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Problems for Chapter 4

For Section 4.3:

Prob. 4.3.1 The cross section of a "double-sided machine"

is shown in Fig. P4.3.1. The "rotor" is modeled as a
current sheet.

(a) Find the force f, acting in the z direction on an
area A of the sheet.

(b) Now take the excitations as given by Egs. 4.3.5a and
4,3.6a for synchronous interactions and evaluate fz

(c) For a d-c interaction, the excitations are given
by Eqs. 4.3.10a. Find f,.

Prob. 4.3.2 The developed model for a "trapped flux"

synchronous machine is shown in Fig. P4.3.2. (See

case 3a of Table 4.3.1). The stator surface current

is specified as in Eq. 4.3.%. The "rotor" consists

of a perfectly conducting material. When t=0, the

currents in this material have a pattern such that

the flux normal to the rotor surface is B§=Bg cos
k[Ut-(z-8) ], where U is the velocgty of the rotor.

Find f, flrst in terms of KS and BY and then in terms

of Ko and B In practice, such a synchronous force

would ex1st as a transient provided the initial current

distribution diffused away, as described in Sec. 6.6, on

a time scale long compared to that of interest.

Prob. 4.3.3 The moving member of an EQS device takes the

form of a sheet, supporting the surface charge oy and moving

in the z direction, as shown in Fig. P4.3.3. Electrodes on
the adjacent walls constrain the potentials there.

(a) Flnd the force f, on an area A of the sheet in terms of
(Q),O’f’@)

(b) For a synchronous interaction, w/k = U. The surface charge
is given by -0jcos[wt-k(z-8)] and 2 = Vocos(wt—kz). For

even exc1tat10ns dd=¢a, Find f .

(c¢) An example of a d-c interaction is the Van de Graaffmachine
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taken up in Sec. 4.14. With the excitations ¢&= ®b=-Vocos kz Fig. P4.3.3

and Og=0,8in kz, find f,.

For Section 4.4:

X

Prob. 4.4.1 This problem is intended to give the opportunity to follow through the approach to develop-

ing a lumped parameter model illustrated in Sec. 4.4. However, for best efficiency in determining the
electrical terminal relations, it will be helpful to use the transfer relations of Sec.

of Sec. 4.7 is recommended in this regard.

The cross section of a model for a permanent-magnetization rotating magnetic machine is shown in
Fig. P4.4.1. The magnetization density in the rotor is uniform and of magnitude M,.
the span of the

wound with a uniform turn density N, so that the surface current density over 290,

turns, is Ni(t).

The stator is

(a) Show that in the rotor volume, E is both solenoidal and irrotational so that the transfer
relations of Table 2.19.1 apply provided that uHe is taken as BG'

(b) Show that boundary conditions at the rotor interface implied by the divergence condition on

B and Ampere's law are

;.' Hgﬂ =0 ; n X HBD = U&Ef + u;; X Hﬁﬂ
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Prob. 4.4.1 (continued)

(¢) Find the instantaneous torque on the rotor as a function of (9 »1). (Your result should be
analogous to Eq. 4.4.11.)
(d) Find the electrical terminal relation ?\(Br,i,Mo). (This result is analogous to Eq. 4.4.14.)
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For Section 4.6:

Prob. 4.6.1 A charged particle beam takes the
form of a planar layer moving in the z direction
with the velocity U, as shown in Fig. P4.6.1. The
charge density within the beam is

~ e—sz

b/// g // /é:U

Thus the density is uniform in the x direction

within the beam, i.e., in the region -b/2 < x A P
< b/2. The walls, which are constrained in k ‘ij
potential as shown, are separated from the Re P ej Z @ ReVe
beam by planar regions of free space of thick-

ness d. . Fig. P4.6.1

(a) In terms of the complex functions of time V, and 50,
find the electrical force acting on an area A (in the y-z plane) of the beam in the z direction.

(b) Now, specialize the analysis by letting

f

2 = 9" = Vocos(wt—kz)

p =-p_cos[wt-k(z-8)]

Given that the charged particles comprising the beam move with velocity U, and that k is specified
what is W? Evaluate the force found in (a) in terms of the phase displacement § and the amplitudes

Vo and P,
(c) Now consider the same problem from another viewpoint. Consider the entire region -(d+ —) < x < (d+ 5
as one region and find alternative expressions for parts (a) and (b).

For Section 4.8:

Prob. 4.8.1 Transfer relations are developed here that are the Cartesian coordinate analogues of
those in Sec. 4.8.

