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Electromagnetic Forces, Force
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3.1 Macroscopic versus Microscopic Forces

Most important in this chapter is the distinction between forces on fundamental particles and
forces on macroscopic media. It is common to speak of the "force on a charge” or the "force on a current"
even though what is meant is the force on ponderable material. Interest might actually be in electric
and magnetic forces acting on collections of fundamental charge carriers. (Motions of electron beams in
vacuum are an example. The charged particles in that case constitute the continuum, in the sense that
it is the electron inertia that enters into the equation of motion.) But, more commonly, the charged
particles are imbedded in media, and it is the resulting force on the material that is of interest.
Examples are as obvious as the electrical force of attraction between the capacitor plates of an electro-
static voltmeter or the magnetic torque exerted on current-carrying conductors in a meter movement.

Section 3.2 develops a specific model to illustrate how momentum imparted to charged particles by
the fields is transferred to the neutral media that support those particles. That macroscopic forces
are more than simply an average over the forces on fundamental charges is further emphasized by consider-
ing the practical cases of polarization and magnetization forces. Force densities of engineering signifi-
cance exist even iIn regions where the free charge and free current (and for that matter polarization
charge or magnetization charge) are absent. Such forces can be associated with a microscopic picture,
discussed in Sec. 3.6, in which electrical forces on dipoles are transferred to the media.

Although the dipole model is useful for forming a microscopic picture of electric polarization
forces, it is restricted to cases where the dipoles do not significantly interact. In the pursuit of
a less restricted force density, developments in Secs. 3.7-3.8 are based on such measured macroscopic
parameters as the permittivity and permeability. It is the business of thermodynamics to convert that
information into the desired force densities. In its own way, the line of reasoning presented in
Secs. 3.5, 3.7 and 3.8 exemplifies a more basic point of view than one geared to a particular microscopic
model. Thermodynamic concepts provide a means for replacing detailed and specialized derivations by
carefully defined physical measurements.

The stress-tensor representation of electromagnetic forces which concludes this chapter will see

continual application in the following chapters. The tensor concept itself, introduced in Sec. 3.9,
will also be applied to the formulation of continuum mechanical and electromechanical equations.

3.2 The Lorentz Force Density

Although macroscopic forces were the first measured in the development of electricity and mag-
netism, it is now normally accepted that the fundamental force is that on a "test" charge. This charge
might be a gingle electron in free space. If the charged particle has a total charge q and moves with
a velocity Vps then the Lorentz force acting on the particle supporting the charge is

f = qf + qu X uoﬁ @

This statement, like the electrodynamic laws summarized in Chap. 2, is an empirical one. In most of the
areas of continuum electromechanics, it is forces due to many charges that are of interest, and it is
therefore appropriate to sum the individual forces of Eq. 1 over the charges within a given unit of
volume to arrive at the Lorentz force density

> > > >
F=pE+J xUuH (2)

Incremental volumes of interest have dimensions much greater than the characteristic distances between
particles. But also, for the average electrical field to have meaning, it must be primarily due

to sources external to the differential volume of interest. This ensures that, over an incremental
volume, each particle experiences essentially the same electric field. The contribution to the field
of the charges within the differential volume is negligible. Similar arguments apply to the magnetic
field intensity, which must be produced over a given differential volume largely by currents outside
the volume.

Equation 2 represents the force density acting on a ponderable medium if means are available for
the force on the particles to be transmitted to the medium. The mechanisms by which this happens are
diverse, and implicit to the conduction process. Whether the fundamental carriers are electrons in a
metal, holes and electrons in a semiconductor or ions in a liquid or gas, the average motions of
fundamental charge carriers are superimposed on random motions. The flights of fundamental carriers
are interrupted by collisions with lattice molecules (in a solid) or molecules that are themselves in
a Brownian equilibrium (in a liquid or gas) with a frequency that is usually extremely high compared
to reciprocal times of interest. These collisions transfer momentum from the fundamental charge
carriers to the ponderable medium.

3.1 Secs. 3.1 & 3.2



To more fully appreciate the transition from the force acting on fundamental carriers, Eq. 1, to
that on a material, Eq. 2, it is helpful to make a formal derivation. Although the discussion leads
to rather general conclusions, only two families of carriers are now considered, one positive with
charge per particle and number density n, and the other negative with a magnitude of charge q_ and
number density n_. %ﬁe average Lorentz force, Eq. 1, is in equilibrium with an average force repre-
senting the effect of collisions on the net migration of the particles:

> -+ - + ->
q.E + q+(v+ +v) x HH = mV v,

3)
~E-q G+ x uo'ﬁ =nvy

The retarding forces on the right are much as would be conceived for a swarm of macroscopic particles
moving through a viscous liquid The average carrier velocities v+ are measured relative to the medium,
which itself has the velocity v. Hence, on the right it is relative velocities of particles and medium
that appear, while in the Lorentz force it is total particle velocities that are appropriate. The co-
efficients for the collisional forces are written as the product of the particle masses my and collision
frequencies Vv, as a matter of convention. Note that the inertial force on the carriers is ignored com-
pared to that due to collisions. This approximation would be invalidated in a plasma if the frequency
of an applied electric field intensity were extremely high. But, in many conductors and certainly in the
most usual electromechanical situations, the inertial effects of the charge carriers can be ignored (see
(Problem 3.3.1.).

The charge density and current density are written in terms of the microscopic variables as

o, - R )
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£ n+q+(v+ V) -n_q (v_+v )
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n+q+v+ -nqv_+ pfv

The average force density acting on the ponderable medium is the sum of the right-~hand sides of Eq. 3,
respectively, multiplied by the particle densities n:

¥ = nmy, v, +nmny v (6)

The point in writing this equation is to formalize the statement that, through some collisional process,
the force on the fundamental carriers becomes the force on the medium., It is evident from the next
step that, at least in so far as the Lorentz force density 1s concerned, the details of the collisional
equilibrium are not important. The left-hand sides of Eq. 3 (regardless, for example, of whether mp+4
are functions of vy or are constant) are substituted for the respective terms in Eq. 6 to obtain

F=l L4, - n_q_ )E + [( -nq_ v ) + (n,q - n_q_ )v] X My A €]

In view of the definitions given by Eqs. 4 and 5, this expression is the Lorentz force density of Eq. 2.
Its validity hinges on there being an instantaneous equilibrium between the forces on the fundamental
carriers and the "collisions” with the ponderable medium, but not on the details of that interaction.

3.3 Conduction

There are three objectives in this section. The first is to have a microscopic picture of the
carrier motions to associate with ohmic or unipolar conduction models. The second is to illustrate
how constitutive laws for media in motion can be derived from models based on particular microscopic
models, or (on the basis of the field transformations) found by generalizing empirically determined
laws established in the laboratory for materials at rest. Finally, a byproduct of the discussion
is an introduction to Hall effect.

Consider the carrier motions represented by Eqs. 3.2.3, with the magnetic field H = H 1 ex-
ternally imposed. The components of these equations then respectively become

r- I [~ T ™
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where particle mobilities are defined as bt = qt/mtvt.

These three equations can be inverted to find the relative carrier velocities in terms of (E,ﬁ,;):
v 1 Eft 0 0 ] E
x+ A x
v.. =310 b b2uH||E +vuH (2)
v+ A -+ + “o'0 v z'oo
v 0 —bzuH b E -vuH
z+ + 00 -+ yoo

2
where A+ 1 +.(u°H°bt) .

These velocity components can now be introduced into Eq. 3.2.5 to express the free current density
as

n,q,b n_q_b_
3, = (m,qpb, +n_q bOET +< i > €1 +E71)
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where ' = E + ¥ x H H is the electric field in a frame of reference moving with the material (for a
magnetoquasistatic system).

