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Problems for Chapter 5

For Section 5.3:

Prob. 5.3.1 For flow and field that are two-dimensional and represented
the definitions suggested by Table 2.18.1, show that lines along which tT
are represented by Eq. 5.3.13a.

Prob. 5.3.2 For flow and field that are axisymmetric in cylindrical coc
that case in Table 2.18.1, show that lines along which the charge densit3
Eq. 5.3.13b.

For Section 5.4:

Prob. 5.4.1 Gas passes through the planar
channel shown in Fig. P5.4.1 with the velocity
4U(x/d)[1 - x/d]iL. An electric field is
imposed by placing the lower plane at poten-
tial V relative to the upper one. Between

tx= 0 and 4= a on this lower plane, posi-
tively charted particles having mobility b
are injected through a metallic grid. A
goal is to determine the current i collected
by an electrode imbedded opposite the injec-
tion grid. It is presumed that the potential
of this electrode remains essentially zero.

(a) Use the result of Prob. 5.3.1 to show
that the injected particles follow the
characteristic lines

U 2 2x bV
-2 - x (1 - -) + y = constant

d 3d d

(b) Show that the current-voltage relation is

bV 2 Ud
[a 3 (bV/d)

0,

itý

Fig. P!

, V > 2-Ud2/ba

V (< Ud2/ba
3

Prob. 5.4.2 The potential of a spherical particle having radius
R is constrained to be

0(r=R) = Vcos8

(This could be accomplished by making the surface from electrode

segments, properly constrained in potential.) The sphere is sur-
rounded by fluid generally moving in the z direction. The flow

is solenoidal and irrotational, consistent with its being inviscid

and entering at z + - m without.rotation. (See Fig. P5.4.1. Such

flows are taken up in Chap. 7.) The fluid flow velocity is given

v -rv ; R=]cose
v = = -UR [ 2

There are no other sources of field than those on the sphere
itself. The following steps establish the electrical current on
the sphere created by ions entering uniformly with the fluid at
Z + -m

(a) Assume that the contribution of the ion space charge to the field is

and v in terms of AE and AV.
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Prob. 5.4.2 (continued)

(b) Find the expression for the particle trajectories in the form

r Vb
f(R' 8, UR) = constant

(c) Assume that V > 0 and that the ions are positive. Find the critical points in the region outside
the sphere.

3 3
(d) Plot the characteristic lines in two cases: for bV/RU < - and for bV/RU > 1. Identify the

critical points in the case where they exist in the region outside the sphere.

(e) Find the current i to the particle as a function of bV/RU. (Be sure to identify any "break points"
in this V-i relation.

Prob. 5.4.3 A circular cylindrical conductor having
radius a has the potential V relative to a surrounding
coaxial cage having radius Ro (Fig. P5.4.3). Hence it -
imposes an electric field E = (V/r)/ln(Ro/a) on the air ,
in the region a < r < Ro . The wind passing perpendicular -"
to this conductor has the velocity /

2 2

v = -U(1 - cos ri + U(1 + ) sin 0 i2 r 2 er r

consistent with an inviscid model. (Thus, there is a finite
tangential wind velocity at the surface of the conductor.)
Charged particles enter uniformly at the appropriate \%
"infinity." This might be a model for the contamination %, RO
of a high-voltage d-c conductor by naturally charged dust.

(a) Consider two cases: (i) conductor and particles of the
same polarity and, (ii) conductor and particles of oppo-
site polarity. This is equivalent to taking the particles Fig. P5.4.3
as positive and V as positive or negative. Find the critical
points (lines).

(b) Find the characteristic lines and sketch them for the two cases.

(c) Determine the electrical current to the conductor as a function of V.

Prob. 5.4.4 Fluid enters the region between the electrodes shown in Fig. P5.4.4 through a slit at the
top (where x = c). The system extends a length k into the paper and the volume rate of flow through
the slit is Qv m3/sec. The electrodes to left and right
respectively are located at xy = -a2 and xy = a2 and
have the constant potentials -Vo and Vo . The elec-
trodes in the plane x = 0 are essentially grounded,
with the one between x = -a and x = a used to collect
the current i. Entrained in the gas as it enters at
x = c is a charge density that is uniform over the
cross section at that location. The charge density
is po. The fluid velocity is

4- _t t

v = 2C(xi x - yiy)

(a) What is the constant C?

(b) Find the critical lines, if any.

(c) Given a certain volume rate of flow Qv, find the

currentL I L Lhe centLe eIecLrode as a LunICL on
of bV,, where b is the mobility of the charged Fig. P5.4.4
particles. Present i(bVo) as a dimensioned
sketch. (Assume that Qv and Vo , as well as the charge density po, are positive.)