(a) With variables taking the form A = Re A(x t)e ~3ky and Hy = Re H,(x, t:)e_j Y and a volume current
density (in the z direction) J = Re J(x,t)e-dky, start with Eq.’(b) of Table 2.19.1 and show
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Prob. 4.8.1 (continued)

that the transfer relations take the form

~a 1
A —-coth kA Sinh KA
=M
k
ZAB 51—11-hlﬁ coth kA

o B} 1
Hy coth kA sinh KA
_u
k
B . S
Hy sinh KA coth kA

(b) The bulk current density and particular solution for A are represented in terms of modes Hi(x):

Je=Re X I (DL eIV

i=0

Show that if the modes are required to have zero derivatives at the surfaces,
the transfer relations become

A% —-coth kA 1
= U
k
~B -1
A sinh kA

For Section 4.9:

Prob. 4.9.1 A developed model
for an exposed winding machine
is shown in Fig. P4.9.1. The
infinitely permeable stator
structure has a winding that

is modeled by_the surface cur-
rent KS = Re K® e~JkV, The
rotor consists of a winding
that completely fills the air
gap and is backed by an infi-
nitely permeable material.

At a given instant, the current

distribution in the rotor windings

sinh kA
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Fig. P4.9.1

is uniform over the cross section of the gap; it is a square wave in the y direction, as shown. That

.1is, the winding density (n wires per unit area) is uniform.
force per unit y-z area in the y direction acting on the rotor (mote Eq. 2.15.17).

for the synchronous interaction in which K5 = Kgcos (wt —-i; ).

For Section 4.10:

Prob. 4.10.1

machine is shown in Fig. P4.10.1.
winding is represented by a surface current
distribution at x = b that is a positive

impulse at z = 0 and a
negative one at z = &,
each of magnitude N i_ as

shown. Following the outline given in
Sec. 4.10, develop the mechanical and elec-
trical terminal relations analogous to
Eqs. 4.10.6, 4.10.17 and 4.10.21,

A developed model for a d-c
The field

Fig. P4.10.1

(See

f
-

Use the result of Prob. 4.8.1 to find the

Express this force
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Prob. 4.10.1 (continued)

Prob. 4.14.1 for a different approach with results that suggest simplification of those found here.)

For Section 4.12:

Prob. 4.12.1 The potential along the axis of a cylindrical coordinate system is $(z). The system is
axisymmetric, so that E. = 0 along the z axis. Show that fields in the vicinity of the z axis can be
approximated in terms of ®(z) by E, = -d®/dz and

g 2
K E = _H
r 2dzz

For Section 4.13:

Prob. 4.13.1 An alternative to the quasi-one-dimensional model developed in this section is a "linear-
ized" model, based on the stator and rotor amplitudes being small compared to the mean spacing d. In
the context of a salient-pole machine, this approach is illustrated in Sec. 4.3. Assume at the outset
that £./d << 1 and §,/d << 1 but that the wavelength A is arbitrary compared to d. Find the time-

average force acting on one wavelength of the rotor. Take the limit 2md/A << 1, and show that this
force reduces to Eq. 4.13.12.

Prob. 4.13.2 A developed model for a salient
pole magnetic machine is shown in Fig. P4.13.2.
A set of distributed windings on the stator
surface impose the surface current

K_ = K° sin(wt-kz)
y (o)

and the geometry of the rotor surface is
described by

£ = Eo cos 2k[Ut~(z-6)]
Both the rotor and stator are infinitely Fig. P4.13.2
permeable.
(a) What are the lowest order Hy and H, in a quasi-one-dimensional model?
(b) Find the average force fz on one wavelength in the form of Eq. 4.13.8.
(c) Compare your result to that of Sec. 4.3, Eq. 4.3.27.

For Section 4.14:

Prob. 4.14.1

(a) For the magnetic d-c machine described in Prob. 4.10.1, show that the quasi-one-dimensional fields
j7< in the gap (based on % >> d) are

N i 9: n.i
){ Bo=* 1a(z'31/?32)i B Jo<=<2 &
NS =+ X _
Y BTN G- D L<z<2f (2)
QCJWi A%
_¢r€' (b) Based on these fields, what is the force on a length, 2%, of the armature written in the form
"".’»' fz o - Gmifla?

(c) Write the electrical terminal relations in the form of Eqs. 4.10.17 and 4.10.21.
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