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11.1

Prob. 11.2.1 With the understanding that the time derivative on the left

is the rate of change of ¥ for a given particle (for an observer moving
with the particle velocity v ) the equation of motion is
at-} S— — hy L
ms?_a&,(e_+vx,u,\-\) : (1)
Substitution of B = -V-§ and dot multiplication of this expression with

v gives

5.[m?§:= —7_\7& +=11-Tn&/.f-sl o
Because x/a,,-\:\ is perpendicular to (% ,
) 5.9) — —a . (3)

By definition, the rate of change of '§ with respect to time is

D% 3% ,3.0% - B.VE 4)

Dt T Ot
where here it is understood that &i/«)'( means the partial is taken

holding the Eulerian coordinates (x,y,z) fixed. Thus, this partial deriva-
tive is zero. It follows that because the del operator used in expressing
Eq. 3 is also written in Eulerian coordinates, that the right-hand side of
Eq. 4 can be taken as the rate of change of a spatially varying ® with
respect to time as observed by a particle. So, now with the understanding
that the partial is taken holding the identity of a particle fixed (for
example, using the initial coordinates of the particle as the independent
spatial variables) Eq. 3 becomes the desired energy conservation statement.

%[sz{}-ﬁ +?§1=o (5)



r

11.2

Prob. 11.3.1 (a) Using (x,y,2) to denote the

cartesian coordinates of a given electron between

the electrodes shown to the right, the particle

equations of motion (Eq. 11.2.2) are simply

d K = eV o . (1)
TS -® oCSE ®°
mi—ﬁ 'B eéx ) (2)%
diz
md®2 - o & T
a2z -

There is no initial velocity in the z direction, so it follows from Eq. 3
that the motion in the z direction can be taken as zero.
(b) To obtain the required expression for x(t), take the time derivative

of Eq. (1) and replace the second derivative of y using Eq. (2). Thus,

mz\\:——(ie)c\x (A‘ x)=0} @’ = (Be)uo

When the electron is at x = 0,

é-’i-o',éa.-_og(Eede X=0) Mél:z____e\/ (5)

5o that Eq. 4 becomes
c(lx N w:,g = -2 (6)
d = am
iote that for operation with electrons, V < 0 .
(c) This expression is most easily solved by adding to the particular
solution, %V/a_l-n()cl, the combination of Sinm X and Ces W x (the
homogeneous solutions) required to satisfy the initial conditions.
llowever, to proceed in a manner analogous to that required in the text,
Eq. 6 is multiplied by clx/ué and the resulting expression written in
the form

Gelt (W)« wx s gla]e0 @

G
so that it is evident that the quantity in brackets is conserved. To

satisfy the condition of Eq. 5, the constant of integration is zero



11.3

Prob. 11.3.1 (cont.)

fthe initial total energy is zero) so it follows from Eq. 7 that

dx o o\/-28V  _ore a4 fo-(Wii2eY,)  ®
am

d¢t - am
where e V<O. //
The potential well picture given by this ° ///
expression is shown at the right. Rearrange- //

-~
ment of Eq. 8 puts it in a form that can be W
- 2
integrated. First, it is written as \ X
t

X \ =R
\
¥ ie):/ = = dt (9) \\
ov -c"-‘"‘mx"ucx \\,_Ze\/ X
°
Then, integration gives . am
eV y \
[_Lamee =a =c! _ .t - (10)
cos [ —ey } .t X ~ wc,_<c:.os T l)
amor

Of course, this is just the combination of particular and homogeneous
solutions to Eq. 6 required to satisfy the initial condition.
The associated motion in the y direction follows by using Eq. 10 to

evaluate the right-hand side of Eq. 2. Then, integration gives the

<
velocity A _ B, e v (11)
Tt = goman (cos o)

where the integration constant is evaluated to satisfy Eq. 5. A second
integration, this time with the constant of integration evaluated to make

y=0 when t=0, gives (note that &, = =G, e/m ).

o
- . 12
Y Damlsin .t - t) (12)
Thus, with t as a parameter, Eqs. 10 and 12 give the trajectory of a

particle starting out from the origin when t=0. Electrons coming from
the cathode at other times or other locations along the y axis have

similar trajectories.

;s
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11.4

Prob. 11.3.1 (cont.)

(d) The construction shown in the figure is useful in picturing
particle motions that are the planar analogous of those found in cylind-
rical geometry in the text.

(e) The trajectory just grazes the anode if the peak amplitude given
by Eq. 10 is just equal to the spacing, é: The potential resulting from

this equality is then the critical onme.

V= -t /ze =

\ eleckrom
0 1 +VQQQC*°TQ
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{ 123 Worksheet vsed Lo do calculaticens for £.872 P10.8.2
.
', Potent.ial Integrand midplane Phi of mid.
' - 1 (; N_:ﬁ_ 10,0676 0,250715 0 1.909043 ~-1.38 0
2 -2.9676 9.748310 0 ,285904 0.008207 6/ VA 06.008207
l 3 -2.39514 2.532493 0,258556 0.004167 2 '1 0.012374
4 -2.8352 32.439193 0.261247 0.00421Q « 0.016584
5 -2.913 9,288371 0.263972 0.004254 0.020833
{ 6 -2.9028 9.138986 (.266752 0.004238 0.025138
‘ 7 ~2.8866 8.394000 (,289567 0.004344 0.029482
8 -2.8704 8.850375 0.272425 0.004390 (0.033872
9 -2.8542 §.709072 (.275327 0.004436 0.038309
l 10 -2.838 8.570085 0.27B276 4,004484 0.042793
' 11 -2.8218 §.433287 9.281270 0,004532 0.047325
12 -2.8056 8.238732 0.284313 (.004581 0.03519086
l 13 -2.7884 8.16635& 0.287405 .004R310 .05E8537
14 -2.7732 8.036122 0.,2490548 0.J04681 n.081213
' 15 -2.757 7.307998 0.293742 0.004732 0.065352
16 ~-2.7408 7.781343 0.296390 0.004784 0.070737
l 17 -2.7248 7.657342 0.300233 0,004838 0.07557%
18 -2.7084 7.53594% 0.303652 0.004831 0.080466
19 -2.6322 7.415326 0.307069 §.004946 0.085413
l 20 -2.676 7.237853 (.31054F 0.005002 0.030416
. 21 -2.6598 7.18169E 0.314084 .005059 0.035476
22 -2.6436 7.067423 0.317688 0.005117 0.100593
'B 23 -2.6274 £.355005 0,321353 (.005176 0.105768
24 -2.6112 £.844412 0,325087 0.005226 0.111005
25 ~2.595 €£.73%5616 0.328891 0.005297 0.116303
- 26 -2.5788 £.628588 0.332766 0,005359 0.121662
l 27 -2.5626 £.523238 0.336715 0.005422 0.127085
28 -2.5484 £.419722 0,340740 0.005487 0.,132572
29 -2.5302 6.217830 0.344844 0.,005553 0.138125
30 -2.514 €.21759€ 0.349023 0.005€20 0.14374R
' 31 -2.4978 £.118393 (.3532499 0.005588 0,149435
32 -2.4816 £.021937 ©¢.35765E ¢.0057S8 0.155193
33 -2.4654 5.326581 0,362103 0.005830 0.161023
' 34 -2.4432 £.832721 (.286642 (.008902 3.16R9058
35 -2.433 5.740891 §.37128G 6.205977 0.172303
36 -2.4168 5.643568 0.376018 1.0080C2 [.1789587
l 37 -2.4008 5.580227 5.380859 1.006130 G.135087
38 -2.3844 5.470346 0.385809 0.00E8210 0.131297
39 -2.3682 5.385301 0.390871 0.006291 0.197588
40 -2.352 S.300870 0.336050 0.0068374 0.203362
' 41 -2,3358 5.217229 {.401851 0.0068458 0.210421
42 -2.3196 5.134958 (.408778 (.006545 0.216967
: 43 -2.3034 $.054035 0.412337 0.006634 0.223602
l 44 =2.2872 4.374438 0.418033 0.006726 0.230328
45 -2.871 4 .89814F 0.423872 0.00681¢% 0.237148
48 -2.02548 4.813140 0.429862 0.00E6315 ° 0.244083
l 47 -2,2388 4,743398 0.,436007 0.007013 1.251076
48 -2.2224 4 ,6E68901 0.442316 0.0607114 0.25819¢
- 49 -2.2062 4. 535630 0.448737 0.107218 1, 2654049
- S0 -2.19 4,.523564 0.455456 0.007224 U.272733
l Sl -2.1738 4.452686 0 .,.62304 0.,007433 0,2801E87
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11.5

Prob. 11.4.1 The point in this problem is to appreciate the quasi-one-

dimensional model represented by the paraxial ray equation. First, observe
that it is not simply a one-dimensional version of the general equationé of
motion. The exact equations are satisfied identically in a region where
Er , E% and H‘_ are zero by the solution r = constant, @& = constant
and a uniform motion in the z direction, z=Ut. That the magnetic field,
Bz, has a z variation (and hence that there are radial components of B)

is implied by the use of Busch's Theorem (Eq. 11.4.2). The angular vel-
ocity implicit in writing the radial force equation reflects the arrival

of the electron at the point in question from a region where there is no
magnetic flux density. It is the centrifugal force caused by the angular
velocity created in the transition from the field free region to the one

where Bz is uniform that appears in Eq. 11.4.9, for example.

Prob. 11.4.2 The theorem is a consequence of the property of solutions to

Eq. 11.4.9.

A (1)
r —Y A\ g
2
In this expression, ")g.:y;(z), reflecting the possibility that the Bz
varies in an arbitrary way in the z-direction. Integration of Eq. 1 gives
7 2
A(Av)A de| _dyp 2 (2)
e = [ Weda arl =
EE& 2 34 >3 3| " E@, o)«féi>o
o
Because the quantity on the right is p051tlve definite, it follows that the

derivative at some downstream location is less than that at the entrance.

dv dy
- b 3
Azl > 3
Prob. 11.4.3 For the magnetic lens, Eq. 11.4.8 reduces to
z
éLIL e _®R'yv=o0 (1)

=
de? g8dm
Integration through the length of the lens gives

S ( )z+§ € @ rdz=o | )

e

_ » N — -
- - “ “ - “‘ -’ '~ — E



11.6
Prob. 11.4.3 (cont.)
and this expression becomes
24
de| _dv =_§e & eda = -2 |gr g, ©)
d2 2, az i %gyﬁkn 83 2

On the right it has been assumed that the variation througﬁ the "weak" lens
of the radial position is negligible. The definition of f that follows from

Fig. 11.4.2 is
de _ _¥ , (4)

——

d= —  §

so that for electrons entering the lens as parallel rays, it follows from

Eq. 3 that 2
* (5)
£z 2 (el
£+ 8¢ m .

which can be solved for f to obtain the expression given. As a check,
observe for the example given in the text where Bz = B0 over the length

of the lens,

2 z (6)
‘B-?.A% =Bo£ 4

and it follows from Eq. 5 that

_‘ - 8% m @)
e R

This same expression is found from Eq. 11.4.12 in the limit jl‘Y« <{<14.

Prob. 11.4.4 For the given potential distribution

® =V T (x¥) c_“ ' (1)

the coefficients in Eq. 11.4.8 are

X X
A )C oy (2)

2
and the differential equation reduces to one having constant coefficients.
z Z
dvy _Xdr ¥ oo ®

d#* 2 dx &
At z = 2, just to the downstream side of the plane z=0, boundary
conditions are

vax, A_‘%zo )

)



11.7
Prob. 11.4.4 (cont.)
Solutions to Eq. 3 are of the form
P2 2t .
c=De xFe™, pzL(15yE) (5)
z

and evaluation of the coefficients by using the conditions of Eq. 4

results in the desired electron trajectory.

