbulence in Insulating
Liquids Submitted to Unipolar Injection," Phys. Fluids 14, 1671 (1971).

5. R. S. Colby, "Electrohydrodynamics of Charged Aerosol Flows," B.S. Thesis, Department of Electrical
Engineering and Computer Sciences, Massachusetts Institute of Technology, Cambridge, Mass., 1978.
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(a)

A e W , bt
(b)
Fig. 8.14.3. Aerosol passed through ion-impact charging region at left and
into region of applied electric field from the center to the right.
The aerosol is charged negativ@ﬁf (a) Stable configuration with

applied field directed upward. (b) Unstable configuration with ap-
plied field reversed.

8.15. The z Pinch with Instantaneous Magnetic Diffusion

The model exemplified in this section pertains to the MQS dynamics of electrical conduction in the
opposite extreme of that considered in Sec. 8.12, There time scales of interest were short compared to
the magnetic diffusion time, so that the magnetic flux linked by a surface of fixed identity was con-
served. In the opposite extreme considered here, the diffusion of magnetic field on the time scales of
interest is instantaneous. In the magnetic diffusion equation, Eq. 6.2.2, the induction and "speed-
voltage" terms are now negligible. That is, the magnetic diffusion time Ty = uo? is short compared to
times of interest and the magnetic Reynolds number Rm = Yolv is small (Eq. 6.3.9).

In this limit of instantaneous magnetic diffusion, the effect of the material*geformationqpn the
magnetic field comes from the heterogeneity of the conductor. The distribution of J and hence H is
determined by the geometry of the conductors. This is best emphasized by dealing with the current
density rather than the magnetic field. Because Rm << 1, the effect of motion on the current density
is ignorable. Thus

J = ok (1)

It follows from the law of induction, Eq. 6.2.3 with TmlT << 1 and Rm << 1, that

-+
Vx(%)==0 )
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In the MQS approximation, the current density is also solenoidal:
vi=o0 (3)

->
This is insured by Ampére's law, which represents J in terms of a "vector
potential" which happens to be the magnetic field intensity:

F-vxi (%)

In regions where 0 and U are uniform, it follows from Eqs. 2 and 4 and
the solenoidal nature of B that

i (5)
which is of course the limit Tj/T << 1 and Ry << 1 of Eq. 6.2.6.
Liquid Metal z Pinch: The column of liquid metal shown in
Fig. 8.15.1 initially has a uniform circular cross section and
carries a longitudinal current density, ,, that is uniform over this

cross section,

J = Jo'Iz (6)

Thus, by contrast with the perfectly conducting pinch of Sec. 8.12
where the current is on the surface, the equilibrium magnetic field
has completely diffused into the conductor. It assumes the linear

distribution consistent with Ampére's law and Eq. 6: Fig. 8.15.1. Column of liquid
metal has static equi-

Jor - librium with £ = 0 and
> - ie r <R uniform axial current
H= ) )] density.

42,

i >
2r 0 r>R

Static equilibrium prevails because the radial pressure distribution, p(r), just balances the associated
radial magnetic force density and surface tension surface force density. With p defined as zero in the
air surrounding the column,

Sl 202 g2 .Y
p--4qu°_(r 'R)+R ®)

An experiment demonstrating the dynamics to be described (Ref. 2, Appendix C) makes use of a
liquid jet of mercury. In the model now developed, the longitudinal streaming of the jet is ignored.
Instabilities exhibiting a temporal growth here can be displayed as a spatial growth as a result of the
streaming. Such effects of streaming are taken up in Chap. 11.

Bulk Relations: With the vector potential A-H and B + 3, the situation is formally the same as
described by Table 2.18.1. Axisymmetric perturbations from this static equilibrium now considered can
be described in terms of one component of the magnetic field, H = ﬁe(r,z,t)Ie. Here, Hgy = A/r and in
terms of A(r,z,t), the perturbation current demsity is

E

->
i, (9

>
J = -

=
R~
Q)
H|:>

i+
r

Q|

The axisymmetric solutions of Eq. 5 in cylindrical coordinates are discussed in Sec. 2.19. Solu-
tions are of the form of Eq. 2.19.10 with B -+ 0:

~d rJl(jkr)

A= He -Tl-(?m (10)

That is, the perturbation current density in the bulk is uncoupled from the mechanics and determined by
the geometry of the interface, which will determine the coefficient Hg.

By contrasc, the mechanics is bulk coupled to the field distribution. The strategy in Sec. 8.14
was to represent the electromechanical bulk coupling in terms of a force density that was the gradient
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of a pressure. Essentially, this attributes the coupling to interfaces. Here, part of the force density
is rotational, so that matters are not so simple. It follows from Eqs. 6 and 7 that

2
-F> _ ﬁ L Hy (/o‘r > + -3' uo c/or -> + ../? >,
=Jx UH =71 x 5 1 bil, X U H (11)

Thus, in view of Eq. 9, the force equation for the fluid becomes

> A A
v _ ‘/ouo T, - Yo
p T + Vr = - — i T=0p + 5 (12)

where the part of the force density that is the gradient of a pressure is lumped with the perturbation
p'. Effects of gravity and viscosity are not included in Eq. 12. What is on the right in the force of
Eq. 12 is the rotational part of the magnetic force density.

