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Problems for Chapter 6

For Section 6.2:

Prob. 6.2.1 Consider the configuration described in Prob. 2.3.3. In the MQS approximation and at lo
frequencies the configuration can be represented by an inductance in series with a resistance. Becaus
the current is distributed, and in fact essentially uniform and x-directed, how should the inductance
be computed?

(a) One method uses the field in the zero frequency limit to determine the magnetic energy density,
and hence by integration the total stored energy. This is then equated to ½Li2 to obtain L. Use
this method to find L and show that it is 1/3 of the value for electrodes without the conducting
material but shorted at z = 0.

(b) Now, consider an alternative approach which considers the fields as quasistatic with respect to
the magnetic diffusion time o1M. In terms of the driving current, find the zero order fields as
if they were static. Then, from Eq. 6.2.7 find the first order fields that result from time varia
tions of the zero order field. Evaluate the voltage at the terminals and show that it has the form
taken for a series inductance and resistance.

For Section 6.3:

Prob. 6.3.1 Show that Eq. (b) of Table 6.3.1 describes the rotating cylindrical shell shown in that
table.

Prob. 6.3.2 Show that Eq. (c) of Table 6.3.1 describes the translating cylindrical shell shown in
that table.

Prob. 6.3.3 Show that Eqs. (d) and (e) of Table 6.3.1 describe the rotating spherical shell shown in
that table.

Prob. 6.3.4 If a sheet is of extremely high permeability, the normal flux density Bn is not continuo
Consider the sheets of Table 6.3.1 in the limit of zero conductivity but with a very high permeability
and show that boundary conditions are

nx H = 0; A=(V & H) + [[B = 0

These boundary conditions are appropriate if wavelengths in the plane of the sheet are long compared t
the sheet thickness. Thus the boundary condition can be used to represent a thin region that would
otherwise be represented by the flux-potential transfer relations of Sec. 2.16. To see this connection
show that for a planar sheet, the above boundary condition can be written as

Ak 2 2 + Bix 0

Take the long-wave limit of the transfer relations from Table 2.16.1 to obtain this same result.

Prob. 6.3.5 In the boundary conditions of Table 6.3.1 representing a thin conducting sheet, Bn is
continuous while the tangential 1 is not. By contrast, for the condition found in Prob. 6.3.4 for a
highly permeable sheet, Bn is discontinuous and tangential H is continuous. What boundary conditions
should be used if the sheet is both highly permeable and conducting? To answer this question it is
necessary to give the fields in the sheet some dependence on the normal coordinate. Consider the
planar sheet and assume that the fields within take the form

)  B Bb + (B - H = Hb + (Ha - Hb
x x A x x y y A y y

Define <A> = (Aa+Ab)/2 and show that the boundary conditions are

AV >nIB <H >+ = 0

and Eq. (a) of Table 6.3.1 with B + <B >.
x x

w
e

-

us.

o

,

6.35



For Section 6.4:

Prob. 6.4.1 A type of tachom-

magnet
a permanent 

employing eter -t--- - lo in a -ermanent ma ·-- ~-net
is shown in Fig. P6.4.1a. In the
developed model, Fig. P6.4.1b, the
magnetized material moves to the
right with velocity U so that the
magnetization is the given func-
tion of (y,t). M is a given
constant. The thickness, a, of
the conducting sheet is small
compared to the skin depth.
Find the time average force per
unit y-z area acting on the con-
ducting sheet in the y direction.
How would you design the device
so that the induced force is pro-
portional to U?

Fig. P6.4.1a Fig. P6.4.1b
Prob. 6.4.2 Use the electrical
terminal relations derived from the model, Eq. 6.4.17, to show that the equivalent circuit of Fig. 
is valid.

Prob. 6.4.3 For the developed induction motor model shown in Fig. 6.4.1b, the time average force 
the direction of motion is calculated. In certain applications, such as the magnetic levitation of
vehicles (see Fig. 6.9.2), the lift force is also of importance. Find the time average lift force
on the stator, <fx>t, with two phase excitation. With single phase excitation, sketch this time
average lift force as a function of Sm and explain in physical terms the asymptotic behavior.

