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Problems for Chapter 8

For Section 8.3:

Prob. 8.3.1 A pair of electrodes is constructed from thin sheets separated by a thin sheet of insula-
tor. This dielectric "sandwich" is dipped into an insulating liquid having the polarization constitu-
tive law

4.
E

+ ED = 2 + E

where a and a are constant parameters. The objective here is to describe the rise of the dielectric
liquid around the outside edges of the electrodes, where there is a strong surrounding fringing field.
Assume that the applied voltage is alternating at a sufficiently high frequency so that free charge
effects are absent and effects of the time-varying part of the electric stress are "ironed out" by
the fluid viscosity and inertia. view
(a( Determine the electric field in the Top Side view

neighborhood of one of the edges under
the assumption that the dielectric rises
in an axisymmetric fashion (E = a(r), with
r as defined in Fig. P8.3.1). The right
and left edges of the electrodes (see
the side view in the figure) are suffi-
ciently far apart so that they can be
considered not to influence each other.

b(~ ) ind ((r)_
Fig. P8.3.1

Prob. 8.3.2 An insulating liquid is represented by the
constitutive law

DI = coNEI + al tanh a2IEI

where D and E are collinear and a1 and a, are properties of the fluid. The liquid is placed in a dish
as shown in Fig. P8.3.2. Shaped electrodes are dipped into the liquid and held at a potential differ-
ence Vo . The variable spacing s(z) between the electrodes is small compared to the electrode dimensions
in the x and z directions, so the electric field can be taken as essentially in the y direction. With
the application of the field, the liquid reaches a static
-. e 41i Ut&f 4 Irfile ((4 ) Fnd& - fan ressin fnr ((z) -

For Section 8.4:

Prob. 8.4.1 The configuration of Fig. 8.4.4 is altered
by replacing the magnet with a periodic distribution of
magnets. These constrain the normal magnetic flux density
in the plane x = d to be Bo cos ky. As in the example
treated, ignore effects of the self fields and of surface
tension. Assume that E = 1 at y = 0.

(a) Show that an implicit expression for E(y) is

JB
k(EC0) e-k(E-o) = ek(d-

)  oJ sin kyg(pbasinky
0,,~ ~~ g-(-,=~~-~ 

(b) Make sketches of the left side of this expression (as
a function of (E=Eo) and the right side of the expression
(as a function of ky) and describe in graphical terms how you would find (5-5o) as a function of y.
What is the significance of there being two solutions for E-Co or none at all? For what value of
JoBo-would you expect the static equilibrium to be unstable?

Prob. 8.4.2 In the configuration of Fig. 8.4.1, the lower fluid is a perfectly conducting liquid
while the upper one is an insulating gas (P << P ). Surface deformations have a very long character-
istic length in the y direction compared toad-E, so that the electric field normal to the interface in
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Prob. 8.4.2 (continued)

the gas can be approximated as the voltage divided by the spacing d-E.

(a) Show that for a given V(y) static deformations of the interface are described by

dy dy T + 0 (d_-)2 - pg((-b) = 0

where E = b at a location where V=0.

(b) Now consider the application of this equation to the special case shown in Fig. P8.4.2.
The plane horizontal electrode is of
uniform potential V. An infinite
pool of liquid to the left communi-
cates liquid to the region below the
electrode. In the fringing region,
the interface is covered by a flat
electrode. At y=0 the sharp edge
of the electrode constrains the
interface to have depth E=b. The
field elevates the interface to the
height Eo as y-+. For small ampli- :b': :.. . . . - .-
tudes g-b, determine t(y).

(c) Show that for arbitrary deformations,
the interfacial position is given Fig. P8.4.2
implicitly by the integral

e V 2

d( ; P(5) E ½ •Y- 9 (-b) 2

)]2_lo)_p(o /[1+P(a 

b

.For Section 8.6:

Prob. 8.6.1 In Prob. 7.9.2, the transfer relations are found for an annular region of fluid that 
perturbed from an equilibrium in which it suffers a rigid-body rotation of angular velocity 0 about
z axis. Based upon those results, consider now the dynamics of fluid completely filling a contain
having radius R (there is no inner cylindrical region).

(a) Find the eigenfrequencies of the temporal modes having wavenumber k but m = 0.

(b) Rigid walls cap the cylinder at z = 0 and z = k. What are the natural frequencies of the temp
modes m = 0 for this enclosed system?