B2 -
- a Q3 ¥ \ . ; ¥
=X, ¢ Cos¥2%z2 - . g, 2 (6)
° ( A N3 " 2)

Prob. 11.5.1 1In Cartesian coordinates, the transverse force equations

are

2 LU - E_D& e (1)
T )‘}* Y wt’j'a

— 2

o+ 039, = £3F + £ >

With the same substitution as used in the zero order equations, these
relations become

- - -

[ A
4w -Ru) B, 3

Jin
s

W

(3)

"% E, §(w-R0) || :a,%'e,é_

where the potential distributions on the right are predetermined from

the zero order fields. For example, solution of Eqs. 3 gives

4 . e (B.e\p &
5= Ke- -8U) % +3;(m‘)Q%’§g D)

* (-r\-:\B°) — (w—ﬁ(/)z

If the Doppler shifted frequency is much less than the electron cyclotron

frequency, We = e B, /h"

(ﬁ.g) >> (w- %U}

A
Typically, \dﬁ/&x\m‘a‘:&_‘ and %3 ~ Qi so that Eqs. 4 and 11.5.5 show

u " '— nv -' ~ - u -

B y



11.8

Prob. 11.5.1 (cont.)

%l = (0-RO (o -RO)
l‘&el . “e

that
(6)

so, if |u-ﬁu\<w;, then the transverse motions are negligible compared to the

longitudinal ones. Most likely w-RU ~ “-’P so the requirement is essentially

that the plasma frequency be low compared to the electron cyclotron frequency.

Prob. 11.5.2 (a) Equations 11.5.5 and 11.5.6 remain valid in cylindrical

geometry. However, Eq. 11.5.7 is replaced by ti-ze circular version of Eq. 11.5.4
combined with Eq. 11.5.6

2% =

&6 1 d8 _

sz A g 2‘{‘

Thus, it has the form of Bessel's equation, Eq. 2.16.19, with k—Y¥ . The deriva-

L:ég‘)@:o w

tion of the transfer relations in Table 2.16.2 remains valid because the displace-
ment vector is found from the potential by taking the radial derivative and that
involves ¥ and not k. (If the derivation involved a derivative with respect to
z, there would be two ways in which k entered in the original derivation, and

¥ could not be unambiguously identified with k everywhere.)

(b) Usiné (c), (d) and (e) to designate the radii r=a and r=+b and -b respect-

ively, the solid circular beam is described by

~

D = e, £ (ob¥)d® (2)

while the free space annulus has

p- o

o 5.(baR)  g.(a,58)]
(3)

_6"_‘ _%m(l:,a,%3 ! ¥M<Q'L;&) B

Thus, in view of the conditions that D‘: Df and §-8 = §e ,» Eqs. 2 and

3b show that

ie m (b0, R) it (4)
%-n (O,B,X>";m (Q;b)a>



11.9
Prob. 11.5.2 (cont.)
This expression is then substituted into Eq. 3a to show that
as €ol'¥m(°""8)$ma’ aR)-f (baR)s (o, B)-}gh(abﬁ)gma g)] éc.
Tu(0,5,¥)- 4. (a,b,R)

Y

(5)

which is the desired driven response.

(c) The dispersion equation follows from Eq. 5, and takes the same form as

Eq. 11.5.12
gh\ (00 l’)\‘> = -‘:h'\ (Q ) L,a) (6)

For the temporal modes, what is on the right (a function of geometry and the
wavenumber) is real. From the properties of the fm determined in Sec. 2.17,
;M(O,B,Pz)>0 for aYb and ;JQH\’)(O, so it is clear that for ¥ real,

Eq. 6 cannot be satisfied. However, for X=—~a'd where d is defined as real,

Eq. 6 becomes ,
o 9 (ab)
Sun (el b)

This expression can be solved graphically to find an infinite number of solutions,

§ (0,5, R) 7

d, . Given these values, the eigenfrequencies follow from the definition of

¥ given with Eq. 11.5.7.

“e

=RU ®)
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11.10

Prob., 11.6.1 The system of m first order differential equations takes

the form

X

é\zn( aSE r Cy3m) =0 )

where 1 = 1 .... m generates the m equations.
(a) Following the method of "undetermined multipliers, multiply the ith

equation by 'Zi and add all m equations

| 133
8™ -
" e X N
», ;(F;ﬁ’éa + G;2i)=0 @
NI |
)mz (Fmaﬁa + Gmab_i;;&>= (o]
3=l
. — DX, X\
az;' ;l<7‘é rlé‘)_)-t(a +).G;«3§%>_ o (3)

Now, for directional derivatives of each xé to be the same
. WA

TA& (;;é
— ¢ =1

m (4)
SN

=1

D~
W

l

[\

4
These expressions, j = 1 .... m can be written as in equations in the 'ja,s.
¢
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Prob. 11.6.1 (cont.)

i<ré}% "G»"\)}a =0

L]

The first characteristic equations are given by the condition that the

determinant of the coefficients of the ﬁ?%'s vanish.

Dty (Fyd - G-

c=1
(b) Now, to form the coefficient matrix, write Eq. 1 as the first m of

the 2 m expressions

E' Gn Fn. Clz ¢t F;m G,m Xl)t

F"l Gll FZZ Gz| e = F‘z ™ zm x'}

® . ¢ ° o - X%F
Fn‘. Gm| FM sz e« o © °* Fm“ Gn.‘ a.
d+ d= (o] e} (o] (o} .

X . Xonge

I 0 0] ) o) « ¢ o @ At A t ] -Xh's

The second m of these expressions are

dx; = ede + 2%l 5 =1
3t Q2
To show that determinant of these coefficients is the same as Eq.
operate on Eq. 7 in ways motivated by the special case of obtaining

Eq. 11.6.19 from Eq. 11.6.17. Multiply the(m+1)'st equation through

2mth equation (the last m equations) by dt—l. Then, these last m



http:11.6.17

11.12

Prob. 11.6.1 (cont.)

11> Fioeee Fip

and subtracted from the first equation. The process is then repeated

rows (mt+l....2m) are first respectively multiplied by F

using of F21’ F22....F2m and the result subtracted from the second

equation, and so on to the mth equation. Thus, Eq. 7 becomes

[~ C‘ =
0 G“- Fl-l %.—i 0 GIZ- F-IZ Ii— - . O Gnm.rlmé'%
- d% - A% ¢ e = O — C‘z
0 Gﬂmu - IF 0 c%hz ]{;‘ZF[ G%n mmTI} 0
l ‘%T.% (o} (o) Y e o O O
’ o
dz
0 0 o o . - | I
L .
¢))
Now, this expression is expanded by "minors" about the 1 'ns that appear
as the only entries in the odd columns to obtain
-F d2 _t da . dz
Gu Fu a+ ‘Gn. F:z o - G.m- F:m T:
. : ) (10)

(;M;-Fi'éét C;nufF;t

Multiplied by (~1) this is the same.as Eq. 6.

dz |
T

- G

_r di

mmn mm -d—-{

-
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Prob. 11.7.1 Egs. 9.13.11 and 9.13.12, with V=0 and b=0 are

P PR D3 _

St +1}B% .\.%._%E._o (1
X . > _ (2)
it +ai(v?)—0

In a uniform channel, the compressible equations of motion are Eqs. 11.6.3

and 11.6.4
o vé_’_’g_ O (3)
S¢ TV /S’%
Y& V% P50

These last expressions are identical to the first two if the identification
is male 11> — § and %/ B = a(2)

, f n P—>9 - ecause o= (0
(Eq. 11.6.2) the analogy is not complete unless Ox.z//o is independent

of (ﬂ . This requires that (from Eq. 11.6.2)

/ﬂ =32 P° ) //a (5)

¥-2

A Sl
be independent of / , which it is if ~# 40 = f =4 , or if Y¥=12 .
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4
Prob. 11.7.2 Egs. 9.13.4 and 9.13.9 with A and f defined by -F:-%({-eJﬁL_+l

and H = ‘ﬂfz/?. are -“7‘ :
Z
)ﬁ é _(G-GQ X -
3t vu *sell?- r “T\v{‘gz.‘{:d‘o W
(2)

2 4
:i—t? + %(f 1}):.0

These form the first two of the following 4 equations.

‘ v o (e €>VL-L 1}7 0
SR
0 g 2% 2 ¥ AR
(3)
dt da ) o) 5| |9
0 o dt dz % Ldi
! L L

The last two state that A'l} and A? are computed along the
characteristic lines.

The Ist characteristic equations follow from requiring that the
determinant of the coefficients vanish.

To reduce this determinant divide the third and fourth columns by clt
and At/af’ respectively, and subtract from the first and second respectively.

Then expand by minors to obtain the new determinant

-

1}-% (¢- 63\/ Y
/923 Jsl
-0 (4)

S 5] v -4

(3 o
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Prob. 11.7.2 (cont.)

Thus, the Ist characteristic equations are

(5)

or

TR NC RN [ RS

The IInd characteristics are found from the determinant obtained by substituting

the column matrix on the right for the column on the left.

o) W 0 (¢ °€o)\/z_l __7_f___-1
TTL{Q gl /ogz
) b 2% 2 %S

oV dz o) o o

4% o dt dz

Solution, expanding in minors about dV¥ and A? , gives
dwl v (2992 _» 220"
(32352 _290)+ ¢ (22)

il

. +
With the understanding the + signs mean that the relations pertain to C—,

(8)

Eq. 6 reduces this expression to the IInd characteristic equations.

20 S +dv=0 o C° o
:
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Prob. 11.7.3 (a) The equations of motion are 9.13.11 and 9.13.12 with

V=9 and b=o ,

oV ‘ poU % -
ot : +%—3% =0 o
oF P ;;J

4+ ‘\}—-—i s -—5=o (2)

[ v o gl [®] [o]
o $ { U Va o
(3
dt dz o © %, Ay
o 0 dt d2 %.e %
B J L _ L

The last two define A\} and c;\i as the differentials computed in the

characteristic directions.

The determinant of the coefficients gives the Ist characteristics.

Using the same reduction as in going from Eq. 11.6.18 to 11.6.19 gives

da
-
dt 2 z
4 = (v- %it) 9% = (4)
3 T

or

v LA R(T)= 215

o
H-\""
1]

o
1+
2]
M
Il
l-l’

(5)
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Prob. 11.7.3 (cont.)

The second characteristics are this same determinant with the column matrix

on the right substituted for the first column on the left.

0 Y o q ®

o 3 L ¥ = dufude-vd6)+$(gdt)]

d¥ az o o + c\?(g cl-z)
i c“‘ o at da

In view of Eq. 5, this expression becomes

+

vcl'\’- tg:‘?:O )C,- (7)

Integration gives
t
VPER(S) =Ca , C (8)

+
(b) The initial and boundary conditions are as shown to the right. C

characteristics are straight lines.

e e ¢
On C from A—bB the invariant is

~vU=0

_‘P\(fCB = C_ | 9 A /

At B, it follows that

U, = +R(%)= A(5,)-R(5.)

(10) B
and hence from ® - i’/=§’,(t)
c,= VU +R($) = R(%)-R(S) + R(T) = 2 R(%H-R(%)
(11)

Also, from B—+C

C. =-R(§c)

(12)
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Prob. 11.7.3 (cont.)

Eq. 8 shows that at a point where C+ and C characteristics cross

p= Cete. (13)
(A
REH= St (e)

So, at any point on BR-=_C , these equations are evaluated using Eqs. 11

and 12 to give

v = R(%) -RE) (1)

R(T) = R(%,) (16)

Further, the slope of the line is the constant, from Eq. 5,

2 = 2 R(S) + 4 [RCE)-R(TD]

(17)

= 3 R(%) - RS

Thus, the response on all C characteristics originating on the t axis is
determined. For those originating on the z axis, the solution is V= Q@

and ?:'?c.

(c¢) 1Initial conditions set the invariantg C+

¢, = Vvt2lag = (% 2% (18)
The numerical values are shown on the respective characteristics in
Fig. 11.7.3a to the left of the z axis.
(d) At the intersections of the characteristics, vV~ and ? follow

from Eqs. 13 and 14
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Prob. 11.7.3 (cont.)
\
v= 3 (¢, +c) (19)
C c z
= —t - (20)
T= (=%

The numerical values are displayed above the intersections in the
figure as ( 1}, ? ). Note that the characteristic lines in this figure
are only schematic.
(e) The slopes of the characteristics at each intersection now follow from

Eq. 5.

dat

(éi) = v % (21)
4
The numerical values are displayed under the characteristic intersections
dz (c‘? .
as . Based on these slopes, the characteristics
(5D, , (% pes,

are drawn in Fig. P11.7.3b.

