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4.1 Objectives

Beginning with this chapter, progressively more electromechanical "degrees of freedom" are consid-
ered. The subject of electromechanical kinematics is first because then the relative mechanical motions
as well as the paths and trajectories of charges and currents are known from the outset. - The mechanics
involves rigid-body translations or rotations, while charges and currents might be constrained by elec-
trodes and wires. Processes in this category can be represented by lumped-parameter models, The field
approach of this chapter provides the basis for conceptualizing and interrelating such interactions,
for appreciating energy conversion limitations, and for deriving the parameters used in lumped-param-
eter models.

The representation of total forces and torques in terms of Maxwell stresses is developed in Sec. 4.2,
followed in Sec. 4.3 by a classification of common types of energy converters, based on the fundamental
field interactions. An extension of the transfer relations found in Secs. 2.16 and 2.19 to describe
regions occupied by specified distributions of charge and current is made in Secs. 4.5 and 4.8.. Although
this chapter is concerned with modeling specific interactions, it is the technique for representing
these systems that is the message. Section 4.4 exemplifies the notation and strategy underlying the
methodical formulation of complex systems in not only this chapter, but those to follow. Of the remain-
ing sections, only one does not pertain to a specific class of devices. Section 4.12 lends some for-
mality to the philosophy underlying quasi-one-dimensional models. Such approximations retain nonlinear
interactions and are illustrated in Secs. 4,13 and 4.14. By contrast, Secs. 4.4, 4.6 - 4.9 and 4.11
are concerned with field models that are naturally linear, or are linearized. Formally, the linearized
model, in which products of amplitudes are ignored compared to terms that are linear in the amplitudes,
is the zero-order approximation in an amplitude-parameter expansion for the exact solution. Similarly,
the quasi-one-dimensional model is a zero-order approximation to an expansion in a space-rate parameter.

The analogies that exist between electric and magnetic field interactions is a theme throughout
the chapter. This is clear in Sec. 4.3. But a thoughtful comparison of the characteristics of the
d-c magnetic machine, considered in more detail in Sec. 4.10, with those of the Van de Graaff machine in
Sec. 4.14 is worth while.

An overview of the chapter is given in Sec. 4.15.

4,2 Stress, Force and Torque in Periodic Systems

The configurations shown in Fig. 4.2.1 typify devices exploiting force or torque producing inter-
actions between spatially periodic excitations on a "stator" structure and spatially periodic con-
strained or induced sources on a "rotor." In each of these, the interaction is across an air gap, a
region having the electromagnetic characteristics of free space. The planar configuration of
Fig. 4.2.1a might represent a linear motor or generator with the relevant force between "stator" (above)
and "rotor" (below) z-directed, or it might be a developed model for the cylindrical geometry of
Fig. 4.2.1c! (appropriate in the limit where the air-gap spacing is small compared to the radius of the
rotor). Figure 4.2.1b shows the cross section of either a planar "slab" with the interaction across
two air gaps, or a cylindrical structure having an annular air gap. In either case the relevant net
force is z-directed.
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Fig. 4.2.1. Typical "air-gap" configurations in which a force or torque on a rigid "rotor" results
from spatially periodic sources interacting with spatially periodic excitations on a rigid

"gstator." Because of the periodicity, the force or torque can be represented in terms of the

electric or magnetic stress acting at the air-gap surfaces Sy: (a) planar geometry or devel-
oped model; (b) planar or cylindrical beam; (c) cylindrical rotor.
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The total force acting in the z-direction on the "rotor" of Fig. 4.2.1la is conveniently determined
by integrating the Maxwell stress, in accordance with Eq. 3.9.4, over the surface S enclosing a portion
of the rotor having one fundamental length of periodicity. The portion S} of this surface is at an
arbitrary plane x = constant in the air gap. Because the fields and hence the stress components Tz
are periodic in z, the contributions to the integration of the stress over surfaces S and S; cancel
regardless of where S is located in the air gap. The contribution to the integration over S3 can
vanish for several reasons. The rofor may be perfectly permeable, of infinite permittivity or in-
finitely conducting, in which case H or E is zero on S3. In Cartesian coordinates, the fields associ-
ated with excitations that are periodic in the z-direction decay in the x direction and if S3 is well
removed from the air gap, the contribution on S3 asymptotically vanishes. Yet another possibility is
that the planar model really is a.developed model for the cylindrical configuration of Fig. 4.2.1c,
in which case the surface S is "pie" shaped and the section S3 does not exist. In any of these cases,
the 2-~directed force acting on the rotor of Fig. 4.2.1la is simply

; =A<r>
z ZX
zS]_

where A is the y-z area of the air gap and Tzx is the magnetic or electric stress tensor, as the case
may be. The brackets indicate a spatial average is taken, as discussed in Sec. 2.15.

1)

There is no question as to which of the stress tensors in Table 3.10.1 should be used. As dis~
cussed in Sec. 3.10, in the free-space region of the air gap, all of the magnetic and all of the elec-
tric stress tensors agree.

If Fig. 4.2.1b represents a planar layer, then there are stress contributions from surfaces §;
and S3, and the net force acting on a section of the layer having area A in the y-z plane is

z zX zX /
z Z

51
On the other hand, if the "rotor" in that figure is a cylinder, then the net force takes the form of
Eq. 1, with A the area of an enclosing cylindrical surface and appropriate shear stress Tzx * T,
evaluated on that surface.

(2)

1
S3

In computing the net torque on the rotor of Fig. 4.2.1c, it is tempting to multiply the space-
average shear stress <?9€>6 by the lever arm R and the area A of a cylindrical enclosing surface
having radius R:

T=RA<[I>
z or, 0
51

Because the stress is symmetric, this notion is rigorous, as can be seen by applying Eq. 3.9.16 to the
surface S; of Fig. 4.2.lc.

3)

4.3 Classification of Devices and Interactions

Based on the developed or linear air-gap configuration of Fig. 4.2.l1a, this section begins with
illustrative simplified examples of "synchronous" and "d-c' magnetic and electric interactions. Then,
a general discussion is given of the various classes of machines, some having lumped-parameter models
developed in later sections of this chapter and in the problems.

In parallel, consider first the electric and magnetic configurations of Part 1 of Table 4.3.1.
Even though the devices might in fact be developed or "linear," the terms stator and rotor will be
used to refer to the elements on respective sides of the air gap. The magnetic field is produced by
spatially sinusoidal distributions of current modeled as current sheets on the surfaces of the stator
and rotor. Because the stator and rotor are modeled as infinitely permeable, H = 0 outside the air
gap and the surface currents "terminate" the tangential fields (Eq. 2.10.21). The electric field is
produced by electrodes constrained to have spatially periodic potentials. Thus, boundary conditions
at the air-gap boundaries (s) and (r) are '

Hi = Re[K® exp(~-jkz)] 9® = Re[V® exp(-jkz)]
H; = Re[-ir exp(~jkz)] of = R.e[;lr exp(-jkz)] @

where (is,i?) and (ﬁs’gr) are given complex functions of time. (Complex notation 1s introduced in
Sec. 2.15.) '

With the surface S; taken as the rotor surface, (r), it follows from Eq. 4.2.1 and the average
theorem, Eq. 2.15.14, that the force on a section of the rotor having area A is

Secs. 4.2 & 4.3 4.2



Table 4.3.1. Basic configurations illustrating classes of electromechanical
interactions and devices. MQS and EQS systems respectively in
left and right columns.

4, stable

sources imposed on
moving member
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l. currents (potentials) con-
strained on both windings
(electrodes)

2.current (potential) con-
strained on "stator" and
permanent magnetization
(polarization) on “rotor"

3.current {potential) con-
strained on "stator" and

fluxl(chorge) constrained
on "rotor"

sources instantaneously
induced on nonuniform
moving member

4. current (potential) con-
strained on "stator" and
magnetization (polariza-
tion) induced on "rotor"
having saliency

5.current (potential) con-
strained on "stator" and
currents (charges) induced
on "rotor” having saliency
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The gap transfer relations, Eq. (a) of Table 2.16.1, give the normal fluxes at (s) and (r) in terms of the
potentials there. In the magnetic case, H, = jk¥ and because of the boundary conditions, Eq. 1, these

relations become
r ] r 7 r ‘\‘s.W r b r - F -y
~g 1 K ~g 1 ~g
B H, -coth(kd) sInh (kD) || % €,E, ~coth(kd) st ||V
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Subétitution of the normal flux densities at (r) expressed by Egs. 3 into Eqs. 2 gives the desired forces

Ap Ae

o Re[§R° (&)™) £, = 2s1nh(zkd)

z =~ Zsinh(kd) Re[3 (7°) () *] (4)

f

Note that the terms involving products of the individual rotor excitations do not contribute. (They are
imaginary and hence dropped in taking the real part.) Physically, this is expected because such terms
represent the rotor self-field interactioms.

Synchronous Interactions: Consider now systems
with the rotor excitations produced by windings or
electrodes that are fixed to the rotor. The coordinate
z' measures distance from a frame of reference moving
with the velocity U of the rotor, as sketched in
Fig. 4.3.1. Fixed and moving frame coordinates are
related in the figure. Perhaps through slip rings, the
rotor is excited by a current of angular frequency
Wy, in such a way that as viewed from the rotor there
is a current or potential distribution taking the
form of a traveling wave: Fig. 4.3.1. Rotor and stator reference

frames z' and z.

K = K:'; sinfw t - k(z' - 8)] Vi = -vz cos[w t - k(z' - 8)] (5)

On the stator, a similar arrangement of windings or electrodes, with excitations at the angular fre~-
quency Wg, .give the traveling waves:

s _ .8 _ s _ yS _

K = Ko sin [mst kz] A V° cos [wst kz] (6)
Because z' = z - Ut, Eqs. 5 and 6 can be written in terms of complex amplitudes:

~ J(w +kU)t - J (w_+kU) t

K = —sz e r ejks Vo= —V° e r ejkd

(7
~ jw_t ~ jw_t
%5 = -jK: o 8 Ve = V§ e 8

Substitution of these amplitudes into the respective force relations of Eq. 4 gives forces with
sinusoidal time dependences. The frequencies are in each case Wwg - W, - kU. Only if this frequency
is zero will these forces have time-average values. Division of the resulting frequency condition by
k shows that these time-average forces exist because, as viewed from the stator frame of reference, the
velocities of the traveling waves of field induced by stator and rotor sources are equal:

W Wy

ety ®

Usually, the rotor is d-c excited so that w, = 0 and the phase velocity of the stator traveling wave,
wg/k, is equal to the rotor velocity U. Under the synchronous condition, the substitution of Eqs. 7
into Eqs. 4 gives the forces as functions of the relative spatial phase k8 between traveling waves:

Sec. 4.3 I WA
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f =-h—sin kS £ =—Msin ké (9)
z 2sinh kd z 2sinh kd

The sketches of the stator and rotor excitations in Part 1 of Table 4.3.1 (at the instant t = 0)
show the relative distributions with 6 = A/4, and hence k§ = 2w(§/A) = m/2. According to Eqs. 9, it
is at this spatial phase that the greatest retarding force acts on the rotor. The observation is con-
sistent with what would be expected intuitively for the sketched distributions. Under the synchronous
conditions the relative distribution of stator and rotor field sources is invariant. The stator cur-
rent distribution gives rise to a normal flux density that peaks at the current null. This is the sta-
tor magnetic axis, indicated by the vertical arrow on the stator. This field interacts with the rotor
current to produce the time-average force in the -z direction. Stator and rotor magnetic axes tend to
line up. Similarly, in regions of positive and negative electrode potential there are positive and
negative surface charges (although not exactly in phase with the potential). Thus, the retarding elec-
tric force results from the attraction of neighboring opposite charges. The rotor and stator axes,
denoted by the vertical arrows, also tend to line up.

The classic forc ggt’torque) phase-angle diagram, the graphical representation of Eqs. 9,
is shown at the top of 4.,3.1. Angles of positive and negative force can respectively give motor )(
and generator operation. But, operation is generally restricted to the shaded regions because then
a change in relative phase, kS, results in a force that tends to return the rotor to its original angle.

Parts 2 and 3 of Table 4.3.1 illustrate other types of excitations that result in synchronous
interactions. In each of these, the rotor sources are "attached" to the rotor and hence the synchronous
condition of Eq. 8 reduces to wg/k = U. Each has a force with the same dependence on relative phase ké
illustrated by Eqs. 9.

Small machines having permanent magnet rotors are common, but electric analogues having permanent
polarization (Sec. 4.4) are not. By contrast, electric synchronous interactions between traveling waves
of charge and potential are common, whereas, devices making use of a trapped rotor flux are not. The
former, a kinematic model for electron beam devices, will be considered further in Sec. 4.6.

D-C Interactions: The family of magnetic devices called d-c machines has as an electric field
analogue devices of the Van de Graaff type. The configurations shown in Table 4.3.1, Part 1, can also
be used to illustrate this class of devices, provided the sketched current and potential distributions
are understood to be time-varying in amplitude but stationary in space. Currents are supplied to the
rotor windings through brushes and commutator segments in such a way that even though the rotor moves,
the rotor's relative current distribution is stationary. The stator current distribution is similarly
stationary in space and shifted by the distance §. The stationary distribution of rotor potential in
the electric analogue is an approximation to the potential associated with charge placed on a moving
belt at one fixed location and removed at another. Excitations therefore take the form

r

]

jkG]e—jkz = —Vz(t) cos k(z-6)

(10)

KF = Re[—:in> (t)e K8y dkz o ~K§(t)sin k(z-8) |V Re[—V:';(t)e

-jkz

K® = Re[-1K (t)]e s

-jkz

= -Kz(t) sin kz \s Re Vi(t)e = Vi(t) cos kz

Note that the complex amplitudes multiplying exp(-jkz), now arbitrary functions of time, are as required
to evaluate Eqs. 4. The resulting forces are in fact the same as given by Eqs. 9, provided it is under-
stood that (KS,'Kg) and (V§, VL) are now arbitrary real functions of time.

The magnetic version of the d-c machine is modeled in Sec. 4.10, while the Van de Graaff machine
is taken up in Sec. 4.14.

Synchronous Interactions with Instantaneously Induced Sources: Common examples of devices that
exploit instantaneously induced magnetization forces on a moving member are variable-reluctance or
salient-pole machines. Electric field members of this family of devices include variable-capacitance
machines. (By contrast with magnetic and electric "induction" interactions, naturally taken up in the
next two chapters, the rotor sources induced by the stator excitations move synchronously with the
material. Geometry rather than a rate process, such as magnetic diffusion or charge relaxation, is
involved.)

Linear or developed salient-~pole models are shown in Part 4 of Table 4.3.1., The rotor, which in
the magnetic case is perhaps highly magnetizable magnetically soft iromn, has surface saliencies. In
a two~pole rotating machine, the rotor represented by this model (with 2m/k the circumference of the
stator) could be a squashed cylinder protruding toward the stator at two positions and away from it at
two others. The conventional method for finding the magnetic force on the moving member is to use the
energy method of Sec. 3.5 and knowledge of the inductance or capacitance of the stator windings or

4.5 Sec. 4.3



electrodes. Because of the rotor saliency, the stator current or potential distribution
terminal relations clearly depend on the rotor posi- X

tion, and hence so also does the magnetic or electric
energy storage.

With the objective of fitting this type of in-
teraction into the field point of view, the develop-
ment is in terms of the magnetic interaction. Simili- 1 \
tude then makes it possible to apply the results to = T /g tamedg -~ -— 7 mnnnn NG -2
the polarization case. In the limit where the mate-
rial is highly magnetizable, H is excluded from the
rotor so that on the rotor surface the tangential
field vanishes. As a result, the magnetic traction
acts normal to the surface of the rotor. That is, in
a local Cartesian coordinate system on the rotor sur-—
face, having the axis n in the normal direction, any
of the stress tensors (Table 3.10.1) evaluated in Fig. 4.3.2.
free space next to the rotor surface give a traction

27/k

Traction %-H =T ; acts
nn

normal to rotor surface.

->

> > ->

T=fam=1_1 (11)

Although not convenient for mathematical derivations, the surface enclosing one periodicity length 2mw/k

of the rotor, shown in Fig. 4.3.2, helps in understandirg how the magnetic traction gives rise to a net

force on the rotor. The traction acting normal to the surface has a value Tnn = M HE/2 and hence is

positive. No matter what the excitation from the stator winding, it is clear that at positions (1), where

the slope of the stator surface is positive, the magnetic field tends to pull the rotor to the left while

at point (ii) the pull is to the right. It is the spatial phase relationship between the stator current

distribution and the rotor saliencies that makes one or the other of these forces dominant. It is clear,

for example, that if the rotor surface wavelength matched that of the stator current there could be no net

force. The z-directed traction acting at any given point would then be cancelled by that acting at a
point on the rotor surface a half-wavelength away.

In deriving the relation of the excitation and rotor geometry to the net force, the rotor surface
is taken as being at

x = -d + §(z,t) = -d + Re 2 e_j(Zk)(z_Ut) (12)

The rotor travels with the linear velocity U = w/k and hence its surface, with wavelength 7/k half that
of the stator excitation, moves in synchronism with the traveling wave of stator surface current:

j(wt-kz)-{y (13)

A surface, represented by F(x,y,z,t) = x +d - £ = 0, has a normal vector

-> A
K = Rek®e

e
1
Q
&
e

> VF X oz "z

BTV T T (14)

As a reminder that this is a familiar relation, the surface might be one of zero potential (F + &), with
7 the negative of the electric field intensity normalized so that it has unit magnitude. The condition
that there be no tangential field on the rotor surface is then

@ x ﬁ]y =0=H =-H %% at x = -d + & (15)

To match this boundary condition is in general difficult. In this section, it is assumed that £ is small,

so that Eq. 15 is evaluated approximately (to first order in &) at the "equilibrium" position of the

rotor surface, x = -d. With Hx evaluated at x = -d rather than at x = -d + £, the right-hand side of
Eq. 15 is already written to first order in &:

oH
z
Hy(x = -d +£) = Hy(x = -d) + 5= (x = ~d)¢ (16)
If it is further recognized that because H is irrotational, 9H,/3x = 9Hy/dz, then to first order in £,
Eq. 15 becomes a boundary condition to be evaluated at x = -d, defined as the position (r):
r _ 9 ,.r :
e an

Sec. 4.3 4.6



What must be used in evaluating Hx 1s the zero-order field. This is the field that would be found with
£ = 0, with the rotor presenting a planar surface to a gap excited on the stator side by the current
sheet given by Eq. 13. Thus, Eq. 17 takes the form

W= _ag_ [Reﬁ oJ (Wt-k2)p 2 —ZJk(z—Ut)]
Z

(18)
o :_z %[ﬁ;ej (wt-kaz) (ﬁ;)* o3 (mt—kz):l%[g o2Ak(z-UE) | g* erk(z—Ut)]

Because of the synchronism condition, w = kU, multiplying out this expression gives a term having the
same spatial frequency as the stator current and a term at three times that frequency:

i = aa [Rewkej(wt kz) | Re;’,;3ke3j (u)t—kz)]; ;’;k . %_ @5y, ;‘;Sk - %_ @@E (19)

Note that this expression takes the form H = -V¥, With the surface S; of Fig. 4.2.la taken as contiguous
with the stator, the desired space-average rotor force is

= A<‘i.‘z>.z = A<@0H:Reﬁsej(wt_kziz (20)

Note that the terms in Eq., 19 are written in the standard complex form, with the quantity in brackets
the magnetic potential ¥. The amplitudes at the stator and rotor surfaces (at s and r) are therefore
related by the transfer relation (Eqs. (a) of Table 2.16.1):

r r A
Y] 1 K
HoHy -coth(kd) =y || 3%
= 21
Mk (2D
AT ~1 o
ron finh(kd) coth (kd) ka

for components with dependence exp[j(wt - kz)] and

- - - ar -
1
uoH: -coth(3kd) 51oh (3kd) 0
= 1 3k (22)
u HE 1 coth(3ka) | |¥
i o's L sinh(3kd) 3k
J JL

for components with dependence exp 3j(wt - kz). The infinitely permeable material backing the stator
current sheet requires that the third harmonic tangential field at the stator in Eq. 22a vanish.