Prob. 6.4.4 The cross section of a rotating induction machine is shown in Fig. 6.4.1a. The stato
inner radius is (a), while the rotor has radius (b) and angular velocity Q. The windings on the st

have p poles and two phases, as in the planar model developed in the section. For two phase excita
find the time average torque on the rotor, an expression analogous to Eq. 6.4.11. Define 0 as the
clockwise angle from the vertical axis in Fig. 6.4.1a.

Prob. 6.4.5 For the rotating machine described in Prob. 6.4.4, find the two phase electrical term
relations analogous to Eq. 6.4.17. Determine the parameters in the equivalent circuit, Fig. 6.4.3.

Prob. 6.4.6 This problem is intended to illustrate the application of the boundary conditions for
thin sheet that is both conducting and highly permeable, as in Prob. 6.3.5. In the plane x=0 there
a surface current density Kf = izRe Ko exp j(wt-ky). The region x < 0 is infinitely permeable. In
plane x=d, a sheet of thickness A, permeability p and conductivity a moves in the y direction wit
velocity U. This sheet can shield the magnetic field from the region x > d either by virtue of it
conductivity or its magnetizability. Find the magnetic potential just above the sheet (x=d+). Con
sider p + po and show that for iooA(w-kU)/k large, the field is excluded from the region x>d. Simi
larly, take a + 0 and show that if kA(f/po) >>I, shielding is obtained. Show that the effect of th
permeability is to reduce the effectiveness of conduction shielding. In qualitative physical terms
why is there this conflict between the two types of shielding?

Prob. 6.4.7 A linear induction machine has the configuration of Fig. 6.4.1. However, the stator
winding has a finite length k in the y direction. Thus the stator surface current is

Ks = [u 1 (y)-u 1 (y-k)] Re K exp j(wt-Sy)

Thus, the "stator" might be attached to a vehicle (such as that shown in Fig. 6.9.2) and the conduc
sheet and magnetic backing might be the "rail." Using the approach of Sec. 5.17, show that the ti

average force exerted on the rail is

-<oK2w H IKol w __ Sm _ sin _ [(k (k-_)___ )P,]dk__2 

<f > =
z t (k-)2sinh2 kd(l + S2 coth2 kd)

m

where S = I a (w-kU)/k.
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Prob. 6.4.8 The induction machine rotor is a useful model for understanding phenomena observed if
liquid metals are stressed by a-c magnetic fields. Motions of the liquid result from a competition of
viscous and inertial forces with those from the magnetic field. Instability can result from the effect
of the motion on-the field. To illustrate, consider the single phase excitation of the configuration
shown in Fig. 6.4.1. The "air gap" is filled with a liquid having viscosity 1. Under the assumption
that the flow in the gap resulting from the relative motion of the rotor and stator is fully developed
and laminar, the viscous stress acting to retard the motion of the rotor is given by Eq. 7.13.1. As the
magnetic field intensity Ho E Naia is raised, there is a threshold at which the rotor spontaneously moves
in one direction or the other. Write the condition for this instability in terms of the dimensionless 
numbers kd, RM (product of frequency and magnetic diffusion time) and TMV (TMV 2 n/oHo, the magneto- 
viscous time as defined in Sec. 8.6). Mh 0

For Section 6.5:

Prob. 6.5.1 Carry through the steps of Eqs. 6.5.8 - 6.5.10 leading to the transfer relations for
rotating cylinders. Check relations (c) and (d) of Table 6.5.1.

Prob. 6.5.2 Carry through the steps beginning with Eq. 6.5.13 and leading to the transfer relations
(e) and (f) of Table 6.5.1.

For Section 6.6:

Prob. 6.6.1 The rotor of an induction motor has finite
thickness. Dimensions are defined in Fig. P6.6.1. The
stator windings have p poles and two phases, the circular
analogue of the windings for the developed model of
Sec. 6.4. Hence the stator surface current distribution
is the circular analogue of Eq. 6.4.1. Find the time
average torque on the rotor.