(f) Note (tﬁ'ﬁ) are constant along characteristics Ci leaving the 'cone'.

All other points outside the "cone" have characteristics originating
where =1l and ?:l (constant state) and hence at these points
the solution is ¥ =1 and § =1 . The velocity is shown as a
function of z when +¢=0 , and 4 in Fig. P11.7.3c. As can be seen

from either these plots or the characteristics, the wavefronts steepen

into shocks.


http:P11.7.3b
http:P11.7.3c
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Fig. P11.7.3b
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Prob. 11.7.4 (a) Faraday's and Ampere's laws for fields of the given

forms reduce to

- ‘.x Lr‘s ‘-,%-
D - (1)
0 o $5 | 2 TdE_ _7 >
"‘3_3" c.},d,,s.z
E o o
t ‘y ‘a (2)
—~ JH _ 3 E
0 I “‘n‘3=‘x1€+35‘:~z]§5€
o) H o

The fields are transverse and hence solenoidal, as required by the remaining

two equations with ﬂ? =0

(b) The characteristic equations follow from

- ar_ A -
(o} | Ao o E‘é 0-1
€+35E° O o L& | © (3)
dt dz o o ||H, dE
L . JL TJ L i

The I'st characteristic equations follow by setting the determinant
of the coefficients equal to zero. Expanding by minors about the two terms

in the first row gives

"(A*\t+/“°(&*)z(€&3§-\=_z)=o$é§: b - on ct
4t e +338)

(4)
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Prob. 11.7.4 (cont.)

The IInd characteristic equations follow from the determinant formed
by substituting the column matrix on the right in Eq. 3 for the first column

on the left.

i "]
o | Ao (&
o o o 1 (5)
=0
de dz o] o
i d H ) dt d=z
Expansion about the two terms in the first column gives
-dedt “AH(A%/.(,}:O:) A‘E +/4°AH %_Et_ o (6)

With Ai/g*. given by Eq. 4, this becomes

Mo — + [€E+3IE A==
AE:/HBSE‘AH_O > dH _}_‘:ZD_E_ dE=o0 D

This expression is integrated to obtain

H+® ()= < (®

where
OZCE)E{EFE‘Tg +3—€8—,@M(E+\[E_ﬁ—§—s‘)“§
(¢) At point A on the t=0 axis the ‘E ‘ C+
invariant follows from Eq. 8 '
as Ero.
c.=-06Co) = l4=0
'%ﬂujg_g“‘; fg (9)
A
_E=E.(¢)

™~
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Prob. 11.7.4 (cont.)

Evaluation of the same equation at B when E =T, (t) then gives

Ho-R(EN=-R(O)> Wy=-K(o) + R (&) (10)

Thus, it is clear that if H were also given (LLﬂDat z=0, the problem would
be overspecified.
On the C+ characteristic, Eqs. 8 and 11 and the fact that E=Eo at B

serve to evaluate
ci= Hg +&(B)=- R(0) + 2R (E,) (11)

Because _ is the same for all C characteristics coming from the z axis,

it follows from Eqs. 8, 9 and 12 that

Hy RCEY= -R(0) +2 R (E,) (12)
H -K(E)=-&(0) (13)

+ . .
So, on the C characteristics originating on the t axis,

H = R(ED -K(0) (14)

A(E) = R (E.) (1)

Because the slope of this line is given by Eq. 4

dz |

2 _ v (16)
At T Ve 435ED)

evaluated using E inferred from Eq. 16, it follows that the slope is the

same at each point on the line.

For /tlo =€ = % , the C+ characteristics have the slopes

dz _ A
U I

and hence values shown in the table. These lines are drawn in the figure.

Remember that E is constant along these lines. Thus, it is possible to
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Prob. 11.7.4 (cont.)
plot either the z or t dependence of E, as shown. t Co Cia/’Jt
Note that the wave front tends to smooth out. 0 o 1

0.2 85 [0.0493 | 0,906
0.s7l |0.188 | p.95]
0.857 0.389 | 0.8219
1. 14 0.601 | 0.688
.42 | 0.813 | 0.579
[.71 0.950 | 0.51%
2.0 l.o ©.50

Prob. 11.7.5 (a) Conservation of total flux requires that

(1)
BYT(a*-5,) =B, (a*-§) > B, =8, (-%.)
(a®-%%)
Thus, for long wave deformations, radial stress equilibrium at the interface
Ter
requires that p=©
F
P=- rr'—/a( B ——/40(0.. ? ) (2)

N)—

z

(o8- %%)

By replacing 'ﬂ'? A(-z) , the function on the right in Eq. (2)

takes the form of Eq. 9.13.5. Thus, the desired equations of motion are

Eq. 9.13.9
DA SA du
ST tVsT vhsi=o <

and Eq. 9.13.4

Mo, AL
St -\-1);2 -I-A a%-o (4)
where
s (\To\ A)A
/‘o/’ (rro® - A)®
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Prob. 11.7.5 (cont.)

Then, the characteristic equations are formed from

| ¥ 0 A 1TA] T
2
o fr ‘ Yol AL
dt dz 0 o Vv,
o) o dt dz )
! 1L 7] I

The determinant of the coefficients gives the I'st characteristics

Eii =V rc
dt -

while the second follows from

0 J 0 A
2
0 fi— { U

il
&)

cgf\ CAi 0 o
I 4V o dt da

which is
dA[H (4 -v)+ ]+ du(gA)=o

with the use of Eq. 6, this becomes

dv * ¢ cii\ =0

]

The integral of this expression is
vER(A) = ¢+

where

R/E=5 I :\Fﬁ(m?-/&f 2 A

of AT o “&z‘A

v

dA
d?

(5)

(6)

(7

(8)

(9)

(10)

(11)
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Prob. 11.7.5 (cont.)

Now, given initial conditions

$=-5(2)2A=A.(2) y, V=0

(12)
where the maximum Ao(z) is Apax » invariants follow from Eq. 10 as
= RA(A ¢ Q_:—&)\(Acv

C+ (Aa) (13)
so solution at D is

R(AN= S-S = R{AD+R(A)

2 2

Thus, the solution R at D is the mean of that at B and C. The largest

possible value for A at D is therefore obtained if either B or C is at the
maximum in A. Because this implies that the other characteristic comes

from a lesser value of A, it follows that A at D is smaller than A

i
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Prob. 11.8.1 For "plane-wave" motions of arbitrary orientation, v ={;6gt)
and H =H( X,t) , the general laws are:

Mass Conservation

>, 1} b 9%, = 1
S‘te- t Ax 4_/0 Ix =° L
Momentum Conservation (three components)'
D 319 ;rr;x = | o
Do 3438 = nx= 3 Hue(HI-H; -4y @
ﬂ@ﬁ" +‘&‘l&) ;Tx = ?x (""’Hx“ﬁ (3)
by T (4)
(2 w,mf) D;i“ = 2 (#oHHe)
Energy Conservatlon (wh1ch reduces to the insentropic equation of state)
(2 44, )( -¥ (5)
ot SxI\ PP ) =o
The laws of Faraday, Ampere and Ohm (for perfect conductor), Eq. 6.2.3
dHx = o (6)
3t
Y - (7)
dHa (8)

_
St DOx (ﬂe Hy- % M)

These eight equations represent the evolution of the dependent variables
<F’P’v&lﬂ7)ﬂé)H*:Ek) Ha)

From Eq. 6, (as well as the requirement that H is solenoidal) it follows

that Hx is independent of both t and x. Hence, HX can be eliminated from

Eq. 2 and considered a constant in Eqs. 3, 4, 7 and 8. Equations 1-5, 7

and 8 are now written as the first 7 of the following 14 equatioms.
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Prob. 11.8.1 (cont.)

Following steps illustrated by Eq. 11.15.19, the determinant of the

coefficients is reduced to

-
1&— %}’;" 0 / o
(¥) | (o(ﬂ&-éé) o-
© © o pl4-%)
o o) 6 o /o(
Bl-d) (1) o o
(¢] ) - Hb Hx
o ) -H, o)
L

: ]
o o o
o by uh,
o -~uH, ©
8) o Kb,
o] o o
o -Crd) o

H

X

o -(4-8)

(10)

The quantity QL-'éf can be factored out of the fifth row. That row is then

subtracted from the second so that there are all zeros in the second column

except for the A52 term. Expansion by minors about this term then gives

f(d-ili f © )

K di

P opGS) o o

(w)
(4-95)

(o] o
o - Flg FJA o)
0 - H, 0 M«

o ) 0 mb. O

-

© o

Mo Hg HoHa

~( Kéﬁ) 0
0 '(1&'§§)

(11)

Multipliéation of the second row by @-éf-)/)/“? and subtraction from the
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Prob. 11.8.1 (cont.)

first generates all zeros in the first row except for the A12

about' that term then gives
[ 2
PHUE o o bl miey)

0 /o(\&-t‘x) ° "/(o Hx 0
(U_Jx) 0 0 f(v};—é@ o B, | a2

{ =0
—H'é HK (o] —(19 x) )

- }42 0 le o _'(dk-%%)

Multiplication of the second column by /’oug//’(‘&'é‘-’é) and addition to the

fourth column generates all zeros in the second row except for the A 9 term,

2
while multiplication of the third column by /”0”&//(1&'%) and addition to

the last column gives all zeros in the third row except for the A33 term.
Thus, expansion by minors about the A22 and A33 terms gives
B 7
PR he(dr) gy,
[12 XP X dt 5P *-g'i)
dx W
1 Iy
-aX
(2
- He 0 —(-J—A_'_‘)Jf MoHx
X dt dx
/0(1);(—;'{)

term. Expansion
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Prob. 11.8.1 (cont.)

This third order determinant is then expanded by minors to give
e dx? , il |
~9x\J_ (vf -ax o Hx 7
7%;(7& Ji [ -5 +£7—“] (14)
_dx Y} 71° dx$§ 2 22 h
{[ (v-2%) 1 - (7}&—ﬁ)[f/-}+é/‘a—°—(H,‘+H.3+H*)]+!E/‘oHu}=o
'
This expression has been factored to make evident the 7 characteristic

lines. First, there is the particle line, evident from the outset (Eq. 5)

as the line along which the isentropic invariant propagates.

dx _ (15)
Tt =

1
The second represents the two Alfven waves

s
clx - U+t oo = ﬂ’“x (16)
dt ’

and the last represents four magnetoacoustic waves

Qy,

Jx_.‘;z-&. (17)
=V, =

dt a,.

where

\

2 - | 2 2

e 2 £ (2" +al va2) 1L\ (o ol sal) 4atel
e

o = } =\lmT
F

o, = f,‘;( Hy + )
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Prob. 11.9.1 Linearized, Eq. 11.9.17 becomes

de _ =n &)
dn e
Thus,
o o
§dé = -ndn @
and integration gives
e o2
e + n = constant = €, (3)
where the constant of integration is evaluated at the upstream grid where
=0 and e=e,.
i
Prob. 11.9.2 Linearized, Eqs. 11.9.9 and 11.9.10 reduce to
dn - _e w
Fe -
(-4
éji = h (2)
dt
Elimination of e between these gives
d'n (3)
+ h=o 3
d+*
The solution to this equation giving n=0 when t=t is

At) sin(2-ty= A(%- )s.h (%) ®
and it follows from Eq. 1 that

é =-A (Z‘o)cos (t-t)=-A (t '%>c°5 (-Z—) &)

To establish A(t ) it is necessary to use Eq. 11.9.15, which requires that

-Ae)= -8 —‘—S JA(t--— Jsin (B)de’dea @

)

For the specific exc1tation
V = Qe ¥ exp jot D
it is reasonable to search for a solution to Eq. 6 in which the phase and

amplitude of the response at z=0 are unknown, but the frequency is the same

as that of the driving voltage.


http:11.9.15
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Prob. 11.9.2 (cont.)
A
A= Re A _Xp -‘a""t (8)
Observe that ot _wd’ Jt- _wi
e e(h S Ha T D
(2-5)= 2/ z )
and ! .’ .2’
2z -4
iz - L (&T. U)
Sin = .{5(6 c (10)
Thus, \ 2 A ,
-2 \e:n 3 -
S XA(t _U)s ngyeE =
0 o -(J'“) &1

&eUA 3wt{(e_ 1) (éé@‘zﬂ__ {1 =
25 R Y N R I ICLY

Substitution of Eqs. 7, 8 and 11 into Eq. 6 then gives an expression that can
A

be solved for A .