For Section 8.7:

Prob. 8.7.1 Show that in the limit where times of interest are long compared to the relaxation t
e/a, Eq. 8.7.6 reduces to the linearized form of DO/Dt = 0.

Prob. 8.7.2 A magnetoquasistatic continuum conserves the free current linking any surface of fix
identity

J * = nda 0

Show that the appropriate equations for an incompressible fluid are

V v = 0

8J
af -+
t Vx(v x Jf) = 0
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Prob. 8.7.2 (continued)

P + Vp = Jx - + nV v

V x H = Jf ; V Jf = 0

where Faraday's law is used only if the electric field is required.

Prob. 8.7.3 As a particular example of the current-conserving continua from Prob. 8.7.2, the config-
uration shown in Fig. P8.7.3 consists of a layer of fluid having essentially zero conductivity in the
y and z directions compared to that in the x direction.
The walls are composed of segments, each constrained to

t. h L L iU.U illb 40
s

curren cons ant 

a uniform current density J ix throughout and an imposed

magnetic fi~d is Bo

fluid 
induced 

moves, 
by Jf 

the 

inegligible x . Assume compared that the to magnetic Bo. As field
current through any given open 

the
surface

of fixed identity remains constant.

The fluid has the electrical nature of conducting
"wires" insulated from each other and stretched in the
x direction. The "wires" deform with the fluid, and

_.LLL.JJJ LLIr J JJJ.L
might actually consist of conducting fluid columns in
an insulating fluid having the same mechanical properties.

1

Fig. P8.7.3
(a) Assume that motions and field depend only on (x,t) and

show that the equations formed in Prob. 8.7.2 are satisfied by solutions of the form

v = (,t)i + v (x,t)i and J = J i + Jy (x,t)i + J (x,t)iy y v ti J Jiox ztia 

where

aJ av
y j = 0

at o x

aJ 3v
z J- z = 0

at o ax

v a 2
P = B J + n y

t z ax2

2vv zz  
t o y ax2

(b) Describe how you would establish transfer relations for the layer, given that the surface variables
are the velocities and the shear stresses. Show that in the limit where there is no electromechan-
ical coupling, Bo = 0, there is no coupling between the y directed motions and the z directed
motions.

(c) As a specific example, rigid boundaries are imposed at x = 0 and x = Z. Find the eigenfrequencies
of the resulting temporal modes.

Prob. 8.7.4 A spherical particle is impact-charged to saturation so that its mobility is given by
Eq. (a) of Table 5.2.1. It is pulled through a fluid by the same electric field used to achieve this
saturation charging. Show that the electroviscous time based on this field and the fluid viscosity
is the time required for the particle to move a distance equal to its own diameter.

1. For discussion of the related dynamics of a current conserving "string" in a similar configuration,
see H. H. Woodson and J. R. Melcher, Electromechanical Dynamics, Part II, John Wiley & Sons, New
York, 1968, p. 627.
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For Section 8.10:

Prob. 8.10.1 A planar layer of insulating liquid having a mass density ps has the equilibrium thick-
ness d. The layer separates infinite half-spaces of perfectly conducting liquid, each half-space having
the same mass density p. The interfaces between insulating and conducting liquids each have a surface
tension y, but ps is sufficiently close to p so that gravity effects can be ignored. Voltage applied
between the conducting fluids results in an electric field in the insulating layer. In static equilib-
rium, this field is E0 . Determine the dispersion equations for kinking and sausage modes on the inter-
faces. Show that in the long-wave limit kd << 1, the effect of the field on the kinking motions is
described by a voltage-dependent surface tension. In this long-wave limit, what is the condition for
incipient instability?

For Section 8.11:

Prob. 8.11.1 A vertical wire carries a current I so that there is a surrounding magnetic field

H = i Ho(R/r), Ho 0  I/2?R

(a) In the absence of gravity, a static equilibrium exists in which a ferrofluid having permeability 1
forms a column of radius R coaxial with the wire. (The equilibrium shown in Fig. 8.3.2b approaches
this circular cylindrical geometry.) Show that conditions for a static equilibrium are satisfied.

(b) Assume that the wire is so thin that its presence has a negligible effect on the fluid mechanics
and on the magnetic field. The ferrofluid has a surface tension Y and a mass density much greater
than that of the surrounding medium. Find the dispersion equation for perturbations from this equi-
librium.