The normal flux density u Hx in Eq. 20 is a superposition of the components found using Eqs. 2la
and 22a, Because it multiplies E H§ on the right in these expressions need only be evaluated to zero
order in §. Thus, Hx is given by Eq. 21b with £ = 0, and hence @k' 0. The second term in Eq. 19 also
excites a field at the stator surface given by Eq. 22a. But, inserted into Eq. 20, this higher harmonic
gives no space-average contribution and hence can be dropped. Thys, Eq. 20 becomes

~ u k - 28, %2 - A -
- A<<e fu coth (k)R® + J%ﬁ— oJ (w-k2) Re[l(sej (wt kz)_|> (23)
einh” (kd) ~'z

The averaging theorem, Eq. 2.15.14, can now be applied to Eq. 23 to obtain the first of these relations:

uokA ~s 2,“;- _EokA s
£, = ——5—— Re| (K") 3¢ £, = Re| (k9°) jE (24)
2 4sinh®(kd) 4sinh® (kd)

The second expression pertains to the electric configuration of Part 4, Table 4.3.1, and has been obtained
by recognizing that, in terms of the magnetic and electric potentials, the airpgap fields are analogous.
The only difference is that in the magnetic case, the stator magnetic potential is KS/jk while in the
electric case, the stator electric potential is VS Hence, the electric time average force is found
(using the complete analogy discussed at the beginning of Sec. 2.16) by replacing Uy > €, and &S + jsz
in Eq. 24a to obtain Eq. 24b.

4.7 Sec. 4.3



As specific examples having the stator excitations and rotor position when t = 0 shown in Part 4
of Table 4.3.1, let

£ = Eo cos 2k[Ut - (z - §)] = ReEerjk6 exp[2ik(Ut - z)] (25)

and

K = Kz sin(wt-kz) = Re(-jKi) explj(wt-kz)] ve = Vi cos (wt-kz) = ReVi exp[j(wt-kz)] (26)

where Eo’ Ki and Vi are taken as real. Then, Eqs. 24 take the specific forms

—uok(Ki)zgoA —eok(kvi)ZEOA
£ o= -2 00 70 in(2kS) £ o=—9 9" O in(2kS) (27)

2 4sinh? (kd) Z  4einh?(kd)

The dependence of these forces on the spatial phase of stator excitations and rotor position,
sketched in Table 4.3.1, is typical of salient-pole synchronous-devices. That <Tz has twice the
periodicity in kS, obtained with the rotor excited directly by sources having the same periodicity as
the stator excitations, is a direct consequence of the induced nature of the magnetization or polariza-
tion. Because the surface traction is proportional to the square of the local field, the same force
is obtained if the rotor is shifted in relative position by 8§ = m/k. The [sinh(kd)]™ “ dependence of the
force on the gap dimension d results because the only excitation 'is on the stator. By contrast with
the synchronous interactions between excited stators and rotors [with (d) dependence sinh(kd)-1], here
there is a round-trip attenuation of the excitation field, first in reaching the rotor surface and then
in being reflected back to the stator.

0f the many configurations in the general family of "salient-pole' devices, two more are shown in
Part 5 of Table 4.3.1. The magnetic case is considered in the problems, while the electric one is
formally the same as if the rotor were perfectly polarizable. Hence it is also described by Egs. 24b
and 27b.

Practical devices make use of large amplitude saliency. One approach to obtaining an appropriate
model is developed in Secs. 4.12 and 4.13, where the variable capacitance machine is considered in more
detail.

4,4 Surface-Coupled Systems: A Permanent Polarization Synchronous Machine

With field sources modeled by surface charges or surface currents, it is natural to generalize the
approach taken in Sec. 4.3 to the description of a wide class of complex electromechanically kinematic
systems. The technique involves breaking the region of interest into source-free subregions that have
uniform properties and hence can be described by the transfer relations of Sec. 2.16. Sources are then
relegated to bouhdaries between subregions and are taken into account in the boundary conditions used to
splice fields together. It is the objective in this section to illustrate the systematic approach that
can be taken with such models by developing the lumped-parameter mechanical and electrical terminal
relations for the rotating machine shown in Fig. 4.4.1.

The rotor consists of a material having polarization density that is uniform and permanent:

-> _j (9-9 )
B=r (I cos(6-0) -1 sin(e - 0] = Rep (I, - 5Ipe t )

Field coordinates are (r,8) while 8_(t) is the rotor axis. Thus, the polarization density is
uniform and directed collinear with the rotor axis at the angle 6,.(t). The region between the rotor
(with radius R) and the stator (radius Ry) is an air gap. Stator electrodes shown in the figure have
respective potentials +v(t) and are imbedded in a dielectric having permittivity €g. - The length of
the device in the z direction,®, is considered large compared to the radial dimensions.

Within the rotor, there is no free charge density. Moreover, because the permanent polarization
is uniform and hence has no divergence, Gauss' law (Eq. 2.3.27) reduces to

Ve £ =0 (2)
(o]}

Within the rotor, as well as in the air gap and in the surrounding dielectric of the stator, the fields
are Laplacian. The transfer relations of Sec. 2.16 are directly applicable to describing the bulk fields

Boundary Conditions: The potential at r = R, is constrained to be +v(t) on the respective portions
of the stator surface covered by the electrodes. The potential between the electrodes on the dielec-
tric surface at r = Rp is approximated by the continuous linear distribution shown in Fig. 4.4.2.

s

&
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Fig. 4.4.1

Cross—-sectional view of
permanent polarization
rotating machine.

-7 -(n/2)-6,/ | V.o i\,

4= 3 l } ] =
| AT (w/2)-N\ ! , ¢

Fig. 4.4.2. Distribution of stator potential used to model
the device shown in Fig. 4.4.1.

In Fig. 4.4.1, the notation (a)...(d) is used to denote positions adjacent to interfaces between
regions., (This convention is introduced in Sec. 2.20.) Thus, the potential distribution of Fig. 4.4.2
is both ¢2 and ¢, 1In anticipation of the Laplacian solutions used to describe the bulk fields in
cylindrical geometry, the potential of Fig. 4.4.2 is now expanded in a Fouriler series (see Sec. 2,15
for a discussion of Fourier series):

o0 - sin(mb )
a_ b _ ~a ~jmb, 7a _ 2v(t) o mm
" =9 = mZ;_m <I>m(t) e 3 <I>m == eom sin (2) (1)
(odd)

In the following it is assumed that the dielectric surrounding the rotor is of sufficient radius compared
to Ryp, that fields decay to zero.before reaching the outer surface of the dielectric.

At the rotor air-gap interface the tangential E and hence the potential must be continuous. Thus
the Fourier amplitudes are related by

m m ' 2
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In addition, Gauss' law (Eq. 2.10.21a) and Eq. 1 require that

i, _
nee JE[=-n [2] > ot - e ES = Re(P e e 30 (3)

This latter expression relates the Fourier amplitudes by
_jer

~c ~d 0 Jer
EoErm - € E =5 Glme + G—Ime %)

where 8pp, Kronecker's delta function, is unity for n = m and is otherwise zero.
Bulk Relations: The transfer relations, Eqs. (a) of Table 2.16.2 with k = 0, are now used to

represent the fields at the boundaries. In the stator dielectric surrounding the electrodes (r > R,),
0 > o and B = Ro’ while € ~ €yt

~a P
€ = Egfp(®HR O (5)

In the air gap (Ro >r >R), o> R B+ R and € ~+ €, so that

~b ~b
EoErm fm(R,Ro) gm(Ro,R) @m
=€, (6)
~c
EoErnj gm(R’Ro) fm(Ro’R) ®m
- b P - -

Finally, within the rotor (r < R) the relations are used witha =R, B+ 0 and € + € :
o
e =e £ (0,03 (7
o rm om " 'm

The boundary conditions given by Eqs. 2 and 4 and the bulk relations of Egqs. 5, 6 and 7 comprise six
expressions that can be used_ to determine the Fourier amplitudes (5C %, E%m, Egm, E2 m® Ep ) with

the driving amplitudes (@; gb ) given by Eq. 1. The solution for any one of the amplltudes is usually
much easier than this statement makes it seem, but nevertheless it is worthwhile to have the objective
of the model in view before proceeding further.

Torque as a Function of Voltage and Rotor Angle (v,6..): The rotor is enclosed by a surface at the
radial position (c¢) in the air gap. The method using the Maxwell stress to compute the torque is as
outlined in connection with Eq. 4.2.3. With the fields represented by Fourier series, Eq. 2.15.17
reduces the average of the shear stress over the enclosing surface to a summation on the products of the
Fourier amplitudes:

c.c 2 +ee Te (¥ gm e
T, = R(2WR£)<DrEe - 2 23 (e B ) (R 5% (8)

m== m

Substitution for € E from Eq. 6b introduces the stator field, which is given by Eq. 1, and the same
field @; as already appears in Eq. 8. On physical grounds it is expected that this 1atter "self-field"
term should not make a contribution. This is indeed the case, because f; is an even function of m so
that terms in ]@Cl cancel out of the sum. The mth term is cancelled by the -mth term. Thus, Eq. 8
reduces to

< T, = mR%Y, T 6.8 (R,R )(c1>) (J—I;) (9

= . OO

and all that is required to determine the torque is an evaluation of @c.
With this objective, substitution of Eqs, 6b and 7 into Eq. 4 with Eq. 2 used to replace @ with
@C gives an expression that can be solved for @C'
P jb -j0
) r r, _ b
3 2 [Glme + S—lme ] E:ogm(R’Ro)(pm
m Eo[fm(Ro,R) - fm(O,R)] (10)

This expression and Eq. 1 in turn can be used to evaluate the torque, Eq. 9. (Again, because & and fm
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are even in m, the self-field terms sum to zero):

—4R£31(R,Ro) sin O
fl(Ro’R) - fl(O,R) 8

Tz(v,er)= v(t)Po sin er (11)

o]

In a lumped parameter model for the device, with v(t) and er(t) functions of time determined by the
external electrical and mechanical constraints, this relation represents the electrical-to-mechanical
coupling. The reciprocal mechanical-to-electrical coupling completes the model.

Electrical Terminal Relations: To describe the electrical terminals, the total charge q on the
respective electrodes is required, again as a function of the terminal variables (v,er). The charge
on the upper electrode is -

b

0 m
: ° a b 2" 90 e a ~b | ~jm@
q=2 J (t—:sEr - soEr)Rode = £ J m;Em (esErm - EoErm)e R°d9
m L
-2+60 ——2'+9°
e ~a ~b T
= 4R I —(8sErm - soErm)sin m(i - eo) (12)
m=—&!)

The electric flux normal to the outer and inner surfaces of the electrode are computed from Egs. 5
and 6a, respectively:

~a ~b ~a b 3C
esErm - eoErm = esfm(w,Ro)Q - eofm(R,Ro)Qm - eogm(Ro,R)Qm (13)

The amplitudes (5:,5:) are given in terms of v(t) by Eq. 2, while 5; is given by Eq. 10. Thus Eq. 13
is evaluated in terms of (v,er):

q = Csv(t) - ArPo cos Gr(t) (14)

where Cs’ the stator self-capacitance, is independent of Gr and is

4R 4°  sgin m(ﬁ ~ 0 ) sin mb
o] 5 2 o 0

= . (O _
Ce =7 2 0 Sln(z )[Esfm(“.Ro) Eofm(R,Ro)
MmM=--00 m o
odd
€o8, (R, sR) 8y (R,R ) s
fm(Ro,R) - fm(O,R)
and Ar is a constant having the units of area
249R g, (R ,R)
0°1 ‘"o’
A TR, - o0 % 16)

The required electrical terminal relation is Eq. 1l4.

For reasons that stem from the approximations made in the field description, the model represented
by Egs. 11 and 14 is not selfscongistent. At the dielectric air-gap interface between electrodes, the
potential is continuous, but n-ﬂ Dﬂ is not. In physical terms, this means that the fields are as though
segmented electrodes existed at r = R, in these transition regions having the linear potential distribu-
tion of Fig. 4.4.2 and supporting a surface charge that can be computed from Eq. 13. This charge is
not included in Eq. 14 and might for some purposes be ignored. But, i1f the mechanical and electrical
terminal relations are used as stated, the electromechanical system, which after all does not include
energy dissipating elements, is given a model that does not conserve energy. In fact, once the torque
is known, energy conservation formalisms introduced in Sec. 3.5 not only provide an alternative to com-
puting the electrical terminal relations, but lead to a self-consistent model and a recognition that
Eq. 15 can be considerably simplified.

In terms of lumped parameters, the system can be pictured as having the terminal pairs of
Fig. 4.4.3. The electrical terminal pairs are interconnected so that vi = =v2 = v and by symmetry,
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v %
+
qg'—" .?r

v

Fig. 4.4.3. Three-terminal pair lumped Fig. 4.4.4. State space integra-
parameter system representing tion contour.
system of Fig. 4.4.1.

q; = -4, = Q. Thus, the incremental energy conservation equation is
w = 2vlq - Tzder an

Not accessible through the external electrical terminals is the electric energy storage due to the
permanent polarization. 1In Eq. 17 it is understood that P, is held fixed. Transformation to a hybrid
energy function w"(v,P,,6,) is made by replacing vs(2q) - 5(2qv) - 2qév and defining w" = 2qv-w, so that

k | -
Sw'" = 2qbv + Tzder (18)

This expression is integrated on the state-space contour shown in Fig. 4.4.4. First, with the rotor at
0, = m/2, the polarization is brought up to its final state. Then the voltage is*raised. Finally, with
P, and v held fixed, the rotor is turned to the angle Oy of interest. With the rotor at 6y = m/2, the
net charge induced on the upper electrode because of the polarization is zero. Hence, the net charge on
the upper stator electrode is computed from Eq. 13, but with eoEb determined as if the rotor were not
present. From Eq. 6,

~b _ ~b
€EE = eofm(o,Ro)cbm (19)

Hence, Eq. 12 gives

™
4£R° «© gin m(2 - 60) sin mﬁo

1= CSV; cs =TT z 2 mo
m=-~00 m (o}

odd
In view of Egs. 20 and 11, the integration of Eq. 18 on v and then on Gr leads to

sin@P) e £ (=R ) - € £ (O,R )] (20)

thgl(R,Ro) sin 6
£,(R ,R) - £,(0,R) ©

w' = ZP% CSVZ] + vPocos er (21)

o

Finally, because w" = w"(v,Po,er),the required terminal charge follows as

"
q =% -g:— =Cv - AP cos Br (22)
where
- 2R2.gl(R R.) sin 0
A = £, R ,B) - £,(0,R) ~ 6 (23)

and Cg is given by Eq. 20. Simplification of Eq. 15 leads to Eq. 20, but for the reasons discussed,
Egs. 16 and 23 differ by the factor [sin 8,/0,]/cos 65. The use of Eqs. 22 and 23 for the electrical
terminal relation has the advantage that the model is then self-consistent in its representation of
energy flow. The same advantage would exist if the energy relations were used to compute the electrical
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torque from the electrical terminal relations. This more conventional technique would make use of Eq. 14
and an integration of Eq. 18 in the sequence, P,, Oy and v. To carry out the second leg of this integra-
tion without making a contribution requires that symmetry be used to argue that there is no electrical
torque even though the rotor is polarized.

4.5 Constrained-Charge Transfer Relations

For field sources constrained in their relative distribution, the transfer relation approach can
not only be used for sources confined to boundaries, but can also be used to describe interactions with
squrces distributed through the bulk of a subregion. The objective in this section is to develop the
principles underlying this generalization of the transfer relations for electroquasistatic fields and to
summarize useful relations. The method is extended to certain magnetoquasistatic systems in Sec. 4.7.

In a region having a given ne{ charge density p and uniform permittivity €, Gauss' law.and the
requirement of irrotationality for E (Eqs..2.3.23a and 2.3.23b) show that the electric potential & must
satisfy Poisson's equation:

2
vq>=--é°- @)

In solving this linear equation, consider the solution to be a superposition of a homogeneous part &
satisfying Laplace's equation and a particular solution @p which, at each point in the volume of
interest, has a Laplacian ~p/e:

<I>=(I>H+<I>P (2)

It is this latter component that balances the "drive" provided by the charge density when the total
solution ¢ is inserted into Eq. 1. By definition

2 - _b
V<I>P = 3)

25 o
Ve, =0 %)

In the three standard coordinate systems, the particular solution can be written as a superposi-
tion of the same variable-separable solutions used in Sec. 2.16 for the homogeneous solution. Thus,

Re 5P(x,t) exp[-j(kyy + kzz)] (Cartesian)

QP ={ Re EP(r,t) exp[-j(m6 + kz)] (cylindrical) (5)

Re 5P(r,t) Pz (cos 0) exp[-jm¢$] (spherical)

With n used to denote the normal component at the respective bounding surfaces of the region described
by the transfer relations, the homogeneous transfer relations of Tables 2.16.1, 2,16.2 and 2.16.3
relate the components of the homogeneous part of the solutions evaluated at the respective surfaces.
Thus, in these relations, the substitution is made

R N R

H
H P P (6)
~0, 0 _~0 o, B, 8 _~xf B
Dy > Dy =Dy~ Dpps Dy > D =D, -D

The transfer relations, which take the general form of Eq. 2.17.6, therefore relate the new surface
variables and the particular solution evaluated at the surfaces:

[0 aa M., .
o - 3 - o _ ~o
P A1 A || - Dpp )

38 - P xB _ =B
=% A Ay ||Bh - D,

L J
Multiplied out, the transfer relations for regions with a bulk distribution of charge are

[ ~ry ] ~
3@ -A,. A, ||D* 1
- 11 12 n . (8)
~ B e ~ B ~B
(] —A21 A22 DnJ h
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where

~0 0 ~0. ~B
h % A11Pp - A19Dp
~B 3B 3o 38
h % Ay1Dnp ~ A220pp

Associated with the surface variables related by these transfer relations are the bulk distributions of
potential., These are obtained from the distributions of potential for no charge density by again using
the substitutions summarized by Eq. 6 to 8r example, in Cartesian coordinates, the potential distribu-

tion is the sum of Eq. 2.16.15 with @ »9") replaced by (¢a - ¢a 38 - ¢§) and the particular solution.

3 = (3% _ sinh yx _ ~R _ =By sinh y(x - A) ~
@7 - %) STanya - @ - %) sinh ya T %p®) (10)

The same substitution generalizes the cylindrical coordinate potentials, Eqs. 2.16.20, 2.16.21 and
2.16.25 as well as those in spherical coordinates, Eq. 2.16.36.

Particular Solutions (Cartesian Coordinates): Any @P having the form of Eq. 5 can be used in
Egs. 8 and 9. "Inspection" yields solutions in many cases. However, it is often true that the most

useful solutions belong to a class that can be generated by the procedure now illustrated in Cartesian
coordinates.