From Eq. 3, it is clear that there are two components to the current density, one in the direc-
tion of the imposed electric field and the second perpendicular to it. The latter term is called the
Hall current and is due to the tendency of the particles to move perpendicular to their own velocity
and to the imposed magnetic field intensity. This last term is jgnorable if

uoHObi <1 D)

A typical magnetic flux demsity is y H = 1 (10,000 gauss, which is in the range where magnetic mate-
rials saturate). Electrons in coppeg Bave a mobility on the order of 3 x 10~3 n2/volt sec, so that

the parameter on the left is then much less than 1., Ions in liquids have mobilities that are typically
5 x 108 m2/volt sec and the approximation is even better. But in silicon or germanium, where the
electron mobility is in the range of 1071 m2/volt sec, the Hall effect is coming into play by the time
UoH, 1s of the order of unity. With the inequality of Eq. 4 satisfied, Eq. 3 reduces to the familiar
form

jf = (n,qb, + n_q_b_)f' + pfz' (5)

If the number density of charge carriers ny and/or n_ remains essentially the same in spite of the
application of E, then the factor multiplying % in Eq. 5 is usefully regarded as a parameter character-
izing the material, the electrical conductivity 0. This case of ohmic conduction is displayed by mate-
rials ranging from metallic conductors, where the carriers are electrons and essentially immobile ions,
to electrolytes, where ions of at least two species participate in the conduction. In any of these
cases, for the ohmic model to be valid, the conduction must involve at least two species with both
n4q, and n_q- greatly exceeding the net charge pg. By introducing the conductivity as a parameter,

the detailed analysis necessary to determine the self-consistent distributions of the individual
carriers is avoided. But to examine the conditions under which the conductivity model is valid, it

is necessary to formulate the laws that govern the self-consistent carrier motions. This is best done
in the context of molecular diffusion (Chap. 10) so that other important limitations on the model can
also be identified.

Even though in accounting for' conduction it is useful to have in mind microscopic mechanisms, it
is also important to recognize the far-reaching implications of empirical relations. Given any con-
duction law based on laboratory measurements made with a fixed sample, effects of material motion can
be brought in by using the transformation laws. For example, if it is known that the conductor obeys
Ohm's law when stationary, then in a primed inertial frame moving with the velocity ¥ of the conductor,
the experiment shows that

Jy = of (6)

In an electroquasistatic system, including polarization, 32 = 3f - pfz (Eq. 2.5.12a) and AN
(Eq. 2.5.9a). Hence, Eq. 6 becomes Eq. 5. In a magnetoquasistatic system, including magnetization,
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=3 (Eq. 2.5.11b) and B =E+vx uoﬁ (Eq. 2.5.12b). Substitution in Eq. 6 now gives Eq. 5, except
for the charge convection term pr. In a magnetoquasistatic system, this term is second-order, as will
be argued in the next sectionm.

Fundamental to the use of an empirical law determined for the stationary material is the assump-
tion that material acceleration and deformation do not influence the conduction. In any case, if
acceleration did effect the conduction, the close tie between conduction and the Lorentz force density,
illustrated in this and the previous section, calls into question the notion that the electromechanics
can be modeled by a single continuum subject to the Lorentz force density.

3.4 Quasistatic Force Density

The Lorentz force density, Eq. 3.2.2, is composed of what will be termed, respectively, an elec-
tric force density and a magnetic force density

F= pfﬁ + jf X uoﬁ 1)

It is found in a wide range of applications that the force density is predominantly one or the other
of these contributions. Polarization and magnetization force densities, not included in Eq. 1, are
similarly identified with the respective quasistatic systems. In this section, dimensional arguments
are given that demonstrate that the electric force density generally dominates in electroquasistatic
systems, while the magnetic force density dominates in magnetoquasistatic systems.

The line of reasoning is an extension of that introduced in Sec. 2.2. The force density is
normalized in accordance with Eq. 2.3.4 and the free current density is represented as having the
form of Eq. 2.3.1. Thus,

? eogz > Tm Te > >

-— [pf E+— (cE+TJv) x H] EQS (@))

F = u°‘”2[ fem? 3. BE+F)x?] Mo 3)
=7 (_T— pf E + (‘Tr- V) x H Q 3

The relative values of the time constants are summarized by Fig. 2.3.1. In the electroquasi-
static system, T, /7<< 1 and TmTe/Tz = (‘rem/‘t)2 << 1. Hence, the free charge density term is zero-
order in Eq. 1, and the magnetic term is consistently ignoredJ— In the magnetoquasistatic force
density of Eq. 3, (‘l:em/‘r)2 << 1, and the free charge force density is negligible compared to the mag-
netic term. Hence, the second term of Eq. 1 is used to the exclusion of the first in magnetoquasi-
static systems.

3.5 Thermodynamics of Discrete Electromechanical Coupling

In this section, the thermodynamic electric and magnetic energy storage subsystems are expanded
to include the possibility of a finite number of discrete mechanical displacements of macroscopic
material. .Based on the notion of an energy function and a thermodynamic equilibrium, the force of
electrical origin associated with each of these displacements is determined. Typically, the method
exploits a knowledge of the electrical terminal relations to determine the forces. The approach
is generalized in Secs. 3.7 and 3.8, where constitutive laws are the basis for finding the force
density of electric origin. Except for mathematical manipulations, the derivations now reviewed draw
upon all of the demanding issues confronted later in deriving force demnsities. '

Electroquasistatic Coupling: An example of a lumped-parameter electroquasistatic system is given
with Fig, 2.11.1, including a schematic representation of a finite number of mechanical displacements.
Associated with each of the displacements is an electromechanical force tending to displace a lumped
element by an amount 68&;.

Conservation of energy for the system with the geometry fixed is expressed by Eq. 2.13.8. Now,
an incremental increase in the total energy caused by placing an increment of charge 8qi on an electrode
having the voltage v{ can be diminished by an amount equal to the work done on the external environ-
ment by the forces of electrical origin acting through the displacements of the associated mechanical
entities. Thus, energy conservation requires that

Sw= Z vqui - z ijEj; w = w(qlo--qn,Eloo-Em) (1)

1. Electrons in vacuum can have a velocity approaching that of light. In that case an imposed mag-
netic field can have a crucial effect on the EQS dynamics (See Sec. 11.2).
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Given the charges qj...q, and the displacement £3:¢+&; as independent variables, the energy function
is uniquely determined. The "displacements" should be recognized as generalized variables in that they
could just as well be angular deflections, in which case the associated "forces" would be torques.

To determine w, constitutive relations vj(qj«+:qy, gl---gn) must be known so that Eq. 1 can be
integrated. The integration is a line integral in a state~space composed of the independent variables.
Because the f;'s are not known, and are defined as equal to zero in the absence of electrical excita-
tions, integration on the mechanical variables Ej is carried out first. This gives no contribution
because as the displacements are brought to their final values, f; = 0 (no work is required to assemble
the system with the qi's = 0). Then, the integration on successive electrical variables is carried
out, first on qi with all other q = 0, then on q2 with q1 at its final value and all others zero,
etc. Formally, the integration o% Eq. 1 glves

n q,
= s 1 se e LU M
w= 1 Vj<ql qjoo o, El’ Ez Em)sqj (2)
J=1‘0
Because the energy function is a state function specified by the independent variables, an incre-
mental change in the total energy can also be written as

Sw

]
™M

3o Sqy + Z 13 3)
1=1 %Y j=1 agj 3

If the q's and the £'s are independent variables in the sense that Eqs. 1 and 3 hold for arbitrary
combinations of incremental changes in these electrical and mechanical variables, then

_ ow_ ow
;£ o= (4)
T3 g 5£j
Note that the q's and £'s are not necessarily independent of each other unless the system is isolated
from the total system in which it is imbedded. Given w from Eq. 2, the electrical forces are determined.

V

A consequence of the conservation of energy expressed by Eq. 1 is the reciprocity condition between
pairs of terminal variables. For example, derivatives of Eq. 4a, first with respect to qj and then of
the same equation but with i replaced by j, and with respect to qi, are related by

ov 2 ov
__i a 8 Ti (5)
99,  9q;9q;  dqy

Other reciprocity conditions follow from Eq. 4 by taking cross-derivatives to relate forces and volt-
ages to each other.