A

. -w+|) (et
v 1-2[(e - _( G2, 4 2 ] a2
U (-oy  (1+o)F 4 (1= B

Thus, the solution taking the form of Eq. 4 is

.aw(t iL) .n<——)

n(z,t) = (ﬂe

CE

where A is given by Eq. 12.
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Prob. 11.10.1 With P = O , Egs. 11.10

dv v+ de(mit)=o0

o—

|

+
'i-;/v\i‘l;C'

o

In this limit, Eq. 1 can be integrated.
» o+ (Mil)e = S

Initial conditions are

£= S.(20) 3 e=t -

1}: -bqo(elo)

These serve to evaluate C4 in Eq. 3

Cv =Y, + (M31)e,

At a point C where the characteristics cross
to give
| M-{ ||+ Cy

| M1 e C.

.7 and 11.10.8 are

(1)

(2)

(3)

e, (z,0) (4)

(5)

(6)
Eq. 3 can be solved simultaneously

:—L—_I(M'H)C -(Mm-i)ec. l

‘ N
e=3lc.-ey]

Integration of Eqs. 2 to give the characteristic lines shown gives

2= (mtl) e + 2,
24

(8)
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Prob. 11.10.1 (cont.)

For these lines, the invariants of Eqs. 6 are

With aA and EB evaluated using Eq. 8, these
invarients are written in terms of the (z,t) at

point C.

ce 2V 2 =(MEDE] + (AT ) e (2 - (Mt 1ye]

Vv

(10)

and, finally, the solutions at C, Eq. 7, are written in terms of the (z,t) at C.

U= -‘z-{(/vwwo[a - (M) t]+ (m-1) (M+l>€°[&-—(M¥sz

- (M) B [2- (M-t = (M) (me1) e J2 - (o0t ]

e = _‘2-{1},,[%- (Mm-Dt]+ (made Sa- (M=) ¢]

_7}0%}_(/\/\-\—\) tl— (Mm-1)e, Y_'Z-- (AAsY) t‘l}

11

(12)
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Prob. 11.10.2 (a) With X“= O , Egs. 11.10.1 and 11.10.2 combine to give

S, UdVes € | @Ey | (aEY) W
(Se+ V%) abe[ (% (m)‘}

Normalization of this expression is such that

$=Y/a,t =2t/ z=2/vy (2)
gives

@?*%{j?: %l ( ‘l—?)‘ B (\_7‘;%—)‘1 3)
where

P = 26.E, T7/apa

(b) With the introduction of v as a variable, Eq. 3 becomes

Be +3 = -3¢

(4)

bi‘ é? -—
o 2 \e _ (5)
(’5'{ + az>$ =V -

where

o -%<ll‘? +I*‘“'i’>

The characteristics could be found by one of the approaches outlined,
but here they are obvious. On the I'st characteristics

41

" the II'nd characteristic equations both apply and are
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Prob. 11.10.2 (cont.)
dt Y]
d€ | v _ (8

dt

Multiply the left-hand side of Eq. 7 by the right-hand side of
Eq. 8 and similarly, the right-hand side of Eq. 7 by the left-hand side of

Eq. 8.
#du o _DE

t o%

Q-‘(L
-0

d T1.2 (9)
$a—€1—€1} "’E(?)]:O
(c¢) It follows from Eq. 9 that
2
‘lz"‘}z‘\'[:(?):"z’jo +E($’°> (10)

or specifically

T B vy
4 Ll )-% | +% 4 L1173, 1+%
Phase-plane plots are shown in the first quandrant. Reflecting the
unstable nature of the dynamics, the trajectories are open for §;>>'1 ,» showing
a deflection that has l—+0c as §’—-> 1  (the sheet approaches one or the
other of the electrodes). The oscillatory nature of the response with E;’z -

is apparent from the closed trajectories.



11.41




11.42

Prob. 11.10.3 The characteristic equations follow from Eqs. 11.10.19-

11.10.22 written as

r - - -
1 M, M M-I 0 0 o0 o A, PST
o t -l O 0o o o o el |o
dt d2 o © o o © o ¢l |dv

o o dt dz 0o o o o e de
LR ' 1)

o o o o | M mmil|lk.l |ps
2

6 o ©o o o L = 0 .l |,
o o dt d2 o o |le. | |48

© © ©o o o o dt dalles| |de,

L. -t A - -

Also included are the 4 equations representing the differentials

A19| ¢e o0 Ae;. These expressions have been written in such an order
that the lack of coupling between streams is exploited. Thus, the determi-
nant of the coefficients can be reduced by independently manipulating the
first 4 rows and first 4 columns or the second 4 rows and second four
columns. Thus, the determinant is reduced by dividing the third rows

by dt and subtracting from the first and adding the third column to the

second.
r d air -
o 2= M m-l || 0 2mit m, ml
o o -1 o o) o) -1 0
at dz o o dt d= o © (2)
o dt dt dz o d+ dt d=z
L 4L -

= I(aM.-é%)c\i -(mi-0dt][(zm, - %) da-(m;-Ndt[=o
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Prob. 11.10.3 (cont.)

This expression reduces to
@[ (G -mi -G -y =0 @

and it follows that the Ist characteristic equations are Eqs. 11.10.24 ~
and 11.10.26.

The IInd characteristics follow from

2
Pf, M, M M-t o o o o
0 | -1 o o] (V) o e}

49, dz o 0 ° 9 0 o

cle| 0 Jt c(?. (o} Io) o )

€
=0 —
P, o o o 1t Mz Mz my
o ) 0 o 0 | -1 0
d¥, o o o dt dt o o
Ael 0 0 o o 0 dt d%d
Expanded by minors about the left column, this determinant becomes
PS, d2)(-N 2D+ dv(-D]am de-d t (mM7-1)]D,
(€))
~de, d)()(MiI-DHD, =0
Thus, so long as D,_ %0 (not on the second characteristic equation)
Eq. 5 reduces to .
2 2_ \de - dz
In view of Eq. 2, this becomes
2
daY 2 _nhde e = PF @) 6)
A'lyl ;\T\) + (Ml l) at A } ¥l dt’ =
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Prob. il.10.3 (cont.)
Now, using Eq. 5a,

dy(mx \)z—\-(M‘—t)(M,H)(M,tt)Ae,:P{(Mltl\zAt D
and finally, Eq. 11.10.23 is obtained

dv, + (M, 71)de = P¥,'At (8)

+
These equations apply on CI respectively. To recover the IInd

characteristics, which apply where E)z =0 and hence Eq. 4 degenerates,
substitute the column on the right in Eq. 1 for the fifth column on the
left. The situation is then analogous to the one just considered.

+
The characteristic equations are written with c\'t’r—' A‘%A on C,
originating at A, etc. The subscripts A, B, C and D designate the change
in the variable along the line originating at the subscript point. The
superscripts designate the positive or negative characteristic lines.
Thus, Eqs. 11.10.23 and 11.10.25 become the first, second, fifth and

sixth of the following eight equationms.

’

[\ o M1 0 0o o o o] ] [P5&.5. 00t ]

o 1 o MH ©6 © o ollav, P_[' (?l . ";z s)bt

|-l s o o o o ol L

o | -] o o o oflae, (¢, )
o o o o 1 o ma okl PFL(5e %o ot

6 o 0 o0 o | 0 M ni, p¥z<$|p, )t

6 o o o | -1 o o ||se |- (Le -Veo)

0o o o o 0 o | - L'Ae:n ~( €1 - €20)
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Prob. 11.10.3 (cont.)

The third, fourth and last two equations require that

7.9.E=7ﬂm+“"%ﬁ~=19m*°"u AQez= Ea+b8n< CatBDEy
Ve Vetat =9, vodh a8, T Coe 4AC, = €apt B o
Clearly, the first four equations are coupled to the second four only
through the inhomogeneous terms. Thus, solution for A"y IA and & QsA
involves the inversion of the first 4 expressions.

The determinant of the respective 4x4 coefficients are
D, =-2 5 ©,=-2

and hence

- P; (ﬁlA)$zA)bt © M-l ©

A.d}*‘A:_JE P'g(lm%B)Ot l o Mt
- (A=) - o ©
-(en-218) o© | -1

-P.F‘ (ilA, $2A>°t o M, - o
--1 | Ps (?.3,‘2’23)&-(1)‘;71;%) 0 © M+

o) - o o

-ei5) o [ -1

2 "( e’lA

(10)

(11)

(12)

= -4 [P St () + L (5, 5.0 (Moot

- (’J:A —‘u’]gQ(M,-I) -( e,A-e.B)(M. -1) (/V\|+')]



11.46
Prob. 11.10.3 (cont.)
which is Eq. 11.10.27. Similarly,
-
[ 1 o Pt o
Ae'i'___\_ o l E¥|3At M|+’
- 4
. Lol ".<-'9IA—19|3) o
L 0 o "(e-m‘em\) =
o I Pfate(dpd) o ]
| o 1 Pe M -
! - | -(1’}A" 7}15> o
- 0 0 (- -1
" 9
© PEAA“(”‘A‘%)-PQB“ = (m+1)
=-41 1 M+
2 Pgmﬁt 'l
__0 —(e.,A-Q,B) = i
_1[
z N P(‘SIA- S‘“s)At - (\-U)IA-.I)]B)

- (Mi+1)(en- Cm)]

which is the same as Eq. 11.10.28.
+
The expressions for A’l)z ¢ and Aez‘ are found in the same way
from the second set of 4 equations rather than the first. The calculation

is the same except that A= , B—»D’ 4—» 2 and 2> |
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Prob. 11.11.1 In the long-wave limit, the magnetic field intensity above

and below the sheet is given by the statement of flux conservation

AN (a3%) = Mot () =

Thus, the x~-directed force per unit area on the sheet is

_ * “HoH A Aii. (5%#%“"Aj)
= -2 u, Hll= .t ,Uo[(/ t"q t < - (2)
eolhd= Mo (a-%) z“f(a+?)z]

This expression is linearized to obtain
T'—“"‘—é"/;, {[( Mol A)+2(/1,H ‘R)Aﬂ[ +-—]
(3)
—[(-/J,HOQHz(-ﬂoH a)(- Aa)]gz'g-,ﬁ
= ZHoAJ - Z./,(QH:$
— o

[+

Thus, the equation of motion for the sheet is

A/(at +U——-)$ ZYDS -Z/l(“ ? ZHoAJ (4)

a* -5: o

Normalization such that

ztzgfr)z:gvr\/,\/z:izh’/y (5)

(2 + %'%_)},zw O% _2ulTT

ot

gives

2, T A (6)
s0(IV) 32 “Xp= +(§%m?*

which becomes the desired result, Eq. 11.11.3

(3 +Ma%7$ +P? P{ D

where

P____z,u.,H:TZ . M:Q ) -‘:-:A..-l o Ho &
Pt il U5 Al

NN

(
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Prob. 11.11.2 The transverse force equation for the "wire" is written

by considering the incremental length A% shown in the figure

Dzs X ? -"(E)A%
=T[4 -3 2 1) T
a2 md [Aa = ]+¥( Yoz (
2+o2 2
Divided by A% and in the limit &2 -»0O , 2402
this expression becomes pi
OF 1€
m =123 (2)
S 5 * §(2)
The force per unit length is
T X E T [Ber, 7 = IR,
+=(x KE)KzI ‘ax[c\ (%_Cxﬁ-xc.;)]x—-__d_.x (3)

Evaluated at the location of the wire, X = ? , this expression is inserted

into Eq. 2 to give

(4)
att o
This takes the form of Eq. 11.11.3 with /M = O and -g:-o with 2‘:1T ,

z=27V ., V={T/m and
P= T8, T

= w—

md€ _F B

(5)
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A A
Prob. 11.11.3 The solution is given by evaluating A\ and B® in

Eq. 11.11.9. With the deflection made zero at 2=£ » the first of the

following two equations is obtained ( % = § = _E_=,_B where _,g, = }/'TV)

Y SR A1 47
o ea A 0]

e -
_ (1)
Al A
| [ B ?4
A . ‘Jat A
The second assures that i (0,‘{:):@2?4 ca . Solution for A and
A
B gives
A _. 8 &4 A _d%‘g
’A: '?4 3 . % - R € (2)
ECT OV R EL_ e
and Eq. 11.11.9 becomes
Rz B,
¢ g%e' ¢ JZ+ e? " e? ¢ §ent (3
€=Re Sy — -

B _ &0 <

With the definitions

%‘__7-1-\( 7’"6'-’”\ ¥ = \]w+P(I -ME) (@)
ey

Eq. 3 is written as Eq. 11.11.13

- ?4[ % ‘6.9) ;(ti KX)J st 71)

(t D
e 3(2 —‘a(ﬁ Q?J sih Kx

For w: >P (N\z"i> (sub-magnetic, [° < O and ME¢L 1),%

is real. The deflection is then as sketched
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Prob. 11.11.3 (cont.)