For Section 5.5:

Prob. 5.5.1 For a "drop" in an ambient electric field and flow as discussed in this section, both
positive and negative "ions" are present simultaneously. The objective here is to make a charging
diagram patterned after those of Figs. 5.5.3 and 5.5.4. Because there are now two different

Problems lor Chap. 5
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Prob. 5.5.1 (continued)

mobilities, b+ and b_, it is best to make the abscissa the imposed electric field E. Construct the
charging diagram, including charging trajectories, showing final values of charge. (With bipolar
charging, the final charge can be less than qc in magnitude. Expressions should be derived for these
limiting values of charge.)

Prob. 5.5.2 The objective is to determine the charging diagrams, Figs. 5.5.3 and 5.5.4, with the low
Reynolds number flow represented by Eq. 5.5.5 replaced by an inviscid flow. (See Sec. 7.8 for discussion
of this class of flows.) Important here is the fact that such a flow can have a finite tangential veloc-
ity on a rigid boundary. The fluid velocity is given here as

R3

v =-U[ - R3 os + U[+ ] sin
r r 2r

(a) Find A and the general characteristic equation that replaces Eq. 5.5.6.

(b) Because both tangential and normal velocity are zero on the surface of the "drop" for the low
Reynolds number flow, the points on the surface described by Eq. 5.5.10 are critical points.
With an inviscid flow, matters are not so simple. Show that, as before, there are now two
types of critical points, one type lying on the z axis and the other not. Find analytical
expressions for the (r,e) locations of these latter critical lines.

(c) Construct the charging diagrams for positive and negative "ions."

For Section 5.6:

Prob. 5.6.1 Unless some of an initial charge distribution reaches a boundary, self-precipitating
charge of one polarity must conserve its total value. With the charge density given as a function of
time by Eq. 5.6.6 and the volume filled by this density described by Eqs. 5.6.9 and 5.6.10, show that
for the example of Fig. 5.6.3 this is indeed the case.

Prob. 5.6.2 Fig. P5.6.2 shows a one-dimensional configuration
involving a unipolar conduction transient. Gas flows through a duct
with the uniform velocity Uiz . Screen electrodes at z = 0 and z = e 0
hzive the cnnstnt, nntentiln differPncr v When t = 0 there ins a I Z
uniform distribution of charged particles having charge density po
and mobility b in the region between z = zB and z = zF. The regions
in front of this layer and behind it have no initial charge density.
Assume that the charge is positive. In the following the evolution
of the layer is to be described during the time that it has not
encountered the screen electrodes.

(a) Show that the charge density within the layer remains uniform and
find its dependence on time.

(b) Use Gauss' law to deduce that (zf - b) = (1 + t/T)(zF - zB);
T /p b.

o0 o

(c) Use Gauss' law and the potential constraint to relate Eb(t), Ef(t),. Fig. P5.6.2

zb(t) and zf(t).

(d) Use the second characteristic equations to also relate these four quantities.

(e) Find zf(t) and zb(t) and sketch the charge evolution in the z-t plane (as in Fig. 5.6.3).

For Section 5.7:

Prob. 5.7.1 The steady-state charge distribution of Eq. 5.7.3 is time-varying from the particle

frame of reference. Hence, in accordance with Eqs. 5.6.2 and 5.6.3, the charge density decays from

the frame of reference of a given particle. Start with these characteristic equations and deduce

Eq. 5.7.3.

For Section 5.9:

Prob. 5.9.1 When t = 0, a region of fluid described by the bipolar laws, Eqs. 5.8.9 and 5.8.10, has
uniform neutral 'density n0 and species charge densities p+ = p_ = 0. A self-consistent picture of the

ensuing dynamics has these densities evolving uniformly. This is possible because there is no applied
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Prob. 5.9.1 (continued)

electric field and because p+ = p_, so there is no self-field either.

(a) Use the conservation laws to show that P+ = p_ is consistent with E = 0.

(b) Write an ordinary differential equation for n(t) and one for P+ (t).

(c) Argue that the stationary equilibrium state is one having in = a• +
q -

(d) Show that the time characterizing the early stages of the system's approach to this
equilibrium is Tth q.

For Section 5.10:

Prob. 5.10.1 (conductivity model) In the region 0 < x < d, the fluid velocity is v = U(x/d)i z.
When t = 0, the volume charge density is zero for z < 0 and is a constant po for 0 < z. Describe
Pf(x,z,t) for t > 0. Represent the distribution in the (x-z) plane, giving analytical expressions
for wavefronts and decay rates.