Within the planar region (shown in Table 2.16.1) there is a charge distribution that has an arbi-~
trary dependence on the transverse coordinate x but the y-z dependence of Eq. 5a for complex amplitude,
Fourier series or Fourler transform representations:

o =j(k y + kzz)
p=ReI f () (x)e 7 (11)
1=0

Here, the distribution has been represented as a superposition of modes Il (x) having individual complex
amplitudes Bi(t). These as yet to be determined modes are defined such that the particular solution
can be written as a superposition of the same modes:

-jk y + k z)

¢, = Re z [ (O ®e y (12)
i._

The same functions are used for both p and &, because then substitution into Poisson's equation, Eq. 3,

shows that a particular solution has been found, provided that the modes satisfy the Helmholtz
equation:

2 ~
a%n. 5

o=+ VI, = 0; v§=—~1-k2-k§ (13)
dx e@i y

It follows from Eq. 13 that Iy is a linear combination of sin(vix) and cos(vix). Boundary con-
ditions, selected as a matter of convenience and to give orthogonal modes that can be used to expand
an arbitrary charge distribution in a quickly convergent series, complete the specification of the
modes. For example, the transfer relations, Eqs. 8 and 9, are simplified if

ad dd
s - Pl _.%B - __ Pl _
Do = -€3x . 0; D b= € 3% . 0 (14)

so these will be used as boundary conditions in solving Eq. 13. It follows that for a layer with o and
B surfaces at x = A and x = 0, respectively,

I, = cos Vx5 Vv, = %g 3 1=0,1,2,e40 (15)

From the definition of vy, Eq. 13, the potential and charge-density amplitudes called for in Eqs. 11
and 12 are related by '

. o
3, = 1

1 7 2 .2 (16)
s(vi + ky + kz)
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The charge-density amplitudes are determined from a given distribution Re p(x,t) exp[-j(kyy + kyz)] by
a Fourier analysis. That is, Eq. 11 is multiplied by I, integrated from O -+ A, solved for p, and
k> i:

~

2 A . s _1(*
py = z‘jo Bx, )L (vyx)dx; 1 4 0: B = E-Io f (x,t)ax @a7)

The associated transfer relations, Eqs. 8 and 9 evaluated using Eqs. 12, 15 and 16, with Aij's from
Table 2.16.1, become

0. 1 ~0 i
[ -coth YA m Dx o B -1)
1 .
= = + z _2—-L-2— (18)
8 -1 -8 1=0 e(vy +Y°)
¢ Sinh YA coth YA Dx 1

The potential distribution is given in terms of these amplitudes and the particular solution (Eqs. 12,
15 and 16) by Eq. 10. Note that to make use of Eq. 10 the origin of the x axis need not be coincident
with the B surface. The equation applies to a region with the B surface at x = a if the substitution
is made X + x + a.

Cylindrical Annulus: In cylindrical coordinates, the given charge distribution and particular
solution take the form

oo

p=Re I 5i(c)ni(r)e‘3(m9+kz); ¢, =Re I 5i(t)ni(r)e'j(me+kz) (19)
1=0 =0

Thus, Poisson's equation, Eq. 1, requires that

a°n dI 2 0
Pel 0By =002 2oy? (20)
2 r dr i 2 i i ~

dr r e@i

and the potential amplitudes are related to the charge density amplitudes by

. p

b s (1)
rs(vi + k%)

Boundary conditions used in selecting solutions to Eq. 20 might be selected analogous to those of Eq. 14,
This would simplify the transfer relations, but require solution of a relatively complicated tran-
scendental equation for the v;'s. Instead, the particular solution is required to vanish on the outer
surface only and solutions that are singular at the origin are excluded. 1In cylindrical coordinates
this is sufficient to result in a complete set of orthogonal modes:

~0 daP
D = — =0 (22)

rP dr a

Comparison of Eq. 20 to Eq. 2.16.19 shows that the solutions that are not singular at the origin
are Bessel's functions of first kind and order m:

I, = Jm(vir) (23)

1

To satisfy the boundary condition, Eq. 22, the V4's must be roots of
A} -
V3 (via) =0 | (24)

In now evaluating the transfer relations, Eqs. 8 and 9, the normal flux density is zero at the a
surface, but otherwise all of the particular solution entries make a contribution:
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[ o) i 1
=0, ~0 '
¢ F (B,0) G (a,B) || D, . . T (Vo) + V.6 (@,B)I ) (vB)
- % + = 5 1 5 (25)
_,,B ~B i=0 E(Vi + k. )
o LGm(B.oz) Fm(onﬁi)J DrJ I, vB) + v F (a,B)37 (v,B)

An important limiting case is B + 0 so that the region is a "solid" cylinder. This limit is most con-

veniently taken by first using the limiting form of the transfer relation, Eq. (b) of Table 2.16.2,
which becomes

(+)

-8 =2 (0,05 - 5] 26)
Put in the form of Eq. 25, the transfer relation for a solid cylinder is
=17 (0,0)B% + T —k 3 v (27)
€en r i=0£(\)§+k2) mtd

The charge-density amplitudes 51 are evaluated in terms of the given charge distribution by exploiting
the orthogonality of the II;'s.

Orthogonality of I;'s and Evaluation of Source Distributions: The given transverse distribution
of p is used to evaluate the mode amplitudes, IIj(x) or IIj(r) and hence pij. Because the particular
golutions are in each case a superposition of solutions to the Helmholtz equation, with appropriate

boundary conditions, the eigenmodes Il; are orthogonal. In the Cartesian coordinate cases, this means
that

Xdx = % 84 (28)

A

I Ili (vix)I[J. v

o}
This relation is the basis for evaluating the Fourier coefficients, for example Eq. 17. Proof of
orthogonality and determination of the coefficients is possible in this case by direct integration.
But, in the circular geometry, a more powerful method is needed, one based on the properties of
Hi(vir) that can be deduced from the differential equation and boundary conditions. The proof of
orthogonality and determination of the normalizing factor is as follows.

Multiply Eq. 20 by rll; and integrate from the origin to the outer radius. The first term can
then be integrated by parts to obtain

dil(v,r)
rll (vjr) —E:'_— i -

3

o
) Ja . dHi(vir) de(er)
o o

dr dr 15

0 2
dr + I r(v EEDH I.dr = 0 (29)
o T

This expression also holds with i and j reversed. The latter equation, subtracted from Eq. 29, gives

0. o
0l dIl dll,
2 2 - i - —
(\)i - vj) jo rHiHj dr rIIi IT rﬁj ar . (30)

Thus, it is clear that either for I = 0 or dll,/dr = 0 at r = a, the functions Hi and Hj are orthogonal
in the sense that the integral appearing in Eq. 30 vanishes provided i # j.

The value of the integral for i = j is required in evaluating the coefficients in the charge
density expansion, and is deduced by taking the limit where vj > Vg, oOr Av + 0 in (\)j =V + Av)

Hj(vjr) =1 [vir + (Av)r] = 11 (vir) + [Hg(vir)]rAv (31)

3 3

Again, the prime indicates a derivative with respect to the argument (vjr). Expansion of Eq. 31
to first order in Av shows that in the limit Av > 0,

2
° e Ll + 1L - —EAr w0 (32)
jorl'[iIder =8,y 5 (I ]" + [ (vy0) e R

)

In obtaining this result, the fact that Hi satisfies Bessel's equation, Eq. 20, has again been used to
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substitute for H; in terms of II; and Hi.

An example exploiting the cylindrical constrained-charge transfer relations and orthogonality
relations is developed in Sec. 4.6.

4.6 Kinematics of Traveling-Wave Charged-Particle Devices

Synchronous interactions between a '"stator' potential wave and a traveling wave of charge are
abstracted in Part 3 of Table 4.3.1. In the most common practical devices exploiting such electric
interactions, the space-charge wave is itself created by the electromechanical interaction between a
structure potential and a uniformly charged beam. These examples are not "kinematic'" in the sense that
the relative distribution of space charge cannot be prescribed. Nevertheless, by representing the inter-
action as though independent control can be obtained over the beam and structure traveling waves, the
energy conversion principles are highlighted. 1In addition, this section illustrates how the constrained-
charge transfer relations of Sec. 4.5 are put to work. Self-consistent interactions through electrical
stresses will be developed in Chaps. 5 and 8.

In the model shown in Fig. 4.6.1, the space-charge wave has the shape of a circular cylinder of
radius R and charge density

p=-py cos(wt - kz + k6) = Re D exp(-jkz); P = [—pB exp(jk6)] exp(jwt) ¢D)

where Py is a constant.

Fig. 4.6.1. Regions of positive and negative charge represent concentrations and rarefactions in
the local charge density of an initially uniformly charged beam moving in the z direc~-
tion with the velocity U.

In an electron beam device,1 the stream is initially of uniform charge density. But, perhaps ini-
tiated by means of a modulating field introduced upstream, the particles become bunched. The resulting
space charge can be viewed as the superposition of uniform and periodic space-charge components. The
upiform component gives rise to an essentially radial field which tends to spread the beam. (Through the
qv X B force attending any radial motion of the particle, a longitudinal magnetic field is often used to
confine the beam and prevent its spreading. In any case, here the effect of this radial field is con-
sidered negligible.)

In traveling-wave beam devices, the interaction is with a traveling wave of potential on a slow-
wave (perhaps helical) structure, such as that shown schematically in Fig. 4.6.2a. The structure is
designed to propagate an electromagnetic wave with velocity less than that of light, so that it can be in
synchronism with the space-charge wave. For the present purposes, this potential is imposed on a wall
at r = C:

c

. - - ‘0
o = Vo cos(wt - kz) = ReVoe Jkz e’ t

;3 V.=V
o o

(2)

In the kinematic model of Fig. 4.6.1, the coupling can either retard or accelerate the beam, depend-
ing on whether operation is akin to a generator or motor (Table 4.3.1). Traveling-wave electron beam
amplifiers and oscillators are generators, in that they convert the steady kinetic energy of the beam to
an a-c electrical output. The result of the interaction is a time-average retarding force that tends

1. Basic electron beam electromechanics are discussed in the text Field and Wave Electrodynamics, by
Curtis C. Johmson, McGraw-Hill Book Company, New York, 1965, p. 275.
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Fig. 4.6.2, (a) Schematic representation of traveling-wave electron beam device with slow-wave struc-
ture modeled by distributed circuit coupled to beam through the electric field. Below struc-
ture is distribution of space charge in the beam (A), and the equivalent distribution of a uni-
form charge density (B) and a periodic distribution (C). (b) Combination cutaway and phantom
view of low-noise low-power traveling-wave tube that operates in part of the frequency range
2 to 40 GHz. (c) Schematic of linear accelerator designed so that oscillating gap
voltages "kick" particles as they pass. Shown below are "bunches" of particles and hence
space charge (A) and the equivalent superposition of periodic and uniform parts (B) and (C).
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to slow the beam.

The "motor" of particle beam devices 1s the particle accelerator typified by Fig. 4.6.2c. Here,
the object is to accelerate bunches of particles to extremely high velocities by subjecting them to
alternating electric fields phased in such a way that when a bunch arrives at an accelerating gap, the
fields tend to give it an additional "kick" in the axial direction.?2 The complex fields associated with
the traveling particle bunches and accelerating fields are typically represented as traveling waves, as

suggested by Fig. 4.6.2c. The principal periodic component of the space-charge wave is represented in
the model of Fig. 4.6.1.

In this section it is presumed that the particle velocities are unaffected by the interaction; U is
a constant. In fact, the object of the generator is to slow the beam, and of the accelerator is to in-
crease the velocity; a more refined analysis is likely to be required for particular, design purposes.

In yet another physical situation, the constraints on mechanical motion and wall potentials assumed
in this section are imposed. At low frequencies and velocities, it is possible to deposit charge on a
moving insulating material. Then, the relative charge velocity is known. Moreover, at low frequencies

it is possible to use segmented electrodes and voltage sources to impose the postulated potential dis-
tribution.

As will be seen, at low velocities it is difficult to achieve competitive energy conversion den-
sities using macroscopic electric forées. So, at low frequencies, the class of devices discussed in
this section might be used as high-voltage generators rather than as generators of bulk power.

The net force on a section of the beam having length £ is found by integrating the stress over a
surface adjacent to the outer wall (see Fig. 4.2.1b for detailed discussion of this step):

£, - 2"””4’:'5;2 = name[(ﬁi)*jk?/o] (3)

To compute 5c, and hence f_, the potential is related to the normal electric flux and charge density by
the transfer relation for a "solid" cylinder of charge, Eq. 4.5.27 with m = O:

N . ©  P.J (v,0)
§* = -El- F (0,)D} + I —17"—%- (4) X
o i=0 eo(\)i + k)

Table 2.16.2 summarizes Fo(O,a).

Single-Region Model: It is instructive to consider two alternative ways of representing the fields.
First, consider that the beam and the surrounding annular region comprise a single region with a charge
density distribution as sketched in Fig. 4.6.3. Then, in Eq. 4, the radius o = a and the position
(@) > (¢). Multiplication of Eq. 4.5.19a by rHj(vjr) and integration 0 -+ a then gives

R ©
" ~ fa
f BrJ, (v,r)dr = I pif £J, (vy1)J, (v r)dr (5)
o i=0 o
Fig. 4.6.3
—— Ps —* Radial distribution of charge
density.

Ny

l 3

—

The right-ha&d side is integrated using Eq. 4.5.32, while the left-hand side is an integral that can be
evaluated from tables or by using the fact that J,(vir) satisfies Eq. 4.5.20 with m = 0 and Eq. 2.16.26c
holds for Jo:

— = — a = .
TR R B R S O U 6) X

2. A discussion of synchronous-type particle accelerators is given in Handbook of Physics, E. U. Condon
and H. Odishaw, eds., McGraw-Hill Book Company, New York, 1958, pp. 9-156.
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Tge root v4 = 0 to Eq. 4.5.24 is handled separately in integrating Eq. 5. In that case J =1 and p_ =
R%D/aZ.

Because ¢ =V Eq. 4 can now be solved for ﬁi:

0’
2 o 2RJ. (V.R)

2+ 2 ) 2l = ™
€ (ak) i=1 evia v, + k )Jo(via)

Bc R
r

S Voo
= aFo (0,a) VO -9
i
It follows from Eq. (3) that, for the distribution of charge and structure potential given by Egqs. 1 and
2, the required force on a length £ of the beam is

.

- 2 .
fz = T(FR 2)(kVopB sin ch)Ll (8)
where
o 23,[ (v,a) 3]
- _2}l R 1 1'*Y7i% a -1
Ll = -3 (a) + Z aFo (0,a)

(ak)? i=1 (via)[(via)z + (ak)z]Jo(via)

Hence, the force has the characteristic dependence on the spatial phase shift between structure potential
and beam space-charge waves identified for synchronous interactions in Sec. 4.3.

Two-Region Model: Consider next the alternative description. The region is divided into a part
having radius R and described by Eq. 4 (with the position o + e and radius a * R) and an annulus of
free space. Because the charge density is uniform over the inner region, only the i = 0 term (having
the eigenvalue v, = 0) in the series of Eq. 4.5.1 1is required to exactly describe the charge and
potential distributions. With variables labeled in accordance with Fig. 4.6.1, Eq. 4 becomes

e
DrFo(O’R)
€

3e - b
o] + 5 9)

ek
The annular region of free space is described by Eqs. (a) of Table 2.16.2:

~c e
r £ R,2) g, (aR)| [©®
=€ (10)
~d ~d
Dr Lgo(R,a) fo(a,R) 9]

Boundary conditions splice the regions together:

3¢ =V, 8% =9% 0% =0 (11)
In view of these conditions, Eqs. 9 and 10b combine to show that

R -1, -2
] g,(R,a)V_ + 0 F "(0,R)e "k

34 — (12)
FTL(0,R) - £ (a,R)

From Eq. 10a B can be found and the force, Eq. 3, evaluated. The result is the same as Eq. 8 except
that Ly is repiaced by

[ag, (a,R)] [aF_ " (0,R)] | TLGR)
kR Io(ka)

L =

2 (13)

2 _
) > &) [aF]  (0,R) - af (a,R)]

To obtain the second expression, note that the reciprocity condition, Eq. 2.17.10, requires that
ago(a,R) = -RgO(R,a).

Numerically, Eqs. 8 and 13 are the same. They are identical in form in the limit where the charge
completely fills the region r<a, as can be seen by taking the limit R * a in each expression

-1
aF ~(0,a)
L > L - _0._(_-.— (14)
(ak)?
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In the example considered here the second repre-
sentation gives the simpler result. But, if

the splicing approach exemplified by Eq. 13 were
used to represent a more complicated radial dis~
tribution of charge, the clear advantage would
be with the single region representation illus- T T ! T
trated by Eq. 8.

The dependence of Ly on the wavenumber
normalized to the wall radius is shown in
Fig. 4.6.4. As would be expected, the coupling
to the wall becomes weaker with increasing k
(decreasing wavelength). The part of the
coupling represented by Lp also becomes smaller
as the beam becomes more confined to the center.
Note however that there is an R2 factor in
Eq. 8 that makes the effect of decreasing R
much stronger than reflected in Ly (or Lj)
alone.

4.7 Smooth Air-Gap Synchronous Machine Model

A specific result in this section is the
terminal relations that constitute the lumped-
parameter model for a three-phase two-pole
smooth air-gap synchronous machine. The deriva- o) 1 L 1 1
tions are aimed at exemplifying the pattern that 0 2 3 4 5
can be followed in describing a wide class of
magnetic field devices modeled by coupling at
surfaces.

In the cross-sectional view of the smooth Fig. 4.6.4, Function L, defined by Eq. 4.6.8.,
air-gap machine shown in Fig. 4.7.la, the stator
structure consists of a laminated circular cylindrical material having permeability Ug with outside
radius a and inner radius b. Imbedded in slots on this inner surface are three windings, having turns
densities that vary sinusoidally with ©. These slots are typically as shown in Fig. 4.7.2b, where the
laminations used for construction of rotor and stator for the generator of Fig. 4.7.2a are pictured.
Only one of these stator windings is shown in Fig. 4.7.1, the "a" phase with its magnetic axis at 0 =
-90°, The "b" and "c" phases are similarly distributed but rotated so that their magnetic axes are
respectively at the angles 30° and 150°. Thus the peak surface current density for the respective
windings comes at the angles 6 = 0, 6 = 1209, and 6 = 2400, These stator windings have peak turns
densities Ny, Ny, N,, respectively, and carry the terminal currents (i, iy, i.). Because the stator
windings essentially form a current sheet at the radius b, their contribution to the field is modeled
by the surface current density

s _ g ; 2M 4 g am
Kz = 1a(t)Na cos O + 1b(t)Nb cos(O - 3) + 1C(t)Nc cos(f -~ 3 ) W
VALl . AT
w5 -3 s _ . A R Ao )
= Re K'e s K = 1aNa + 1bNbe + lche

There is only one phase on the rotor, consisting of sinusoidally distributed windings of peak turns
density Ny excited through slip rings by the terminal current i.. With the rotor angular position
denoted by 6y, the rotor current is modeled by a surface current density at r = c of

r ~r -j0, 3r jer 2

Kz = lr(t)Nr cos (6 - Gr) = Re K e 3 KW = 1iNe (2)
These excitations have been written in the complex amplitude notation. Fields in each region are
described by the polar coordinate transfer relations of Table 2.19.1 with m = 1.