In dealing with practical lumped-parameter systems, it is often convenient to use the voltages
rather than the charges as independent variables. If all of the voltages are to be independent
variables, it is appropriate to recognize that

n n

121 v,8q, = 121 (8(vyqy) - q,8v,] (6)
so that substitution into Eq. 1 gilves

. n m

Sw' = El qidvi + jzl ijEj )

where a coenergy function has been defined in terms of the energy function as
n
w' (Vl"'vn, El"'gm) = iil Viqi -w (8)

The coenergy function is a particular case of an arbitrarily large number of functions that can be

defined. Any combination of charges and voltages can be independent variables, and a hybrid energy

function, appropriately defined as a state function of this combination. With the voltages as inde-
pendent variables, an equation similar to Eq. 2 is found with the charges replaced by the voltages,

and the voltages and displacements the independent variables:

= ', = ' (9)
4 = £y o,
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The coenergy function, like the energy function, is found from purely electrical considerations, as
described in Sec. 2.13.

Magnetoquasistatic Coupling: Lumped-parameter electromechanical coupling in a magnetic field system,
described schematically by Fig. 2.12.1, can be given the same thermodynamic representation as that out-
lined for electroquasistatic systems. The statement of conservation of energy for the system of dis-
crete coils and mechanical displacements is the generalization of Eq. 2,14.11, with the addition of the
mechanical work done as an electrical force fj causes an incremental displacement GEj:

n n
Sw = izl iiﬁli - Z fjég (10)

All of the arguments given for the electric systems follow for the magnetic field systems if variables
are identified:

q, > Ay, v, > 1,
i i’ 1 i (11)

w = w(Xl---An, gl---gm); w' = w'(il...in, gl...gm)

The magnetic force is the negative partial derivative of the magnetic energy with respect to the
appropriate associated displacement, with the other displacements and all of the flux linkages held
constant. Similarly, the force can be found from the coenergy function by taking the derivative with
respect to the associated displacement with the other displacements and the currents held comnstant.

3.6 Polarization and Magnetization Force Densities on Tenuous Dipoles

Forces due to polarization and magnetization lend further emphasis to the importance of making a
distinction between forces on microscopic charged particles and macroscopic forces on materials sup-
porting those charges. The experiment depicted by Fig. 3.6.1 makes it clear that (1) there is more
to the force density than accounted for by the Lorentz force
density, and (2) the additiopal force demsity is not p E (or
in the magnetic analogue, P H) .

A pair of capacitor plates are dipped into a dielectric
liquid. With the application of a potential difference v, it + - X
is found experimentally that the liquid rises between the R
plates.® To make it clear that the issues involved can be - d

understood in terms of lumped-parameter concepts, the liquid
between the plates is replaced by a solid dielectric material
having the same polarizability as the liquid, so that the
problem is reduced to one of a solid dielectric slab rising
between the plates as it is pulled from the liquid below.

Recall that if the interface is well removed from the
edges of the plates, an exact solution satisfying the quasi-
static differential equations and boundary conditions in the
neighborhood of the interface is E = (v/d)i Of course,
there is a fringing field in the neighborhood of the edges
of the capacitor plates. However, because the slab and the
liquid have the same dielectric constant and pg = 0, the
fringing field has the same distribution as if the dielec-
tric were not present.

It might be tempting to take the force as being the
product of the net charge at any given point and the local
electric field, or ppE. However, everywhere in the dielec-
tric bulk the polarization density is proportional by the
same constant to the electric field (Eq. 2.16.1). Begcause Fig. 3.6.1.
pg = 0, it follows from Gauss' law that E and hence P have
no divergence, and so there is also no polarization charge
in the dielectric. Furthermore, because the electric field
is uniform and tangential to the interface, there is not even
a polarization surface charge density at the interface
(Eq. 2.10.21). Throughout the dielectric, on the interface and in the bulk, there is no polarization
charge. Clearly, the force which makes the dielectric rise between the plates cannot be accounted for
by a polarization charge density.

Experiment demonstrating
the existence of polarization
forces that are not explicable
in terms of forces on single
charges.

*
In an experiment, a-c voltage is used with a sufficiently high frequency that the material responds

only to the rms field and free charge cannot accumulate in the bulk.

Secs. 3.5 & 3.6 3.6



If the polarized material is composed of individual dipoles, each
subject to an electrical force, and each transmitting this electrical
force to the neutral medium, it is clear that there is really no reason
to expect that the force density should take the same form as that for
free charges. With free charges, it is the individual charges that
transmit their forces to the neutral medium through mechanisms dis-
cussed in Sec. 3.2. Now concern is with the force on individual dipoles
which transmit that force to the neutral medium, either because they are
tied to a lattice structure (Fig. 2.8.1) or through collisional mecha-
nisms similar to those discussed for charge carriers in Sec. 3.2.

In the following, it is assumed that the dipoles are sﬁbject to

an electric field that is the average, or macroscopic, electric field. /

The development ignores the distortion of the electric field intensity

at one dipole bechuse of the neighboring dipoles. For this reason, Fig. 3.6.2, Definition of dis-
the result is designated a force density acting on tenuous dipoles. placement and charge loca-

tions for dipole.
A single dipole is shown in Fig. 3.6.2. The dipole can be piciured
as a pailr of oppositely signed charges having the vector separation d. The negative charge is located
at ¥, With the assumption that the force on the dipole 1s tramsmitted to the medium, the procedure
is to compute the force on a single dipole, and then to average this force over all the dipoles, The
net force in the ith direction on the pair of charges taken as a unit is

£, =UnglE, G+ - D] 2
a+0
q-)«)
The limit is one in which the spacing of the charges becomes extremely small compared to other distances

of interest and, at the same time, the magnitude of the charges becomes very large, so that the product
qd = P remains finite. The dipole moment is defined as ﬁ. The required limit of Eq. 2 becomes

8131 aEi
£, = %il(l; q[Ei(f) + 5 dj - Ei(f)] = Py 3%, 3)
> )| 3
q-m

Thus, there is a net force on each dipole given in vector notation by
t-pvE (4)

Eotg that implicit to this vector representation is the definition of what is meant by the operator
v

By assumption, the net force on each dipole is transmitted to the macroscopic medium and it is
appropriate then to think of averaging these polarization forces over all dipoles within the medium.
In general, this average would have to be taken with recognition that the microscopic dipoles could
assume a spectrum of polarizations in a given electric field intensity. For present purposes, the
average can simply be represented as the multiplication of Eg. 4 Ry the number of dipoles, n, per unit
volume. With the definition of the polarization density as P = np, the Kelvin polarization force
density is found:

->

F = B.VE : (5)

Can the force density given by Eq. 5 be used to explain the rise of the dielectric between the
plates in Fig. 3.6.1? Certainly, there is no force density in materidl regions of uniform electric
field, because then the -spatial derivatives called for with Eq. 5 vanish. However, in the fringing
field at the lower edges of the plates, the electric field intensitg_does vary rapidly. In that region,
the permittivity is a constant, and for a linear dielectric, where D = eﬁ, Eq. 5 becomes [in dealing
with vectors and tensors, a term in which a subscript appears twice is to be summed 1 to 3 (unless
otherwise indicated)]

)] ')A
' 1 1 9 1
F o= (e~ eo)Ej ——axj = (e - EO)E_‘] o, = (e - g) ——axi G EjEj) (6)

where the irrotational nature of E is exploited, aEiIij = an/axi. In vector notation, Eq. 6 becomes

¥- v[% (€ - e )E-E] ')
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Remember, this relation pertains only to regions of a linear dielectric in which the permittivity is
constant, and is simply a means of visualizing the distribution of the Kelvin force density. In such
regions, the force density has the direction of maximum rate of increase of the electric energy storage.
Typical force vectors, sketched in Fig. 3.6.1, tend to push the dielectric upward between the plates.