Prob. 5.10.2 (conductivity model) The fluid velocity is as in Prob. 5.10.1. When t = 0, Pf(x,z)
= 0 for z > 0. A source of charge is used to constrain the charge density to be a step function in
the z = 0 plane. That is, Pf(x,0,t) = Psu_l(t). Describe the charge evolution, including sketches
in the x-z plane and analytical expressions for wavefronts and decay rates. What is the steady state
condition and at a given position (x,z) when is it established?

Prob. 5.10.3 A particle initially has a net charge q = qo and is immersed in an electrolyte that has
uniform conductivity and permittivity. Write integral statements of Gauss' law and the conservation of
charge for a volume enclosing the particle. Show that q(t) = qoexp(-t/T), where T is the charge relaxa-
tion time E/a.

For Section 5.12:

Prob. 5.12.1 The planar layer of Table 2.16.1 is composed of a material having uniform permittivity
E and uniform anisotropic conductivity aij, such that

J=aEi + Ei +oEi
xxx y y y z z z

(a) Show that for variables taking the form 0 = Re$(x) expj(wt-kyy - k z), the current density
! (jWE + C )fE (the sum of the displacement and conduction currents needed to write the conserv-

ation xf charge boundary condition at an interface) evaluated at the (a,B) surfaces is related to the
potentials there by

S-cothyA 1h

= (j WE+ x )y

xsinhyA

where Y2 = [k2( + jwc) + k2(a + j~W)]/(ax + jws)
y y z z x

(b) Consider as a special case ay azG = 0, so that conduction is only in the x direction.
Discuss implications of y for penetration of the field in the x direction as function of
frequency and of k2 E k + k2 . In particular, what is the nature of field distribution in
the limit w - 0?

(c) Consider a = 0 and a = = aGo, so that conduction is confined to y-z planes. Discuss the

field distXibution asYin (b) and draw contrasts.
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For Section 5.13:

Prob. 5.13.1 A circular analogue of the case study considered
in this section is shown in Fig. P5.13.1. A rotating shell has
radius R and angular velocity Q. A traveling wave of potential
is applied to electrodes around the shell at a radius a, while
an equipotential electrode is at the center with radius b.

(a) Find the surface potential of the rotating shell.

(b) Determine the electrical torque acting on the shell.

Prob. 5.13.2 As a continuation of Prob. 5.13.1, a tachometer
is constructed as shown in Fig. 5.13.4. Determine the output
current in forms analogous to Eqs. 5.13.15 and 5.13.16.

For Section 5.14:

Prob. 5.14.1 The circular analogue of the planar configura-
tion considered in this section is shown in Fig. 5.14.2. The
following steps are intended to parallel those of the text for this
velocity of the rotor as 0 = U/R.

) =Re /oe t - m8)
,

/

1
· , ,I

Fig. P5.13.1

configuration. Define the angular

(a) Write the electrical torque in a form analogous to Eq. 5.14.6.

(b) Find the surface potential of the rotor in a form analogous to that of Eq. 5.14.8.

(c) Write the electrical torque in a form like that of Eq. 5.14.11, identifying Se and TE -

Prob. 5.14.2 Motions of Von Quincke's rotor, shown in Fig. 5.14.4c, can be of far greater complexity
than the steady rotations considered here. To study these motions, it is appropriate to develop a
"lumped parameter" model which exploits the fact that the dynamics enter only through the boundary
condi ions at the rotor interface. Plane parallel electrodes are used to impose an electric field
-E(t)1 perpendicular to the cylinder. The region surrounding the rotor is electrically taken as
extending to "infinity," where the electric field is this imposed field. In the region immediately
surrounding the rotor, the potential takes the form

cosO sin80 = E(t)r cos + Px(t) r + Py(t) sinr

Permittivities of the surrounding fluid and the cylinder are respectively Ea and Cb. The cylinder is
insulating while the fluid has conductivity a. The rotor has radius b, moment of inertia per unit axial
length I and a viscous damping torque per unit length -Ba, where Q(t) is the rotor angular velocity.

(a) Show that motions of the rotor are in general described by the nonlinear equations

pe + = EPe ---- y

0 2 o
P + P + P = H (-fE + E)

0 2--- -- Ip - OP + P = fH2E
-y -x -y e----

where variables have been normalized such that

t = tT ; Te 
= (Ea + Eb)/a

0 = eT ; E(t) = E(t)/g-- -e -

P = a e p

B

so that e is a typical electric field intensity. For example, if E(t) is a constant,
constant and E = 1. Other dimensionless parameters are the electric Hartmann number H

e

9 is that
(given in
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Prob. 5.14.2 (continued)

Sec. 8.7 as the square root of the ratio of the charge relaxation time to the electro-viscous time
TE ) and the electric Prandtl number Pe (the ratio of the charge relaxation time to the viscous
diffusion time). Thus

2E 1R 2T Eb- a
H i a e Tp= /I/B ; f = a
e B e e Eb+Ea

If I is the moment of inertia of the rotor alone (ignoring inertial effects of the fluid),
I = 7rb4p/2. If viscous diffusion in the liquid is complete, B = 47rb 2f, where r is the fluid
viscosity and p is the rotor mass density. (See Sec. 9.3). Then H2 = Te/TEV TEV 2f/Eac 2

and pe Te/TV; TV Pb2/8n.