The objective in the following calculations is to relate the electrical and mechanical terminal
relations so that electromechanical coupling, represented schematically in Fig. 4.7.3, is specified in
the form

xa Laa Lab Lac Lar ta

Ab - Lba Lbb Lbc Lbr b 3)
Ac Lca ch Lcc Lcr 1c

>‘r Lra Lrb ch er 1r
T, = Tz(ia,ib,ic,ir,er) (4)
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a-phase axis

i
_my2 /2 3m/2
(a) (b)

Fig. 4.7.1. (a) Cross-sectional view of smooth air-gap synchronous machine showing only
one of three phases on stator. (b) Distribution of "a'"-phase windings on
stator as seen looking radially inward.

(a) (b)

¥ Fig. 4.7.2. (a) Model synchronous alternaé&gg having rating of about one kVA and modeling 900 MVA
machine. Unit is one of several used in MIT Electric Power Systems Engineering Laboratory as
part of model power system. S1lip rings for supplying field current are on shaft near bearing.
Disk with holes is for measurement of angular position of rotor. (b) Rotor and stator lamina-
tions used for model machine of (a). Rectangular slots carry windings. Conducting rods in-
serted through the circular holes in the rotor are shorted at the ends of the rotor to simulate
transient eddy-current (induction machine) effects in full-scale machine. The scaling requires
that the model have extremely narrow air gap of about 0.23 mm, as compared to the gap of about
7 cm in the full-scale machine.
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Boundary Conditions: The field excitations represented by Eqs. 1

and 2, written in complex-amplitude notation, can be matched by single +|__*
components of the fields represented in each region by the polar co- Aa
ordinate transfer relations of Table 2,19.1. In view of the 6 depend- - | | Tz—>
ence of the current sheets, m = 1. ih——v *
+
Positions adjacent to the boundaries between current-free regions Ao 6
of uniform permeability in Fig. 4.7.la are denoted by (d) - (i). Fields :Ei:::_ _

are assumed to vanish far from the outer surface. At each surface, the
normal flux density is continuous (Eq. 2.10.22). This means that the A
vector potential is continuous, and hence =

d ~ +
X% = &€ (5) A
if = x8 (6)
Xh s D Fig. 4.7.3. Electromechanical

coupling network for

The jump in the tangential field intensity is equal to the surface cur- system of Fig. 4.7.1.

rent density (Eq. 2.10.21), and hence

~d e _

He - He =0 (8)
~f _ %8 _ S

He He = K 9)
~h  ~i _ ~r

He - He = K (10)

Bulk Relations: Each of the uniform regions is described by Eq. (c) of Table 2.19.1. 1In the
exterior region, o >, B = a, and U = My

~d _ 1 ~d
Hy = v £, (=,a)A (11)
o
In the stator, oo = a, B =Db, and u = o
r r 1r -
e e
He 1 fl(b,a) gl(a,b) A a
ﬁf Hs g, (bya) f. (a,b) Kf
0 1 1
B ! JL
In the air gap, o = b, B =c¢c, and U = Mot
—~g~1 - - r—~g-
He 1 fl(c,b) gl(b,c) A 13
~h| ~h
o Yol g e,b)  £,(b,0)[f A
and finally, in the rotor, o = ¢, B > 0, and U = M.t
=i _ 1 %1 :
Hy = i £,(0,0)A (14)

Torque as a Function of Terminal Currents and Rotor Angle: With the surface of integration for
the stress tensor just inside the stator, it follows from Eq. 4.2.3 that the rotor torque is

. e % 3B
= (2mb22) %Re[(Hg)*ﬁﬂ - nbzme[(ug)*'(—jg“—)] (15)

It will be seen shortly that the electrical terminal relations can be computed from A8, It is there-
fore convenient to also express Eq. 15 in terms of A8 and the given surface currents. To this end,
Eqs. 5 and 8 are used to replace (d) -+ (e) in Eq. 11, while Eqs. 6 and 9 are used to replace Hg and A!
in Eq. 12b. Thus, Egs. 12 can be solved for Hg as a function of R° and AS:

. - 28 g, (b,a)g, (a,b)
= k% + A £ (a,b) # et L

8 Mg 177 rus
— f_(w,a) - £.(b,a
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Because the geometric quantity multiplying A8 is real, it is clear that substitution of Eq. 16 into
Eq. 15 gives only

T = ThiRel &S)" 58] (17)

To evaluate A® in terms of K° and K° (and_hence in terms of the terminal currents and 6,), Egs. 7
and 10 are used in Eq. 14, which is solved for HR. This latter quantity is substituted into Eq. 13b.
Simultaneous solution of Eqs. 13 then gives a second expression for He:

Sr
K'g, (b,c) 58 g, (b,c)g, (c,b)
~ l ’ A l 9 l 1]
Hg = o {f1(eD) + g (18)

v
(o]
£, (byc) - - £,(0,¢) ° i £,(0,¢) - £;(b,c)

By equating Eqs. 16 and 18, it is now possible to solve for A8 in terms of the surface currents:

wo U g, (b,c) .
I i Y K" (19)
(o]
D[fl(b,c) - '.LT; fl(osc)]
where »
H g, (b,a)g, (a,b) g, (b,c) g, (c,b)
D = Il—o- fl(a,b) + '_]J L L - fl(cob) + u L L
s %ii fl(W,a) - fl(b’;ﬂ &fﬂ fl(O,c) - fl(b,cﬂ
Lo r 4

A methodical approach to solving the boundary and bulk relations is suited to those comfortable
with the reduction of determinants or inclined to use matrix computations. Following this alternative,
the boundary conditions, Eqs. 5 to 10, are used to eliminate the "d", "f", and "i" variables in the
bulk relations, Eqs. 11 to 14, These latter equations are then written in the form

—- LT -
1 g wa) 0 0 0 0 HS 0
H, 1
1 X g (b,a) 0 =g (ab) O 0 A® 0
M 1 U 1
s s
> ~S
0 L g (b,a) -1 2f(ab) O 0 He &
TR O 0
s s = (20)
1 1 e
0 0 -1 T fl(c,b) 0 T gl(b,c) A 0
o )
1 1 ~h
0 0 0 T gl(c,b) -1 T fl(b,c) Hy 0
o} o
0 0 0 0 1 X e 0,0 A &*
w1
r
Cramer's rule is then used to deduce Rg’ Eq. 19.
Substitution of Eq. 19 into the torque expression, Eq. 17, shows that
Thu o o %
T, = . Re[jK (K%)"] (21)

o
D[fl(b,C) - II; fl(O,C)]
It follows from Eqs. 1 and 2 that the torque, expressed in terms of the terminal currents, is

-mbiu_g, (b,c)
T = o7l irNr[iaNa sin Sr + ibNb sin(er - %;9

“0
D[fl(b,c) - E fl(O,C)]

4T
. . _ 22
+ 1CNC sm(er 7;9] (22)
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Electrical Terminal Relations: The flux linked by one turn of the "a'"-phase coil running in the +z
direction at 6 = 8" and returning in the -z direction at 6 = 6' + 7 is

2, = L[A(b,8') - A(b,0" + m)] = areAb[eI0 - I (OTHM, (23)

Here, use has been made of the relation between the vector potential and the flux, as described in
Sec. 2,18 (Eq. (f) of Table 2.18.1).

The flux linked by the turns in the azimuthal interval bd0' is then @A(bde'N cos 8'), and the
total flux linked by the "a" phase is a
m/2
ent Y- - - _061 ~
A, = -baN Re + [3% 4+ 739 18T - 17717 ao" = N TReA® (24)
'~
-\

Substitution of Zg from Eq. 19 and the surface currents from Eqs., 1 and 2 then gives the terminal relation
for the "a" phase, in the form of Eq. 3a, where
mbu N Tibuy N N. m&bu N_N

2
o a - oab _ oac _ ]
Lia = D ° Lab 2D s Lge =7 2D s Ly = Lo'Q'bNaNr cos er’

T g, (b,c)
L = o®l (25)

uO
D[fl(bsc) - .u_r' fl(O,C)]

By symmetry, the inductances for the "b" and '"c" phases are obtained without carrying out the evaluation
by simply replacing indices in Eq. 25. For the '"b" phase, replace indices a + b, b + ¢, ¢ + a, and 6, ~
8, - 2r/3 and for the "c" phase, a > c, b *>a, ¢ > b, and 6, > O, - 47/3.

The remaining flux linkage, Ay, is computed by first recognizing that the flux linked by one turn
on the rotor winding running in the z direction at 6' and returning at 6' + 7 is

o . _sqt
QX = —R,ReAh[eJTT - 1]e 38 (26)

Hence, the total flux linking the rotor winding is

m
6r+—2- ,.,hjer
— v _ v
Ar = J Nr cos (6 Br)éxcde NrclﬂReA e @2n
. - I
r 2

The vector potential amplitude required to evaluate this expression follows from Eqs. 7, 10, 13b, and 14:
~h gl (c’b)zg - UORr
A" = (28)

Uo )
E: fl(O,c) - fl(b,c)

where A8 is again Eq. 19, and the surface currents are evaluated in terms of the terminal currents using
Eqs. 1 and 2. Thus, with the use of the transfer function reciprocity relatiom, cgl(c,b) = —bgl(b,c),
Eq. 2.17.10,

- 2m. = 4wy,
Lra = LolerNa cos Gr, Lrb = Lo,Q,bNrNb cos(Gr - 3), ch = Lo.Q,bNrNc cos(6r - 2)

gl (b,c) 1 (29)

2
L = L 4bN -
o T - gl(c,b)

rr Hy
D[£; (b,e) - o= £, (0,¢)]
r

Energy Conservation: Because the electromechanical coupling network represented by Fig. 4.7.3 is
conservative, there is considerable redundancy in the terminal relations that have been derived. Con-
servation of energy requires that (Eq. 3.5.7 applied to a magnetic system)
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Sw' = AaSia + AbGib + Acﬁic + Arﬁir + Tzser (30)

From the assumption that w' is a state function, it follows that (see Eq. 3.5.4)

ow' ow'
Ak = 5%;; k = a,b,c,r; Tz = 3%: (1)

Lumped-parameter reciprocity conditions are generated by taking cross-derivatives of these relations:

A Bkl 812 BAE k = a,b,c,r

K
— ; = (32)
o1y A 7 B, 96,7 o abe,r

The four relations among the electrical terminal variables show that
Lo = Lgxe 33)

and these conditions are met by the results summarized by Eqs. 25 and the subsequent substitution of
indices and Eq. 29. The reciprocity conditions between the torque and the flux linkages, Eq. 32, is
also satisfied by Eqs. 22 and Eqs. 25 and 29. Note that to make it clear that the lumped-parameter

reciprocity relations are satisfied, the reciprocity condition for the air-gap transfer relations was
used in writing Eq. 29.

4.8 Constrained-Current Magnetoquasistatic Transfer Relations

By way of exemplifying how transfer relations can be used to represent fields in bulk regions,
including volume distributions of known current density, these relations are derived in this section
for one important class of physical situations. The current density (which is typically the result
of exciting distributions of wire) is z~directed, while the magnetic field is in the (r,8) plane.
Thus, the relations are directly applicable to rotating machines with negligible end effects. Such
an application is taken up in the next section.

In a broad sense, the objective in this section is to magnetic field systems what the objective
in Sec. 4.5 was to electric field systems. But, the solution of the vector Poisson's equation,
Eq. 2.19.2, is more demanding than the scalar Poisson's equation, Eq. 4.5.1, and hence the technique
now illustrated is limited to certain configurations in which only one component of the vector poten-
tial describes the fields. Such cases are discussed in Sec. 2.18 and the associated transfer rela-
tions for a region of free space are derived in Sec. 2.19. The following discussion relates to the
polar-coordinate situations of Tables 2.18.1 and 2.19.1.

In the two-dimensional cylindrical coordinates, the vector Poisson's equation (Eq. 2.19.2) has
only a z component and the Laplacian is the same as the scalar Laplacian:

V2 = -uJ, ' 1)

Following the line of attack used in Sec. 4.5, the solution is divided into homogeneous and particular
parts, :

A= AH + AP (2)
defined such that .
2 2 :
v AP = -uJ; v AH =0 3)
The imposed current is now represented in the complex amplitude form

3, = Re¥(r,t)e 3™ )
0f course, by superposition, such solutions could be the basis for a Fourger representation of an arbi-
trary current distribution. Substitution of Eq. 4 into Eq. 3 shows that A.p must satisfy the equation

2% x
dA, dA, 2 .
1 m =
2 tTEm T2 e ()
r Tr

The particular solution can be any solution to Eq. 5. The magnetic field associated with this particular
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solution is, by the definition of the vector potential (Eq. 2.18.1),

i
_ 1 AP_"' m-
Bop =~ T ar Bep T T by (6)

From Eq. 2 it follows that the homogeneous solution is the total solution with the particular solu-
tion subtracted off. That is,

~ ~ ~

Ay = A= Ay Hoy = Hy - Hyp ™

The homogeneous parts are related by the transfer relations, Eqs. (d) of Table 2.19.1, so that substi-
tution from Eq. 7 shows that

R Fu(8,0) 6,8 || Hy - Hyy
-y 8
- GBs0)  Fp(a,®) | [ B - B,

These relations, multiplied out, are the transfer relations for the cylindrical annulus supporting a
given distribution of z-directed current density:

B 7 [~ 1Tr “ o 1 [~ Tr M
© F (8,0) 6, (,8) || 8| |& F_(B,@) 6,(a,8) ||,
=1 + -u 9
ik ¢ (8,0) F (a,8) ]| %8| |af G (8,0) F. (a,8)]]7
l m'? m>? 0 AP m'"? m'? HBPJ

Following the format used in Sec. 4.5, it would be natural to now proceed to generate particular
solutions that form a complete set of orthogonal functions which are solutions to the Helmholtz equa-
tion. Such an approach to evaluating the particular solutions in Eq. 9 is required if an arbitrary
radial distribution of current density is to be represented. The approach parallels that presented in
Sec. 4.5.

In important physical configurations, to which the remainder of this section is confined, the radial
distribution is uniform:

Jx) =3 (10)

Fortunately, inspection of Eq. 5 in this case yields simple particular solutions:

3 m# 2
KP =nuJ m” -4 (11)
2

- %-r Inr; m=+2

Thus, for the case of a radially uniform current density distribution, substitution of Eq. 11 into Eq. 9
yields the transfer relations

Ru Fm(B,G) Gm(a.B) ﬁg rhm(OhB)
=4 +u (12)
Bl e Ry || h (8,)
where
1 [x2 + 2xF_(y,x) + 2yG_(x,y)]:
7 . s ye, (%,¥)]; m # 2
hm(st) = x :
g lx+ sm(x.y)yzln (%)]; m= +2
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and the functions Fm, Gm’ and g, are defined in Table 2.16.2 with k = 0.
The radial distribution of A within the volume of the annular region describ&d by Eg, 12 is ob-

tained by adding to the homogeneous solution, which is Eq. 2.19.5 with A2 s K- Ap, and AB > 4B AP'
the particular solution A.P

o [&m- (—)'5_] #_1 [&m - (—)]

[(’3) ()] [(B) (e’]

For Eq. 12, the particular solution is given by Eq. 11, so the associated volume distribution is evalu-
ated using Eq. 1ll1.

A= - @13)

The constrained-current transfer relations are applied to a specific problem in the next section.

4.9 Exposed Winding Synchronous Machine Model

The structure shown in cross section in Fig. 4.9.1 consists of a stator supporting three windings
(a,b,c) and a rotor with a single winding (r). It models a three~phase two-pole synchronous alternator,
and is similar to the configuration taken up in Sec. 4.7, The difference is that the windings on both
rotor and stator are not embedded in slots of highly permeable material and take up a radial thickness
that is appreciable compared to the air gap. As a result, the surface current model used in Sec. 4.7
is not appropriate.

The configuration considered here is an example to which the constrained~current transfer rela-
tions of Sec. 4.8 can be applied. It closely resembles models that have been developed for synchronous
alternators making use of superconducting field (rotor) windings.l With superconductors, it is possible
to generate magnetic fields that more than saturate magnetizable materials. As a result, the magnetic
materials in which conductors are embedded in conventional machines can be dispensed with. This makes
it possible to design for greater voltages than would be possible in a conventional machine, where the
slot material in which a conductor is embedded must be grounded. But, because the conductors are
exposed to the full magnetic force, methods of construction must be radically altered. A machine built

Fig. 4.9.1.

Cross section of synchro-
nous machine model typi-
fying structure used in
superconducting field
alternator.

1. J. L. Kirtley, Jr., "Design and Comstruction of an Armature for an Alternator with a Superconducting
Field Winding," Ph.D. Thesis, Department of Electrical Engineering, Massachusetts Institute of Tech-
nology, Cambridge, Mass., 1971; J. L. Kirtley, Jr., and M. Furugama, "A Design Concept for Large
Superconducting Alternators,” IEEE Power Engineering Society, Winter Meeting, New York, Jan. 1975.
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g

cryogenic shield damper shield

Fig. 4.9.2. Cross section of superconducting field alternator projected in design
for 1000 and 10,000 MVA machines on basis of M.I.T. experiments on 2-3 MvA. L1
Not included in model of this section is conducting shell between rotor and
stator to help prevent time-varying fields due to transients from reaching
superconductors. Also, magnetic core of rotor used to simplify model in this
section is not present in machine shown. Phenolic materials are used in
projected design to construct stator and rotor.

to test approaches to constructing a rotating '"refrigerator'" required if the field is to be superconduc-
ting is shown in Fig. 4.9.2.

In the configuration considered here, it is assumed that surrounding the stator is a highly per-
meable shield material with inner radius (a) equal to the outer radius of the stator windings. Simi-
larly, the rotor windings are bounded from inside by a 'perfectly" permeable core. The magnetic mate-
rials are introduced into the model to make the example reasonably free of algebraic complications.

In a machine having a superconducting field, a magnetic core would not be used. Development of a
model without the magnetic rotor core follows the same pattern as now described.

W,

~

éé L————J 2; Fig. 4.9.3
2

in

l--a a

AN

Azimuthal current
' density distribu-

tion on stator
O —

and rotor.

@D
@Y

The distribution of stator and rotor current densities with azimuthal position is shown in
Fig. 4.9.3. The turns densities (na,nb,nc,nr) (conductors per unit area) respectively carry the
terminal currents (ia,ib,ic,ir). The conductors are unformly distributed. Hence, these current
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density distributions can be represented by the Fourier series

%S - ~r ~jmb
3= 1 Fe b<r<a; JF =1 JFF ™ d<r<e (1)
z m z m
=00 m==00

jmd
’

For the stator winding, the Fourier amplitudes are (Sec. 2.15)

6 jmm jm2m

2 . Ms . X 3 3

— sin (—)lin + 1 n e +1ine 3 m odd
~s Tm 2 aa b cc (2)
Jm = L

0 3 m even

while on the rotor the amplitudes are
mé jmer

- — sin (——)i_n_e s m odd
Jr - Tm 2 rr 3)
n 0 s m even

The constrained-current distribution is now as assumed in the previous section, Eqs. 4.8.4 and 4.8.10.
The associated transfer relations relate the Fourier amplitudes of the tangential magnetic field in-
tensities and vector potentials at the surfaces of the annular regions comprising the stator, the air
gap and the rotor winding with designations (d) - (j) shown in Fig. 4.9.1.