2
Note that for M { 1 , 7 ¢ 1 and the phases propagate in the

-z direction. The picture is for the wavelength of the envelope greater

than that of the propagating wave ( ZT\‘/X)ZTI‘/7$ x| < |7[ ).
The relationship of wavelengths depends on tJ, , as shown in the figure,

and is as sketched in the frequency range
W LW, (< \]"P . For frequencies
wo> \\-P , the deflections are more

complex to picture because the wavelength of

the envelope is shorter than that of the

traveling wave.

With the frequency below cut-

/
. ch'P("")
off, ¥ becomes imaginary. Let ¥ = ‘&d and Eq. 5

becomes

¢=-Ke € zinha(e-d) eé(%t-?i)

(6)
sinhal

Now, the picture is as shown below

Again, the phases propogate upstream. The decay of the envelope is likely

to be so rapid that the traveling wave would be difficult to discern.
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Prob. 11.11.4 Solutions have the general form of Eq. 11.11.9 where

A

%—:O. ‘E‘i
e (Rl

Thus

o2

A
and the boundary conditions that ?(o'f) = 6%e ?A e'é

9.?- :&e (‘QBlA éb

A =
Bea

Rz
2

B2

2

Yyt

1

—-32 o
%zge )eé

.wot

D? /Qz evaluated at 2 = O be zero require that

so that A
A= R, %4
%a - 61

and Eq. 1 becomes

Mad [«
Al |
B 0
= o L. o
4 - R <y
R, - B
Rz Rz

_a'| 3 & 'wot
e’ -% e .>Ca

$- Q. 5 (%

With the definitions
g — +Y 7 =
i - - p)
=)

Eq. 5 becomes

gz‘g\

co, M
M -]

)

—
—-—

Jor + P(-M)

MT - |

and

(1)

(2)

(4)

(5)
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Prob. 11.11.4 (cont.)

A (@ze_‘z‘s&_ o) ea“; é(w,t-73>
$ = &e Sy > : e

@

For G)i + P( = Mt) < 1 (super electric below "cut-off") Y is

imaginary, X=ao\ . Then, Eq. 7 becomes

€= Ke %4 (R, edz - B, <Y JMC ~7%) ®
-2 44

Note that the phases propagate downstream with an envelope that eventually

is an increasing exponential, as sketched.

This is illustrated by the experiment of Fig. 11.11.5. 1If the frequency

2
is so high that W, + P(l - /V\z> SO , the envelope is a standing

wave ‘ _‘:J_g.

;

I‘ 2w/ Al

2
Note that at cut-off, where @, = P (/\/\2 —[\ , the envelope has an

infinite wavelength. As the frequency is raised, this wavelength shortens.

This is illustrated with P: O by the experiment of Fig. 11.11.4.

\J
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Prob. 11.11.5 (a) The analysis is as described in Prob. 8.13.1 except

that there is now a coaxial cylinder. Thus, instead of Eq. 10 from the
solution to Prob. 8.13.1, the transfer relation is Eq. (a) of Table 2.16.2
with § = 0 because the outer electrode is an equipotential.

AQ A A
ey = -?M(a,R)Tf_A : L

Then it follows that (m=1)

- (0-RU)oF (0,R) = 5,6\\3_0 _eE.f(a, R) +g.z<@mz

(b) In the long-wave limit, (2)
: -
F.(o,R)=- .3w~ (:LPL‘R) = §_ (o,Rr) (3)
3R TL(RR)
and in view.of Eqs. 28, for RBTR¢<4 and .. =0
F| (O)RB - -R (4)

To take the long-wave limit of #lCQ,jz) , use Eqs. 2.16.24

I|(a‘u§-—>-‘£a‘u 7 H‘(au\—-r 2

a‘n‘(éu) (5)
/
J (Gu -+ " H Gu)—» —2
(3 ) 4 (a ) é-n'(a'“\z
to evaluate
2 2
f a R)—> R +o
(a, R* (a -R) )

so that Eq. 2 becomes

2 2
2 2 2 R+ta 2
— | - X2
(w-QU)'I\'(ﬂ'R - WGE.’[ R(&—R)I“‘"-“ITZg (7)
The equivalent "string" equation is
2 2 2
2> L UD N¢ = TRYSL "[R"’“ _] (8)
Wf"R(at+ :51)? Rxggz‘*“eﬁf’ R (e-R) '3

Normalization, as introduced with Eq. 11.11.3, shows that

V—‘-\/;*; ,, szU_ C P €Ef’1’zI R +o —|] (9)
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Prob. 11.12.1 The equation of motion is

3% . V23 - £(z,4) 1)
St 9

and the temporal and spatial transforms are respectively defined as
a + 00 c:t -aq" CJt
T(z,0)= X?(?— t)e do &Sk t)"g (s, u) (2)

-co ~0-ad
A *%0 EE 1o Q (3)
?(%,w)z S?(ﬁ w)e. dt &S ?(2 W = g?(ﬁ c‘.beadﬁ
-0

- 0
The excitation force is an impulse of width A2 and amplitude fo in space

and a cosinusoid that is turned on when t=0.

$(2,6)= 82 U, (2) § cos ot U () (4)
It follows from Eq. 2 that
¢ f [ : ! ] (5)
g(ziw)'.: Az (,l,(?) ° ZQ(wo-w‘) zg(woam)
In turn, Eq. 3 transforms this expression to
fRo = 22 [__'____ ' O
2 4 (Lp=3) 24 (w,+u3

With the understanding that this is the Fourier-Laplace transform of f(z,t),

it follows from Eq. 1 that the transform of the response is given by
A

v 1 ,
P Voem "

D( )= R~ (7)= (R-)(8+ &) ®

Now, to invert this transform, Eq. 3b is used to write

where

'

? = Aé_ig\}z[ \ |

Rz
[ R § d B o)
jorw)  yLe+ed)? JowR) 2

- 00
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Prob. 11.12.1 (cont.)

This integration is carried out using the residue theorem

N (@ = omil 1K 4 K 4.7 K. = N(B,) (9)
%C_D(@ B K[ K, D (&)
It follows from Eq. 7 that

- €D

D(w,RD)=0 >R, = %_:' =z V (10)

and therefore

D,8)= (B + 2)r (8, - D)= 125 aw

The open integral called for with Eq. 8 is equivalent to the closed contour
integral that can be evaluated using Eq. 9 on the respective contours shown
in Fig. 11.12.4. Poles, D (WR):0, in the

k plane have the locations shown to the

- e N s S O

right for values of ¢J on the Laplace 240
contour, because they are given in terms
of &2 by Eq. 10. The ranges of z assoc- 220 Xg.n

iated with the respective contours are

those required to make the additional

parts of the integral added to make the contours closed ones make zero

7y

contribution, Thus, Eq. 8 becomes _@ 2
_a ;|
]
% — Az go[ l _ J ] e (12)
- 2 - ) w W,
2y Lo -0 7SR 2 (2) ! S
Here, and in the following discussion, the upper
z
and lower signs respectively refer to 2 <O ana Z"—tz>0
‘ ~ o o
° . 3% >
22 [ * ¥ e
The Laplace inversion, Eq. 2b, is evaluated P
using Eq. 12
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Prob. 11.12.1 (cont.)

s (1o £3 2 ot
;(i,t)zﬁ_g le-w - w'w] e e dw (13)
4y ° ° w 2m
-m-é@'

Choice of the contour used to close the integral is aided by noting
[28) . We
(Lt & (@ t2558) (4t 2
that CJO( V ):. e‘(\ v >€ °(t-V) (14)
and recognizing that if the addition to the original open integral is to
be zero, V>O on the upper contour and % + 240 on the lower one.

The integral on the lower contour encloses no poles (by definition

so that causality is preserved) and so the response is zero for

¢ <:%— (15)

Conversely, closure in the upper half plane is appropriate for

- 2
t>31 16)
ty
By the residue theorem, Eq. 9, Eq. 13 becomes
+,22 ol 4.4 ot
§(2t>_52$§[ jc a_ea ealé‘g‘
(o) @ (wo+w7 w 12w
/ (17)
(W) = ~W4 (Wp~W) D(w) W+ (W)
= ozl l l eé(%tié’c%*)‘ | a(“ t13e
ayv 3L Yo, IS S wol

This function simplifies to a sinusoidal traveling wave. To encapsulate

Eqs. 15 and 16, Eq. 17 is multiplied by the step function

(2 ﬂ’::fucs'“[w(f 2)u (t*g)] 20 (®
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Prob. 11.12.2

The dispersion equation, without the long-wave approximation,

is given by Eq. 8. Solved for ¢ it gives one root

wzﬁu;rge_fmh% @

That is, there is only one temporal mode and it is stable. This is suffi-

cient condition to identify all spatial modes as evanescent.

The long-wave limit, if represented by Eq. 11, is not self-consistent.

This is evident from the fact that the expression is quadratic in @ and it

is clear that an extraneous root has been introduced by the polynomial

approximation to the transcendental functions. In fact, two higher order

terms must be omitted to make the -k relation self-consistent, and Eq. 5.7.11

becomes

U z e
% ‘3E'fJ“Q.—a“U

_ (2)
+ 4

w:%(l +Q)

(3
U 2
which is directly evident from Eq. 1. A%a
To plot the loci of k for fixed

’
values of J. as O goes from @ \ 0.1 -0

to zero, Eq. 2 is written as

X 4- >
%1: 3 [% T \((%—l-yo'U)Jfa‘U.,U ]

(4) R,

The loci of k are illustrated by

the figure with U= 0,2.

0.l
0.5

Solved for @ , this expression gives ' ‘
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Prob.11.13.1 With the understanding that the total solution is the super-

position of this solution and one gotten following the prescription of Eq.

11.12.5, the desired limit is
w (1)

b S £V T
tw ¢ O (“’Q‘) 2T
where Eqgs. ll 13.8 and 11.13.9 supply

’g(&§ PS [e —tl 2

g ;Cw)zﬂ( R (wt -Rn2)

uf(@o)._

(w- ° (3
gl T T e
. Awe
The contour of integration is shown to
y
[
the right (Fig. 11.13.4). Calwoulated here is the { /C‘-
== f — o
response outside the range z<0,£>Zso that the C’b e
summation is either n=1 or n=-1. For the 'A
w
particular case where P % 0 and M { 1 (sub-electric) C - C—z
1
Eq. 11.13.16 is *
q C3

,(8 )"' +2{<"’ 303)(043 o) ) SP(\ ) (4)

Note that at the branch point, roots kn coalesce at ks in the k plane. From

Eq. 11.13.15,

WM .
ﬁs = 3 = "'_a.q_-:S_-M— (5)
M- -1 AT |

as shown graphically by the coalescence of roots in Fig. 11.13.3. As t—»©O,
the contributions to the integration on the contour just above the W, axis
go to zero. (W = U.-+SU; makes the time dependence of the integrand in

Eq. 1 (exp jw,-tXexp— W t) and because &;» 0, the integrand goes to zero

as t —®® .) Contributions from the integration around the pole (due to f(w))

at W = W, are finite and hence dominated by the instability now represented
by the integration around the half of the branch~cut projecting into the lower

half plane.