Prob. 6.6.2 An induction machine is used to propel a
circular cylindrical conductor in the longitudinal direc-
tion z. The "stator" consists of circumferential wind-
ings at the radius (a) surrounded by an infinitely perme-
able magnetic material in the region r > a. The material
being propelled is coaxial with this structure and is of
radius R, conductivity a and permeability p. Thus, there
is an annular air gap of thickness a-R. The conducting rod
has a velocity U in the z direction.

(a) The stator windings are in a three phase configuration
driven by the three phase currents (ia, ib, ic ). Thus Fig. P6.6.1
the surface current on the stator structure is

Ke = Re[iaeJW a cos(k) + bbetNb cos(kz- 2 ) + ic jtNc cos(kz T)]

Represent this driving surface current in the form

K0 = Re [i e j ( wt-kz) + As e j (wt+kz)]

and identify K and K in terms of the terminal currents, turns per unit length Na, Nb, Nc, etc.

(b) Find the time average longitudinal force <f >t acting on a length of the rod.

Prob. 6.6.3 A linear induction machine has the configuration of Fig. 6.6.1, except that the stator
surface current spans a limited length £ in the y direction. The driving current is

K = [u 1 (y)-u_ (y-i)] ReK exp j(wt-by)

Use the approach illustrated in Sec. 5.17 to show that the total force on the conducting slab and its
highly permeable backing is
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Prob. 6.6.3 (continued)

wliK + j sin [(k ]dk
<f > = Re2 k

y t (k-B)2 Y  sinhj kd[• coth ya + coth kd]
-· Y 1o

where ay = /(ak) 2 + j SM, SM E a2 (c-kU)

For Section 6.7:

Prob. 6.7.1 The conducting layer of Fig. 6.7.1 represents the only lossy element in a linear induction
machine. Arrangement of air gaps and magnetic materials is arbitrary. Special cases are the configura-
tions of Fig. 6.4.1 and 6.6.1. Stator windings impose a pure traveling wave having phase velocity w/k
in the y direction. With Pm and Pd defined as the time average mechanical power output and electrical
dissipation, respectively, the electrical power input is Pm + Pd. Show that the efficiency, Eff

Pm/(Pm+Pd), is U/(W/k). Define the "slip" by s E [w/k)-U)]/(m/k), and show that Eff = 1-s.

Prob. 6.7.2 In terms of the same variables as used to express the time average force (Eq. 6.6.10),
determine the time average electrical dissipation for the induction machine of Fig. 6.6.1.

For Section 6.8:

Prob. 6.8.1 A high frequency magnetic field is used to raise
a liquid metal against gravity, as shown in Fig. P6.8.1. The
skin depth is short compared to other dimensions of interest.
Express the magnetic surface force density acting on the
interface at the right in terms of the power dissipated in
the liquid. What is the height E as a function of the power
dissipated? (See Section 7.8 for the modicum of fluid statics
needed here.)

For Section 6.9:

Prob. 6.9.1 Carry out the similarity transformation con-
verting Eq. 6.9.3 to Eq. 6.9.7.

Prob. 6.9.2 A container holds a layer of liquid metal
having depth b and length £, as shown in Fig. P6.9.2.
The system extends far enough in the z direction that it
can be regarded as two-dimensional. At a distance h(y)
above the interface is a bus-bar. Alternating current
passes through this bar in the z direction and is returned
through the liquid metal in the opposite z direction.
Because the skin depth in both conductors is short com-
pared to h(y) and b, magnetic flux is essentially ducted
between the bus and the liquid metal, as sketched. The
field throughout the air gap therefore has the same tem- Fig. P6.8.1
poral phase. In the sairit of a quasi-one-dimensional
model, in the air gap P has the zero order dependence Hy = H a/h, where Ho = Re Ho exp(jwt) is the field
intensity at the left where y = 0. The slope of the bus, dh/dy, at y = 0 is given as S.