It is important not to overgeneralize from Eq. 7. In any configuration in which there is a component
of E perpendicular to an interface, there is a singular component of the Kelvin force density acting at
the interface -~ a surface force density. Such a component would be incorrectly inferred from Eq. 7,
which is not valid through the interfacial region.

Consider now the force density acting on a continuum of dilute magnetic dipoles that, like the
analogous electric dipoles just considered, pass along a force of electric origin to a macroscopic
medium via collisions or lattice constraints. It is not possible to use the Lorentz force law as a
starting point unless magnetic monopoles and an analogous force law on these magnetic '"charges' is
postulated. Without introducing such notions, the Kelvin magnetization force density can be deduced
as follows.

Electroquasistatic and magnetoquasistatic systems are pigtured abstractly in Fig. 3.6.3. A volume
enclosing the region occupied by a dipole having the position § has a surface S and includes neither
free charge in the EQS system nor free current in the MQS system. Hence the fields are governed by

Fig. 3.6.3a. EQS system Fig. 3.6.3b. MQS system
VxE= 0; E=- VxH= 0; H=-w (8)
Vee E+8) =0;F=np Ve(u T +u i = 05 ¥ = m (9)

Statements that the input of electric energy either goes into increasing the total energy stored or in-
to doing work on the dipoles are (see Egqs. 3.5.1 and 2.13.4 or Eq. 3.5.10 and Eq. 2.14.9 integrated by
parts):

§ ®8D.nda = 6w + £+6% 5& Y6B.nda = 6w + F.6F (10)
5 S

To find the force on the dipole, the energy would be determined as a function of the electrigal excita-
gions and E. Then, with the understanding that the derivative is taken with the quantities D-n and
B:n, respectively, held fixed or the surface S, the respective forces follow as

- £ 3w
£, =~ 351 1 9t (11)

Now, what would be obtained if this procedure were carried through for the electric case is already
known to be given by Eq. 4. Moreover, there is a complete analogy between every aspect of the electric

and magnetic systems. The calculation in the magnetic case need not be repeated once the elgctric, one

is carried out. Rather, an identification of variables suffices to give the answer, E > H, P ~+ qu.
Hence, it follows that Eq. 5 1s replaced by the Kelvin magnetization force demsity

¥ = uoﬁ-vﬁ (12)

The Kelvin force densities, Eqs. 5 .and 12, suffer the weakness that they do not take into account
the interaction between dipoles. Moreaver, is the average over the spectrum of dipole moments p or ;
leading to the polarization and magnetization densities consistent with the usage of these densities in
Chap. 2? These difficulties are overcome by a derivation based on thermodynamic principles. Because

force densities are then based on electrically measured constitutive laws, consistency with definitions
already introduced is insured.

Sec. 3.6 3.8



3.7 Electric Korteweg-Helmholz Force Density

The thermodynamic technique used in this section for deducing the electric force density with
combined effects of free charge and polarizarion is a generalization of that used in determining dis-
crete forces in Sec. 3.5. This principle of virtual work is exploited because it is not practical to
predict the relationship between microscopic and macroscopic fields.

In any derivation of a force density, it is important to be clear about (a) what empirically
determined information is required, and (b) what postulates or assumptions are incorporated into the
derivation or are implicit to an application of the force density. Generally, empirically determined
information can be used to replace assumptions. As derived here, the only empirical information re-
quired ig an electrical congtitutive law relating the macroscopic electric field to the polarization
density P (or displacement D). This relationship is typically determined by making electrical measure-
ments on homogeneous samples of the material. These amount to measurements of the terminal character-
istics of capacitor-like configurations incorporating samples of the material. (In the lumped-parameter
systems of Sec. 3.5, the analogous empirical information was the electrical terminal relation.) With
so little empirical information, the force density can only be identified if the system considered is
a conservative thermodynamic subsystem. Thus, the force density is derived picturing the system as
having no dissipation mechanisms. (The same conservative system is considered in Sec. 3.5 to find
discrete forces.) The assumption is then made that the force density remains valid even in modeling
systems with dissipation. If dissipation mechanisms were to be incorporated into the system considered,
then a virtual power principle could be exploited to find the force density, but additional empirical
information would be required.

Experiments show that, for a wide range of materials, electrical constitutive laws take the form
of state functions

E= E(al---am,ﬁ) or B = K(al---am,ﬁ) (1)

The a's are properties of the material. Thus, i1f measurements are made on a homogeneous sample of the
material, the a's are varied by changing the composition of the sample. For example, 0, might be the
concentration of dipoles of a given species, or the concentration of one liquid in another. The number
of a's usgd depends on the specific application. Most important for now is the distinction begween
changing E in Eq. 1.by changing the material and hence changing &'s, and doing so by changing D. Some
special cases of Eq. 1 are given in Table 3.7.1.

Table 3.7.1. Constitutive laws having the general form of Eq. la.

Law Description

> -1 >

E=¢ (al---am)D Electrically linear and (fields) collinear

E, = 5,,.(0, 0 )3 Electrically linear and anisotropic

i i+l m’"]
3 -1 2,3 '
E =¢ (al...qm’ D%) Electrically nonlinear and (fields) collinear
E, = sij(a1-~-am, Dy, Dy D3)Dj Electrically nonlinear and anisotropic

The third case of the table might represent a material in which dipoles are in Brownian equi-
1ibrium with a nonpolar liquid. An applied field tendg to line up the dipoles and hence give rise to
a polarization density and hence to a contribution to D. In terms of two properties (cj,02), a model
including the saturation effect, resulting as all dipoles become aligned with the field, might be

o
E=—2t—— ¢ )

/1 + ai E-ﬁ °

Built into this example, and the general relatiom, Eq. 1, is the assumption that the constitutive law
is a state function. It does not depend on rates of change, and it is a single-valued function of the
variables and hence not dependent on the path followed to arrive at the given state.

The continuum now considered is not homogeneous, in that at any given instant the a's can vary
from one position to another. Moreover, for the electromechanical subsystem considered, the properties
are tied to the material. As the material moves, properties change. For material within a volume of
fixed identity,
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I aidV = constant 3)

\'
By definition, the volume V is always composed of the same material. By definition, the a's must satisfy
Eq. 3 when the subsystem is considered to be isolated from other subsystems.

The finite number of mechanical degrees of freedom for the discrete coupling of Sec. 3.5 1s now
replaced by an infinite number of degrees of freedom. The mechanical continuum, perhaps a fluid, perhaps
a solid, 1s capable of undergoing the vector deformations 8¢. These incremental displacements are

- viewed as small departures from an equilibrium mechanical configuration which is precisely that for which
the force density 1s required.

Since the time derivative of Eq. 3 vanishes, the generalized Leibnitz rule, Eq. 2.6.5, gives

a0 >
4 = [ —L & 2da =
T3 J‘ a,dv J’ s 4V + 39 oy == +nda = 0 %)
v v S

where by definition the velocity of the surface S is equal to that of the material (;s - ag). Gauss'
theorem converts the second integral to a volume integral. Although of fixed identity, QEE volume is
arbitrary, and so it follows from Eq. 4 that changes in the property o4 are linked to the material de-
formations by an expression that is equivalent to Eq. 3:

Say = V. (@ D (5)

The framework has now been established for stating and exploiting conservation of energy for the
electromechanical subsystem. The procedure is familiar from Sec. 3.5. With electrical excitations
absent, a system, such as shown in Fig. 2.13.1, is assembled mechanically. Because the force density
of electrical origin is by definition zero during the process, no work is required. The system now
consists of rigid electrodes for producing part or all of the electrical excitations and a mechanical
continuum in the intervening space. This material is described by Eq. 1. With the mechanical deforma-
tions fixed (8£ = 0), the electrical excitations are next raised by placing bulk charges at the positioms
of interest in the material and by raising the potentials on the electrodes. The result is a stored
electrical energy given by Eq. 2.13.6: .