The integration around the branch-cut is composed of parts C, and C

1 2
paralleling the cut along the imaginary axis and a apart C3 around the lower
branch point. Because D' on 02 is the negative of that on Cl’ and Cl and 02
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Prob. 11.13.1 (cont.)

are integrations in opposite directions, the contributions on Cl+C2 are

twice that on Cl. Thus, for C, and CZ’ Eq. 1 is written in terms of O°(w =-349)

2 *(. Y STICOEN &

2T (6)
=, 23V (0 - 63 )(a +3)
In evaluating this expression approximately (for t-®60) let J5 be the origin

by using ¢-O5 as a new variable 2 -c'-\-c" 3 do = -&G" Then, Eq. 6 becomes
né -O""t
5t f(- 0')5._.3%- (B)e? {a? .
2m ata2c0; c’
Tt Ts J 3 J

Note that ¥ £ 0 as the integration is carried out. Thus, as {1 »@ ’
contributions to the integration are confined to regions where ‘O"‘ - 0.
The remainder of the integrand, which varies slowly with g~ ,is approximated

by its value at g = a . Also, c; is taken to @ so the integral of

Eq. 7 becomes (k - k_ 1~ k)
S 0 *t
it -aféi

L0+ s)aE(B*) e Aa-
an J-za; , ‘]?i‘ @

The definite integration called for here is given in standard tables as

T /T 9

The integration around the branch point is again in a region where all

but the ;w-’;f, in the denominator is essentially comnstant. Thus, with

O =W+ 56:5 , the integration on C of Eq. 1 becomes essentlally

G ~4GasB) G -“‘f‘g
\r——"\

+ (10)
Let D =NRyea and the integral om Eq. 9 becomes
& S s
mpp o &2 —3«/7.

In the limit R —» 0, this integration gives no contribution. Thus, the

asymptotic response is given by the integrations on C,+ C, alone.

1 "2

---~“~.-~“-f-“-“
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Prob. 11.13.1 (cont.) 8

JARS {00 RN f( 7 )g( &) e K (12)
t»oo AW ey ' '

The same solution applies for both z ¢ 0 and ,Q {z. The z dependence in Eq. 11

renders the solution non-symmetric in z. This is the result of the convection,

as can be seen from the fact that as M=+ 0, ks-o 0.

Prob. 11.13.2 (a) The dispersion equation is simply

(w_gu-)l:'vz&l-\-aw\') o (1)

Solved for &« , this expression gives the frequency of the temporal modes.

v 2 NEYENTY (2)
w=RU 32+ (@ T)egvev
Alternatively, Eq. 1 can be normalized such that
w=w/v, m=U/V R =RV/V (3

and Eqs. 1 and 2 become

2.2 Mw% + R_Z(N\"-l)_a-u:o

(4)
- + + _l \
W= N R _'L \/(?t 4 '3 M B
To see that U/ DV (M) _1_\) implies instability, observe that for
"small" Y , Eq. 2 becomes
= R(02V) +3X (1 £ M) )

Thus, there is an ) { © i Mmoo . Another examination of Eq.5

is based on an expansion of M about M=1, showing that instability depends

on having IM,)i-
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Prob. 11.13.2 (cont.)

i Complex ¢« as a function of real k are illustrated in Fig. 11.3.2a.
w

3

Fig. 11.3.2a

(b) To determine the nature of the instability, Eq. 4 is solved

for complex k as a function of W= c.),.-a'ﬁ".

B Mo ty/g@hD) + o @
M-

or = " > < \

M(W-3) \/[wr - %o (A -D Jasle-m-1)-20,5]
k= yy e (8)

Note that as O — o
ge M@0 24T _ M —5T (ME0) ©)
M =) M - |

and for MP 1 both roots go to 8‘-—» —-@ . Thus, the loci of complex k
for O varying from -~ to zero at fixed ¢Jy move upward through the

lower half plane. The two roots to Eq. 7 pass through the kr axis where
reaches the values shown in Fig. 11.3.2a. Thus, one of the roots passes

into the upper half plane while the other remains in the lower half plane.

There is no possibility that they coalesce to form a saddle point, so the

instability is convective.
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Prob. 11.14.1 (a) Stress equilibrium at the equilibrium interface

d
P -p° = $€E, | E.z V/a

In the stationary state,

P

P-'-Tr),

and so, Eq. (1) requires that

il
A
|
-

~
CN

kA

\ b 7. = 4
All other boundary conditions and bulk relations are automatically

satisfied by the stationary state where V= C]t; in the upper region,

1-)' = O in the lower region and
=4 2
'TTk 1Z/01]
”L

(b) The alteration to the derivation in Sec. 11.14 comes from

P:

(1)

(2)

(3)

(4)

the additional electric stress at the perturbed interface. The mechanical

bulk relations are again

" e [ _ co+‘1 R& _l..___- [ e
P Sinh fRa X
- 3'(w-feiu)/_i N
LI ==
FAQ- r.-co'Hﬂ %L \ -1 rAe-
P - Q'Wfk . sinh Bb x
af f — | ab 4%
P | sinh Rb ce’th *

The electric field takes the form E=E,lx+ @, = - & and

perturbations, € , are represented by

(5)

(6)
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Prob. 11.14.1 (cont.)

| A
AaC ——— <
..CO+L\%0; Sihh&& @ -

ex ! coth Ra || ®
Sinhfka

in the upper region. There is no E in the lower region.

Boundary conditions reflect mass conservation,
ad s e e Ac Af
&&:a(w“aiu)?)—&x:aw?)ﬂx—o ’.”(‘ =0 (8)

that the interface and the upper electrode are equipotentials,

-
- - 9
t I .

R b
=X Ml oe,=-E =>§ ~efid=e o
o4 hE 3

LE,+e., e, ci_

and that stress equilibrium prevail in the x direction at the interface

“(apg ¥ +pI-R-E D iR'E =0 )

The desired dispersion equation is obtained by substituting Eqs. 8 into
AA A
Egs. 5b and 6a, and these expressions for P and p  into Eq. 10, and

Eq. 9 into Eq. 7b and the latter into Eq. 10.

3 [~ (Pn-r)g - @-BUNacahRa_ g iheb
& P& (11)
- cE R coth Ra + YR® =

A .
To make €¢ O  the term in brackets must be zero, so

[(eo- ﬁau)‘/&mk he/Rl+[0 A cth RE /BT
= ¥R + (4, -2)9 - € EL RcothRa

This is simply Eq. 11.14.9 with an added term reflecting the self-field-

(12)

effect of the electric stress. In solving for ¢J, group this additional
term with those due to surface tension and gravity (X@ + (/ B-/"“) %—9

X& +(( -fa)g € E & coth EOL) It then follows that instability
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Prob. 11.74.1 (cont.)

results if (Eq. 11.14.11)
U2>1 tanh &L + +Auol\%ﬂ

(o (e

][W;%( (ab-/.\)ﬁ\- cE. R eoth @u] -Fi—; (13)

2

For short waves ( bl > ,lPr.o.l) > ) this condition becomes
¢ i 4 L ! 3 ( S € e !
o (14)

The electric field contribution has no R dependence in this limit, thus

making it clear that the most critical wavelength for instability remains

the Taylor wavelength

@=%*':‘J_‘ﬁ_(f;‘_[z) (15)

Insertion of Eq. 15 for & in Eq. 14 gives the critical velocity

U*t‘- <-(5|1 +-/L—a)(2\| %K(ﬂ‘(”a)‘ - EEZ‘) (16)

By making
€, = 2\ 9¥(4-) : (17)

the critical velocity becomes zero because the interface is unstable in

the Rayleigh-Taylor sense of Secs. 8.9 and 8.10.

In the long-wave limit (l balec i ,lng ¢ | > the electric field
has the same effect as gravity. That is ‘6&1+(ﬂb-/’a§% —
K&z'i' ):( &‘/a)’a" eE’;/G“l and the R dependence of the gravity and
electric field terms is the same.

(c) Because the long-wave field effect can be lumped with that
due to gravity, the discussion of absolute vs. convective instability

given in Sec. 11.14 pertains directly.
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Prob. 11.14.2 (a) This problem is similar to Prob. 11.14.1. The

equilibrium pressure is now less above than below, because the surface

force density is now down rather than up.
2 \ z 1)
-“,;(OU—'\T\_, = -z uH, (

The analysis then follows the same format except that at the boundaries

of the upper reglon, the conditions are (h /uo = D)

[‘ ‘—"5 az ]il-:c +L ¢ +(H+hz)c1 R (2)
# \'1& uoés =4 \qx = -3&1H°$

\:\° =0 ‘ (3)

b3

and

Thus, the magnetic transfer relations for the upper region are

A |
(_VL | _C_‘c‘*\\ @Q sinh Bo 0

(LJ - E _;?.\:_‘I:—P:c\ Co*l\gc\ ‘égéHoﬁ

(4)

A
The stress balance for the perturbed interface requires ( 2= ﬁq/)

o Ad ae ~d 22
RCYO R T PV N NP § S B ©
Substitution from the mechanical transfer relations for ﬁc( and K)e
A

d
(Eqs. 5, 6 and 8 of Prob. 11.14.1) and for @/ from Eq. 4 gives the

desired dispersion equation.

2

“(pampiy - (o= Rofacathie g;@w%t

. (6)
+p er By oth Ra 4 YR =

Thus, the dispersion equation is Eq. 11.14.9 with ‘6% +%( e - o) —>
X% +‘3.((95 (%.) +/{( H % coth Re /Q Because the effect of stream-
ing is on perturbations propagating in the z direction, consider % = 82
Then, the problem is the anti-dual of Prob. 11.14.2 (as discussed in

Sec. 8.5) and results from Prob. 11.14.1 carry over directly with the
2

2
substitution —-€E, —» /u, H,
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Prob. 11.14.3 The analysis parallels that of Sec. 8.12. There is now

an appreciable mass density to the initially static fluid surrounding the
now streaming plasma column. Thus, the mechanical transfer relations are

(Table 7.9.1).

%»" Fa(R0) Gy (a®)][o D

igc Gm (R Y F. (a )ﬂ)_ aus

Al ; A )
P = - ((.J -8U>ﬁ rm(on“)?
Ac A
where substituted on the right are the relations 15:.:3(»? and
ad A
o =9 (W - @U) % . The magnetic boundary conditions remain the

same with W:O (no excitation at exterior boundary). Thus, the stress

Ac
equilibrium equation (Eq. 8.12.10 with P included)

A

z A
B - §J=/“;Ht_§—3’ﬂo (-",%-Hﬁ%Ha)CPC (3)

N
is evaluated using Eqs. 1b, and 2, for PC and ‘SA and Eqs. 8.124b,

F;b Ac
8.127 and Ny =0 for ¥ to give

ﬂw‘/o\,f-‘m(a,ﬂ)wu (w-‘éUime(O,R) (4)

¢ 2
=/t e (B R RH T (o)

This expression is solved for Ww.

w = "/Ggu F‘..(O,R)r{[(avi(a‘“)-/)ﬁ, (O,R)]}VO(—E*H{*%H“)LFM (G,R)"
o8]+ KURPE (o) R )

AE(Q.R) -ﬁ‘fm(ot\—()

to give an expression having the same form as Eq. 11.14.10



11.67

Prob. 11.14.3 (cont.)