(c) Show that the equilibrium is stable provided the magnetic field is large enough to prevent capillary
instability. How large must Ho be made for the equilibrium to be stable?

(d) To generate a significant magnetic field using an isolated wire requires a substantial current. A
configuration that makes it easy to demonstrate the electromechanics takes advantage of the magnet
from a conventional loudspeaker. A cross section
of such a magnet is shown in Fig. P8.11.1. In
the region above the magnet, the fringing field
has the form HoR/r. Ferrofluid placed over the
gap will form an equilibrium figure that is
roughly hemispherical with radius R. Viewed
from the top, each half-cylindrical segment of
the hemisphere closes on itself with a total
length R. For present purposes, the curvature
introduced by this closure is ignored so that
the axial distance is approximated by z with
the understanding that z = 0 and z = k are
the same position. Effects of surface ten-
sion and gravity are ignored. Argue that Fig. P8.11.1
the m = 0 mode represented by the dispersion
equation from (b) is mechanically and magnetically consistent with this revised configuration.

(e) Show that, in the long-wave limit kR << 1, the m = 0 waves that propagate in the z direction
(around the closed loop of ferrofluid) do so without dispersion. What is the dispersion
equation?

(f) One way to observe these waves exploits the fact that the fluid is closed in the z direction, and
therefore displays resonances. Again using the long-wave approximations, what are the resonant
frequencies? How would you excite these modes?

For Section 8.12:

Prob. 8.12.1 The planar analog of the axial pinch is the
sheet pinch shown in Fig. P8.12.1. A layer of perfectly
conducting fluid (which models a plasma as an incompress-
ible inviscid fluid), is in equilibrium with planar
interfaces at x = + d/2. At distances a to the left and
right of the interfaces are perfectly conducting electrodes
that provide a return path for surface currents which pass
vertically through the fluid interfaces. The equilibrium
magnetic field intensity to right and left is Ho, directed I
as shown. Regions a and b are occupied by fluids having
negligible density.

Fig. P8.12.
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Prob. 8.12.1 (continued)

(a) Determine the equilibrium difference in pressure between the regions a and b and the fluid o.

(b) Show that deflections of the interfaces can be divided into kink modes [ a(y,z,t) = bb(y,z,t)],
and sausage modes [ga(y,z,t) = -_b(y,z,t)].

(c) Show that the dispersion equation for the kink modes is ,with k E k + k2
y z

2
2 k
tanh(d oH2 coth(ka)

k tanh) 0 k

while the dispersion equation for the sausage modes is

2
2 k
- coth( ) = oH2 coth(ka)

(d) Is the equilibrium, as modeled, stable? The same conclusion should follow from both the analytical
results and intuitive arguments.

Prob. 8.12.2 At equilibrium, a perfectly conducting fluid (plasma) occupies the annular region
R < r < a (Fig. P8.12.2.) It is bounded on the outside by a rigid wall at r = a and on the inside by
free space. Coaxial with the annulus is a "perfectly" conducting rod of radius b. Current passing
in the z direction on this inner rod is returned on the plasma interface in the -z direction. Hence,

so long as the interface is in equilibrium, the magnetic field in the free-space annulus b < r < R is

+4 R
H = H -i

or

(a) Define the pressure in the region occupied by the magnetic fielc
as zero. What is the equilibrium pressure II in the plasma?

(b) Find the dispersion equation for small-amplitude perturbations

of the fluid interface. (Write the equation in terms of the

functions F(a, ) and G(a,O).)

(c) Show that the equilibrium is stable.

Prob. 8.12.3 A "perfectly" conducting incompressible inviscid

liquid layer rests on a rigid support at x = -b and has a free
surface at x = E. At a distance a above the equilibrium inter-
f ace ý, =0% I s a t hi n con d uc "s i s ee 4 hd. av 

i1.1 4 ngý u 
f co-nductI-vit

" y
as . This sheet is backed by "infinitely" permeable material.
The sheet and backing move in the y direction with the imposed Fig. P8.12.2
velocity U. With the liquid in static equilibrium, there is a
surface current Kz = -Ho in the conducting sheet that is returned on the interface of the liquid. Thus,

= there is an equilibrium magnetic field intensity I Hot in the gap between liquid and sheet. Include
in the model gravity acting in the -x direction and surface tension. Determine the dispersion equation
for temporal or spatial modes.