Because of this "one-way" coupling of the field to the fluid, it is necessary to rederive what
amounts to the transger relations,for the fluid. The r and z components of Eq. 12, as well as the con~
tinuity condition V.v = 0, give three relations for the mechanical perturbations:

f Jbqu

A d
jwev, + g = - % 13)
jwp%, - jkft = 0 (14)
1d , .. o
Tar @9 -3k, =0 (15)
Elimination of Gz between Eqs. 14 and 15 gives an expression that can be solved for f,
-wp 1d o
ft ~ 5 T ar (rvr) (16)
jk
Substitution of this expression into Eq. 13 gives
2/\ A A 2 N
ST N L L0 an
2 dr 2 r wp T
dr r

In the absence of -the bulk coupling, these last two expressions could be used to derive the pressure-
velocity transfer relations of Table 7.9,1. Added to the homogeneous solutions of Eq. 17 (that comprise
these transfer relations) is now a particular solution satisfying the equation with Eq. 10 substituted
on the right. Substitution and recognition that J,(jkr) satisfies Eq. 2.16.19 with m = 0 shows that a
particular solution is

ad
oMokl i
WrJO(JRr) (18)

where Eq. 2.16.26c has been used. Of the two homogeneous solutions, the one that is not singular at Ehe
origin is Jy(jkr). The linear combination of particular and homogeneous solutions that makes Gr(R)=Gr
is

. ~d . .
. J; (3kr) ) AT M RJO(JkR)Jl(Jkr)
Ve T I GRR) T 2upJ, (§KR) J, (GkR)

- rJo(jkr) (19)
Thus, in view of Eqs. 12-and 16, the amplitude of the perturbation pressure is

. ~d . .
A _wp Jo(Jkr) Gd ) UZ”oHe JkRJO(JkR)
P=% T GRR) 't T 25kI GRR) I GkR)

Jo(jkr) - 2Jo(jkr) + 2jerl(jkr) (20)

Boundary Conditions: The effect of the boundary condition on the distribution of current density,
and hence magnetic field, is represented by the condition that at the interface, n.J = 0. To linear
terms, with R written in terms of £(z,t) (Eq. (e) of Table 7.6.2),

3+ ke =0 (21)
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The radial current demsity, J,., is substituted into this expression using Eqs. 9 and 10 to show that

/\d o)
Hy = -J,&

This condition represents the effect of the mechanics (geometry) on the field.

The return effect of the field on the fluid is taken into account in writing stress equilibrium for
the interface. Note that there is no singularity in the magnetic force density at the interface. That
is, there is no surface current and no discontinuity in magnetizability of the material. Hence, the mag-
netic surface force density, H T; n,, makes no contribution to the stress equilibrium, Eq. 7.7.6.
Because the fluid surrounding thejcolamn is of considerably lesser density than the column, the perturba-
tion pressure, pC, is ignored. Thus, the jump in total pressure evaluated at the perturbed position of
the interface is balanced by the surface tension surface force density, Eq. (f) of Table 7.6.2:

2
-{-%hoé[(R+€)2-R2]+%+pd}=Y[-%+%+Z—-§-l (23)
4 R z

By design, the equilibrium part of this balance cancels out. In terms of complex amplitudes, the perturba-
tion part is

3 uo R - 80 = L - aw’ig (24)
e R

Evaluated using Eqs. 20, 22 and the continuity condition Gg = jwé, this expression becomes the dispersion
equation

2
S = - - -1+ ()2 - 1) (25)
2 |

o2 B
Y T L

Rayleigh-Plateau Instability: The normalized frequency given by Eq. 25 is shown as a function of
wave number by Fig. 8.15.2 with the magnetic pressure uo(uéR) /2 normalized to the surface tension pres-
sure Y/R as a parameter. Negatives of the quantities shown are also solutions. Note that even in the
absence of an axial current, perturbations kR < 1 (wavelengths longer than 2mR) are unstable. Any per-
turbation results in major radii of curvature that differ in sign. For a region that is necking off,
the curvature associated with the axial dependence tends to restore the equilibrium whereas that caused
by the circular cross section of the column tends to further neck off the column. For perturbations
having wavelength A > 2TR, the latter wins and the equilibrium is unstable. The wavelength for maximum
rate of growth, given by kR = 0.7, can be used to give a rough prediction of the size of drops formed
from a liquid jet. According to the linear theory, a drop having radius r, would have a volume equal to
that of one wavelength of the jet, TRZ = 4/3(ﬂrg).

Fig. 8.15.2

Normalized frequency
w = w/pR3/y as a
function of wave num—
ber., =--— wj, — Wr.
The parameter is
Jgu°R3/2Y.
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z-Pinch Instability: The general nature of the pinch instability is qualitatively similar to that
found with the flux conserving pinch of Sec. 8.12. Because the current through the column must be con-
served, both the current density and the magnetic field intensity in the fluid adjacent to the inter-
face go up wherever the column tends to neck off. The result is an inward magnetic force density that
tends to further encourage the necking off. Unless wavelengths are sufficiently short to be stabilized
by surface tension, they are unstable. According to the model, it is only the inertia of the column
that limits the rate of growth of the instability.

Finally, is the instantaneous magnetic diffusion model appropriate for the description of a mercury
column having a_radius of 1 cm or less? From Eq. 25 and Fig. 8.15.2 the frequency can be taken as of
the order of VY/pR3. For the approximation to be justified, the product of this frequency (or growth
rate) and the magnetic diffusion time (based here on the column radius) must be small:

202 R
WwrT = .u (26)
m p
Typically, this number is less than 10_3.

The major electromechanical effect that would be experimentally observed but not accounted for by
this model is magnetic damping.

8.16 Dynamic Shear Stress Surface Coupling

It is a straightforward process to include the effects of viscosity in the piecewise homogeneous
models developed in Secs. 8.9-8.15. The fluid mechanics is represented by the viscous diffusion
transfer relations of Sec. 7.19 rather than the inviscid pressure-velocity relations of Sec. 7.11. With
the viscosity come additional boundary conditions. At an interface, not only is the normal velocity
continuous, but so also is the tangential velocity (Eq. 7.7.3). Also, the shearing stresses acting at
an interface, Eq. 7.7.6, are not automatically balanced. In Secs. 8.9-8.15, the interfacial stress
balance is for interfaces free of shearing surface force densities. Thus, any of these examples have
stress balance equations in directions tangential to the equilibrium interface that are identically
satisfied.

In this section, the example treated not only illustrates how viscosity is taken into account in
piecewise homogeneous systems, but also involves an electric shearing surface force density. Hence, the
viscous shear stresses are necessary for the formulation of a self-consistent model.