<>
D > > >
W= [ Wav; W= f E(ay+ 0 ,D")- 6D (6)
m
0
v
Here, V is the volume occupied by the material and the fields, and hence excluding the electrodes.

Now, with the net charge on each electrode constrained to be constant, consider variations in the
energy caused by incremental displacements of the material. A statement of energy conservation
accounting for work done on the external mechanical world by the force density of electrical origin is

J’[aw + F.68]av = 0 )
v

There are two consequences of the incremental displacement. First, the mechanical deformation carries
the properties with it, as already stated by Eq. 5. Second, there is a redistribution of the free
charge. Because the system is conservative, the free charge is constrained to move with the material.
The charge within a volume always composed of the same material particles is constant. Thus, Eq. 3
also holds with oy » pg, and it follows that an expression similar to Eq. 5 can be written for the
change in charge demsity at a given location caused by the material displacement 62:

8pg = -V- (pg62) (8)

It is extremely important to recognize the difference between in Eq. 7, and W in Sec. 2.13.
In Eq. 7, the change in energy is caused by material displacements 8¢, whereas in Sec. 2.13 it is due
to changes in the electrical excitations. The energy W is assumed to be a state function of the same
variables as used to express the constitutive law, Eq. 1. Hence,

m
oW W
w= I M5 +XM .5
=1 %% 1 5}

9

where
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With the understanding that the partial derivative is taken with the o0's held fixed, it follows from
Eq. 6 that

g—g; = 7 10)

Hence, the last term in Eq. 9 is written using Eq. 10 with E in turn replaced by -V&. Then, integration
by parts* gives

[ 2. v - § 06b.3da + [ a(v-sBrav an
v o s v

The part of the surface coincident with the electrode surfaces gives a contribution from each electrode
equal to the electrode potential multiplied by the change in electrode charge. Because the electrode
charges are held fixed while the material is deformed, this integration gives no contribution. The
remaining part of the surface integration is sufficiently well removed from the region of interest that
the fields have fallen off sufficiently to make a negligible contribution. Thus, the first term on the
right vanishes and, because of Gauss' law, Eq. 11 becomes

W
[ a—_ﬁ-- 8DdV = f <I>prdV (12)

It is now possible to write Eq. 7 with effects of SE represented explicitly. Substitution of Eq. 8 into
12 and then Eqs. 12 and 5 into 9, and finally of Eq. 9 into 7, gives

m

fi-x 2. (0, 68) ~ o7+ (p68) + Feotlav = 0 (13)
1=1 9%

v

With the objective of writing the integrand in the form ( )-SE, the first two terms are integrated by
parts. Because the surface integrations are either on ;he rigid electrode surfaces where sf-ﬁ = 0, or
at infinity where the fields have decayed to zero, and E = -V, Eq. 13 becomes

m
[z vy - o E+Fl.68av = 0 (14)
i’ ‘30 f
v 1=1 1

It is tempting, and in fact correct, to set the integrand of this expression to zero. But the
justification is not that the volume V is arbitrary. To the contrary, the volume V is a special one
enclosing all of the region occupied by the deformable medium and fields. (The volume integration
plays the role of a summation over the mechanical variables for the lumped-parameter systems of
Sec. 3.5.) The integrand is zero because 6% (like the lumped-parameter displacements) is an independent
variable. The equation must hold for any deformation, including one confined to any region where T is
to be evaluated:

m
Fepi- 1 avd (15)
f 4=1 i Qai

It is most often convenient to write the second term so that it is clear that it consists of a force
density concentrated where there are property gradients and the 'gradient of a pressure':

m m
¥ = pf-ﬁ + I %‘;— Vay - vl = oy g—g—] (16)
i=1 i i=1 i

The implications of Eq. 16 and the method of its derivation are appreciated by considering three com-
monly encountered limiting cases and then writing Eq. 16 in such a way that its relation to the Kelvin
force density is clear.

Incompressible Media: Deformations are then such that

Vs =0 a7

Because 53-3 = 0 on the rigid electrode surfaces that comprise part of the surface S enclosing V in
Eq. 7, any pressure function 7 that approaches zero with sufficient rapidity at infinity to make the
surface integration there negligible will satisfy the relation

*
Integration by parts in three dimensions amounts to
[ yv.2av = I v. (fhyav - J‘ R.vyav = 5; ¥A.nda - ! R.vvav
\ v \ ] v
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§ n6¢.nda = J V. (m6€)av = 0 (18)
s

Thus, Eq. 14 remains valid even if the volume integral of Eq. 18 is added to it. But, for incompressible
deformations as defined with Eq. 17, V+(n6f) = Vn.8f. Thus, the term added to Eq. 14, like those already
appearing in its integrand, can be written with GE as a factor. It follows that for incompressible de-
formations, the gradient of any scalar pressure, T, can be added to the force demsity of Eq. 16. For
example, T might be P<E, since this function decays with distance from the system sufficiently rapidly

to make the contribution of the surface integration at infinity vanish. On the basis of this apparent
arbitrariness in the force density, the following observation is now made for the first time, and will
be emphasized again in Chap. 8. Two force densities differing by the gradient of a scalar pressure

will give rise to the same incompressible deformations. Physically this is so because in modeling a
continuum as incompressible, the pressure becomes a "left-over" variable. It becomes whatever it must
be to make Eq. 17 valid. Whatever the Vm added to the force density of electrical origin, T can be
absorbed into the "mechanical" pressure of the continuum-force equation.

For incompressible deformations, where the force density is arbitrary to within the gradient of a
pressure, the gradient term can be omitted from Eq. 16, which then takes the convenient form

m

F= pf'ﬁ + I -gg— Vmi (19)
i=1 i

This expression concentrates the force density where there are property gradients. In a charge-free

system composed of regions having uniform properties, the force density is thus confined to inter-

faces between regions.

Incompressible and Electrically Linear: For an incompressible material having the constitutive

law

<> > -+
D=¢ @1+ xe)g ek (20)

the susceptibility Xe is conserved by a volume of fixed identity. That is, 0 can be taken as X in
Eq. 3 and m = 1. Then, from Eq. 6,
€

2
1 D oW o 2
R NN ER—.-L A —A (21)
2e,(1+Xe)" e 2

w
and because Vxe =vi@ + xe)], it follows that the force density of Eq. 19 specializes to

- )
f-pr-—z-EVe (22)

Electrically Linear with Polarization Dependent on Mass Density Alone: Certainly a possible
parameter o1 is the mass density p, since then Eq. 3 is satisfied. For a compressible medium it is
possible that the susceptibility Xe in Eq. 20 is only a function of p. Then,

2

£ ax
- = -1 D M _og2 e
a'l = Py Xe = Xe(p). w 2 so 1 + Xe(p) B ap 2 ap (23)
and, because (9€/9p)Vp = Ve, the force density given by Eq. 16 becomes
Feplt-3ENe+VZp g-% £%] (24)

Because the last term is associated with volumetric changes in the material, it is called the electro-
striction force density.

>
Relation to the Kelvin Force Density: Because W = W(al,az---am,D), the kth component of the
gradient of W is

m a0, oD
oW i oW
(W), = I — o+ (25)
k 4o1 aai axk BDj Sxk
In view of Eq. 10, it follows that
m 90, OE
W i oW 9 e o 3 j
Y m——m = em— - (E-D) + D (26)
1=1 aai axk axk 5xk 3 axk
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This expression can be substituted for the second term in Eq. 16, which with some manipulation then
becomes

Tept+bVE+V[EeRE+W-~ 35 3 LR @7
£ 2 o il 130.

In this form, the force density is the sum of a free charge force density, the Kelvin force density
(Eq. 3.6.5) and the gradient of a pressure. This last term can consistently be ignored in predicting
the deformations of an incompressible continuum. For such situations, the Kelvin force density or the
Korteweg-Helmholtz force density in the form of Eq. 19 will give rise to the same deformations. Note
that they have very different distributions.