Prob. 8.12.4 In the pinch configuration of Fig. 8.12.1, the wall at r=a consists of a thin conducting
shell of surface conductivity os (as described in Sec. 6.3) surrounded by free space.

(a) Find the dispersion equation for the plasma column coupled to this lossy wall.

(b) Suppose that the frequencies of modes have been found under the assumption that the wall is
perfectly conducting. Under what condition would these frequencies be valid for the wall of
finite conductivity?

(c) Now suppose that the wall is very lossy. Show that the dispersion equation reduces to a quadratic
expression in (jw) and show that the wall tends to induce damping.

For Section 8.13:

uni-Prob. 8.13.1 A cylindrical column of liquid, perhaps water, of equilibrium radius R, moves with 

form equilibrium velocity U in the z direction, as shown in.Fig. P8.13.1. A coaxial cylindrical elec-

trode is used to impose a radially symmetric electric field intensity

coth kd - sinh kd tanh ( (7 ) ; coth kd + sinh kd E coth (sinh kd sinh kd - coh 7
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Prob. 8.13.1 (contlnued)

+ R
E=E - i

or r

in the region between the electrode and liquid.

Assume that the density of the liquid is large compared to that of
the surrounding gas. Moreover, consider the liquid to have a relaxation
time short compared to any other times of interest, and assume that the
cylindrical electrode is well removed from the surface of the liquid.

(a) Determine the equilibrium pressure jump at the interface.

(b) Show that the dispersion equation is

s E2R

(-kU) 3 [-Rfm (0,R) ] m2 -1+(kR) 2 + E [1-Rf(-,R) ]
pR3  r

by using the transfer relations of Tables 2.16.2 and 7.9.1.

Prob. 8.13.2 A spherical drop of insulating liquid is of radius R and
permittivity S. At its center is a metallic, spherical particle of
radius b < R supporting the charge q. Hence, in equilibrium, the
drop is stressed by a radial electric field.

(a) What is the equilibrium E in the drop (b < r < R) and in the surrounding gas, where the mass
density is considered negligible and E = ?7

(b) Determine the dispersion equation for perturbations from the equilibrium.

(c) What is the maximum q consistent with stability for b << R?

For Section 8.14:

Prob. 8.14.1 For a conducting drop, such as iwater in air, the model of Sec. 8.13, where the drop is
pictured as perfectly condhcting, is appropriate. Here, the drop is pictured as perfectly insulating
with charge distributed uniformly over its volume. The goal is to find the limit on the net drop
charge consistent with stability; i.e., the analogue of Rayleigh's limit. This model is of histor-
ical interest because it was used as a starting point in the formulation of the liquid drop model of
the nucleus.2 In fact, the term in that model from nuclear physics that accounts for fission is moti-
vated by the effect of a uniform charge density. Assume that the drop is uniformly charged, has a net
charge Q but has permittivity equal to that of free space. Find the maximum charge consistent with
stability.

Prob. 8.14.2 Consider the same configuration as developed in this section with the following general-
ization. The fluids in the upper and lower regions have permittivities ea and 8b respectively.

(a) Write the equilibrium and perturbation bulk and boundary conditions.

(b) Find the dispersion equation and discuss the implications of the terms.

For Section 8.15:

Prob. 8.15.1 This problem is similar to that treated in the section. However, the magnetic field is
imposed and the motions are two-dimensional, so that it is possible to represent the magnetic force
density as the gradient of a scalar. This makes the analysis much simpler. A column of liquid-metal
carries the uniform current density Jo in the z direction but suffers deformations that are independent
of z. A wire at the center of the column also carries a net current I along the z axis. The field
associated with this current is presumed much greater than that due to Jo. Thus, self fields due to

Jo are ignored. Assume that the wire provides a negligible mechanical constraint on the motion and
that the mass density of the gas surrounding the column is much less than that of the column.

(a) Show that the magnetic force density is of the form -VC, where

2. I. Kaplan, Nuclear Physics, Addison-esley (Publishing Company, Reading, Mass., 1955, p. 425.

2. 1. Kaplan, Nuclear Physics, Addison-Wesley Publishing Company, Reading, Mass., 1955, p. 425.
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Prob. 8.15.1 (continued)

(b) The column has an equilibrium radius R and surface tension Y. Find the dispersion equation for
perturbations ý = ý(8,t).