A highly insulating liquid, such as hexane, has a free surface which is bounded from above by a
gas, as shown in Fig. 8.16.1. Perhaps by means of a very small radioactive source, some ion pairs
are provided in the bulk of the liquid. By means of a potential applied between the planar electrodes,
half of this charge is swept to the interface where it forms a monolayer of surface charge that shields
the electric field from the liquid; thus, 0, = € ;E . Subjected to a tangential electric field, common
interfacial ions migrate relative to the liquid at a rate that is negligible compared to that due to
convection. A good model pictures the charge as frozen to the liquid interface. What are the modes
of motion characterizing the adjustment of the inter-
face to a perturbation field?

Because the fluids to either side of the inter- X
face have uniform permittivities and no free charge -
density, the electromechanical coupling is confined IEo
to the interface. In the following, it is assumed i

-}1;lgff;fl.-..- B

that the depth of the liquid and the distance to the
upper electrode from the interface are large compared
to typical perturbation wavelengths on the interface.

- Static Equilibrium: With ‘the interface flat and Fig. 8.16.1.
v = 0, the electric field is

Cross section of liquid-air inter-
face supporting surface charge density
> o7 Op. Charges are modeled as frozen to
Eolx T % x>0 the liquid.

° ¢

3 x <0

>
E =
0

and the pressure balances the gravitational force density in the liquid with a jump at the interface to
equilibrate the surface force density eOEg/Z:

- ;5 x>0
S =-p = (2)

XX 1 2
pgx + > EOEO- I x <0
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Bulk Perturbations: With the perturbation electric field represented by & = -V@, the flux-potential
relations describe the fields in the bulk regions. Application of Eqs. (a) from Table 2.16.1 in the
limit (kA) > «© gives

Ad 2d  .e ~e
e = kd; e = -k¢ (3)

for the regions above and below the interface respectively. Because the system is invariant to rotation
about the x axis, there is no loss in generality if perturbations are taken as independent of z; & =
Re exp j(wt - ky).

For the half-space 95 liquid, the mechanical perturbation stress-velocity relations are given by
Eq. 7.19.19, where Yy = Nk% + juwp/m,

“e YV

I\e

8 x N Gy tk) -jnlyy - B[ 9
= 4)

[ (g - k) nly, + k) || ¢¢

vx iy v v

Jump Conditions: Each of the laws prevailing in the bulk must be consistently represented in the
highly singular neighborhood of the interface. The charge forms a monolayer, but not a double layer,
and hence consistent with the irrotational nature of E is thg condition that its tangential component
is continuous. In writing this condition, note that ¥y = jwf where A is given in terms of £ by Eq. (a)
of Table 7.6.2:

~ JE
d _2e _ _ -~ 0ae
" -0 = - 9 (5)

The remaining electrical laws are charge conservation, Eq. 23 of Table 2.10.1, and Gauss' law. Together,
these require that

aof -
30+ Uy %) = 05 o = R [ek] (6)

To linear terms, Gauss' law and conservation of charge are then represented by

Ad -] A€
w(eoex - Eex) - kcovy =0 N

For the mechanical jump conditions, continuity of the velocity components does not enter because
the contributions of the upper fluid to the stress equilibrium is negligible. Stress equilibrium,
represented by Eq. 7.7.5, includes the normal surface force density due to surface tension, Yy (given
by Eq. (d) of Table 7.6.2):

[[Sij:ﬂ ny + [IT;]] ny - Y(V-i‘)nlL =0 (8)

Physically, the x component of this expression represents (to linear terms) the balance of stresses
normal to the distorted interface. Note that the total normal stress, Sixy, is the sum of an equilibrium
part and the perturbation:

S.. =1 +-l € E2
oo

xx 3 + pgx + Re Sxx(x) exp j(wt - ky) 9

Thus, because 8 G:/jw, the x component of Eq. 8 is

ae Gx d 2. Y%
“Sex ~ P8 Jo +eE@E - k™Y Jo = 0 (10)

What is new is the shearing component, the y component, of Eq. 8. In linearizing this expression,
remember that S,., also has an equilibrium part. Above the interface, it is -I[, while below the inter-
face it is -II +y¥ SOE% + pgx (Eq. 2). Thus, to linear terms, ﬂ:Syy] ny = [-T - (-T+ % EOEg)](-BEIBy)
and this adds to one of the two terms resulting from the electric stress contribution. Also, &_ = jk§,
so the shearing component of the stress equilibrium reduces to y

-5 —€E25§+jeEk$d=0 (11)
yx oo W oo
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Dispersion Equation: By using Eqs. 3, the compopents (ex,ex) can be eliminated from the electric

jump conditions, Eqs. 5 and 7, and these solved for 9%,

. ~e N
- +

~d JSEOVX Govy

w(eo + €)

This expresses the effect of the mechanics on the fields.

(12)

The self-consistent electromechanics is now represented by the two stress conditions, Eqs. 10 and
11, written in terms of the velocity amplitudes (G%,Oe). The str;gs amplitudes are elimingted in favor

of these variables using Egs. 4, while ég is written in terms of &
eliminated using Eq. 12. Thus, the two expressions are

by using Eq. 3a, and )

[~ 2
vy JEKE 0E k
- (- (ogHkPy) Ao 2 Nty - k) + ——
e+ 1+=)
€ €
L 0 o
- 2
€ _kE o kE
-in(yy - K - —}—"; Jlinty + 0+ —2—%
w(l + ) w(l + )
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[

- r

=

in turn

(13)

Physical insights are more easily obtained by adding j times Eq. 13b to Eq. 13a, and writing both equa-
Use is made of the defini-

tions (each multiplied by w) in terms of the variables ¥¢ and (V¢ +

tions Oy = €,E, and Y§ = Kk + jwp/n: x
~
fw? ) 2 2
- 11:9 + dnkw - j(pg + Ky) + je kE_| [-2nkw]

i
[24nkw] ntyy + Ko + ———
1+ =

L €
[o]

i93).
ar .