(Fn (0,800, Fo.(a,R)> ©

The system is unstable for those wavenumbers making the radicand

negative, that is for

> [ Falam-F (o] (—'f;'—H;«@H«)zE,(a-ﬁ)-/‘;rl;‘;] ©

-R%psp R (0, R) (2, R))

Prob. 11.14.4 (a) The alteration to the analysis as presented in

Sec. 8.14 is in the transfer relations of Eq. 8.14.12, which become

xS -coth R '
1T Co (N Th Ba 0

= é(w"%:v)(fo. (1)
'ﬁA sn:\L Ea CO'H—n ﬁa a-(w_gyg

where boundary conditions inserted on the right require that
Ac

~Ad A
and 1),‘ =0, W = 3 (w- QQU)? Then evaluation of the interfacial

stress equilibrium condition, using Eq. 1, requires that

(ca—@%u)z/&c&\n Ra N oy coth BL
Y bR 2)

_ ] (%a—‘?»)a
=9(fu-p) + Be(9a-9u)+ € (coth Bt ceth Bb)

(b) To obtain a temporal mode stability condition, Eq. 2 is solved

for I .

- othBa  corhha cothfl
w=RUaccthls f{[/’ il o [

- (g“-?b;- - cothBb RS : e &
E"(?“ 3"3+€°&(cdkfzo~+eoﬂ%!‘ /i?;—b tU cdnfa

(/Aco'\'h [ +(¢;. coth &L)/&

N O O N .= By P8 PR Gy o e
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Prob. 11.14.4 (comnt.)

Thus, instability results if

U°s B[ Pm cothRec 4@y coth R 4 (A-Pa)+Eo(Ye =)

+ (Ga=%0) ]
€ R (coth Ras cotl R)

PP B. coth Bb coth Ra

(4)
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Prob. 11.15.1 Equations 11.15.1 and 11.15.2 become

(3 + M3, = i§,+P¥ 1P, @
(2)
% ‘MAz)s ;iz +PT. -3P%, )

Thus, these relations are written in terms of complex amplitudes as

-[-(w-M%fi-%z-P] ' -‘EPF?;

LR [(wtmAS+E-P1 <,

and it follows that the dispersion equation is

[(N-Mﬁ)z- R+ P][(u{-M&f'-ﬁz;?]‘% =0 (4)

Multiplied out and arranged as a polynomial in& , this expression is

wf ¢ 2P -2 R ()4 [ 0&4+ZP(M -ORE PR 3]0 ®
Similarly, written as a polynomial in k, Eq. 4 is
2
R + RE[2P () - 26 (Wt )[t[ut+ 20 P+ B Flo©
These last two expressions are biquadratic in &) and k respecively, and can

be conveniently solved for these variables by using the quadratic formula twice.
+10%/ 2 2,,2/02 1%

o=t Q(M-H)—Pt\/t\&M(&-P)wk_Pz} @
{wz (W )-B( M-yt J[TD(Mz-l)-wz(Mzﬂ)]’:- (Nf'l)‘[c.ﬁ.,,?.@"ﬂ%?"} }

f=1
[ME -1 (8)

First, in plotting complex ¢’ for real k, it is helpful to observe that

|

in the limit Q-bfw, Eq. 7 takes the asymptotic form
w—+R (Mt 1) ©)
These are shown in the four cases of Fig. 11.15.la as the light straight lines.

Because the dispersion relation is biquadradic in both ¢J and k, it is clear

that for each root given, its negative is also a root. Also, only the complex

W is given as a function of positive k, because the plots must be symmetric in k.

:
1
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i
i
i
1
|
]
i
|
i
B
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Prob. 11.15.1 (cont.)
The subcritica; magnetic case shows .no "unstable" values of @ for

real k, so there is no question about whether the instability is absolute or

convective. For the subcritical electric case, the figure ’ TLJ;
below shows the critical e& >
y Wr
plot of complex k as w
Y
is varied along the trajectory
| - __‘h--\\\\\\\\\\\\‘\ Qr
- j r ————
shown at the right. The plot makes it clear that the instabilities
are absolute, as would be expecte ' from the fact that the streams are sub-
critical.
Probably the most interesting| case is the supercritical magnetic one,

because the individual streams then tend to be stable. In the map of complex
k shown on the next figure, there are also roots of k that are the negatives
of those shown. Thus, there is a branching on the kr axis at both kr:3.56
and at kr ® -.56. Again, the instability is clearly absolute. Finally, the
last figure shows the map for a super-electric case. As might be expected,

from the fact that the two stable (P=-1) streams become unstable when coupled,

this super-electric case is also absolutely unstable.
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Prob. 11.15.1 (cont.)
1 M =2 3 2
2 3
Pe-t - Iv
br i
'{vcs
AT
b
2F
0 1 2 3
we
N To A -
.2 o
4
-.*-
4
—.6-
b,
o 0.5 03
R W\ |
R4 4
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Prob. 11.16.1 With homogeneous boundary conditions, the amplitude of an

eigenmode is determined by the specific initial conditions. Each eigen-
mode can be thought of as the response to initial conditions having just

the distribution required to excite that mode. To determine that distrib-
ution, one of the amplitudes in Eq. 11.16.6 is arbitrarily set. For example,

suppose Al is given. Then the first three of these equations require that

[ | l "TFAI- r“A.

..iag .ﬂ%&g _Ja —‘%52
ea eé 6049' A; —Cb A, (1)

I

| % % @ ]| Ad

| - QA

-

and the fourth is automatically satisfied because, for each mode, ¢J is
such that the determinant of the coefficients of Eq. 11.16.6 is zero.

With A set, A

1 23 A3 and A4 are determined by inverting Eqs. 1. Thus,

within a multiplicative factor, namely Al’ the coefficients needed to

evaluate Eq. 11.16.2 are determined.
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Prob. 11.16.2 (a) With M,=-M, =AA

and M| ¢ 1 , the characteristic lines
are as shown in the figure. Thus, by the
arguments given in Sec. 11.10, Causality

and Boundary Condition , a point on either
boundary has two "incident"
Thus, two conditions can be imposed at each
boundary with the result dynamics that do

not require initial conditions implied by

subsequent (later) boundary conditions.

characteristics.

The eigenfrequency equation follows from evaluation of the solutions

a=6<2A b et

Rz Lt
3Rt o
@\ethAhe Qa

11.15.2)

g.:

where (from Eq.

Q= & (s mAT -4+ P

Thus,
[ | |
e-,;ﬁ.fl e—;&fl o BY
Q, Q, Q,
it aet gt
L

Al

(1)

(2)

(3)

(4)

~Y

s T B 9 O 5 N o=
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s } .
>

. N
! . N . .

11.76

Prob. 11.16.2 (cont.)

Given the dispersion equation, D(w,R) > %n = 8,,,((.:) ,» this is
an eigenfrequency equation.
Dqt (N} =0 (5)
In the limit M—0O , Egs. 11.15.1

and 11.15.2 require that

wz-%z"’ P ‘%‘ §| 0
a (6)
T—LZD. wz—%z+P Ez 0

A A

For §| = ?7_ , both of these equations are satisfied if

S P(-zos Rt B g P O

) 2
X I P —-/ 2
W -R +}z— P::O 2 %3‘ @ +EE )%4- « +ZP (8)

and it follows that
Q‘=\,C?1=‘)Q3=—‘)Q4=—‘ (9

Thus, in this limit, Eq. 4 becomes
[ | | | T
e.(;@,Q Ca'ﬁ.ﬁ B JR0

| l
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Prob. 11.16.2 (cont.)
and reduces to

sinB sinR0=0 (11)
The roots follow from

@lzﬂr %z:ww,rn:l,Z,B,,. (12)

I 3

and hence from Eqs. 7 and 8

Al

w=1 (%j"’—jz?- > w:t\/(_rii)z_%P (13)

Instability is incipient in the odd m=| mode when

P = %<’},L) (%4)

(b) TFor /\!\)1> the characteristics are as shown in the figure. Each

boundary has two incident characteristics. z

"

Thus, two conditions can be imposed at each
boundary. In the limit where P—-p o ,
the streams become uncoupled and it is most
likely that conditions would be imposed on
the streams where they (and hence their
associated characteristics) enter the region

of interest.

From Eqs. 11.15.2 and 11.15.5

4 ‘%ni Qt
)
:D_?E = &e -fé%nAh e Ca (15)
d2
nsi

Ry A ' / - ~ U ! -
) 3 ]
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Prob. 11.16.2 (cont.)

Evaluation of Egqs. 11.15.2, 15, 11.15.5 and 16 at the respective boundaries

where the conditions are specified then results in the desired eigen-

frequency equation.

o

G| Q?_ Q}

YY)
& e e

g ot gt gt

L

%1 Q\ | %th Qs Q3 - ﬁ‘\ Q'-\-

e

Q4

e—;@,&
ésw
4

A,

-y

(17)

Given that Qn =&n(w) » the determinant of the coefficients comprises a

complex equation in the complex unknown, ¢J .

Prob. 11.17.1 The voltage and current circuit equations are

v(y,t) = oY L%—‘;—; -nWA%%LBt—x + By + oy, )

b<‘1't): A‘}C%—% A& ‘:((i +8Y,¢)

(L

(2)

In the limit Ay-# 0, these become the first two of the given expressions. In

addition, the surface current density is given by
- : > - )
K,= n Cly+ i,t) nly)
and in the limit Ay -0, this beomes

I M= n3

By' Ampere's law, “H,anﬂ(z and the third expression follows.

(3)

(4)
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Prob. 11.17.2 with amplitudes designated as . - Mo — -
p N — 3
] ) a a Meauswmission [35) I l

in the figure, the boundary conditions y line ¢d)

'—-.' N T N S PP A SN P S RS .j_yv

representing the distributed coils and -__; — T mpeo - _ -

- —

transmission line (the equations summarized in
Prob. 11.17.1) are
A N . Ac
.6‘@1} = a‘w}—-b -aw“ng (1)
BY -0 Ch (2)

ake =3

- \_\ _}&\_\ ‘ (3)
The resistive sheet is represented by the boundary condition of Eq. (a) from

Table 6.3.1.

R R (e RV o

The air-gap fields are represented by the transfer relations, Egs. (a), from

Table 6.5.1 with ¥-¥ k.

0e -CAJEO« ! Le
H‘} 1 Mg@“ Bx
“ 4|77 Al (3)
W 4| = cothea ||
M—:ﬁ@“
These expressions are now combined to obtain the dispersion equation. Eguations

1 and 2 give the first of the following three equations
— =~ -
A
4

.a(wl_-c%) _énww o

48 et f;‘:—x@ -[B] @
A, ]
) | -QO "A
L 0 ;“3':- Al Ren /«, QM@& ‘_Bx

The second of these equations is Eg. 5a with H; given by Eq. 3. The third is

. "d‘
Eq. 5b with Eq. 4 substituted for H,‘_ . The dispersion equation follows from

the condition that the determinant of the coefficients wvanish.

“ ! m - "ﬁ -

. |
: .

“



- -

11.80

Prob. 11.17.2 (cont.)

(co"LC _%z>Y4,c; (%w-gz) ng "él
'W.%hzwmz(:].ﬂﬂ;(:'%(f) -} u‘tf@o:l =0

As should be expected, as n—» 0 (so that coupling between the transmission line

(7)

and the resistive moving sheet is removed), the dispersion equations for the
transmission line waves and convective diffusion mode are obtained. The coupled
system is represented by the cubic obtained by expanding Eq. 7. 1In terms of
characteristic times respectively representing the transite of electromagnetic
waves on the line (without the effect of the coupling coils), material transport,

magnetic diffusion and coupling,

‘EMEQ&\E"\ILE%)T‘” z °°;&) TC,E Vowac hz‘ ©

and the normalized frequency and wavenumber

w= //7:Lh~ N E% = gé /Qk ©
the dispersion equation is
3| ‘L ot/ R + T T
2l A > 0

w

(wﬂ-fzwza ik g uxf@]
% T

[ 2] m

@[ %Qwa?&] N l\%f’:uﬁ@ug]:o
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Prob. 11.17.2 (cont.)