Apparently the last term in Eq. 27 represents the interaction between dipoles omitted from the
derivation of the Kelvin force density. In fact, this term vanishes when the constitutive law takes
a form consistent with the polarization being due to noninteracting dipoles. In that case, the
susceptibility should be linear in the mass density so that Xe = cp, where c¢ is a constant. In Eq. 23,
dXe/%p = c, and evaluation shows that, indeed, the last term in Eq. 27 does vanish.

3.8 Magnetic Korteweg-Helmholtz Force Density

Thermodynamic techniques for determining the magnetization force density are analogous to those
outlined for the polarization force density in Sec. 3.7. 1In fact, if there were no free current density,
the magnetic field intensity, like the electric field intensity, would be irrotational. It would then
be possible to make a derivation that would be the complete analog of that for the polarization force
density, However, in the following the force density due to free currents is included and hence H is
not irrotational.

The constitutive law takes the form

> >
H= H(O.l,uz‘--ﬁm,_ﬁ ) ox ﬁ = -ﬁ(qlsaz"'u'm9ﬁ) @

with specific possibilities given in Table 3.7.1 with € + y, E-+>Hand D> B. A conservative electro-
mechanical subsystem is assembled mechanically, with no electrical excitations, so that it assumes a
configuration identical to the one for which the force density is required. By the ‘definition of the
subsystem, this process requires no energy. Then, with the mechanical system fixed (the a's fixed),
electrical excitations are applied so as to establish the free currents in excitation coils and in the
medium itself, with the distribution that for which the force demsity is required. This procedure is
formalized in Sec. 2.12 and a system schematic is shown in Fig, 2.14.2. As was shown in Sec. 2.14,
currents in excitation coils are conveniently regarded as part of the total distribution of free
current demsity. Hence, the volume of interest now includes all of the region permeated by the mag-
netic field.

Now, with the electrical excitations established, a statement of conservation of energy, with
the electrical excitations held fixed but the material undergoing an incremental displacement, is
Eq. 3.7.7, where now W is the magnetic energy density given from Eq. 2.14.10 by

>

B
> -> >
W= L H(0y,0,0 + 0, B")+ 6B’ )

The following steps, leading to a dedugtion of the force density, are amalogous to those taken
in Sec. .7. The link between the a's and 8§ 1s given by Eq. 3.7.5. What is the connection between
Jg and 6§72

Actually, it is a link between the flux linkage and 3 that 1s appropriate. If the medium is to
both support a free current density and be conservative, the material must be idealized as having an
infinite conductivity. This means that any open material surface S (surface of fixed identity) must
link a constant flux:

5[ B.nda = 0 (3)
One way to make this deduction is to use the integral form of Faraday's law for a contour C enclosing
g surface S of fixed identity, Eq. 2. 7.3b, with v = vs Because the medium is perfectly conducting,

E' = 0 and what remains of Fa;gday s law is Eq. 3. From the generalized Leibnitz rule,Eq. 2.6.4, Eq. 3
and the solenoidal nature of B require that

I 6B-nda + §(§ x 88)-d2 = 0 (4)
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Stokes's theorem, Eq. 2.6.3, converts the contour integral to a surface integral. Becauge this syrface
is arbitrary, the sum of the integrands must vanish. If it is further recognized that 6B = V x 6A, then
it follows that

RK=6xt (5)

Thus, there is established the link between material deformations and the alterations of the field that
are required if the deformations are to be flux~-conserving.

The change in W associated with the material deformation, called for in the conservation of energy
equation, Eq. 3.7.7, is in general

n

oW W
W= =— 8a, +— -8B (6)
1=1 % 1 53
where, in view of Eq. 2,
oW
B, By _ @)

It is the integral over the total volume V of W that is of interest. The integral of the last term
in Eq. 6 is

[ .zﬂ . Bav = j 2. shav = ] %.v x 6kav ®)
A v \'J

Because the fields decay to zero sufficiently rap1d1y+at infinity that the surface integral vanishes
and because Ampere's law, Eq. 2.3.23b, gives Vx H = Jes integration of the last term in Eq. 8 by
parts gives

[ dbov e [ ocakxav e [ kv xdov - § akedidan+ [ Foohav = [ hdw
v v v s v v

Substitution for GK from Eq. 5 finally gives an expression explicitly showing the E dependence:
I N Bav = I & x ﬁ-jfdv = —I 3f x B+ 68av . (10)
v 23 v v

Finally, the energy conservation statement, Eq. 3.7.7, is written with 6W given by Eq. 6 and in turnm,
Say given by Eq. 3.7.5 and the last term given by Eq. 10:

n
I[- £ 2 y.(eta,) - I, x B-of + Folav = 0 (11)
v i=1 i

With the objective of writing the first term as a dot product with SE, the first term is inte-
grated by parts (exactly as in going from Eq. 3.7.13 to Eq. 3.7.14) to obtain

. _
J’[ zaivgg—-'jf x B+ 7]-68av = 0 (12)
AP 1

The integrand must be zero, not because the volume is arbitrary (it includes all of the system in-
volved in the electromechanics) but rather because the virtual displacements GE are arbitrary in
their distribution. Hence, the force density is

n
=3 x3-z1ov3L (13)
£ g1 %%
The special cases considered in Sec. 3.7 have analogs that similarly follow from Eq. 13. Because,
what is involved in deriving these forms involves the magnetization term in Eq. 13, and not the free

current force density, these expressions can be written down by direct analogy.
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Incompressible Media: The convenient form emphasizing the importance of regions where there are
property gradients is

n
oW
J xB+5 = Yoy 14)
1=1 %4

Incompressible and Electrically Linear: With a constitutive law

> > _ > (15)
B uo(l + xm)H HH

the force density of Eq. 13 reduces to
Fed, x3-1uw | {16

Electrically Linear with Magnetization Dependent on Mass Density Alone: With the constitutive law
in the form of Eq. 15, but Xn = Xm(P), where p is the mass density, the force density is the sum of
Eq. 14 and a magnetostrictive force density taking the form of the gradient of a pressure:

T 1.2 ou 2
F—foB- HVu+V(2 -5—H) a7

Relation to Kelvin Force Density: With the stipulation that W = W(a,,a ---am,i) is a state
function, Eq. 13 becomes the sum of a Lorentz force density due to the free current density, the
Kelvin force density and the gradient of a pressure:

m
= 3xuﬁ+uM.VH+V[— .'ﬁ+w [ -Zuigg

i=1

The discussion of Sec. 3.7 is as appropriate for understanding these various forms of the mag-
netic force density as it is for the electric force density.

(18)

3.9 Stress Tensors

Most of the force densities of concern in this text can be written as the divergence of a stress
tensor. The representation of forces in terms of stresses will be used over and over again in the
chapters which follow. This section is intended to give a brief summary of the differential and integral
properties of the stress tensor.

Suppose that the ith component of a force density can be written in the form

My, , 2

F, = ——l; (F = V.T) @)

i 9x

3

Here, the Einstein summation convection is applicable, so that because the j's appear twice in the
same term, they are to be summed from one to three. An alternative notation, in parentheses, re-
presents the same operation in vector notation. Much of the convenience of recognizing the stress
tensor representation of a force density comes from then being able to convert an integration of the
force density over a volume to an integration of the stress tensor over a surface enclosing the volume.
This generalization of Gauss' theorem is easily shown by fixing attention on the ith component (think
of i as given) and defining a vector such that

->

G =T, 111 + Tiziz + Tisia (2)

Then the right-hand side of Eq. 1 is simply the divergence of 31. Gauss' theorem then shows that

> >
_IFidv = IV-GidV -4 ¢, -nda (3)
\
or, in index notation and using the definition of Ei from Eq. 2,
J’Fidv - §’rijnjda (4)
v

This tensor form of Gauss' theorem is the integral counterpart of Eq. 1. Physically, Eq. 4 states that
an alternative to integrating the force density in some Cartesian direction over the volume V is an
integration of the integrand on the right over a surface completely enclosing that volume V. The
integrand of the surface integral can therefore be interpreted as a force/unit area acting on the
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enclosing surface in the ith direction. To distinguish it
from a surface force density, it will be referred to as
the "traction." It does not act on a physical surface
and has physical significance only when integrated over

a closed surface. It is simply the force/unit area that
must be integrated over the entire surface to find the
net force due to the volume force density

3 = Tyqnys T =Fen (5)

In vector notation and in terms of the traction ¥, Eq. 4
is written as

J’fdv = § F.nda (6)
v s

T

Figure 3.9.1 shows the general relationship of the traction Fig. 3.9.1
and normal vector. The traction can act in an arbitrary tTre g
direction relative to the surface.