A€

v

X
-05+39°
x 7y

[ ]

0

(14)

The dispersion equation is obtained by setting either the determinant of the coefficients from Eq. 13

or from Eq. 14 equal to zero.
approaches zero, two modes can be distinguished.
setting the diagonal terms to zero.
terms, respectively, are then

1/2
2 2.2
_ (20K ) - |k 2, 2, <2nk
w—j(p)iwo, w, = (pg + kY keoEo) p)
2
2/3
A3 i - 00 k

w=w|[E+h 0 2 |———
c 2 2 c ’\/n—p (€o+€)

But, written in the second form, it is clear that as the viscosity
These have limiting dispersion equations given by
The frequencies resulting from the upper left and lower right

(15)

(16)

The modes can be distinguished in this way only if the frequencies given by Eqs. 15 and 16 are dis-

parate.

In general, the higher order dispersion equation must be solved.

When Eq. 15 is satisfied, Eq. 14 shows that 0: = jG:, and similarly, if Eq. 16 holds, then the
vertical motions are dominated by the horizontal ones, Gg =~ 0, Thus, the dispersion equation (Eq. 15)
is identified with gravity-capillary like waves coupled to an electric field in much the same way as

discussed in the latter part of Sec. 8.,10.

The main effect of viscosity on the gravity-capillary modes is damping, represented by the imagi-

nary term in Eq. 15.

Perhaps a surprising feature of these modes in this low-viscosity limit is that
the electric field has the same destabilizing effect as if the interface were perfectly conducting.

For

example, the condition for incipient instability is the same as given by Eq. 8.10.21, even though that

result was derived for an equipotential interface.

In this low-viscosity limit, the surface charge on

the insulating interface is convected sufficiently rapidly to maintain the interfacial potential con-

stant.

The electromechanical oscillations or shear waves, represented by Eq. 16, involve interfacial

dilatations.
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electric repulsion forces, much as if there were an elastic film on the interface. Because this elec~
trical "film" is coupled to the inertia of the liquid below through the viscous shear stress, an initial
horizontal dilatation of the interface results in oscillations. The oscillations are highly damped
because the electrical "spring" is coupled to the "mass" only through the viscous "damper." The fre-
quency We typifies how rapidly nonuniformities in a charged interface can adjust, so that the interface
is free of electrical shear stress. The motion stops when the interface is an equipotential.

SMOOTHLY INHOMOGENEOUS SYSTEMS AND THEIR INTERNAL MODES

8.17 Frozen Mass and Charge Density Transfer Relations

A static EQS equilibrium with mass density Po(x) and charge density qq(x) continuously varying with
vertical position is shown in Fig. 8.17.1, The equilibrium vertical gravitational and electrical force
densities are balanced by a vertical gradient in pressure. It is the objective in this section to
describe small amplitude perturbations from this equilibrium.

The mass density and charge density are conserved by a fluid element of fixed identity,

Do _ . Pt

.- %
pe - % B -0 & 1

The fluid has uniform permittivity € and it is inviscid.

”,?, b"cfn"

Fig. 8.17.1

Planar layer of fluid with vertical
inhomogeneities in mass and charge
densities.

L e I
pB¢B eB X T

It will be recognized that this system is a generalization of the piecewise homogeneous systems
considered in Secs. 8.9 and 8.14. In principle, any distribution of P, (x) and qo(x) could be approxi-
mated by "stair-steps" representing stratified layers, with uniform densities, as illustrated in
Fig. 8.17.2. The transfer relations for the homogeneous layers might then be used to represent the
approximated system. With each interface goes a pair of modes, so
that the piecewise homogeneous approximation represents the dynam-
ics in terms of twice as many modes as interfaces. In the limit
of a smooth distribution, an infinite number of modes are brought
into play. Hence, it should come as no surprise that associlated
with the smoothly distributed inhomogeneities are an infinite
number of "internal" modes. The objective in this and the next
sections is to explore an approach that is an alternative to the
plecewise homogeneous models.

In manipulations that follow, remember that p,, qo and E,
are functions of x. By Gauss' law, DE, = qu/€, yhere d( )/dx =
D( ). Thus, in terms of complex amplitudes and & = ¥,/jw, Eqs. 1 Fig. 8.17.2. Stair-step approxi-
relate perturbations in mass and charge density to the deformation mation to smooth inhomo-

N N geneity in p,(x) or qo(x).,
p=-M@p 8 §=-0q)t (2)

The additional statements represent force balance, mass conservation, that the electric field is irrota-
tional and Gauss' law. These are unraveled so as to obtain four first-order differential equations in

(FgsDr0,685) .
The z-component of the force equation can be solved for 92 to obtain

¢ =K
V2 © wp, : @3)

where the perturbation electric field & = -V and # = $ + q°¢ Thus, the continuity equation, V.¥ = 0,
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requires that

2
e _koa k
DE = 2= £ (%)
wp
o
In view of Eqs. 2, the x component of the force equation requires that
_ 2 A ~
DR = (w'p, - EDq  + gDp )& + (Dq )@ )

where &, is replaced by -D¢ and p represented in terms of f. That & is irrotational is also explicitly

stated,
£

pd = - X (6)
F
Finally, Gauss' law, together with Eq. 2b, gives
A ~ A 2 2 2
D(eex) = q+ jkeez =-qug - ked (7)

Given the amplitudes (€B,35,$B,ea§) at the lower extremity of the layer (say x = 0), these last four

equations can be numerically integrated and the amplitudes evaluated at the upper extremity. Thus the
relations

- - - -

£* g8
a 8
RN ®)
> i
e’e‘i 6824

are obtained. For example, to compute the Bji's, the equations are infegrated with <§B,§B,$B,ea£) =
(1,0,0,0). Then, (By3,B12,B13,B;,) are the computed values of (£%,p%,0%,£8%), respectively.