(b) The imposed field is raised very slowly. Use the results of (a) to deduce the threshold value
of He at which the static equilibrium of the rotor is unstable. What steady values of 0 result
from raising He beyond this critical value?1

For Section 5.15:

Prob. 5.15.1 Identify the temporal modes for the rotor of Prob. 5.13.1.

Prob. 5.15.2 Identify the temporal modes for the rotor of Prob. 5.14.1.

Prob. 5.15.3 An insulating spherical particle having radius R and permittivity Eb has angular velocity
0 about the z axis. It is surrounded by insulating material of infinite extent having permittivity Ea.
On its surface is a conducting coating having surface conductivity a5. Find the natural modes of decay
for charge distributed on the surface. Modes included should represent the ý dependence exp (jm*) by
the mode number m, and the 6 dependence by the mode number n of the function Pm. From these modes,
pick the one that represents the rate of decay of a spherical particle initially in a uniform electric
field, which is then suddenly turned on or off. Your result should be T = R(26a + Eb)/2as.

Prob. 5.15.4 A particle has the properties given in Prob. 5.15.3. In addition, it has a bulk conduct-

ivity Ob and the surrounding material has a bulk conductivity aa. Show that the relaxation time of the
nth mode is

Ea(n+l) + Ebn
n C (n+l) +obn + s

a n b -j- n(n+1)

Prob. 5.15.5 The planar layer described in terms of transfer relations in Prob. 5.12.1 is bounded in
the planes x = A and x = 0 by equipotentials.

(a) Find an expression for the eigenfrequencies of the temporal modes.

(b) Show that as the material becomes isotropic in conductivity, so that x = Oy = z, the infinite

set of temporal modes all degenerate to the same eigenfrequency.

(c) Identify the eigenfrequencies for conduction confined to the x direction (ay = az = 0) and plot
as a function of k Ek + k2 with the mode number n as a parameter.

(d) Proceed as in (c) for the case ox = 0, ay = az = ao.

For Section 5.17:

Prob. 5.17.1 For the same configuration as developed in this section, define the sheet position as
being at x = 0. Find the potential distribution for the regions above (0 < x < d) and below (-d < x
< 0) the sheet. The expressions should reduce to Eqs. 5.17.17, 5.17.18 and 5.17.19 on the sheet
surface (x = 0).

1. Aperiodic motions such as these have been studied in connection with mathematically analogous models
for thermal convection. See W.V.R. Malkus, "Nonperiodic Convection at High and Low Prandtl Number,"
Memoires Societe Royale des Sciences de Liege, 6 serie, tome IV, (1972), pp. 125-128.
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Prob. 5.17.2 The system shown in Fig. P5.17.2 is the same
as considered in Sec. 5.14, except that the excitation on the
upper boundary starts at z = 0 and ends at z = i. The poten-
tial upstream and downstream on this surface is zero. Also,
the interface is midway between the transverse boundaries,
so a and b from Sec. 5.14 are equal to d.

(a) The potential at the interface in the sinusoidal steady
state is 4b(z,t) = Re'b(z,w)ejwt. Show that

+W U j(Z-z)k -j$k -jkz
SVo[(-kU) j ] e e -ej ]dk

(k - 8) D(w,k)

aRe e j(Awt-3z)
-D~Nr\ VO_

: ,a
i h

V
d ab-b

d

Fig. P5.17.2

where

D(w,k) = cosh kd[(aa+ob ) + j(w-kU)(Ea+ b)]

(b) Show that the wavenumbers of the spatial modes are

S ( a+'b)
j- ab n = 0U Uý(:(a +6 )

kn
k(12nl-l) .T

d j , n = +oo ... +1

Sketch the transverse and longitudinal dependences of these modes.
ence on material properties, w, or U?

Why do modes n # 0 have no depend-

(c) Use the Cauchy integral theorem to find Ib(z,t) from the result of part (a) and the modes of part (b).

(d) Find the total time average electrical force exerted in the z direction on the material. The
expression can be left as an integral on k.
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