Schematic view of volume V
enclosed by surface S, showing trac-—
tion acting on elements of surface.

To develop a physical interpretation of the stress
tensor components, it is helpful to consider a particular volume V and surface S with surfaces having
normals in the Cartesian coordinate directions. The cube shown in Fig. 3.9.2 is such a volume. Suppose
that interest is in determining the net force on the cube
in the x direction, from Eq. 4. The required surface
integration can then be broken into separate integrations y
over each of the cube's surfaces. For the integration on
the right face, the normal vector has only an x component,
so the only contribution to that surface integration is
from Ty,. Similarly, on the left surface, the normal
vector is in the -x direction, and the integral over that
surface is of -Tyy. The minus sign is represented by
directing the stress arrow in the minus x direction in
Fig. 3.9.2. On the top and bottom surfaces, the normal
vector is in the y direction, and the integration is of’
plus and minus Tyy. Similarly, on the front and back
surfaces, the only terms contributing to the traction
are Ty,. The stress tensor components represent normal
stresses if the indices are equal, and shear stresses if
they are unequal. In either case, the stress component
acting in the ith direction on a surface having its X
normal in the jth direction is Tij.

Orthogonal compopents are a familiar way of
representing a vector F. In the coordinate system
(x1,%2,%x3) the components are denoted by Fy. What is Fig. 3.9.2
meant by a vector is implicit to how these components et
decompose into the components of the vector expressed
in a second orthogonal coordinate system (xi,x'.xé)
pictured in Fig. 3.9.3. The two coordinate sysSteims are related by the transformation

Stress components acting on
cube in the x direction.

3 ]
. *x
e Vi T P ¥) 0

where aKg is the cosine of the angle between the xﬂ axis and the Xy axis.

A component of the vector in the primed frame in the ith direction is then given by

Fi = aiij : (8)

. >
For example, suppose that i = 1. Then, Eq. 8 gives the x! component of F' as the projections of the
components in the x1, x9, x3 directions onto the x; direction. Equation 8 summarizes how a vector

transforms from one coordinate system onto another, and could be used to define what is meant by a
"vector."

Similarly, the components of a tensor transform from the unprimed to the primed coordinate system

in a way that can be used to define what is meant by a "tensor." To deduce the transformation, begin
with Eq. 8 using the divergence of a stress tensor to represent each of the force densities (Eq. 1):
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4
A
]
a??=ﬁ ?ﬂ 9)
xk j X

Now, 1if use 1is made of the chain rule for dif-
ferentiation, and Eq. 7, it follows that

a1 ' 5T
ik Sy i%
3]~ %4 axk?a‘— %15%8 Tx] (10)

Thus, the tensor transformation follows as

]
Tix = 214%e T4 a1

Useful conditions on the direction
cosines a;; are obtained by recognizing that
the transformation from the primed frame to
the unprimed frame, given generally by

j =b 5 iF1 (12)

involves the same direction cosines, because
ﬂi’ defined as the cosine of the angle between
t

X3 Fig. 3.9.3. Unprimed and primed coordinate

e x4 axis and the x! axis, is equal to aj4. s
ystems. The geometric significance
Thus. Eqs. 12 and 8 t%gethet show that of the direction cosine aljnis shown.
v = '
F{ = a;,F aikalkFl (13)

and it follows that the direction cosines satisfy the condition that

2580k = S1g as
where the Kronecker delta function 61k by definition takes the values
1 1=k
§. = (5)
ik 1o 14k

Finally, suppose that a total torque rather than a total force is to be computed. By way of
analogy to Eq. 6, is there a way in which the integration of the torque density can be converted to
an integration over the enclosing surface? With respect to the origin, the total torque on material
within the volume V is

?=I'£x'fdv (16)

v

-
where T is the vector distance from the origin. With F given as the divergence of a stress tensor,
Eq. 1, and provided that T is symmetric (Tij = Tji), the tensor form of Gauss' theorem can be used
to show that

>

T = § ¥ x (f.n)da (17)
S

The net torque is the integral over the enclosing surface of a surface torque density ? xT (see
Problem 3.9.1).

3.10 Electromechanical Stress Tensors

The objectives in this section are to illustrate how the stress tensor associated with any one
of the force densities in Secs. 3.7 and 3.8 is determined, and to summarize the stress tensors for
future reference.

The ith component of the Korteweg-Helmholtz force density, Eq. 3.7.16, written using Gauss' law
to eliminate pg, is

3.17 Secs. 3.9 & 3.10



oD m 0. m
Wk 9
F, = E, =¥ + I ———[ LU )
i i axJ =1 aak Bxi 'c)xi k ao:,k

The goal in the following manipulations is to express this equation in the form of a tensor divergence
(in the form of Eq. 3.9.1). The second term can be replaced by Eq. 3.7.26. Also, because E is irrota-
tional, 9E; /3Xj anlaxi and hence Eq. 1 becomes

oD oE

- -
F = E; o™ j 3 % W-E Dk) + D

i 3
1%, T, LR % aa o @

With the first and third terms combined and the Kronecker delta function §jj introduced (see
Eq. 3.9.15),

oW
F, = [ED +6j(W—ED-)'.‘.ak——)] 3)
:l
It follows from a comparison of Egs. 2 and 3.9.1 that the required stress temnsor is

oW
Tij = EiDj (w + 2 °°k aa ) (4)

where the coenergy density, W', is defined by Eq. 2.13.11.

Table 3.10.1 gives a summary of this and other stress tensors together with the associated force
densities. It is essential that a consistent pailr be used.

Table 3.10.1. Summary of force densities and associated stress tensors.

Equation Force density _ Stress tensors
3 _ > B oW - v W
3.7.16 F =l 4 ds go - My aa o) Tig = BiPy = 855 (0 Hly%y 5g)
3.8.13 =37 *+I§ -3W—Va V[,Z.0 2] T,, =HB, - § (w'+z =)
O g*B 1 3o klkaoc 1j 174 ij 1kaa
Incompressible media
> > o oW - _ '
3.7.19 F = pgE+ L oy Vo, Tyy = EgDy - 8y
R 3 > o AW '
3.8.14 F=J x3B+ kgl 53; Vak Tij HiBj 5ijw
Incompressibie and electrically linear: D= ef,g = uﬁ
-> > 1 .2 - _E
3.7.22 F = pr -3 E“Ve Tij E:EiEj 5 5ijEkEk
> -> <> 1.2 = _u
3.8.14 F =T x3-38W Tyq = Wiy =3 SpyB M
Electrically linear, € and Y dependent on mass density p only
*_ > 1.2 _l_ 9€ .2 _ - 3_8_
3.7.24 F = pr ) E“Ve + V(2 o] 33 E<) Tij = EEiEj 6 jE Ek(l ap)
=3 x3-142 L 3H 2 = - __
3.8.17 F=F xb-3uw+ VG e 55 E) T,y = MEH, -L 8 B (1
Kelvin force density and stress tensor
- - > 1
3.6.5 F = pE + P-VE Tig = EDy -3 GijsoEkEk
= > _ _1
3.5.12 Fedpxuf+ufivi Tyy = HyBy - 5 Oy BTy
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The stress tensor makes it possible to compute the total force-on an object by integrating over
an enclosing surface S in accordance with Eq. 3.9.6. For an isolated object in free space, this force
is the same regardless of the particular force density used. If the force is considered as the integral
of the force density over the volume of the object, this fact is by no means obvious. But, note that in
free space the stress tensors of Table 3.10.1 all agree, Because the enclosing surface S is in this
free space region, the same total force will result from integrating Eq. 3.9.6 regardless of the force
density associated with the stress tensor.