Transfer relations in the form

o .
ﬁa E(!

8 B
P e ©
e 8

X
eeb @8
[ X L

follow by manipulating Eqs. 8. With the 4x4 matrix Cj; divided into four 2x2 submatrices, transduction
between electrical and mechanical surface variables is represented by the upper right and lower left
submatrices. In the absence of coupling (say, with q, = 0), these entries should vanish. In this same
limit, the upper left submatrix relates the pressure to the velocity amplitudes and these relations play
the role of those derived in Sec. 7.9. Of course, here the layer has a nonuniform equilibrium mass ‘den-
sity. Also in this limit, the lower right matrix relates the electric perturbation flux to the poten-
tials. Because the layer has uniform electrical properties, these should become the same as the 2x2
entries in relations given by Eq. (a) of Table 2.16.1.

An alternative way of expressing Eqs. 4-7 results from combining the first three of these ex-~
pressions to obtain )
k™D
A 2 N A q A
D(p,DE) + k(5 - p)E = —5— & (10)
w w

where V= EgDq, - 8Dp, and the last two to obtain

Dq &

- %8 = =~ a1)

2

This pair of second-order expressions can be used to determine (E,S) and the remaining pair of vari-
ables (f,e8,) then evaluated using Eqs. 4 and 6. The first of these expressions represents force equi-
librium between the inertial force density and the gravitational and electric force densities. The
"imposed~field" electric force demsity is on the right. The second expression is Poisson's equation.
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On the right is the perturbation space charge generated by the convection of the nonuniform equilibrium
charge density.

The driven response, spatial modes and temporal modes are i1llustrated in Sec. 8.18.

Weak-Gradient Imposed Field Model: Two approximations make it possible to obtain analytical ex-
pressions for the Cij° First, the mass and charge densities are taken as being linear functions of x.
Hence,

Py = P + (Dp)x; q = q  + (Dg)x 12)

where pm,me,qe and Dq, are constants and neither p, nor q, departs greatly from a mean value. Then,
Eqs. 10 and 11 are approximated by

kqu
iy = 528 vz Lo a3
w e, Py @
2 2.2 Dge
0 - k)% = —¢ (14)

Secondly, the field E, is regarded as largely imposed by means of external sources. Then, not
only is E, approximated by a constant, but the coupling between fluid and field, represented by the
terms on the right in Eqs. 13 and 14, is relatively weak. This breaks the electromechanical feedback
loop.

First, to determine the mechanical response, the effect of the motion on the charge distribution
is ignored in determining the potential distribution. With the term on the right in Eq. 14 set to
zero,

3 = 3% sinh (kx) _ 68 sinh k(x~A)
sinh(kA) sinh (kA)

(15)

This potential is used as a "drive" to evaluate the right-hand side of Eq. 13. By inspection, the
solution satisfying the boundary conditions that £ is £* and EP at the respective planes is

2 0 2 AB
E = l:g“ - ﬂ‘i__j, sin(yx) . {:_g + k'Dq 0 -I sin y(x-A)
wzpm(kz_,_Yz) sin(Yh) w2 pm(kz N Y2) J sin(YA)

(16)

k2D
+ e aa sinh(kx) _ 2B sinh k(x - A!]
h (kA
prm(kZ + Y2) sinh (kA) sinh(kA)

PO B
To find the approximate electrical response, the procedure is reversed. Given that £ is Ea and £
at the respective planes, solution of Eq. 13 with the term on the right ignored gives

2 _fasin(yx) 4B sin Y(x - A)
€= Sintd) ~ ° "~ sin(yD) an

In turn, the solution of Eq. 14 is

/\a AB
$=[$“+L}Mﬂl [@ + Pagt -ls_i_n,,k(x-Al

e(Yz + ¥2) sinh(kA) ~ . (Yz + kz)J sin(YA)
- qu ga sin(yx) _ EB sin Y(x - A) (18)
ECYZ + k2) sin(yA) sin(YA)

where coefficients are determined by inspection so that the boundary conditions on ¢ are satisfied at
the respective planes. The covariables (fi,e€ ) follow from Eqs. 4 and 6 and are evaluated at the
respective boundaries to give the transfer reiations, Egqs. 9, with
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w me
Cll = —C22 = k2 cot (yhd)
wzme
C.. =-C , = _Er_;______
21 1 k® sin(YA)
qu
C13 = --C24 = -C3l = 042 = szz- [k coth(kA) - vy cot(yA)]
Y
Dq (19)
C = ~C = =C = = € Y - k
14 23 32 41 k2 + 2 |sin(Yd) sinh(kA)
Y
C33 = —C44 = -gk coth(kA)
€k
€34 = €43 = STonGd)

Although the weak coupling approximation is sufficient to give the mechanical response to an elec-
trical drive or the electrical response to a mechanical drive, the electrical-to-electrical response,
represented by C33, C34, C43 and Cy4y is devoid of any of the electromechanics. Electromechanical
effects on the transfer between electrical signals depend on there being a "two-way" interaction.

Reciprocity and Energy Conservation: That some coefficients, Cis, in the transfer matrix have
equal magnitudes suggests that basic relations exist between off-diagonal coefficients even with arbi-
trary gradients and fields. The frozen charge model is free of dissipation and allows for energy
storage in electrical, kinetic and gravitational forms. With variables as defined in Eq. 9, this re-
quires that the submatrix representing the hybrid pressure responses to electrical excitations is the
negative of that representing the electrical flux responses to mechanical deformations. It also re-
quires that mutual electrical and mutual mechanical coefficients are respectively negatives. The proof
is a generalization of that developed in Sec. 2.17 for a region storing only electric energy.