(c) Show that the column is unstable in the m = 1 mode if JoI < 0, and is stable in all modes if
JoI > 0. Use physical arguments to explain this result.

For Section 8.16:

Prob. 8.16.1 The fluid of Fig. 8.16.1 is perfectly conducting rather than perfectly insulating. Show
that the dispersion equation is

[k(v-k)2 - yv(v+k) 2
2 2

Spg + Yk - kE
k(yv + k) 00o

Show that in the limit of low viscosity the dispersion equation is Eq. 8.16.15, and that in the opposite
extreme, where Yv t k + jwp/2nk, the dispersion equation is

32p 3 = 2j(nk + pg + Yk 2 -_ kE2
2 k o o

Discuss effects of viscosity on incipience and rates of growth of instability in these two limits.

Prob. 8.16.2 The magnetohydrodynamic counterpart of the interaction studied in this section might be
taken as that shown in Fig. P8.16.2. The interface between a perfectly
insulating liquid in the lower half space and the air above is covered HO
by a layer of perfectly conducting liquid. In static equilibrium, a 7 7, 0--CO
uniform magnetic field H is imposed in the x direction. Instead of
space-charge electroviscous oscillations caused by conservation of
charge and stress equilibrium, there are now magnetoviscous oscilla- (7 7 ).: ..K . I
tions within the plane of the interface caused by conservation of flux . .. . ..... ...
for any loop of fixed identity in the conducting layer. Assume that
the layer has the same mechanical properties as the fluid below. Fig. P8.16.2

Show that the thin perfectly conducting layer can be represented by the boundary condition

aH avy
x

= -H y at x =
at o ay

Determine the dispersion equation for perturbations of the irterface. Show that in the low-viscosity
limit there are shearing modes of oscillation similar to those described by Eq. 8.16.16, except that

[2u H2k 2/3

W 00 0

and that there are transverse modes of oscillation. Discuss the effect of viscosity on the latter in

the limit where the transverse modes have a frequency that is high and that is low compared to Wo"

Prob. 8.16.3 In the configuration of Fig. 8.16.1, the liquid layer has equilibrium thickness b, and
uniform viscosity rn, mass density p, permittivity E and electrical conductivity a. The upper electrode,
at a distance a from the interface, has a potential -V relative to the rigid electrode at x = -b.

Because the region between electrode and interface is highly insulating relative to the liquid, the

equilibrium electric field is V/a = Eo between the interface and the electrode and zero in the liquid
layer. Effects due to the depth b and of the width a of the air gap are to be included.

(a) Write the perturbation boundary conditions and bulk conditions in terms of complex amplitudes.

(b) Show that the normalized dispersion equation is

= 0M1lM22 - M12M21

where in terms of normalized variables

P k 2  kURS(jwr+l)-P jw - p - k2 + kURS(jwr+l)
11 jerC + R

8.75 Problems for Chap. 8



Prob. 8.16.3 (continued)

oM rUkS
12 -P1 1 3 + J jwrC + R

M - w=- j .kU(Jwr+1)R
21 -P 3 1 j-U jwrC + R

kU-- r
M =-P -
22 33 jtrC + R

The normalizations are

= = cbn/y, p pgb2/y, k = kb, a = a/b, U= bE2 /y, r =.(y/b)(s/o), P.. = bPij (defined by
S0-1ij

Eq. 7.19.13 or 7.33.6), C = ( o/E) coth ka + coth k, S = coth ka

(c) Interpret the characteristic time used to normalize W and form the dimensionless numbers p, r and U.

(d) In the limit of complete viscous diffusion (Wpb2/l<<l) and instantaneous charge relaxation
(ws/a<<l), show that this expression reduces to simply

j = (kUS-p-k2)p3 3/(P1 1 3 +P 2

(e) Again, viscous diffusion is complete but the liquid is sufficiently insulating that charge
relaxation is negligible (r>>l). Show that the dispersion equation becomes

a(jw) 2 + b(jw) + c = 0

where

P 11o kUP S
aE PlP33+P3 ; b = [(p+k 33+Uk( E CC ) -- c 3 3 2j C3 ] kU o (p+k2-UkS)

Prob. 8.16.4 In the configuration of Fig. 8.16.1, the liquid is replaced by a perfectly elastic
incompressible solid that can be regarded as perfectly conducting (perhaps Jello). The interface,
like that in the case of the viscous fluid, must be described by a balance of both normal and shear
stresses. Directly applicable transfer relations are deduced in Prob. 7.19, and in the limit 0 + 0
in Prob. 7.20. The solid layer, which has a thickness b, is rigidly attached to the lower solid plate.
The mass density and viscosity of the gas make negligible contributions to the dynamics.