3.11 Surface Force Density

In many systems, the electric or magnetic force density is concentrated in a thin layer, usually
comprising the interface between two regions. If the thickness of this layer is small compared to the
dimensions of the adjacent regions and other lengths of interest, then the force per unit area on the
interface may be used to describe the layer. An interfacial section is enclosed by the incremental
volume of thickness A and area A = §x8y, shown in Fig. 3.11.1. The surface force density is defined
as a force per unit area of the interface in a limit in which first A and then A approach zero. The
integration of the electric force density throughout the control volume is conveniently carried out
using the appropriate stress tensor Tjj integrated over the enclosing surface. With n defined as the
unit normal to the interface and in the unit normal to the control surface, the surface force density is

+
+ - 0 >
= _ liml [ 3 _nN3n >, lnl >
T = A0 A § T Iﬁda ﬂ T u n + A0 A §CIO_ T-Iﬁdvdl (1)
A0

Integration is divided+into two parts. The first is the contribution from the surfaces external to the
layer, having normals n and -n, respectively. The second accounts for the "edges" of the volume where
the surface cuts through the double layer. If fields within the layer are of the same order as those
outside, contributions of the second integral vanish as A + 0. In electroquasistatic systems, the
double layer presents a case where the internal fields are sufficiently intense that the second term
not only makes a.contribution but one that can dominate the first term. The remainder of this section
is devoted to converting this contribution to a more useful form.

The distance normal to the interface is y, with (y,£) orthogonal coordinates in the local inter-
" facial plane, as shown in Fig. 3.11.1. In the absence of a double layer, the electric field is of the
same order of magnitude throughout, and hence in the limit A + 0, the second term in Eq. 1 becomes
negligible compared to the first. With the double layer, the stress contributions from the edges of
the control volume are of the same order as those from the exterior surfaces.

As discussed in Sec. 2.10, the tangential electric field suffers a discontinuity through the
double layer. However, the tangential field within the layer is of the same order as the external
field. Because the thickness A over which the interior stresses act is much smaller than the linear
dimensions 6f and Su, the internal stress contributions to the integrations around the periphery of
the control volume are ignorable unless the double-layer charges are themselves responsible for a sub-
stantially larger internal field than external field. This double-layer-generated field is directed
normal to the interface and dominates in determining the interior stresses. The stress taken now as
represented by Eq. 3.7.19b of Table 3.10.1 is

Tij = EiDj - sijw' (2)

where, in the case of a linearly polarized dielectric, the coenergy density W' is simply €E2/2. Stress
components assoclated with the dominant field in the double layer interior are essentially

T,, + T+ -W'

EE UM 3)
Tij > 03 147
The traction acting on the periphery of the control volume is therefore approximately
" O = 1

. = - A\l =
J ) T-d dv I ) Widvli = ypl (%)

The normal vector Iﬁ can be written as -;331, so that Eq. 1 becomes

->
1 Z2a.2_liml >
T=[]T[]a- 0 A }CYEnxﬁz

In the limit A*0, the contour integral in Eq. 5 need only be evaluated to first order in 6&:6u.
Expansion about the origin, denoted by the subscript o, gives an approximate expression for the integral
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Fig. 3.11.1

(a) Volume enclosing section of
interface. Thickness A is suf-
ficient to include double layer
but small compared to linear
dimensions of A. (b) Cross-—
sectional view of interface
showing relation of radius of
curvature R to n and dt.

that becomes exact in the limit. The contour C is taken as rectangular with edges parallel to the

(E,u) axes. The segment of length Su at £ = §E/2 has —Bxd2 = su(, + & 6£/R.) and gives a contribu-
S £ o 1

tion to the contour integral

->
8YE SEL )7 noGE
{trglo + g, S, + R, fou 6)

The three additional sides of the rectangular contour give similar contributions, so that alto-
gether,
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NNIO':N'

+{[YE]°—[':YTE o ML+ :

o, - G, 2, -2 e

A S
= m(E[Rl + Rzl + Vovg (7)

Here, R, and R2 are radii of curvature for the interface, reckoned in the orthogonal planes defined
respect}vely by the normal and £ and the normal and u. Note that the sign of each curvature term is
taken as positive if the center of curvature is on the side of the interface toward which B is
directed. The surface force density associated with surface tension takes this same form. However,
the convention used in Chap. 7 1s with the radii of curvature the negatives of R; and Ry. With the
understanding that Ry and Ry are radii of curvature taken as positive if the center of curvature is on
the side of the interface out of which & is directed, Eqs. 1, 4, and 7 give the surface force denmsity,
with the double-layer contribution represented by the function vy,

> E 3 > > 1 1
T = ﬂ T n n - nyEE—— +-i;] + VZYE (8)
where
0+
Yp = J W'dv
E 0"

It is shown in Sec. 7.6 that the second term in Eq. 8 can also be expressed as -YE(V-;);.

The double layer surface force density is exemplified in Chap. 10.
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3.12 Observations

The force densities and associated stress tensors of Table 3.10.1 are of two origins. The Kelvin
force densities, the last two in the table, come from a microscopic picture of particles and dipoles
subject to electric or magnetic forces which, through the agent of a kinetic equilibrium, are passed
along to the ponderable continuum. The Korteweg-Helmholz force densities, all of the others in the
table, are based on an energy conservation principle. The connection between micro and macro fields,
needed. to apply this principle, is made using electrical measurements of constitutive laws to inter-
relate the macroscopic fields % and E or B and H.

The arguments *underlying each type of force density envoke certain assumptions which point to
possible inadequacies. The Kelvin force densities picture the force acting on each dipole and each
point charge in isolation and this force as being that transmitted to the ponderable media. This does
not allow for the possibility that the micro fields of one dipole contribute to the force on a neigh-
boring dipole.

This shortcoming is obviated by the energy method, which is based on a statement of energy con-
servation for an electromechanical subsystem. The resulting Korteweg-Helmholtz force densities are
of course also restricted. On the one hand, they are more broadly applicable than might be concluded
from the derivations. For example, the MQS continuum is viewed as "perfectly conducting," but the
free current force density is certainly applicable in cases where the conductivity is finite. This is
evident from its agreement with the Lorentz force density of Sec. 3.1, because the later model in-
cludes a finite mobility and hence electrical dissipation.

One way to derive a force density without ambiguity as to the validity of the result in noncon-
servative systems is to replace statements of energy conservation with those of power flow. 2 However,
the principle of virtual power requires information beyond that required by the principle of virtual
work used here. In addition to the comstitutive laws relating the macroscopic field variables is the
requirement for the power flux density, which must either be assumed or measured.

Underlying all of the discussions in this chapter has been the presumption that a clear distinc-
tion can be made between electric or magnetic force densities and those of other origins. This is
tantamount to being able to isolate electromagnetic energy storage from other forms of energy storage.
Piezoelectric coupling is an example where it is not fruitful to make this distinction. In that area,
the stress and force density generally represent combined electric and mechanical electromechanical
effects.

1. J. A. Stratton, Electromagnetic Theory, McGraw-Hill Book Co. Inc., New York, 1941, pp. 137-159.

2. P. Penfield, Jr., and H. H. Haus, Electrodynamics of Moving Media, The M.I.T. Press, Cambridge,
Massachusetts, 1967, pp. 35-40.
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