Incremental changes in the total electrical, kinetic and gravitational energy stored by a system
having volume V enclosed by a surface S are respectively

Sw = | ®8p.dV - ®6D-nda (20)
e Jy  f s
Sw, = f peE-cZav - § pSE.-Hda + j 08+ 6Zdv (21)
v s '
Sw =J (-§-F)8pav (22)
&y

The electrical contribution is familiar from Sec. 2.13 (Eq. 2.13.4). The kinetic statement exploits
Newton's law and the incompressibility condition to state that all work done by the electrical, mechan-
ical and gravitational subsystems goes into the creation of kinetic energy (Eq. 7.17.3). The gravita-
tional energy storage is familiar as a specialized analogue of the electric one. The scale is small
enough that gravitational self-fields are neglected and g is constant. Thus, by contrast with the
potential ¢ for the electrical system, the gravitational potential is "imposed" and is simply -§.f.

Charge migration is negligible, so the charge carried by fluid of fixed identity is conserved.
Because V-8% = 0, it follows (from Eq. 3.7.5 with 04 + q) that

8q = -Vq-62 (23)
Similarly, the mass density of fluid of fixed identity is conserved,
§o = -Vp-6¢ (24)
These expressions are now used in writing the sum of Eqs. 20-22 as
+ wg) = - § 88D -#da - § pSguﬁda - J (9Vq + qV@)-GE&V
s s v (25)
-J [oV(-3-3) + (<§-%)Vp].8E8dv
A
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where use has also been made of the relations E = =-V® and E = V(g-?). The volume integrals are con-
verted to surface integrals by first using a vector identity to contract the integrands [PVY+HYVO=V(¥?)]
and then exploiting the fact that V.8 = 0 to make the integrands take the form of perfect divergences
(VW-K = V-W§ - X.V¥). From Gauss' theorem, it follows that

6(we +ow + wg) = —§ ®6D-Ada - § [p + &q + (-§-f)p]5€-ﬁda (26)
S

The desired reciprocity relations are between perturbation quantities, now designated by primes to
distinguish them from the zero-subscripted equilibrium variables. Thus, incremental changes 6B.% and

6Z.3 on S lead to changes in the total energy given by Eq. 26 expressed up to quadratic terms in the
perturbations as

By +wy + ) = -]gs 9,68 _-hda - §(@°63' +9'8D_ + ¢'¢B") - %da
@27)

- {S[po + ‘I’oqo + (—g.?)polﬁg-.‘ﬁda - § [p' + q’oq' + qoq)' + ('E'?)O'IGE'-Hda
S

The surface S is now made one enclosing a section of the planar layer shown in Fig. 8.17.1 that
has the wavelengths 21T/ky and 2m/k, in the y and z-directions, respectively. Because 30 is x-directed,
the first term makes contributions only on the o and B surfaces. Perturbations are assumed to take the
complex—amplitude form £ = Ref exp(-jky ~ Jjkzz), where ky and k; are real. The spatial periodicity in
the y and z dir8ctions insures that contributions to the surface integrations from the second and third
terms only come from the o and B surfaces. Moreover, because the integrands of these terms are linear
in the perturbation quantities, they "average out” and make no contribution. The quadratic perturbation
terms from the last intergral, which are also periodic and hence make contributions only on the ¢ and B
surfaces, can be represented using the space-average theorem, Eq. 2.15.14:

8y + W +w) = - @%n2 - quﬁenﬁo) - 3 Re[0%500D)" - Ps@5)*)

- L Rel7 @M - 3P EH™1- § rele®P @ - offe @) 28)
L 8 ax g B

- 1 Relq®% @M - B8 EH - 3 re( DI ED” - BPEH")

With the understanding that the incremental variations are made with the equilibrium.potentials &,
held fixed on the transverse boundaries, the first terms on the right become perfect differentials,
$58Dyq * 8(®,Dygo), so these equilibrium terms are moved to the left side of the equation.

In the remaining terms, it is now assumed that all complex amplitudes are real. It is entirely
possible to~grg§egd y%thout making this assumption by treating the real and imaginary parts of the
variables (£%,EP,6%,3") as independent. However, there is little to be learned from this generalization
because it is obvious from Eqs. 4-7 (which, provided w? is real, have real coefficients) that the co-
efficients Cii are real. Hence, given that the amplitudes (EG,EB,QG,QB) are real, the amplitudes of the
conjugate variables are clearly real.

In the forth and sixth terms of Eq. 28, Eqs. 2 are used to substitute
o 36F = -0 Dq E6F = - L §(0 Dq E2) (29)
o o do 2 o ‘o

B DBE = - (F-Hrvp ESE = - S61¢-E- oo ) 30)

respectively. The second equalities are based on recognition that if variations in the £'s and Dy's
result in variations of Dq, or Dp,, the latter can be neglected, because the terms in which they appear
are already quadratic in the perturbations. With the substitution of Eqs. 29 and 30, the fourth and
sixth terms also become perfect differentials and are therefgre moved to the left side of Eq. 28,

Finally, in the second term on the right the transformation ¢65x = §(PDy) - DyS8® is made and the perfect
differential moved to the left-hand side. Thus, the energy statement becomes
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ow' = - %(?rasga - 768y + %(iﬁd&“ - 55658) (31)

where
' s 1050 3<8. 1 " "
WS 4w+ 3@ - 358 - e EM? - bty
-1t pPEH? - P+ @R - ofad
and
T=p +.q05

Now, with the assumption that w' is a state function w'(éa,EB,5a,58), the incremental change Ow'
can also be written as

swt = B gE% 4 B 6E® 4 2 3% 4 ?%B- Y (32)
13 13 99 L)

Because the variables (E“,EB,6“,5B) are independent, it follows from Eqs. 31 and 32 that corresponding
coefficients must be equal:

~ ' ~ ' ’

Tr°‘=--2-2glm; 78 - 2% (33)
xa _, 0w =B _ _, ow

TPt T oo

The reciprocity relations follow by taking cross—derivatives of these relations. For example, in view
of Eqs. 33a and 34b together with Eq. 9,

~B
~a 3D
an“ x
e 2C4 = Cy (33)

Thus, if Cij is broken into four 2x2 matrices K, L, M and N such that
Cij = (36)

where K and N are each antisymmetric and L is the negative of M.