Boundary Conditions: There are no surface currents in the model, so the tangential magnetic fields
are continuous between regions and vanish on the stator and rotor magnetic materials. The normal flux
density is continuous, and this requires that the vector potential be continuous:

xd _ 4.z _ ~f . =8 ~h R S
Hom = 03 Hon = Hops Hop = Hops Hop = 0
(4)
i - xf; 8 - 3P
m m’ “m 'm

Bulk Relations: The transfer relations, Eq. 4.8.12, are now applied in succession to the stator,
the air gap and the rotor regions. In writing these expressions, the conditions of Eq. 4 are used to
eliminate (e,h) variables in favor of the (f,g) variables:

~d ~f
A =G (a,b)H + qumhm(a b)
-—1 F_(a,b 0 0 1 -Rf ] ‘- 3°n_ ;
. Uo m(a: ) uo om ya
~f
-1 W F (c,b) 0 u Gy (bye) || Hyp i 0 5
0 MGy (e,b) -1 E (b,c) Ai 0
- g oy 3
L 0 0 1 qum(d,c) Hem qumhm(c,d)
i .1 L o
~1

8
=Y, G , c)H + qumhm(d c)
Because the boundary conditions on the magnetic materials uncouple them from the other relations, the
first and last of these relations are written separately.

Torque as a Function of Terminal Variables: The torque is computed by integrating the Maxwell
stress over the surface at (g) on the rotor side of the air gap (sec. 4.2). Because By = (1/r)(3A/38),
the torque becomes (Eqs. 4.2.3 and 2.15.17):

277 cim g8y 8 ¢ 6
T, = 2me” I ¢ — A7) (Hg) (6)

m=-—00

To evaluate thlS expression, the amplitudes Ag and Hgm are found from the matrix equation of Eq. 5,
using Cramer's rule:

Zﬁ = 3301 + 3;02

)
%8 _ s ~T
Hon = InC3 + 9584
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where

3
u
€3 = 5 Bn(b,a)Gy(c,b)Fy(d,c)
3
C, = 5 hy(c,)[F (a,b)F, (b,c) - F_(c,bIF, (b,c) + G (c,b)G,_(b,c)]
L2
¢y = T° b, (b,a)G_(c,b)
2
C, = 5 hy(c,d)[F, (a,b) - F (c,b)]

D = 121G, (c,b)6, (b,e) = [Fy(c,b) - F (a,b)1[F, (b,c) - F (d,c)]}

In using Eqs. 7 to evaluate Eq. 6, observe that 35(3sf and ﬁr(ﬁr)* are even in m, as are also the
functions hy, F,, and Gy. Because of the latter,mthg Cy's are %lso even in m. Thus, the summations
of the self-field terms in IJSI2 and IJr!2 are odd functions of m and result in no contribution. The
mth terms are canceled by the™-mth terms. Only the cross terms appear, as Eq. 6 becomes

+c0
_ ~r ~8 * ~8 ~T %*
T, = 2Mc I (-jm) [Jm(Jm) C,Cy + Jm(Jm) clc4] (8)

m==00

Substitution of Eqs. 2 and 3 therefore gives the torque as

(c,c, - C.,C,) mé md
_ 16ic 23 174 T 8.
T, == irnrmil —_— sin ( 3 ) sin ( 5 )[ianasin mer
(odd) - ..
+ ibnb sin m(er - 3) + icnc sin m(er - Tr)] (9)
where us
(C,Cq - C4C,) = ]—)-‘2’- h (c,d)h_ (b,a)G, (c,b)[F_ (a,b)F, (b,c) - F (c,b)F_(b,c)

+ G, (e,b)G,(b,e) + Fy(d,e)F (c,b) - F (d,c)F (a,b)]

Electrical Terminal Relations: Each of the three phase windings of the stator, as well as the
rotor winding, can be represented by the coil shown cross-sectionally in Fig. 4.9.4. For the "a"
phase of the stator, variables are identified as 6; = 68/2,62 = -05/2,0 = a, B = b. For the rotor,
61 = 6, + 0£/2,62 = 0, - 8¢/2, @ =c, B =d.

Fig. 4.9.4

Prototype coil representing each
of the four in Fig. 4.9.1.

The flux linked by a single turn of the coil carrying current in the z direction at (r',6') and
returning it at (r',0' + 7) 1is conveniently evaluated in terms of the vector potential (Eq. (f) of
Table 2.18.1):

QA = R[A(x',0") - A(x',8' - ] (10)
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With n defined as the turns per unit cross-sectional area, there are nr'dd'dr' turns in a differential
area and hence the total flux linked by the coil is

0,107 +oo - _ ' - _ 1
A =2 ] ] £ IR NI _ K e Im(8'-m) 1 rrde dr (11)
B 92 m==0 n

The integration on 6' can be carried out directly to reduce Eq. 11 to

A=2jnZ

ms—m

odd

4oo (_jmel '3"‘92) o
e - € It Tyt 30t
p- J Am(r Yr'dr (12)

B

To complete the radial integration, Eq. 4.8.13 is used to express Km, while for the case being considered,
AP is given by Eq. 4.8.11:

4o ( -jmb, -jm92
e

A= 2l —= (A2, (@,8) - A u8(8,00 - u Js, (0,8)] (13)
odd
where
1
M (x,y) = Fix° - w’h_(x,y)]
2 2 4 4
1 -
M ) - 0 -3 ETD w # 42
m -4 m -4 m- -4
Sm(xs}') =
- -i— xz In me(x,y) + -3;'- y2 1n me(y,x) + %6' [xl‘(ln X - %_) - yA(ln y - %—)], m= +2

By appropriate identification of variables, Eq. 13 can now be used to compute the flux linked by each
of the four electrical terminal pairs. The procedure is illustrated by considering the field winding.
Then, variables are identified:

0 0
f £ 028 3 %1~ _ xr
A=A,d>c,B>d, 6 =6 --L£,0,=6 +=5 n=n,]A +28, BB 37 aw

The amplitudes (Kg,zl) are respectively evaluated from Eqs. 7a and the combination of Eqs. 5f and 7b.
Thus, identified with the field winding, Eq. 13 becomes

o me --ijr s
)\r = —uoleﬂ,nr E_m o sin (—2—)e Jm[Cle(cx,B) - qum(d,c)C3Mm(B,ot)]
odd
+ TEICM (@,8) = u G (d,e)C M, (B,0) + UM (B,a)hy (dye) = U S, (@,8)] (15)

The current density amplitudes are in turn related to the terminal currents by Eqs. 2 and 3. Thus,
Eq. 15 is expressed in terms of three mutual inductances and a self-inductance, in the form of Eq. 4.7.3d.
In writing these inductances, observe that F_ and G_ are even functions of m. It fo%%oy§ that hm and
hence M and S_ are also even functions of m, and that finally the coefficients of (J ,J ) in Eq. 15 are

. m* m
even in m. Thus, the summation can be converted to one on positive values of m:

pos ﬂ p -
Lra n cosm®6
me me a F
164n r @ sin (T) sin (—2—)
Lyl =-— mil - — [CM,(04B) - u G (d,e)CaM (B,a)] | ny cos n(®, + %) l16)
odd
ch n, cos m(er + %%5
L J - o
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mo mb

82,nf_ © gin (Tf) sin (-Ts)
Ly = =77 mﬁl m m [CZMm(a’B) - “on(d’c)C4Mm(B’a)
odd

+u M (B,a)h (d,c) - u S (a,B)] an”n

Because of the energy-conserving nature of the electromechanical coupling, there is redundancy
of information in the electrical and mechanical terminal relations. Reciprocity, as expressed by
Eq. 4.7.32b, can be made the basis for finding the 0, dependent parts of the mutual inductances from
the torque, Eq. 9. (Here, there are rotor positions at which each of the mutual inductances vanish,
and hence Eq. 9 uniquely specifies the mutual inductances.) The reciprocity condition shows that an
alternative to the coefficient used to express the mutual inductances in Eq. 16 is

[c,M (a,8) - qum(d,c)C3Mm(B,a)] = c[C,Cqy - C,C,] (18)

where the quantity on the right is given with Eq. 9.

With the reciprocity relations in view, one efficient approach to determining the complete
lumped-parameter terminal relations is to first find the torque, Eq. 9, then use the reciprocity condi-
tions to find the mutual inductances apd finally compute the self-inductances from Eq. 13. This last
step only requires evaluation of (Kg,zm) with self-current excitations (with currents in other
windings removed).

A more conventional approach is to compute the full inductance matrix from Eq. 13 and use the
lumped-parameter energy method (Sec. 3.5) -to find the torque.

4.10 D-C Magnetic Machines

The wide use of the d-c rotating machine justifies the model development undertaken in this sec-
tion. But, these devices are also a prototype for a family of "conduction" machines which includes
the homopolar generatorl and magnetohydrodynamic energy convertors, to be taken up in Chap. 9.
Analogous electric field devices are the Van de Graaff generator, considered in Sec. 4.14, and electro-
gas dynamic pumps and generators, described in Chaps. 5 and 9.

The developed model for the d-c machine given in Sec. 4.3 (Table 4.3.1, Part 3) is given a more
complete characterization in Figs. 4.10.1 through 4.10.4. What is by convention termed the "field"
winding is on the stator, which consists of a highly permeable structure wound with a total of 2ng turns
excited through the terminal pair (if,vg). The "armature" is the rotor, with a winding connected
through the commutator to the terminal pair (i,,vy), so that the distribution of current is essentially
stationary in space. The 6 dependence is shown in Fig. 4.10.2. The rotor core, like the stator mag-
netic circuit, is modeled here as being infinitely permeable.

With the assumption that the stator is infinitely permeable, it is clear that the magnetic poten-
tial on the stator surface, Tf, is constant for those points at r = Ry contiguous with the stator. In-
tegration of Ampere's integral law, Eq, 2.7.1lb, over any contour passing between the pole faces through
the field winding and closing through the air gap shows that the pole faces differ in Y by 2ng¢if. The
horizontal mid-plane is defined as the reference ¥ = 0, As an approximation that specifies the fringing
field in the ranges of © between pole faces, the magnetic potential is taken as the linear interpolation
shown in Fig. 4.10.2a. Because the rotor is modeled as infinitely permeable, the tangential magnetic
field at the rotor surface is equal to the surface current demsity K,, as shown in Fig. 4.10.2b (an ap-
plication of Eq. 2.10.21). The number of turns per unit azimuthal length on the rotor is Nj.

The commutator, which consists of conducting segments that are sequentially connected to the ar-
mature terminals through brushes, as shown in Fig, 4,10.3a,2 is attached to one end of the rotor. Thus
it rotates with the same angular velocity @ (defined as positive in the positive 6 direction) as the
rotor. The model now developed does not include "end effects," in that the rotor is assumed to have a
length £ that is much greater than the air gap R,-R.

The boundary conditions, pictured graphically in Fig. 4,10,2, are first represented by Fourier
series (Eqs. 2,15,7 and 2,15,8 with kpz’ng and £*27R). Thus, with (f) denoting the radial position r=R,

Im'lT
of = »  §E Im8. GE 2ngip sin mo, 16 2 | n
m=-° m  m o (0 _m)
(0dd) °

1. H. H. Woodson and J. R. Melcher, Electromechanical Dynamics, Part I, John Wiley & Sons, New York,
1968, p. 312.

2, A. E. Fitzgerald, Ch. Kingsley, Jr., and A. Kusko, Electric Machinery, McGraw-Hill Book Company,
New York, 1971, p. 192,
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Fig. 4.10.1. Cross section of d-c machine,

(a) 26/, Ini \E =

Fig. 4.10.2. Circumferential distribution of magnetic potential at r = R
and tangential magnetic field intensity at r = R. Q
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and at the rotor surface where r = R,

eo 2N i um X
a _ va -jm@, ~a _ " aa 12-
'ﬁ/e L Bon® T Bon < g 30 )
(odd)

Fields in the air gap are represented by the transfer relations, Eqs. (a) of Table 2.16.2 with
k = 0. Hence, with positions (a) + (f) and (B) »* (a) and with radii o > R° and B + R,

f

nf ~
B .. £.(R,R) g (R ,R) || T .
'ﬁfm ° ga(R:R)) £ (R ,R) R'ﬁgm/jm

where ﬁgm has been introduced by using Hy = -(VW)G.
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Fig. 4.10.3. (a) Typical winding scheme for armature of d-c machine shown in Fig. 4.10.1.
The r axis is directed out of the paper. Brushes make contact with commutatotr
segments which move to the right with armature conductors.2 (b) Winding distribu-
tion of solid wires.
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Fig. 4.10.4

This venerable d-c¢ machine, of historical
interest because it generated electric

power for Boston at the turn of the century,
has the advantage of putting the commutator
segments and brushes in clear view. The
pole faces surrounding the rotor at the
upper right have a shape similar to that
shown in Fig. 4.10.1, but the associated
magnetic circuit is driven by armature coils
wrapped on a horse-shoe magnetic circuit
closing above the rotor. This is one of the
first machines made after Thomas A. Edison
moved from New York City to Schenectady in
1886.

Mechanical Equations: The rotor torque can be computed by integrating the Maxwell stress over a
surface at r = R, just inside the stator. This is an application of Eq. 4.2.3:

T = (2R IR <B:Hg>e (4)

Because ﬁg = ﬁf(jmlRo), and in view of the averaging theorem (Eq. 2.15.17), substitution of Egqs. 1 and
2 convertsmEq. to

o2, o xf K imgf
T = ZWROR.m:Em(Bm) (Ro)‘#m (5)

With the substitution of Eq. 3a into Eq. 5, the "self-torque" (involving @i(?ﬁ)*) sums to zero.
(Because fj;/m is an odd_function of m, the mth term in the sum cancels the -mth term.) The remaining
expression is a sum on Hgmﬁg. These amplitudes are evaluated using Eqs. 1 and 2. The resulting mag-
netic torque is thus expressed as a function of the terminal currents:

16 40 gm(Ro,R) sin(meo)

T=-G 1ii ;6 ==—RR AW Nn_ I
mfa’m T Tooaf _, n2 mb (6)
(odd)

The speed coefficient, G_, is positive. This is consistent with the (3 Xﬁﬁ} density expected with
if and i positive, as shown in Fig. 4.10.1. But the use of the force density J X B misrepresents the
actual distribution of force density on the rotor. With the conductors embedded in slots of highly
permeable material, the flux lines actually tend to avoid the conductors and pass through the rotor
surface between the slots. This means that the magnetic flux in the region where there is a current
density tends to zero as the permeability becomes infinite. In fact, the magnetic torque is largely
the result of the magnetization force density acting on the rotor magnetic material between the slots.
Fortunately, the stress tensor used to find Eq. 6 includes the magnetization force density, so the
deductions are sound. But, because the stress tensor is evaluated in free space, the same calculations
would be carried out and the same answer obtained even if the essential role of the magnetization force
density were not recognized. That the torque is not transmitted to the rotor through the conductor is

important, because it alleviates problems encountered in maintaining insulation in the face of mechani-
cal stress and vibration.

In terms of the electrical and mechanical terminal variables (if,ia,re), Eq. 6 represents the
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electrical-to-mechanical coupling.

Electrical Equations: To complete the model, it is necessary to express the mechanical-to-
electrical coupling in terms of the terminal variables. This is done by taking advantage of Faraday's
law, written for a contour of integration that is fixed in the laboratory frame of reference and
passes through the appropriate winding:

§ E-Vxu ﬁ) at = I-SE .nda ¢))
C S

For the armature, the circuit C is composed of whatever is externally connected to the terminals (v_,1 )
and the armature windings. The brushes are idealized as making continuous contact with the moving a
conductors. A particular possible winding that would give the uniform distribution of rotor current
density is shown in Fig. 4.10.3.

The fixed frame electric field integrated on the left in Eq._ 7 i§ relq&ed to the conductor current
density J by Ohm's Law, Eqs. 3.3.6, 2,5.11b, and 2.5.12b. Hence, fo -V x R and

E-xufi-d-vx (®)

where ; = QRi i1s the velocity of the moving conductors. At a given instant, the armature winding
amounts to a superimposed parallel pair of windings conmected through the brushes to the armature
terminals. One of the pair is shown in Fig. 4.10.3b. The other coil, represented by the dotted wires
of Fig. 4.10.3a, links the same flux. Each of these windings carries half of the armature current ani
has the turns density Na'

For the "solid" windings, Eq. 7 becomes
3 T .4 d
v, + IE 4% + J’ ORB 1, .df = - o= js B da 9)
wire wire

where S is an integration over the surface enclosed by the contour C composed of the wire. The integra-
tion of E between the terminals external to the machine gives the term =V,.

The current density in the wire is the net current i /2 divided by the cross-sectional area of the
wire, A,. Hence, the second term in Eq. 9 becomes

3 I ia 1 2a
I E'd =TA—.C'J—2'a=Raia; Ra=2ACr 10)
a a a a
wire

where Aa is the cross-sectional area of the wire and 2ﬁ is the total length of the wire joining the
brushes at the given instant (the total length of the "solid" wire in Fig. 4.10.3a). Hence, R, is
the d-c resistance "seen" at the armature terminals.

The third term in Eq. 9 is evaluated by recognizing that those conductors between € and 6 + d6
number (N,R)d®, and therefore give a contribution (RB.(6)N,Rd6. This integrand makes a positive con-
tribution in the interval m/2<6<3w/2, where the contour is in the positive z direction, and a negative
contribution in the interval -w/2<9<ﬂ/2 where the wires are returning in the -z direction:

in/2 m/2
f orB%1 .df = 2 ] 2N 8246 - 2 J or%N B2a6
r z ar ar
wire m/2 -7/2
(11)
I S
- -4QeRN 3 B ge 2
a e W
(odd)

The second equality results from substitution of the Fourier series and carrying out the integration.
It follows from substitution for Ba using Eq. 3b with Eqs. 1 and 2 used to relate W and Ha to the
terminal currents that

a-)-
I musriz.d?[ = -6 1 (12)

wire
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where Gy is the same as defined with Eq. 6. To complete these steps, observe that fm/m3 is an odd func-
tion of m, so that the contribution that is proportional to i, sums to zero. Also, Rgn(R,Rp) =

-Rogp(Ro,R), as can be seen from the definition in Table 2.16.2 or by application of the reciprocity
condition, Eq. 2.17.10. There is no contribution to Eq. 12 of the part of B? induced by the armature

currgnt because this "self-field" contribution to v X B at a winding location 6 is cancelled by that
at -0. :

To evaluate the right~hand side of Eq. 9, first observe that the flux linked by the coils having
their left edges in the range d6' in the neighborhood of ©' is the product of the flux linked by one
turn and the number of turns in that range of 6':

7 ’
7 . -

. Q\-l)je' ‘B:Rde:, N_Rd6' . (13)

As a result, the total flux linked by all of the turns is
3n/2 8'+m
I B da--I I:z I BaRdG:IN RdO’ (14)
g T ] o r a

Again, substitution of the Fourier series for B: and evaluation of the integrals gives

2 i:m _j;??
JBda-M.NRZ — e @15)
T a 2 . .
S m=-P m
(odd)

Further evaluation, using Eqs. 3b, 1 and 2, with the observation that gm/m3 is an odd function of m
so that the contribution proportional to if vanishes, gives

2 .3

: - 164Ny R™ « £ (R ,R)
_ . = ao m' o
I Brda = Laia’ La = T % (16)
s m=1 m
odd

That iy makes no contribution to the net flux linked by the armature winding is evident from Fig. 4.10.1.
The armature and field magnetic axes are perpendicular. Thus, with the substitution of Eqs. 10, 12 and
16, the armature circuit equation, Eq. 9, becomes

-di
a
vo=Ri -QGi +L — @a7)
where Ra’ Gm and La are given by Eqs. 10, 6 and 16.