(a) Determine the dispersion equation for deformations of the solid.

(b) Under the assumption that the principle of exchange of stabilities holds (that instability is
incipient with w=0) and that perturbation wavelengths are very short compared to b, determine
the voltage threshold for instability.

For Section 8.18:

Prob. 8.18.1 An important connection between smoothly inhomo-
geneous systems and the piece-wise uniform ones considered in
Sec. 8.14 is made by considering the temporal modes from another
point of view. As shown in Fig. P8.18.1, the distribution of
charge and mass density is approximated by two layers, each
uniform in its properties.

(a) Show that for layers of equal thickness,
V3 1 o  d'Dqe

q e = : E=q a e +-Dq 4 d qb qe +4 Dqed o d 16E
o

Fig. P8.18.1
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Prob. 8.18.1 (continued)

where, consistent with the usage in Section 8.14, Eo is the equilibrium electric field evaluated
at the interface between layers.

(b) Show that the dispersion equation for the layer model, based on the results of Section 8.14,
takes the normalized form

1 1
8k 15

(c) Using k = 1, Dpm = 0, VoJVoJ = i1, Dq /jDqel = 1 and S = 1, compare the prediction of the first
eigenfrequency to the first resonance frequency predicted in the weak-gradient approximation and
to the "exact" result shown in Fig. 8.18.2a. Compare the analytical expression to that for the
weak-gradient imposed field approximation in the long-wave limit. Should it be expected that
the layer approximation would agree with numerical results for very short wavelengths?

(d) How should the model be refined to include the second mode in the prediction?

Prob. 8.18.2 A layer of magnetizable liquid is in static equilibrium, with mass density and perme-
ability having vertical distributions ps(x) and Is(x) (Fig. P18.8.2). The equilibrium magnetic field
Hs(x) is assumed to also have a weak gradient in the x direction, even though such a field is not irro-
tational. (For example, this gradient represents fields in the cylindrical annulus between concentric
pole faces, where the poles have radii large compared to the annulus depth k. The gradient in H is a
quasi-one-dimensional model for the circular geometry.) Assume that the fluid is perfectly insulating
and inviscid.

(a) Show that the perturbation equations can be reduced to

k2

D(PCDhR) -
s s z W s sx)

k2H DM
2 N 

D(p ( )v + j sH sD1
Dv ) - k h = 0
s x zs2x 

2 2 4+ = + kz , H = Hsi z + h and N 1 2
where k2 = -g Dps + - DsDH

(b) As an example, assume that the profiles are Ps = = Pm exp~x, Hs = constant. ShowPm exp8x, ]s 
that solutions are a linear combination of expyx, where

2 k2k 2 H212 1/2

-8 ; 
YT c+= [ )2+k2+ai b1 2mak= b + 2 PM

rlvfW,7
a = gSk2/2 2

(c) Assume that boundary conditions are v ( ) = 0, h ( ), and show that the eigenvalue equation is
x 0z

V- 2b 1L-~ioo sinh 
- _ _

cE sinh c i = 0 --- M M--

are
and that eigenfrequencies 

and that eigenfrequencies are

2
k2k2H2 gSk2 2  2

2 z asm n2) Ps(x)
Wn 2 ,- 2

= Kn = 
2 n ( 

4 R
+(--8) + 2

H, x)
K kn m n

(d) Discuss the stabilizing effect of the magnetic field on -p ---- ----- ---- ----
----

the bulk Rayleigh-Taylor instability.
P8.18.2Fig. 

Fig. P8.18.2
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Fig. 8.18.2 (continued)

(e) Discuss the analogous electric coupling with ps s and H - E and describe the analogous physical
configuration. s s

Prob. 8.18.3 As a continuation of Problem 8.18.2, prove that the principle of exchange of stabilities
holds, and specifically that the eigenfrequencies are given by

~,~41
2 2 k 2 z 1141 2+ 2 I1iZ

e = 11i2

where

91

I1 = 2 (IDh + k2  h )dx ; I2 (ps ID + k 2Pv1 )dx

0 0

£
A* ^213 =f k Niv x 2dx ; 14= H D vx h dx

0 0
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