The next section exemplifies the implications of the transfer relations, both found by numerical
integration and approximated by the weak-gradient imposed-field model.

8.18 Internal Waves and Instabilities

The frozen charge and mass density transfer relations derived in Sec. 8.17 are now applied to the
study of space-charge gravity waves excited in the sinusoidal steady state from transverse boundaries.
Also discussed are the temporal and spatial modes. Instability conditions are exemplified and a general
proof given that the principle of exchange of stabilities is satisfied. With the objective of both
gaining physical insight for this type of dynamics and for ways in which it can be represented, two
models are developed and compared. First, the weak-gradient imposed-field approximation of Sec. 8.17
is used to obtain an analytical representation of the response. Then, as a recourse that is applicable.
for an arbitrary distribution of charge and mass density, numerical integration is used to determine
the response. Because one of these representations depends on numerical procedures, it is convenient
to normalize variables ‘at the outset.

Configuration: The stratified layer shown in Fig. 8.18.1 is bounded from above by fixed excita-
tion electrodes upon which a spatially and temporally periodic potential is imposed. From below, it
is bounded by a conducting rigid electrode, essentially constrained in potential to the constant equi-
librium value V,.

Normalization: To be specific about the distributions in charge and mass density, they are taken
as linear and written in terms of the constants defined in Fig. 8.18.1:
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Fig. 8.18.1

Cross section of system in
which internal space-charge
gravity waves are excited.

1
In terms of these quantities, variables are normalized such that

x =xd g =td
k = E/d :I\T = fTIquIIVO'd (2)

2

w”|v | Dq,|
2 _='0 ' e ® =8
w = 5 d ) 9|V°|

m

A A ~ ~ ~ 2
v o=9|v | d =ee, =4d |Dq|a

For other equilibrium distributions, the same normalization could be used with the quantities p, and
|qu| defined as mean values.

From the one-dimensional form of Gauss' law and the equilibrium potential boundary conditions, the
equilibrium distribution of electric field is written in terms of the normalized variables as

v || v Dq
__o 0 e _ L 1l ="e 2 1
BT TS &2 I E 7Y @

where S = lgge|d2/€|V°| represents the influence of the space charge on the imposed field.

Driven Response: Boundary conditions reflect electrode constraints on the normal motion of the
fluid and on the potential:

[ga’gb’ga,ab] = [0,0,%,0] (4)

Given the electrical excitation at the upper boundary, what is the mechanical and electrical
response of the fluid, and in particular, what perturbation pressure and normal electric field would
be expected on instruments embedded in the lower electrode? These follow from Eq. 8.17.9 as

ab a® .
- = C 3} T = C 5
9 23 7 43

In the weak-gradient imposed-field approximation, it is possible to evaluate the Cij's by using
Eqs. 8.17.19., Thus normalized, Eq. 3 becomes

.ﬁ = C = 023 = -1 ( ! - k ) . (6)
% 23 dIDd;T' K2+ Y2 sin v sinh k 2
~b

55 =C,, = Eﬁélzgl = _S_l k (7)
9 43 Iqule sinh k —
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Fig. 8.18.2. Driven response of charged layer showing prediction of weak-gradient

8.18

imposed-field model (broken line) for comparison with numerically determined
response (solid line). The response below w = 0.08 is not shown because it dis-
plays an infinite number of resonances crowded toward the origin. 1In both cases,
k =1 and Y, and Dqe are both positive or both negative so that equilibrium is
stable. The solid numerically predicted curves are for Dq./q, = 1 and S = 1.

(a) Hybrid pressure response at lower electrode as a function of frequency for
electrical excitation at upper electrode. (b) Electric flux at lower electrode.
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where

Dp_d
- 1 8Py

= + — - - 8
Y k\/ ¥ 1 Vb, 1 ®

The upper sign applies if V, and Dq, are both positive or both negative.

The lower sign is to be
used if V, and Dqe have opposite signs.

The weak-gradient imposed-field driven responses are illustrated as a function of frequency in
Fig. 8.18.2. Because of approximations inherent to this model, the electrical-to-electrical response
is no more than that of the layer without the charged fluid. This result will be refined to include
the electromechanical effects shortly. The resonances in the hybred pressure response that dominate
the picture reflect the electromechanical coupling. In this loss-free system, they serve notice that

the natural frequencies of the stable temporal modes are real and that there are an infinite number
of spatial modes having real wave numbers. The conditions for the resonances follow from Eq. 6:

sin Yy =0 vy =nm,n=1,2,:+*

®
Thus, the resonance frequencies are found by evaluating Y in Eq. 8 and solving for w,
2 V°
k“N 5 Dg, - 8Dp
w2 ——— N-= d e m (10)
2 2 v
k™ + (nm) 0 ID l
d 9e

The associated distributions, g(x), in the neighborhood of a resonance follow from Eq. 8.17.17 as
being sin(nmx). These are pictured by the broken curves of Fig. 8.18.3.

Implicit to the discussion
thus far is the presumption that N> a.

T T T T T T
8r N\
\
Ay
Br & Fig. 8.18.3
\
L - X Vertical displacement of fluid as
! a function of vertical position.
4t n=| f_ Response is shown in the neighbor-
: // hood of first and second resonances,
/ and hence represents first and sec—
r 7 ond temporal eigenmodes. Solid
/ curves are predicted numerically
ol /! | using parameters of Fig. 8.18.2,
while broken curves are weak-
gradient imposed-field approxi-
i 4 A mation.
O 1 4 L Lt L1 4 1 ' L L L PR S
-4 0 4 8 -8 -4 0 4 .8
€ &

Consider now the more general approach of numerically integrating Eqs. 8.17.4-7 to find the
transfer relations. Normalized, these equations are

pE = X

1]

w'e, 11

D1

W0, ~ME + % ° (12)
q, 12
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Db = -sd

X (13)
qu S 1,22
Dd = - TSE;T £ - SK ¢ : (14)