The circuit equation for the field winding is similarly found by applying Faraday's integral
‘7( law, Eq. 7, to a contour composed of the field winding. The right-hand side of Eq. 7 is approximated:.
by the flux contribution over the surfaces of the respective poles:

l 3m
7~ % p 7% p,
j Brda = nf£ J BrRode - nfl J BrRode (18)
T . T
-E+e° '§'+eo

Substitution of the Fourier series for Bi and integration gives

) .-
¢ f e 2 ~f
=48 _ R X ==
ISBrda ﬁfg o k) raT) B, cos meo 19)
(

This expression can now be evaluated using first Eq. 3a and then Eqs. 1 and 2. Because gm/m3 is an
odd function of m, the term proportional to ia sums to zero with the result

2
16n R 4 © cos mO sin mb
f - £ 0 0 [s] o
B da =L i L S - e—— z
JS r gles Le T w1 a2, R (20
(odd)
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Fig. 4.10.5. Regimes of energy conversion for a d-c magnetic field type interaction. Armature
voltage v, is fixed and field current if is varied. With the identification of
variables ig > vg, v, *> 15, Ry, Rg™y Gy > Ggs the power characteristics also

represent the Van de Graaff type of device developed in Sec. 4.14,

Note from the definition of f; in Table 2.16.2 or the energy relation, Eq. 2,17.12, that £ (R,R o) <0,
so that Ly is positive. The 1eft-hand side of Eq. 7 is evaluated as for the armature except that the
conductor is fixed. Hence, Eq. 7 becomes the required circuit equation for the field:

a1,
Ve = Rede + Le 35 (21)

The total resistance of the field winding is Re = Aflflof, and Le is given by Eq. 20.

The Energy Conversion Process: Simple consideration of Eqs. 6 and 17 relates the discrete elec-
trical and mechanical terminal variables to the energy conversion process. Consider the field excita-
tion current iy and the armature voltage v, as constrained by external sources. The steady-state
dependence of the armature current and the magnetic torque on the comstrained variables implied by
Eqs. 6 and 17 is then

Vo QGm
LTt I 22)
a a , i
va QGm
T = m f + R_f (23)
a
The electrical power input to the device follows from Eq. 22 as
Va
1a% = 7, [Va * W] (24)

while the mechanical power output is given by Eq. 23 multiplied by the angular velocity
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QGm \
a

These last two expressions are sketched in Fig. 4.10.5 to show the power-flow dependence on the field
current if with { assumed positive.

In view of the physical significance of izv, and 9T, it is possible to classify the regimes of
operation as also sketched in Fig. 4.,10.5. It is because the electromechanical coupling has been
defined to include the electrical losses (by contrast with the point of view in Sec. 4.9, for example)
that the brake regime is possible.

The power conversion characteristics exemplified by this d-c machine and summarized in Fig. 4.10.5

are in common to the family of d-c or conduction type interactions. For example, with appropriate re-
definition of variables, the same characteristics pertain to the Van de Graaff machine of Sec. 4.14.

4.11 Green's Function Representations

In dealing with fields that are related to sources (the charge density or current density) through
linear differential equations, it is possible to use yet another approach that is based on the fact
that superposition of sources implies superposition of fields. This approach, which is an alternative
applicable to situations illustrated in Secs. 4.5 - 4.9, is familiar from the use of the superposition
integral to find the potential response from charge specified throughout all space or from the Biot-
Savart law for finding the magnetic field, given the distribution of current density throughout space.

Volume source distributions can often be considered the sum of distributions of surface charge
or surface current. The transfer relations are a convenient vehicle for obtaining the response to
such singular sources. By then integrating over the actual given source distribution, the field is
represented as the sum of field responses to the surface sources,

The determination of the fields and force associated with the charge beam of Sec. 4.6 illustrates
the method. Figure 4,11.1 shows a cross section of the configuration pictured in Fig. 4.6.1, but
with the only volume charge in a shell having radial thickness dr' at the radius r', where the density
is p(r'). The fields due to an arbitrary radial distribution of charge can be constructed once the
response to this surface charge, having density p(r')dr’, is_determined. At the outset, consider the
field to be a superposition of fields due to the potential V, imposed at the surface r = a and to the
distribution of charge in the volume. The latter is determined by using the boundary conditions

xd

3¢ =0, 3% = 3%, B - Bi = p(r')dr’ D)

Implicit is the understanding that there is no O dependence, and that the z dependence is exp(-jkz).

Fig. 4.11.1

Shell having surface-charge
density pg(r')dr' gives rise
to fields that can be summed
to determined field due to
arbitrary charge distribution.

In the region r > r', the.flux-potential relations, Eq. (a) of Table 2.16.2, apply:

=R
0
o
0

f (£',a) g (a,r")
=ecl © ° d (2)
go(r'aa) fo(a,r')

(> ]
"
o

whereas in the inner region, r < r', the limiting form of Eq. (c) is appropriate:

~e ~e
D = €fo(0,r')¢ (3)
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Subtraction of Eq. 3 from Eq. 2b and use of the boundary conditions of Eq. 1 gives

3d _ ze _ p(r")dr’
=0 elf (a,r") - £ (0,r"] i

By the judicious use of these amplitudes and the potential distribution given for a canonical annular
region by Eq. 2.16.25, it is now possible to write the radial distribution of & for an arbitrary dis-
tribution of charge den51ty. There are three terms. The first is simply the potential due to the
voltage V, applied at the outer wall. For this part, Eq. 2.16.25 is evaluated with B =+ 0 and Jo =¥,
The second term comes from evaluatlng Eq. 2.16. 25 for the potential at r due to the charge shell at

r' <r (so that o = a, B =1"', 3 = %c = 0 and 3B = 3d ) and adding up all contributions attributable to
charge inside the radius of observatlon r. Finally, the third term is written by again using

Eq. 2.16.25 to express the potential, but this time due to charge at a greater radius than the r, at

r <r' (so that o = r', 8> 0 and & = 3d) and integrating over the distribution outside the observa—
tion position r:

. g Jolk) [, (ka)H_ (§kr) - B (jka)J (jkr)] 5 ydr!
¢(r) =V, TTjk—a)' Io [3, Gka)E, Gkr)-E_(3ka)J_ Gkr')] €[f_(a,x") - £_(0,r")]
(5)
. Ja Jo(jkr) j')(r')dr'
n Jo(jkr') ELfo(a,r') - fo(O,r')J

To find the axial force acting on the entire beam, it is only the normal flux density at the outer
wall that is required, This can be found from Eq. 5, but is more easily determined directly from Eqs. 2a,
uged first w &th 3¢ = V and (d) +~ 0 to find the flux density due to the wall potential alone and then with

= 0 and 3¢ given by Eq. 4 to find the part due to the volume charge. The latter is summed over the
total distribution of charge.

e . (& g la,x)p"ar’
D = ef (0,a)V_ + J (6)

o [fo(a,r') - fo(O,r')]

The force is thus determined by substituting this expression into Eq. 4.6.3. Equation 6 holds for an
arbitrary charge distribution, but consider the uniform distribution of charge inside the radius R.
Then the integration needs only be carried out from 0 to R. With Vo and p(r') selected consistent
with Eqs. 4.6.1 and 4.6.2, it follows that the force is given by Eq. 4.6.8 with Lj replaced by L3,
where

a_

R g, (a,r")dr’ 1 kR T (kr )
J j (kr'") d(kr') ()

[f (a,r'") - f ,r )] (kR) I (k )

The integral is carried out by recognizing that Io(kr') is a solution to Eq. 2.16.19 with r > r' and
m = O:

dI_(kr')
e (o o) - ®

Hence, Eq. 7 gives the same result, Eq. 4.6.13, as found in Sec. 4.6 using the 'splicing approach."

The same procedure applies if the charge has © dependence exp(-jmf). Thus, by making use of a
Fourier series representation in © and z, the method can be used to describe fields associated with
arbitrary dependence on 6 and z.

The Green's function approach exemplified here is applicable to modeling the synchronous machines
developed in Secs. 4.7 and 4.8.

4,12 Quasi-One-Dimensional Models and the Space-Rate Expansion

The "narrow-air-gap" model for rotating machines and long-wave models for electromagnetic wave
propagation are examples of quasi-one-dimensional models. The following sections illustrate the use
of such models in the kinematic description of electromechanical interactions. Extensive use will be
made in later chapters of models that similarly exploit a relatively slow variation of distributed
quantities in a "longitudinal" direction relative to "transverse" directions.

1. This is the method used by Kirtley in '"Design and Construction of an Armature for an Alternator
with a Superconducting Field Winding,'" Ph.D. Thesis, Department of Electrical Engineering, MIT,
Cambridge, Mass., 1971, for a configuration closely resembling that considered in Sec. 4.8.
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(a)

Fig. 4.12.1. (a) Cross-sectional view of sync¢hronous electric field energy converter with
stator and rotor composed of perfectly conducting materials constrained by a
time-varying voltage source. The stator geometry is static, while the rotor
moves to the right. (b) Interaction represented by time-varying capacitance.
(c) Detail of air gap showing components of Ez to satisfy boundary conditions.

An example is shown in Fig. 4.12.1. Perfectly conducting surfaces having the potential differ-
ence v(t), vary from the planes x = 0 and x = -d by the amounts §£g(z,t) and £.(z,t), respectively,
What are the fields in the gap? This configuration is the basis for the study of the variable~
capacitance machine in Sec. 4.13. Fields in the gap can be approximated by two techniques. If &
and &, are small compared to d, the boundary conditions can be linearized, and the fields found
approximately. This is the approach used in Sec. 4.3 for describing the salient pole interactions
(Eq. 4.3.16). It formally amounts to expanding the fields in an amplitude parameter expansion with
the zero-order fields those with &g and &, equal to zero, the first-order terms those given by keeping
only linear terms in (§g,&,) and so on. Thus, the validity of the model hinges on the amplitudes

(ES,Er) being small.

In quasi-one-dimensional models, amplitudes are not necessarily small. Rather, certain spatial
rates of change are small. In the configuration of Fig, 4,12,1, the distance A typifying variations

in the z direction is long compared to the distance d, Yy = (d/A)2 << 1.

The relationship between linearized and quasi-one-dimensional models is illustrated in Fig. 4.12,2,
Linearized quasi-one-dimensional models must be consistent with the long~wave limit of the linearized
model. In establishing complex models, this fact is often used to motivate the appropriate 'zero-order"
approximation which is the starting point in developing a quasi-one-dimensional model.

amplitude
_ expansion
"exact" model > linearized
(linearization) model
space-rate long-wave
expansion ¥ limit
quasi-one-dimensional linearized long-wave
+—
model model
linearization

Fig. 4.12.2. Schematic characterization of relationships among three-dimensional,
quasi-one-dimensional and linearized models.
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Usually, quasi-one-dimensional models are motivated by physical reasoning, with little need for
formality. This is partly because higher order terms are seldom used. But, at least once, it is
worhwhile to see how higher order terms are found, and that the approximation used is the lowest order
term in an expansion in powers of a space-rate parameter, in the example of Fig. 4.12.1, of y = d/n)2,

The procedure here is analogous to that of Sec. 2.3 on quasistatics. The spatial coordinate z,
in which variables evolve slowly, plays the role of time, The physical idea that this slow variation
ought to make one field component dominate the other is built into the normalization of variables.

If modulations of the electrodes are slowly varying compared to the transverse distance d, each sec-
tion of the electrodes tends to form a parallel-plate capacitor. With E, a typical electric field in
the x direction (the "dominant" field component), d taken as the typical length in the x directionm,
but A as that length in the z direction, the appropriate normalization is

E_=EE x = dx

b o=x =

E, = E (d/NE, z = Az 1)
Er - dgr’ E'-‘s = 4§S v= (Eod)!

In the gap, i is irrotational and solenoidal, In terms of the normalized variables, these con-
ditions are

JE JE
~=__2.0
oz x
2
agx BEZ
trali & ra

where the space-rate parameter y = (d/X)z. To complete the formulation in terms of normalized variables,
boundary conditions at the scalloped perfect conductors are that the potential difference be v(t) and
the tangential fields vanish:

E’S
9E ok
Ez =—-,aT'Ex(x=€s); Ez"—ﬁ—Ex(x=Er- 1); Ig . Exdx=v 3)
-1
T

Only two of these three expressions are independent.
The normalized field components are now expanded in series of the form

’ 2 o s
Ex Exo + 'YExl +v ExZ +
@

2
Ez Ezo + YEzl +y E22 + oo

Note that only one dimensionless parameter is involved, so for the particularly simple case at hand,
there is no ambiguity as to what lengths are most critical.

Substitution of the series of Eq. 4 into Eqs. 2 gives a palr of expressions which are poly-
nomial in y. Coefficients of each order in y must vanish; thus, the zero-order terms involve only the
zero-order fields

aEXO - aEZO = 0

9z 9x

9E €))
X0

= = O
X

but the first order expressions are "driven" by the zero order fields

EEEl - Efil = 0
oz ox 6)

aExl aEzo

ox 0z
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It follows from Eqs. 3c and 5b that Exo is quasi-one-dimensional. It only depends on (z,t):

Exo = Exo(z’t) B

v

— @

Es +1 gr

What has been deduced as the zero-order E, is just the voltage divided by the distance between con-
ductors. If variations with z are sufficiently slow, each section of the system forms a plane-parallel
capacitor. To find the other component of the zero-order field, note that Ey,, is only a function of
(z,t), so Eq. 5a can be integrated to obtain

aExo
E =X
Z0 3z

+ £(z,t) (8)

where f(z,t) is an integration function. This function is determined by substitution of Eq. 8 into
Eq. 3a:

9E,, 3

E =x-——-=— (E £ ) ®

zo 0z 9z  XO0°s

Substitution now shows that the tangential field on the lower surface is zero, Eq. 3b is satisfied. The
zero-order fields are represented in dimensionless form by Eqs. 7 and 9.

The first-order fields are predicted by Eqs. 6, now that the zero-order fields are known. From
Egs. 6b and 9,

L - L %0 = o)
ox 9z xXT + 22 (Exogs) o

The functional dependence on x on the right in this expression is explicit, and therefore integration
gives

x2 3 E 32
Ear-5 —3 — % a_z—f (Exogs) + glz,t) @

Because the zero-order Eg already satisfies the boundary condition, E,o integrates to v across the gap
(Eq.3c), the same integral of Eq. 11 must vanish and that serves to determine the integration function
g(z,t). At this point, two terms in the series of Eq. 4a have been found, and they are sufficient to
show what is meant by the expansion :

2 3 3
0°E 2 ES + (1 - gr)

X0

U SN x4 1
x " @T+E -E) Y| oz 26T FaA-€E)

2 (12)
3 1
+ 3—27 (EyoBg) (x - 5 1€ - (L - EDD)

E

By the definition of % used in normalizing z, BZEXO/BZ2 is on the order of Ey,. Hence, the first
term in Eq. 12 gives an accurate picture of the field, provided y << 1.

The procedure outlined is mainly of conceptual value. Certainly the quasi-one-dimensional
modeling of a complex problem begins with a physically motivated approximation: here, Eq. 7. Because
no more than the zero-order solutions are usually required, the formalism of normalizing the variables
and identifying dimensionless space parameters is not usually required.

In retrospect, the zero-order fields have a dependence on the transverse direction (x) that is
the lowest order polynomial in x consistent with the boundary conditions. Thus, E,, varies as x©
(it is independent of x); while E,, can satisfy the boundary conditions only if it includes a linear
dependence on X.

4,13 Variable-Capacitance Machines

A model for one of the most commonly discussed "electrostatic" synchronous machines (which are
themselves rather uncommon) is shown in Fig. 4.12.la. Both the fixed and moving members have saliency

and consist essentially of perfectly conducting material. The time-varying voltage between stator and
rotor can either be the source of electrical power for producing a synchronous force in the z direction

on the rotor, or it can serve as the voltage of a bus representing an energy sink for the device acting
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V(f) 4 L

T T T TTv-] 1
|—-I-—>w- (b)
(a)

Fig. 4.13.1. Physical realization of variable-capacitance machine modeled in Fig. 4.12.1.
(a) Stator and rotor structure consisting of vanes. (b) Sinusoidal voltage
supplied through slip ripgs together with v2(t), showing temporal depend-
ence of instantaneous force.

Image removed due to copyright restrictions.] [
Photograph of a variable-capacitance generator designed for use with vacuum insulation.

Fig. 4.13.1lc. Variable-capacitance generator designed for use with vacuum insulation. Estimated
output at 30,000 rpm is 6 kW at 20 kV (courtesy Goodrich High Voltage Corp.). Development
of variable-capacitance machines was attempted for the generation of high-voltage power
with application to ion propulsion in the space program. In space, vacuum insulation is
easily obtained. See reports for Contract No. AF33(616)-7230 from Goodrich-High Voltage
Astronautics, Inc., Burlington, Mass., to Aeronautical Systems Division, Air Force Systems

Command, U.S. Air Force, Wright-Patterson Air Force Base, Ohio. For example, Phase II
report by A. S. Denholm et al., 1961.
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as a generator. In practice, the stator and rotor members might consist of metallic fins, as shown in
Fig. 4.13.1. In the model, regions on the stator and rotor that project into the air gap represent the
fins, while regions that dip into the stator and rotor material represent the gaps between fins.

The device is often referred to as a "variable-capacitance” machine because, when the relative
position of rotor and stator is such that the projections into the gap are just opposite each other,
the capacitance is at a maximum, while it reaches a minimum when the peak in rotor saliency falls just
opposite a "valley" in the stator material.

One way to view the energy conversion process is simply to represent the capacitance seen by the
voltage source as time-varying. Given the motion of the rotor, the capacitance C is a known function
of time, and the electrical problem comes down to determining a suitable temporal variation for C,
relative to a time-varying voltage, v. If power is supplied to the voltage source, it must come from
the mechanical forces responsible for making the capacitance vary with time. Thus, the other side
of the energy conversion process raises the question: How is a time-average force produced on the rotor
by the combination of the salient configuration and the time-varying applied voltage? In this section,
we will take up the second question first. What i1s the electrical force in the direction of motion on
the moving member?

The field point of view taken here results in the relation between geometry and capacitance
needed to model an actual system, even if the circuit point of view 1s taken. But also, it makes
the example useful in conceptualizing electromechanical interactions that cannot be given a lumped-
parameter model. For example, suppose that the undulations on the "rotor" were in fact material de-
formations produced by the field itself. This type of self-consistent electromechanical coupling
is not kinematic and will be taken up in Chap. 9,

Synchronous Condition: With a sinusoidal voltage v(t) having period T, applied between the rotor
and stator by means of a slip-ring, a time-average electrical force can act in the z direction on
the rotor only if there is a synchronism between the applied voltage and the rotor motion. To this
end, consider the physical origins of this force in terms of the model shown in Fig. %4.12.1. Regard-~
less of the field polarity, at any position on the rotor surface there is an electric force per unit
area that is directed perpendicular to the surface and into the air gap. This latter fact makes it
clear that without the surface undulations, there can be no electrical force in the z direction.

To make a synchronous motor, on the time average, fields acting to the right over regions of
the rotor surface with a negative slope must produce a greater force than those acting to the left
on the regions where the slope is positive. What is the relationship between the excitation period
T and the rotor velocity U that could result in there being a time-average electrical force? In
terms of the displacement z, of Fig. 4.12.1, a maximum in the force to the right is obtained with z,
in the neighborhood of A/4. Thus, with the rotor in this position, the applied v2 should be at its
maximum, By the time the rotor is at z_. = 3)A/4, the force produced is in the wrong direction, and
hence v2 should be near a null., By the time z, = 5A/4, v2 should be peaking again. It is concluded
that in the time T/2, the rotor should move one wavelength: UT/2 = A, Thus, the synchronism con-
dition is met if

2\

z, = Ut + §; U= T 1

Here, § is a spatial phase-angle determined by the mechanical load on a motor or the electrical load
on a generator.