(a) Find Hy in the skin region of the liquid using the boundary layer model, Eq. 6.9.1. Assume that

the fluid velocity has a negligible effect.

(b) Use the divergence law, Eq. 6.9.2, to approximate the normal flux density at the interface.

(c) Find the time average magnetic shearing surface force density acting over the thin skin layer.

- .
(d) Show that if this quantity is to be independent of y, the bus gegmetry must be h = a[l - 2S(y/a)]

(e) Show that this uniform surface force density is

<T >t IoH S 6
yt 4a o0
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Prob. 6.9.3 For the configuration described in Prob. 6.9.2,

l

find the total power dissipatio 

X
Prob. 6.9.4 For the configuration considered in this sec- S.. . .:

tion, the magnetic structure has a total length L. As a
† † † † † † † † . † † † † . † † (Y).

function of time and y, compute the power dissipation in I
the conductor. What is the total power dissipation? a 7... . . .. ... .

.. . . . . . .. . . . . . . .: . . .t. . .·-- . . . .

.. . . . . . . . . .. . . . . . . . . ..

For Section 6.10: . . . . . .. . . . . . .. . . . . . . . . . . . *

Fig. 6.10.1 A uniformly conducting slab of thickness 2a Fig. P6.9.2
and permeability 1 moves in the z direction with velocity
U. To either side of the slab are air gaps of thickness d backed by infinitely permeable materials.
Thus, half of the system is like that of Fig. 6.6.1 for x > 0, with x=0 a plane of symmetry. Because
of the symmetry, temporal modes can be divided into those that are even and odd in Hy. Show that the
odd modes are represented by Eq. 6.10.6. Find the analogous expression for the even modes, representing
the graphical solution by a sketch similar to that of Fig. 6.10.2.

Prob. 6.10.2 A uniformly conducting circular cylindrical shell has outer radius a and inner radius b
and spins about the z axis with angular velocity 0. The regions outside and inside the shell are filled
by infinitely permeable material. The system is long in the z direction compared to the outer radius a.
However, the distance a-b is not small compared to the outer radius a.

(a) Find eigenfrequency equations from which the frequencies of the temporal modes can be determined.
(The expression can be factored into two somewhat simpler expressions that define two classes of
modes.)

(b) Define as a parameter the ratio b/a, and ya : /japa2(-Q) as another parameter representing the
frequency. Describe how you would solve for the eigenfrequencies.

Prob. 6.10.3 A spherical shell has radius R and spins about the z axis with angular velocity 0. It
has a surface conductivity as and is filled with an insulating material having permeability p.
(a) Starting with the boundary condition, Eq. (d) of Table 6.3.1, find the temporal modes.

(b) Find the decay time resulting if a uniform external field directed along the z axis is suddenly
turned off.

(c) What is the frequency .of the temporal transient if a uniform field perpendicular to the z axis is
suddenly turned off?

Prob. 6.10.4 For the configuration described in Prob. 6.6.2, the excitation is suddenly turned on or
off. The resulting transient is initiated with the same k as imposed by the excitation.

(a) Find the transcendental equation that determined the eigenfrequencies of the temporal modes.

(b) Outline a procedure for numerically determining the eigenfrequencies. (Hint: Is it plausible that
an infinite number of roots exist where the frequency measured in the frame of reference of the rod
is purely imaginary?)

Prob. 6.10.5 In a configuration that generalizes that of Fig. 6.6.1, the entire region 0< x< a+d is
filled by a nonuniform conductor having conductivity o(x) and velocity I=U(x)ly. Note that the uniformly
conducting material partially filling the air gap and suffering rigid-body motion is a special case.
Start with Eq. 6.2.6, keeping the x dependence of a and U so that the expression is valid over the
entire range of x. Show that the amplitudes n of the vector potential modes satisfy an orthogonality
condition which is Eq. 6.10.12 with Jn -/(3) An.
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