These expressions are applicable with arbitrary charge and mass distributions. For the specific linear
distributions, P, is given by Eq. 2, qu = qu and

v Dq q Dq gdDp
¢ = ° + € g|l—2 (x - L .1 2 _1 e _ m
VI~ Toq_ °{Da, - +36 -3 [Da, [ ~ TV [Toq] 15)

The coefficients required to evaluate the responses, Eqs. 3, follow by converting the transfer
relations of Eq. 8.17.8 to those of Eq. 8.17.9. The coefficients needed here are

Cy3 = =B4/Ds C43 = Byp/D; D = By,By, = By,By, (16)

Coefficients in the transfer relations have been normalized so that Cj; and Bjs relate normalized veri-
ables. The Byi's are determined by numerical integration of Egs. 11-11 following the procedure indicated
following Eq. 8.17.8. (Numerical integration of systems of first-order differential equations written
in the form of Eqs. 11-14 is conveniently carried out using standard library subroutines. Used here was
the IMSLIB Routine DVERK.)

For purposes of comparison, the numerically determined frequency responses are shown with those
predicted by the weak-gradient imposed-field model in Fig. 8.18.2. For the numerical case shown,
Dde/qe = 1 and S = 1, so both the weak-gradient and the imposed-field approximations are somewhat in-
valid. Note that the electrical-to-electrical response now displays the characteristic resonances of
the internal waves. The numerically determined mechanical displacement and potential distributions with
the frequency in the neighborhood of the first and of the second resonances are shown in Fig. 8.18.3.

Spatial Modes: Still in the sinusoidal steady state, these modes satisfy homogeneous transverse
boundary conditions and are needed to make the total solution obey longitudinal boundary conditioms.
(Spatial modes are introduced in Sec. 5.17.) TFor example, what is the response to a drive at some
z plane with the duct walls free of excitations?

From the weak-gradient imposed-field driven response of Eq. 6, the dispersion equation is
D(w,k) = sin ¥ = 0. This has roots that are the same as for the resonance conditions, Eq. 10. Here,
however, interest is in complex k for a real driving frequency w,

K =+ nmw (17)
T =

Under the assumption once again that A/ > 0, the dispersion equation is typified by Fig. 8.18.4. Note
that all modes have the same cut-off frequency w = 1. With w < 1, all modes are propagating, whereas
with w > 1, all modes are evanescent.

The resonances below w = 1 in the driven frequency response, Fig. 8.18.2, result from a coinci-
dence of the imposed wave number and the purely real wave number of the propagating spatial modes.

Temporal Modes: When t = 0, initial conditions are spatially periodic in the z direction, with
wave number k. What modes are to be superimposed in representing the ensuing transient? (Temporal
modes are introduced in Sec. 5.15.)

A mode £,(x) has the eigenfrequency jwn = sp. Without being specific as to the charge and den-
sity distributions, it can be deduced from Eqs. 8.17.10 and 8.17.11 together with the boundary con-
ditions that these eigenf;squencies are either purely real or purely imaginary so s% is real. Equation
8.17.10 is multiplied by &, and integrated over the cross section. The first term is then integrated
by parts to obtain

AA*
d d N d Dq ¢ &
LI | a ok 2 aook. 2 o' n°n
PoEaREL], - Io P DE DE dx - k jo(po + sz)énﬁndx = -k Io -—-:;r——-dx (18)
n n

Similarly, the complex conjugate of Eq. 8.17.11 is multiplied by kzea and integrated over the cross
section. Again, the first term is integrated by parts to obtain o

' d d d
2 A ok 4 2 ~ A % 4 A ak 2 aka
k S@nD¢n]° ke Io D@n(D¢n) dx - k'e Jo ¢n¢ndx =k Io quﬁn@ndx (19)
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Fig. 8.18.4

Complex normalized frequency as
function of real longitudinal

n=3 wave number for spatial modes in
weak-gradient imposed-~field ap-
proximation. W, s Wy ——-.
All modes have common asymptotic
frequency at w = 1, above which
they are evanescent.

4
—_—

k

The point of these manipulations is to obtain positive definite integrands and to make the right-hand
sides of these expressions negatives. Because of the boundary conditions on &, and ¢, the terms
evaluated on the boundaries vanish. Thus, the last two expressions give

d 52 218 2y 4 o K[ e 2 ag giag
(o, |08, 17 + p k7IE | ax = - =5 | IN[E |” + e(|Do)? + 1%|3|%)Jax (20)
o 8 (o]
n

This expression can be solved for the square of the eigenfrequency, si,

d la) A A AN
_kzj [/\/I‘En[2 + e(0308" 4 k286%) 1ax X
o (21)

S =

d ~ ~
[ o, CInE 12 + 1 1D ax
o

Terms on the right are real, and it thereforg follows that s2 is real. Moreover, because terms in the
denominator are positive definite, as is k2|En|2 in the numerator, it is clear that if A/ is everywhere
positive, the eigenmodes are all stable:

N=E Dq - gop, > 0 (22)

Similarly, if /V is everywhere negative, the eigenmodes have an exponential dependence, half of them
decaying and half of them growing in time.

Using the weak inhomogeneity imposed-field approximations, the eigenfrequencies follow from
Eq. 10 where this time k is a given real number. These are shown as a function of k in Fig. 8.18.5.
According to this model, in the unstable configuration ( A/< 0) the n = 1 mode is the most rapidly
growing.

It is worthwhile to make a comparative study of the discretely and smoothly stratified charge

layers. The condition of Eq. 22 plays a role relative to the smoothly inhomogeneous system that is
played by Eq. 8.14.25 for the piecewise homogeneous system of Sec. 8.14,
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Fig. 8.18.5

Weak-gradient imposed-field eigenfre-
quencies of temporal modes as a func-
tion of wave number. For AN/ > 0, all
modes are stable and purely oscilla-
tory. For /A< 0, they are either
exponentially growing or decaying
with time.