The quasi-one-dimensional electric field is given by Eqs. 4.12.7 and 4.12.9 un-normalized:

oF
v X 3
B mTFE c L) =T Bt m5 G @

The force on a section of the rotor one wavelength long and a length £ in the y direction is
found by integrating the Maxwell stress tensor over an enclosing surface as pictured in Fig. 4.2.la.
The only surface giving a contribution is the one of constant x in the air gap:

z+A
£, =% J €,EE, dz (3)
z

This integral can be evaluated using the fields of Eq. 2. That it does not matter what x = constant
plane is used in carrying out the integration (except for physical reasons, to have the assurance

that the surface does not cut through one of the electrode inward peaks) is evident from the fact
that
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z+A aEx
Iz EoEx(x-Hi) e dz = eo(x-!-d)I

z+A
9 1.2 _ 2 2

] % (2 Ex)dz = eo(x+d)[Ex(z+A) - Ex(z)] =0 (4)

The final deduction follows from the spatial periodicity of the structure. The remajining contributions

to the integral are expressed using the normalization

Az, £y = dBy, & = a5, 8 =25, 2 =z, (5)

With £ = (g v°/d)f,, Eq. 3 becomes

£ ='r+1 . = e 6
z z 1+ Es - Er oz {1 + Es - Er
Carrying out the differentiation in the integrand gives
z+1L 3€r SES
M U R I T
£(z,) = - : dz @
z L+g -E)

Once the integral is completed, the function f depends on the amplitudes of §_ and £, and on their
relative displacement z,.. The time-average force is then computed by specifying this relative dis-
placement in terms of Eq. 1. In normalized variables, with t = Tt

R i
&, | oo+ va ®

As an example, consider stator and rotor electrodes having sinusoidal shapes of equal amplitude
and a sinusoidal excitation voltage (note that Eqs. 7 and 8 are general in regard to these specifica-
tions):

§, = &, cos 2mz, E =& cos 2m(z - z ), v(t) =V cos 2mt C))

Numerical integration of Eq. 7 then gives the dependence on relative displacemen& and amplitude shown
in Fig. 4.13.2a. To highlight the nonlinear effects of §,, £ is normalizéd to £ so that much of the
dependence on the electrode amplitudes is suppressed.

The electrodes make their closest approach to each other with z, = 0.5 and are furthest apart
when z, = 0. Thus, for a given voltage, the fields tend to be more intense in the range 0.25<zy<0.5
than they are in the range 0<z,.<0.25. This nonlinear efffect is reflected in the tendency of the
force to be skewed toward relative deflections in the former range. As would be expected from the
singularity in the denominator of Eq. 7, as the electrodes tend to touch (§, * 0.5), the force tends
to approach infinity just to the left of z, = 0.5. The function f(zr) is then used to numerically
integrate Eq. 8, with the result the normalized time-average force shown as a function of relative
displacement phase § and amplitude £, in Fig. 4.13.2b. Again, the dependence on §, is partially
suppressed in the normalization.

The electromechanical model exemplified by Eqs. 7 and 8 is nonlinear, in the sense that the
electrode deflections can be of arbitrary amplitude in the range 0 <- £, < 0.5. The fact that the
time-average force becomes infinite as £, + 0.5 1s to be expected. At some instant, the electrodes
are then at the point of touching and the associated field is becoming extremely large where the
electrodes are nearly in contact. (Physically, electrical breakdown would of course present a limit
on the validity of the theory.) Within the validity of an air-gap dielectric that does not permit
electrical breakdown, the procedure which has been followed is an example of the left vertical leg
in Fig. 4.12.2,

Further linearization, based on £; << d and §, << d, demonstrates what is meant by a "linearized
quasi-one-dimensional” model and by the completion of the step represented by the lower horizontal
leg in Fig. 4.12.2,

For small amplitudes, (1 + &5 - & )_3 =1 - 3( - Er), and hence Eq. 7 becomes
z+l 3E

) £
£(z,.) + J [@a+ gs) 5;£ - Er 5;2 - 3(§s - Er)--s;£ + ces]ldz = E,T sin 21z (10
z

r
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Fig. 4.13.2a. Electrical force on rotor of variable- Fig. 4.13.2b, Normalized time-average

capacitance machine (Fig. 4.12.1) as a function force as a function of relative
of normalized relative displacement z. = zr/X, phase of sinusoidal excitation and
with amplitude of electrodes as a parameter. rotor position.

(In carrying out this and the next integration it is helpful to represent the expressions of Eq. 9 in
complex notation and make use of the averaging theorem, Eq. 2.15.14.) In turn, the time average
called for by Eq. 8 can now be evaluated:

eozvzgzn £H 2
<f \ =29, cos” 2wt sin 2m(2t + §)dt (11)
z/¢ d £ = = ==

Carrying out this integration .gives

£0.2
O eo(%ﬂ £ D" 7 andD (12)

This approximation to the timermaverage force is shown by the broken curve of Fig. 4.13.2b.

Note that the small-amplitude force of Eq. 12 takes the form of the area A multiplied by the
electric pressure eo(V/d)Z times factors representing the fraction of this product obtained by dint
of the geometry and the relative phase of the rotor and the driving voltage.

The variable-capacitance machine is closely related to the salient-pole machine described in’
Sec. 4.3 (Case 4b of Table 4.3.1). In that example, the stator is "smooth" with electrodes con-
strained by a traveling wave of potential. The effect of having a stator with saliencies driven by
a simple voltage source (which is likely to be more convenient) is to produce a similar time-average
force.

Linearized from the outset, the variable-~capacitance machine of this section could also be
viewed in terms of an interaction between the rotor traveling wave and one of two stator waves, the
sum of which is equivalent to the physical stator structure considered. The result of such an analysis
would be a model without restrictions as to the gap width relative to the wavelength. For the
related example of Sec. 4.3, Eq. 4.3.27b retains information (represented by the denominator, sinh?(kd))
about the effect of the air gap in the limit where d becomes large. This result, restricted to small
amplitude but valid for arbitrary air-gap spacing, is typical of the amplitude parameter expansion
or linearization modeling step of Fig. 4.12.2., Taking the long-wave limit for the example from
Sec. 4.3 constitutes taking the limit of Eq. 4.3.27b, kd<< 1. Following this route of first linearizing
and then taking the long-wave limit for the variable-capacitance machine considered in this section
is an alternative derivation of Eq. 12, and is considered in the problems.
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4,14 Van de Graaff Machine

A cross-sectional view of a Van de Graaff generator is shown in Fig. 4.14.1. An insulating belt
is charged to one polarity as it passes over the lower pulley. This charge is carried upward to the
essentially field-free region under the high-voltage terminal dome where it 1s removed and replaced by
charge of opposite polarity, which then makes the return trip on the downward moving portion of the
belt. Surrounding the belt are equipotential rings which help in controlling the field distribution by
supporting much of the charge imaging that on the belt. The electric field consists of a generated
field that is essentlally vertical and a self-field associated with the charge on the belt. The equi~-
potential rings help to insure that the self-field is essentially perpendicular to the belt surface
and hence does not reinforce the generated field. To achieve relatively high electric stress (exceeding
107 V/m), the machine is operated in electronegative gases at elevated pressure,

An objective in this section, achieved while developing a lumped-parameter model for the simplified
Van de Graaff generator shown in Fig. 4.14.2, is to further illustrate the use of quasi-one-dimensional
models. This makes it possible to point out the analogies between d-c magnetic machines, Sec. 4.10,
and what might be termed "d-c electric machines."

In several regards, the model shown in.Fig. 4.14.2 does not include features of the machine shown
in Fig. 4.14.1. To avoid undue complexity, the equipotential rings are uniformly distributed between
the high-voltage dome and the ground at the bottom. In the machine pictured in Fig. 4.14.1, charging is
by means of a corona discharge (ion impact charging). An alternative scheme, which has the advantage
of being more easily related to a physical model, makes use of induction charging of a belt consisting
of conductors linked by insulators.l  For the present purposes, the belt (having thickness d) is con-
sidered to carry metallic segments that are insulated from each other. "Field" voltage sources vg are
used to induce belt charges of opposite polarity at the top and bottom. As the belt passes over the
lower pulley, successive segments contact a grounded brush and hence form essentially plane-parallel
capacitors having a voltage vy across the belt thickness d. With the assumption that the belt elec~
trodes essentially cover all of the belt surface, the belt surface charge 1s related to the field volt-
age by

E’E)J&Q <€ o1
eV -

£ -
Q‘f = —d_ (1) C’D

The current i' both supplies the charge carried upward by the belt and neutralizes that coming downward.
a
Hence, for a pulley angular velocity Q and radius R,

= - 24RE
1! = 20, L@R) —&g— v (2)

Quasi-One-Dimensional Fields: In the ideal, the generated field is uniformly distributed with
respect to the z axis. To achieve this ideal, in spite of the metal pressure vessel, the equi- ‘
potential rings are tappéd onto a distributed bleeder resistance running from the dome to the ground
plane. At least under steady-state conditions, this insures that the ring potential ®.(z) has the
required linear distribution consistent with a uniform z-directed electric field. The following
developments identify the implications of having time-varying terminal variables, (va’ia) and
(veoig).

The transverse field components are determined as though any local region along the z axis is
one in which the x-directed fields are independent of z. Thus, in the region between rings and pressure
vessel,

E 4= o 3)

x3 c

The fields Eyy and E,q (Fig. 4.14.2) must satisfy Gauss' law at the belt surface and be consistent
with the potential being the same on the ring where it faces the belt on the right and at the same z
location on the left. Hence, with fields defined positive if they are as shown in Fig. 4.14.2,

€ (B + E,) =0 (4)
-2bE_, + 2aE_; = 0 (5)
Here, is approximated as being uniform over the width of the belt, even though the rings are

E
cylindrfgal and the belt is flat. The distance b is an average spacing. Simultaneous solution of these

1. W. D. Allen and N. G. Joyce, "Studies of Induction Charging Systems for Electrostatic Generators:
The Laddertron," J. Electrostatics 1, 71-89 (1975).
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last two expressions shows that

O¢

Ex2 = ————=~
Eo a+ -a-)

(6)

These transverse fields make it possible to now write expressions that determine the field dependence
on z, A section of the ring structure having incremental length Az is shown in Fig. 4.14,2. Con-
servation of charge for this incremental section, which takes the form of a ring-shaped volume

enclosing rings in the length Az, is written be defining a ring charge per unit length (in the z direc-
tion), A_:
T

—a(erz)
ir(z + Az) - ir(z) -— 7

In the limit Az + 0, Eq. 7 becomes

Bir —BAr
3z - Bt (8)

By symmetry, the contribution to the ring structure charge from the field inside (the images of the belt

charges) cancel. What negative charge there is on the rings at the left imaging the positive belt charge

on the upward-moving belt is canceled by the positive charge on the right imaging the downward moving
negative belt charge. Hence, the only contribution to Ar in Eq. 8 comes from the fields between the
ring structure and the pressure vessel wall, approximated by Eq. 3; A, = 2260¢r/c. Thus, Eq. 8 becomes

e e 2 o
oz ¢ ot

A second law is required to determine the distribution of (ir,0r). This is simply Ohm's law relating
the z component of the electric field to the current carried by the bleeder resistance. With Ry the
total resistance, and hence Ry/L the resistance per unit length, it follows that

<

— 99 R
r a (10) X

Quasistatics: There is now enough of the model developed that a meaningful discussion can be made
of two quasistatic approximations implicit to a lumped parameter model for the Van de Graaff machine.

First, Eq. 1 is misleading in that it implies that the belt charge is instantaneously established
in proportion to the field voltage over the full length of the belt. Of course, an abrupt change in vg
would result in a "wave" of surface charge carried to the high-voltage dome by the moving belt. In the
model developed here, temporal variations are presumed to be long compared to a transport time L/{R.

With this caveat as to the dynamic range of the resulting model, the belt charge is taken as proportional

to the field voltage over the full length of the machine, The machine dynamics are quasistatic relative
of the time required for the belt to traverse the distance between pulleys.

A second quasistatic approximation is necessary to approximate the field distribution governed by

Egqs. 9 and 10 in a way that leads to a lumped-parameter model. Elimination of i, between these equations

results in the diffusion equation. The potential (and hence the ring charge) diffuses in the z direc-
tion, and the resulting dynamics are not in general representable in lumped-parameter terms. The
subject of charge diffusion on heterogeneous structures is taken up in Sec. 5.15. Here, the quasistatic
concepts of Sec. 2.3 are revisited to obtain a low-frequency lumped parameter model. But, now the
critical rate process is represented by a charge diffusion time, not an electromagnetic wave transit
time.

If the fields were truly static, Eq. 9 shows that the current would be independent of z. Thus,
the zero-order current is i, = i,,(t). The associated potential distribution can then be found by
integrating Eq. 10:

ro a a ro

This is the desired potential distribution.' It assures a uniform generated field (z~directed) over the
region of the moving belt.

Because the voltages (vf,vy) are in general time-varying, there is an additional capacitative
current. The capacitance is distributed between the high-voltage terminal and ground, and is deduced
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by considering the first-order current i,], determined from Eq. 9 with the zero-order voltage (given
by Eq. 11) introduced for ¢.. (Note that the procedure followed here is an informal version of that
outlined in Sec. 2.3.):

31:1 - Zleo dva z

32 e dt L (12)

The z dependence is given explicitly, so this expression can be integrated to obtain

280 dva 2
ir1=-cT__Ez + £(t) (13)

with f£(t) an integration function to be determined shortly by boundary conditions. Introduction of
Eq. 13 on the right in Eq. 10 gives an expression for 9,7 that is similarly integrated to obtain

R, Leo dva z3
=T T dc 3t £z @
Because 9. = 0 at z = 0, the second integration function has been set equal to zero.

The total voltage and current distributions consist of the sum of zero and first order parts.
Because the zero-order distributions already satisfy the correct boundary conditions, the first order
voltage must vanish at z = L, This serves to evaluate £(t) in Eq. 1l4. If £(t) is then introduced
into Eq. 13, and that expression evaluated at z = L, the current i,(L,t) has been found:

va 22,Leo dva
ir = iro + irl ='§: + 3c dt s

Note that because of the essentially linear distribution of voltage over the length of the structure,
the equivalent capacitance is 1/3 what it would be if the structure formed a plane-parallel capacitor
with the vessel wall. (This same equivalent capacitance can be computed with much less trouble and 2

amuch less insight by simply finding the total electric energy storage and setting it equal to % Ceqva.)

Electrical Terminal Relations: The high-voltage terminal has a total current i, which is the
sum of -i' given by Eq. 2, the ring~structure current i, from Eq. 15, and a current required to charge
the dome. With the last of these modeled as charging half of a spherical capacitor, the high-voltage
terminal relation has the form

v, dva
ia = R—a- - Geﬂvf + Ca T (16)
where
201Le
- _2%Re . = o
G, ==5 C, =——+ 2me _(a + b)

The field terminal relations depend on details of the specific geometry in the region of the
pulleys. They take the form

vf dvf
iﬂg*%r (17)

where Rf is the resistance of the belt material and the pulley mounting and C¢ is the capacitance of
the pulley relative to ground or to the high-voltage terminal.

Mechanical Terminal Relations: The electrical torque acting in the § direction on the lower pulley
is computed by simply multiplying the z-directed force per unit area, OgEz, by the total belt area
22L and the lever arm R, In view of Eq. 1 for O¢ and the fact that E, = -v,/L,

T = =G vevy

where the coefficient G 1is the same as defined with Eq. 16.

(18)

Analogy to the Magnetic Machine: The terminal relations summarized by these last three equations
have a canonical form not only found to describe other electric machines of quite different configura-
tion, but also to describe magnetic d-c machines. For example, compare these relations to Eqs. 4.10.17,
4,10.21, and 4.10.6. The analogy 1s complete provided that the identification is if + v¢, v, = ia'

Ry, ~ Rzl, 6 » Ge.
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The Energy Conversion Process: Modes of energy conversion are explored by considering the machine
constrained in such a way that the high-voltage terminal current i, is fixed, as is also the angular
velocity . Then, the machine is made to pass from one energy conversion regime to another by varying
the field voltage vg.

Under steady-state conditions, the electrical power input is expressed by solving Eq. 16 for v,
and multiplying by i,:

vi = Raia(ia + chvf) (19)

The mechanical power output is also written in terms of (vf,ia) by substituting for v, in Eq. 18 and
multiplying by Q:

QT = -Q GeRavf(ia + Qc;evf) (20)

With the appropriate identification of variables, plots of these expressions, and the implied modes of
energy conversion, are as shown in Fig. 4.10.5.

4,15 Overview of Electromechanical Energy Conversion Limitations

This chapter has two broad objectives. On the one hand, examples are chosen to illustrate
techniques for using a field description in deducing lumped-parameter models. On the other hand, the
examples convey an overview of systems that are electromechanically kinematic while providing a back-
ground for understanding the kinematic systems taken up in Chaps 5 and 6 and the coupling to deform-
able media developed in later chapters.

The Maxwell stress acting on a "control volume'" enclosing the moving material, introduced in
Sec. 4.2 as a convenient way to relate the fields to the total force or torque, is also useful in
obtaining a qualitative perception of basic limitations on the energy conversion processes. These
volumes are represented in an abstract way by Fig. 4.15.1. The longitudinal direction, denoted by (1),
generally represents the direction of material motion. Perpendicular to this is the transverse direc-
tion denoted by (t).

The net magnetic or electric force on the volume in general has contributions from both the
transverse and longitudinal surfaces, Ag and A;. But, in all of the examples of this chapter, shear
stresses rather than normal stresses contribute to the energy conversion process. To exploit this
fact, the active volume of the devices has a longitudinal dimension that is large compared to trans-
verse dimensions. For example, in rotating machines, maximum use of the magnetic or electric stress
is made by having an "air gap" that is narrow compared to the circumference of the rotor. In the
Van de Graaff machine, the same considerations lead to a "slender" configuration with the belt charges
producing an electric field E; across a narrow gap and the generated field being Ey.

In all of these "shearing" types of electromechanical energy converters, the mechanical power
output takes the form

p = UAK[] urH P = VA K] eEE (€))

Here, U and A_ are respectively the material velocity and an effective transverse area, e.g., the rotor
surface velocity and area respectively in a rotating machine. The largest possible net contribution of
the magnetic or electric shear stress contribution, D UHQth and D SEQEtﬂ respectively, is obtained if
stress contributions to one of the surfaces of the control volume are minimized. Generally, this is
accomplished by designing field sources into the volume., The factor K in Eq. 1 reflects geometry,
material properties and phase angles. In a synchronous machine, it accounts for the air-gap spacing,
the sinusoidal spatial dependence of the excitatlons and the relative phase of stator and rotor excita-
tions. In the variable-capacitance machine of Sec. 4.13, this factor (which represents the "cut" of
the ideal power output that is obtained) is also proportional to the product of the saliency amplitudes
on rotor and stator.

Because of their higher energy conversion density, it is generally recognized that conventional
magnetic electromechanical energy conversion systems are more practical than their electric counter-
parts. This predisposition has its basis in the extreme disparity between electric and magnetic shear
stresses that can be produced under ordinary conditioms.

In conventional magnetic equipment, the limit on the magnetic flux density, set by the satura-
tion of magnetic materials, is in the range of 1-2 tesla (10 - 20 kgauss). The electric field
intensity in air at atmospheric pressure (over macroscopic dimensions in the range of 1 mm to 10 cm
usually of interest) is limited to less than the breakdown strength, 3 x 106 V/m. Thus under con-
ventional conditions, the ratio of powers converted by electric and magnetic devices having the same
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Fig. 4.15.1, Abstraction of regions of active electromechanical
coupling in magnetic and electric field systems.

velocity U, effective area A, and factor K is (from Eq. 1) the ratio of the respective shear stresses.
Using as typical numbers, B = 1 and E = 106 V/m, this ratio is

(B )electric ~ eoElEt ~ =D

= 10 (2)
(& )magnetic Bth/uo

The disadvantage inherent to electric energy conversion devices can be made up by increasing the
velocity, the effective area, or the electrical breakdown strength. Now, illustrated by some examples
is the way in which rough estimates of the energy converted can be made with Eqs. 1, provided the fac-
tors are evaluated with some appreciation for the underlying engineering limitations.

Synchronous Alternator: A large synchronous machine, driven by a turbine in a modern power plant,
would have the typical parameters:

rotor radius b = 0.5 m
rotor surface veloeity U = 2m60b = 188 m/sec
rotor length £ = 7 m

air gap transverse and longitudinal flux densities = 1 tesla

These figures are typical of the full-scale generator modeled by the machine shown in Fig. 4.7.lc. An
upper bound on the factor K in Eq. 1 to take into account the sinusoidal field distributions on rotor
and stator, is reasonably taken as 1/2. Thus, from Eq. la, the mechanical power requirement (and with
reasonable efficiency, therefore the maximum electrical power output) is éxpected to be approximately

-7

= (188)[(2m) (0.5)(7)1(0.5) (1) /4T x 10~ = 1.6 x 10° watts 3)

This is about 50% more than the power rating of existing equipment having roughly the parameters used.

Superconducting Rotating Machine: The limit on practical magnetic shear stress set by the satura-

tion of magnetic materials more basically arises from the Ohmic heating limit on current density. A
synchronous machine like that described in Sec. 4.9 but with no magnetic materials is in principle not
limited by saturation. But it is limited by the current density consistent with available means for
removing the heat from the windings. (A current density of 3 x 106 A/m2 is projected for the normal
conducting armature of the machine shown in Fig. 4.9.2.) The incremental increase in magnetic field
assoclated with increasing the current density once the magnetic materials have been saturated makes
conventional operation in this range generally unattractive.

One way to obtain higher field intensities than are practical using conventional conductors is to
make use of superconductors. In time-varying fields, superconductors in fact have losses and are dif-
ficult to stabilize. But, for slowly varying and d-c fields they can be used to produce magnetic field
intensities greater than the 1-2 tesla range of conventional equipment. Under balanced synchronous
conditions, the field winding is only subject to d-c fields, while the armature winding carries a-c
currents and is subject to a-c fields, Thus, in the machine of Fig. 4.9.2, the rotor winding is super-
conducting while the stator is composed of normal conductors. With that machine, the projected (rotor)
field is in the range of 5-6 tesla and the area A; required for a given power conversion accordingly
reduced. For example, a two-pole 60 Hz machine having B, = 1 tesla, By = 5 tesla and rotor length and
radius £ = 5 m and R = 0.3 m, respectively, has an estimated mechanical power input of A,Tg RQ =
(272R) (B, Bg/21p) (R) (2Tf) = 2 x 109 watts. These are representative of the parameters for a projected
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2000 MVA superconducting alternator.

Variable-Capacitance Machine:
ploiting electrical shear stresses,
power converted posed by electrical

1

In machines ex-
the limit on
breakdown can

be pushed back by either making the insulation an
electronegative gas under pressure, or vacuum,
Typical improvements in breakdown strength with
increasing pressure above atmospheric are shown in
Fig. 4.15.2.2 In principle the field intensity can
be increased to more than 3 x 107 V/m, and hence the
electric shear stress can be increased by a factor
of more than 100 over that used in calculating Eq. 2,

=

o

The machine shown in Fig, 4.13.1c is designed
for operation in vacuum. Here, the mean free path
is very long compared to the distance between elec~
trodes. As a result, breakdown results as particles
are emitted from the electrode surfaces, accelerating
until impacting the opposite electrode where they can |
produce further catastrophic results, Because the
voltage difference between electrodes determines the
velocity to which particles are accelerated, break-
down 1s voltage~dependent. Put another way, the 1
breakdown field that can be supported by vacuum is a ()
decreasing function of the gap distance, It also ()
depends on the electrodes. Using steel electrodes
having exposed areas of 20 cmz, a typical break-
down strength under practical conditions appears
to be 4 x 107 volts across a l1-mm gap.3

A

E-units of 10" V/m

—stainless steel
-—- Al and stainless |

200 400,
pressure - Ibs/in
f;é. 4.15.2. Breakdown strength of common gases

as a function of gas pressure for several

2
The electric machines illustrate how the power different electrode combinations.

conversion density can be increased by dividing the

device volume into active subregions. In an electric machine, current densities are small and as a re-
sult little conducting material is required to make an electrode function as an equipotential. By
making stator and rotor blades (as well as intervening vacuum gaps) thin, it is possible to pack a
larger amount of area A into a given volume. The limitation on the thickness and hence on the degree
of reticulation that can be achieved in practice comes from the mechanical strength and stability of
the rotor. Because of material creep and fracture, centrifugal forces pose a limit on the rotational
velocity; but more important in this case, if a blade passes through a high-field region slightly off
center, the result can be a transverse deflection that is reinforced by the next pulsation. The tend-
ency for the blades to undergo transverse vibrations as they respond parametrically to the pulsating
electric stress on each of their surfaces limits the effective area.

As numbers typical of the machine shown in Fig. 4.13.1c (where there are six gaps), consider:

R = mean radius of blades = 0.2 m
blade length = 0.12 m
U = mean blade velocity at 30,000 rpm = 630 m/sec (an extremely high velocity)
E=>5x10° V/m
A, = (0.2)(2m (0.12) = 0.9 u’

Remember that the maximum electric field appears where the electrodes have their nearest approach, so
the average field used is considerably less than the maximum possible. According to Eq. 1b with K=1,
the power output is then at most 125 kW. Actually, the factor K significantly modifies this rough
estimate. According to Fig. 4.13.2b, for Eold = 0.4 and a A/4 phase,

£ 2
K = (3.2)[—2“7<?°> (4)

1. J. L. Kirtley, Jr., and M. Furugama, "A Design Concept for Large Superconducting Alternators,"
IEEE Power Engineering Society, Winter Meeting, New York, January 1975.

2. J. G. Trump et al., "Influence of Electrodes on D-C Breakdown in Gases at High Pressure," Elec-
trical Engineering, November (1950).

3. A. S. Denholm, "The Electrical Breakdown of Small Gaps in Vacuum," Can. J. Phys. 36, 476 (1959).
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For d/A = 0.1, K= 2,5 x 10-2, and the fraction of the ideal energy conversion is not very large. In-
stead of 125 kW, the postulated machine is predicted to produce 3 kW.

Electron-Beam Energy Converters: One class of electric field energy convertors that often have
very respectable energy conversion densities make use of electrons themselves as the moving material.
The model of Sec. 4.6 is developed with this class of devices in mind. A high-energy conversion den-
sity can result from the extremely large electron velocities that are easily obtained. For example,
an electron having mass m and charge q accelerated to the potential ¢ has the velocity

U = 292 (5

m

For the electron, m = 9.1 x 10-31 kg and q = 1.6 x 10-19 C. Thus, an accelerating potential of 10 kV
results in a beam velocity of 6 x 107 m/sec!

In electron-beam devices, the electric shear stress is not usually limited by electrical break-
7 ,down, but rather by the necessity for maintaining electrons in spite of their tendency to

>°\\‘,::

jgﬁrepel each other. To inhibit lateral motion of the ¢harged particles due to their space charge, a

magnetic field is commonly imposed in the direction of electron streaming. The Lorentz force, Eq. 3.1.1,
then tends to convert any radial motion into an orbital motion, while letting electrons stream in the
same direction as the imposed magnetic field.4

Electron beams are typically used to convert d-c electrical energy to high-frequency a-c. In fact,
the high beam velocity requires that for a synchronous interaction, the frequency f is the beam velocity
U divided by the wavelength of charge bunches; £ = U/A. Hence, for a wavelength A = 6 cm, the frequency
for a traveling-wave interaction with the 10 kV beam would be essentially f =6 x 107/6 x 10-2 = 109 Hz.
The practical limit on how short A can be while obtaining useful coupling between beam and traveling-wave
structure is evident from Sec. 4.6.

The kinematic picture for the beam is useful for making the electroquasistatic origins of the
coupling clear and to identify the nature of the synchronous interaction upon which devices like the
traveling-wave tube depend. But, because the electron bunching takes place self-consistently with the
coupling fields, it is necessary, in engineering electron-beam devices, to treat the electrons as a
continuum in their own right.4 Such examples are taken up in Chap. 1l.

Both electron-beam devices and synchronous alternators convert mechanical to electrical energy.
As a reminder rather than a revelation, note that the synchronous alternator is of far more fundamental
importance for human welfare, because when attached to the shaft of a turbine driven by a thermal heat
cycle, it is capable of converting low-grade thermal energy to a high-grade electrical form. Its con—
version of energy naturally fits into schemes for production of energy from natural basic sources.
By contrast, the electron-beam devices only convert d-c electrical energy to a high-frequency electrical
form.

4. M. Chodorow and C. Susskind, Fundamentals of Microwave Electronics, McGraw-Hill Book Company,
New York, 1964. :
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Problems for Chapter 4

For Section 4.3:

Prob. 4.3.1 The cross section of a "double-sided machine"
is shown in Fig. P4.3.1. The "rotor" is modeled as a d Ho
current sheet.

K'=Re K'exp(-jkz)

(a) Find the force f, acting in the z direction on an 1 e

area A of the sheet. ?OOOOOOOOOOOOOOOOOOOOO000040}—2
(b) Now take the excitations as given by Eqs. 4.3.5a and Ho

4.3.6a for synchronous interactions and evaluate fz d

(¢) For a d-c interaction, the excitations are given
by Eqs. 4.3.10a. Find f,.

/Ks=ReRsexp(—jkz)

- — Hp—00 _

Fig. P4.3.1

Prob. 4.3.2 The developed model for a "trapped flux"
synchronous machine is shown in Fig. P4.3.2. (See ¢ p—=00 )

case 3a of Table 4.3.1). The stator surface current ’
is specified as in Eq. 4.3.%4. The "rotor" consists Ks: Re Ksexp( sz) )<
X X

of a perfectly conducting material. When t=0, the

currents in this material have a pattern such that d r r

the flux normal to the rotor surface is BL=BY cos J B=ReB exp(-jkz) y
k[Ut-(z-8) ], where U is the velocity of the rotor. Z \ >
Find f, first in terms of KS and BY and then in terms t::::f':__ Os00 — (-~ z
of KS and BE. In practice, such a synchronous force U
would exist as a transient provided the initial current Fig. P4.3.2

distribution diffused away, as described in Sec. 6.6, on
a time scale long compared to that of interest.

| et

Prob. 4.3.3 The moving member of an EQS device takes the T 5 &9 .
form of a sheet, supporting the surface charge of and moving £_R°¢e)(p(-lk2)
in the z direction, as shown in Fig. P4.3.3. Electrodes on d
the adjacent walls constrain the potentials there. l °y=Re5}exp¢4kz)
(a) F}nd Ehe force fz on an area A of the sheet in terms of F -+ U

2, &g, o). I

d

(b) For a synchronous interaction, w/k = U. The surface charge b ~b )
is given by -0,cos[wt-k(z-8)] and 32 = Vocos(wt—kz) . For L ¢=Re<bexp(-jkz)
even excitations ®P=¢2. Find £ . ==

(¢) An example of a d-c interaction is the Van de Graaf{machine
taken up in Sec. 4.14. With the excitations ¢@= ®b=—Vocos kz Fig. P4.3.3 X
and 0¢g=0 sin kz, find f,.

For Section 4.4:

Prob. 4.4.1 This problem is intended to give the opportunity to follow through the approach to develop-
ing a lumped parameter model illustrated in Sec. 4.4. However, for best efficiency in determining the
electrical terminal relations, it will be helpful to use the transfer relations of Sec. 2.19, and study
of Sec. 4.7 is recommended in this regard.

The cross section of a model for a permanent-magnetization rotating magnetic machine is shown in
Fig. P4.4.1. The magnetization density in the rotor is uniform and of magnitude M,. The stator is
wound with a uniform turn density N, so that the surface current density over 26 , the span of the
turns, is Ni(t).

(a) Show that in the rotor volume, % is both solenoidal and irrotational so that the transfer
relations of Table 2.19.1 apply provided that uHe is taken as Be.

(b) §how that boundary conditions at the rotor interface implied by the divergence condition on
B and Ampere's law are

;.' H%D =0 ; X HBH = UoEf + Ua; X DED

4.57 Problems for Chap. 4



Prob. 4.4.1 (continued)
(c) Find the instantaneous torque on the rotor as a function of (er,i). (Your result should be

analogous to Eq. 4.4.11.)
(d) Find the electrical terminal relation A(Br,i,Mo). (This result is analogous to Eq. 4.4.14.)

Kz(r = R) N‘i(_ﬂm—l

— 4 T4
e Y4
A2 -~ 1~
: '?22/%322/
pAZ ’//,
X > oo
— ,A;.//////, 0//2:2-/ 8
SRR

Fig. P4.4.1

For Section 4.6:

Prob. 4.6.1 A charged particle beam takes the
form of a planar layer moving in the z direction
with the velocity U, as shown in Fig. P4.6.1, The
charge density within the beam is

_///+07_7{ U

p=RepoeJkZ +/b//‘//+///-/ *
b 3y A +d o

Thus the density is uniform in the x direction d e
within the beam, i.e., in the region -b/2 < x P S N = 5
< b/2. The walls, which are constrained in ¥ — _f ~ _'kz
potential as shown, are separated from the Re ﬁo e'JkZ @:ReVe .l
beam by planar regions of free space of thick- o
ness d. Fig. P4.6.1

(a) In terms of the complex functions of time Go and 50,
find the electrical force acting on an area A (in the y-z plane) of the beam in the z direction.

(b) Now, specialize the analysis by letting

02 = <I>f = Vocos(wt—kz)
p =-p_cos fwe-k(z-68)]

Given that the charged particles comprising the beam move with velocity U, and that k is specified
what is wW? Evaluate the force found in (a) in terms of the phase displacement § and the amplitudes

V0 and p,.
(c) Now consider the same problem from another viewpoint. Consider the entire region -(d+ %) < x < (d+ %)
as one region and find alternative expressions for parts (a) and (b).

For Section 4.8:

Prob. 4.8.1 Transfer relations are developed here that are the Cartesian coordinate analogues of
those in Sec. 4.8.

(a) With variables taking the form A = Re A(x, t) g_Jky and I-B, = Re f-iy(x,t) e 3% and a volume current
density (in the z direction) J = Re J(x,t)ejky, start with Eq.’(b) of Table 2.19.1 and show
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Prob. 4.8.1 (continued)

that the transfer relations take the form

. _
A% -coth kA
=M
k
B _:]_'_
f | L_sinh kA

1 0L
sinh kA Hy
coth kA {?5

1 0 ~01
coth kA Sinh KA Hyp Ap
i +
k
-1 =B 3B
sinh KA coth kA pr Ap_

(b) The bulk current density and particular solution for A are represented in terms of modes Hi(x):

J =
i=0

Re 2 I, (DT e

A
P i=0

=Re 2 A (DT (eI

Show that if the modes are required to have zero derivatives at the surfaces,
the transfer relations become

A% -coth kA
= H
k
5B e S
A Einh kA

For Section 4.9:

Prob. 4.9.1

is shown in Fig. P4.9.1.

is modeled by_the surface cur-
The
rotor consists of a winding

rent KS = Re KS eJk¥,

1 ﬁ&w
sinh kA v
=B

coth kA Hy

A developed model
for an exposed winding machine
The
infinitely permeable stator
structure has a winding that

=0 (17“)2 + K2

(-t

that completely fills the air
gap and is backed by an infi-

nitely permeable material.

At a given instant, the current
distribution in the rotor windings

is uniform over the cross section of the gap; it is a square wave in the y direction, as shown.

__-:Z L‘.. ’1J
r— - - — b |
E, P00 — > T
Fig. P4.9.1

.1is, the winding density (n wires per unit area) is uniform.

force per unit y-z area in the y direction acting on the rqotor (note Eq. 2.15.17).

for the synchronous interaction in which K%

For Section 4.10:

Prob. 4.10.1

machine is shown in Fig. P4.10.1.

A developed model for a d-c
The field

winding is represented by a surface current

distribution at x =
impulse at z = 0 and a
negative one at z = %,
each of magnitude nfi

shown.

as

b that is a positive

Fig. P4.10.1

Following the outline given in

Sec. 4.10, develop the mechanical and elec-
trical terminal relations analogous to

Eqs. 4.10.6, 4.10.17 and 4.10.21.

(See

That
Use the result of Prob. 4.8.1 to find the

Express this force

L
: //#

= KScos (wt —-i? v).
+v 3
i] 7l
b {
7 1 -
e
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Prob. 4.10.1 (continued)

Prob. 4.14.1 for a different approach with results that suggest simplification of those found here.)

For Section 4.12:

Prob. 4.12.1 The potential along the axis of a cylindrical coordinate system is $(z). The system is
axisymmetric, so that E. = 0 along the z axis. Show that fields in the vicinity of the z axis can be
approximated in terms of $(z) by E = -d®/dz and

g 2
K E =F_9_¢.
r 2dz2

For Section 4.13:

Prob. 4.13.1 An alternative to the quasi-one-dimensional model developed in this section is a "linear-
ized" model, based on the stator and rotor amplitudes being small compared to the mean spacing d. In
the context of a salient-pole machine, this approach is illustrated in Sec. 4.3. Assume at the outset
that £,./d << 1 and £5/d << 1 but that the wavelength A is arbitrary compared to d. Find the time-

average force acting on one wavelength of the rotor. Take the limit 2md/A << 1, and show that this
force reduces to Eq. 4.13.12.

Prob. 4.13.2 A developed model for a salient
pole magnetic machine is shown in Fig. P4.13.2.
A set of distributed windings on the stator
surface impose the surface current

K =K% sin(wt-kz)
y o

and the geometry of the rotor surface is
described by

£ = Eo cos 2k[Ut-(z-6)]
Both the rotor and stator are infinitely Fig. P4.13.2
permeable.
(a) What are the lowest order Hy and H, in a quasi~one-dimensional model?
(b) Find the average force fz on one wavelength in the form of Eq. 4.13.8.
(c) Compare your result to that of Sec. 4.3, Eq. 4.3.27.

For Section 4.14:

Prob. 4.14.1

(a) For the magnetic d-c machine described in Prob. 4.10.1, show that the quasi-one-dimensional fields
in the gap (based on % >> & are

N i 2
>{ - t_22 /2 Bele
= % X - <z<
_ ”‘aﬁf\ B o=tN1 E-1 L<z<2f (2)
uz'
#fir (b) Based on these fields, what is the force on a length, 2%, of the armature written in the form
f -G i1
z m-fra

(c) Write the electrical terminal relations in the form of Eqs. 4.10.17 and 4.10.21.
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