The long-wave limit of Eq. 10 is

B . TR 21 P
-— + c ~2R-s R~ c1:4 P
O+ B ] o[ TRt g,k

e

3
o
&
Te
"
E

T “’&"—3—"- B+ [’r + Pe“]:o

In the form of a polynomial in k, this is

o
- EEB 1'& 755: —--3 :E;_:E:L_-l

Ty Te
+ %:.‘. ELACY o T ol o T l]
Y - z 3 3 - (12)
2w 4%

c o T
+R [ 3 w :E;jl - i IR \1}n '1

where it must be remembered that E% (<4

As would be expected for the coupling of two systems that individually
have two spatial modes, the coupled transmiésion line and convecting sheet
are repreéented by a quartic dispersion equation. The complex values of
for real k are shown in Fig. 11.17.2a. One of the three modes is indeed
unstable for the parameters used. Note that these are assigned to make the
material velocity.exceed that of the uncoupled transmission-line wave.
It is unfortunate that the system exhibits instability even as k is
increased beyond the range of validity for the long-wave approximation %(1
The mapping of complex shown in Fig. 11.17.2b is typical of a convective

instability. Note that for W,.=(,5 the root crosses the kr axis. Of course,

a rigerous proof that there are no absolute instabilities requires considering

all possible values of O 0 .
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Prob. 11.17.2a (cont.)

8 g x4
6 exo™
4 4xw’°‘
2 2x10”"
W, )
-2 -leo;*
-4 ~4x0”?
-6 | -6xi0™4
-8 XY

Fig. 11.17.2a Complex ¢ for real k.
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Fig. 11.17.2b Complex k +
trajectories for the 1% 2
3
trajectories of complex ¢ # |
shown. L
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Prob. 11.17.3 The first relation requires that the drop in voltage across

the inductor be

B -B(a+a2) = Lozt W)

Divided by A% and in the limit where AR-»0 this becomes

blﬂ - AL (2)
Sz =L

The second requires that the sum of currents into the mode at 2 + 482

be zero.

(@) -c(z+02)=C azt At ’ST(O;WA%) (3)

where 01 is the net charge per unit area on the electrode
= 1 o1 )

Divided by A2 and in the limit A& ~» O , Eq. 3 becomes

-9 = C +w§<_§ (5)
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Prob. 11.17.4 (a) The beam and

~ -. -\ .. -

air—-gaps are represented by

Eq. 11.5.11, which is (Pe.a:O' Qfﬁ)
AC
D, =
(L)
= G&(& +Xco'H|Bu ‘lm. \—\XL) S%Lc
Beoth Ra +Y¥+anhyl
2 £ -
¥=8 Il-w;/(o-ﬁu) ]
The transfer relations for the

. Aa
region a-b, with § =0 require .

that
L ab
6‘ = eR thRd & (2)

b

A A
With the recognition that ‘U--»E

equations from Prob. 11.17.3 require that

9% éc:éwl.z

A
c
= i » the traveling-wave structure

(3)

a%?:g@Cic +6QW(6E—6E> (4)

The dispersion equation follows from substitution of Eqs. 1 and 2 (for

A C "

PIA

Al ,
O.and Dy ) and Eq. 3 (for ¢ ) into Eq. 4.

% W C o oweh [ cothBd + (R +¥ cothRa Yonh¥))

B coth @Mm.m]

As a check, in the limit where L—PCO and C—?O this expression

should be the dispersion relation for the electron beam (D=0 in Eq. 11.5.11)

with a of that problem replaced by; atd.

(coth Rd+ cothBa )/ (esth Gacoth g&.H )

(This follows by using the identity

tanh R (a+d) )

In taking the long-wave limit of Eq. 5, where &A((j s 80\( <4 and XL <<%,
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Prob. 11.17.4 (cont.)

the object is to retain the dominant modes of the uncoupled systems. These
are the transmission line and the electron beam. Each of these is repre-
sented by a dispersion equation that is quadratic in ¢V and in Pa

Thus, the appropriate limit of Eq. 5 should retain terms in &> and ‘%

of sufficient order that the resulting dispersion equation for the coupled
system is quartic in ¢J and in % . With CIEC -\-WG/C( » Eg. 5

becomes

IR [CELN Y

(6)
= \Jeﬁzwz[(w—QU)l( I +-%—> —%w;
With normalization '
B=Rb &= (W L)
W = LJ/ZJF
- WE
=U/bw K=
Q / r C,’ 1§
this expression becomes
(RS- A (o-rviE -8
2 z (7
-KE e[ (0 -RU)(143)- 2] =0
Written as a polynomial in ¢J , this expression is
. 3 .
[2+ R (e 2)]' -2 [ 2RV + RRU( ¢ kYo’
[RE (U -RAREVG ) - KRS

+ 12%&3Ucl]w -\{QA'CZ (1- UZ%’;)]: o

‘ '

-l . .. =

g N -
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Prob. 11.17.4 (cont.)

This expression can be numerically solved for ¢> to determine if the
system is unstable, convective or absolute. A typical plot of complex co

for real Q,, shown in Fig. P11.17.4a, shows that the system is indeed

Al - 2N

.

unstable.
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Prob. 11.17.4(cont.)
To determine whether the instability is convective or absolute, it
is necessary to map the loci of complex k as a function of complex

W= We "60. . Typical trajectories for the values of ¢y shown by

the inset are shown in Fig. 11.17.4b. AW
2 Ty

v

-
--

2 .

"

Fig. 11.17.4b Mapping of

trajectories shown by inset
into complex k plane.
Trajectories are typical of

convective instability.




11.88

Prob. 11.17.5 (a) In a state of stationary equilibrium, {} = U 69
and P = -rr = constant, to satisfy mass and momentum conservation condi-
tions in the fluid bulk. Boundary conditions are automatically satisfied,

with normal stress equilibrium at the interfaces making

<

T = Lt u.H, . (1)

where the pressure in the low mass density media

surrounding the jet is taken as zero.

(b) Bulk relations describe the magnetic

perturbations in the free-space region and the fluid

motion in the stream. From Eqs. (a) of Table 2.16.1, S AL —P OO

with

H=Hyly+hs h=-v¢ @

BT “eoth Ba  —1 [ Af
* R e * sinh Ba || ¥ T h
A= - adl (3 ¥ >
h“J ;T\:\'-\_é-q coth Rall @ ( e
and from Eable 7.9.1, Eq. (o),
-Ae- - ‘ AQ
’ (w0-R0) Y )
s P’ A
A & "" s
| P ooeL coth Ry

Because only the kinking motions are to be described, Eq. 4 has been
written with position (f) at the center of the stream. From the symmetry
of the system, it can be argued that for the kinking motions the perturb-
ation pressure at the center-plane must valish. Thus, Eq. 4b requires

AR
that ~ L 7},‘ rﬁf
Uy = Sinh Bb cahfb  cosh b

so that Eq. 4a becomes

(5)
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Prob. 11.17.5 (cont.)

8¢ _ (w-Ru)o( otk BL ' }e (6)
P =1 & ot ( N +s‘m\\ﬁ.L cosh &01&

or

/6

A A
where the last equality introduces the fact that 19,<=a' (w-{iu) ?

ae_ —3%@;9),2 k8L B = (0 -Pe{éu)z tanh BLE

Boundary conditions begin with the resistive sheet, described by Eq. (a)

of Table 6.3.1.

2 1AL

. . AC
F&a 5= CACTNIEN @ ol (7)
A

which is written in terms of ijcas <R‘3= ag.s Cy‘) .

Ac

= A MG A C (8)

q} - 31%32260\ﬂx

At the perfectly conducting interface, (E x E,‘ - %% L"S - %gi “!>

F\'ﬁ':o_b‘:\‘f-\—a.%?\-!,ﬁzo 9

Stress equilibrium for the perturbed interface is written for the x component,

with the others identically satisfied to first order because the interface is

free of shear stress. From Eq. 7.7.6 with ¢ —x

Ipln, = 1T, In; =¥ (- Py, (10)
Linearization gives

ne ~d 2 g

—p° = - Ry ¥R S (11)

where Eq. (d) of Table 7.6.2 has been used for the surface tension term.
A
With \9\3:—0%‘-}’ ,» Eq. 5 becomes
A d A

Ae . 2 (12)

P = Q%Q#DH;‘({) +X% z
Now, to combine the boundary conditions and bulk relations, Eq. 8 is

expressed using Eq. 3a as the first of the three relations
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Prob., 11.17.5 (cont.)

|+ 44 U;z& w.cothfa '9‘!!;’&?’: - o 1 -(?/:
2 éa sin [~
_R ) . adl (13)
Sinh Ra Reoth Re. 3@9“° L4 =0
- /loHo (CJ %ﬂu oml\&L 2
o) ( ﬂ 3 KPA‘ <
o L

o A
The second is Eq. 9 with hx expressed using Eq. 3b. The third is Eq. 12
. ne
with P siven by Eq. 6.

Expansion by minors gives
2 % .
- R’b Ho/ﬂ,il + 3&6%@“ coth o +
' fe
3

(14)

(LJ-—% U)z _yR? . o
Bl 2 ek BL VB [eothbo+ BT o

Some limits of interest are:
_ H;"o so that mechanics and magnetic diffusion are uncoupled.

Then, Eq. 14 factors into dispersion equations for the capillary jet and

the magnetic diffusion

(w_ Qnu)z = Xﬁ'z// tanh B) (15)

W= 3R cth R (16)

The latter gives modes similar to those of Sec. 6.10 except that the wall

opposite the conducting sheet is now perfectly conducting rather than
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Prob. 11.17.5 (cont.)

infinitely permeable.

Qg , so that Eq. 14 can be factored into the dispersion

equations

(w-B, 052/0 tank RL =X&3'+ Pe;/a.,che-&-k Ra (18)

This last expression agrees with the kink mode dispersion equation

(with ¥—®0) of Prob. 8.12.1.

In the long-wave limit, coth Ra—»| /ﬁ‘q , tanh b+ L and Eq. 14

becomes

‘&gﬂ°H <\+3 >

(19)
| P 1 ! 4, Og W0
- - — + [T - O
+] (0 gam/ VR g+ dtes
9
In general, this expression is cubic in &J . However, with interest
limited to frequencies such that
R a /‘2%_‘:’- << (20)

and & '% , the expression reduces to

-w(aEU+3V /a, >+%Z<U_V V ) (21)
wherev:_.‘_.?j//dl_, and Va = (ﬂoHt/ﬂ)(Q/L) . Thus, in this long-wave

low frequency approximation,

\

2 p E 2 2z 2 &
= RU +é\[o.£af_°_f.‘_\‘_ (PcU-L 3\/:4_4%%)-&(11-\/3\/,, )} (22)
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Prob. 11.17.5 (cont.)

‘VL 0022 4 z 2 ‘
/\% \/“W%)-Fé‘(u SARAY

#/ N\ RU We

[ t N
It follows from the diagram that if (/) \'i -}VL , the system is unstable,

T o explore the nature of the instability, Eq. 21 is written as a polynomial
in % . 2 2 (23)
(3 R 2 .
(UV*-VEYE - 20U R b eo (o - WseT) =
co

This quadratic in @ is solved to give
- wUT \/ (Vs V:>+a' (Uivz.v:)'\ﬂzﬂof ©
QUARVAIRVAS
With (w=W-56 , this becomes
R = weU-goul X A+yR
UZ_-Vz_'V“I

1

(25)
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Prob. 11.17.5 (cont.)

where

A

(0~ VeV 4 UV V) Vel o

R={ (u‘-VL-V:)\L%'E' - 20 (VHV) o

The loci of complex k at fixed W, as U is varied from e to © for
Uz>(Va+ V:) could be plotted in detail. However, it is already
known that one of these passes through the kr axis when J°¢ O (that one
temporal mode is unstable). To see that the instability is convective it
is only necessary to observe that both families of loci originate at
PL“;-P—Q'J . That is, in the limit Q"w»eo , Eq. 25 gives

R_, "4TU LA

U~V V2

2 2 2
and if (U >V + Va it follows that for both roots @-r 5% as

(26)

0 w00 . Thus, the loci have the character of Fig. 11.12.8. The
"unstable" root crosses the k_axis into the upper half-plane. Because the
"stable" root never crosses the kr axis, these two loci cannot coalesce, as
required for an absolute instability.

Note that the same conclusion follows from reverting to a z—t model
for the dynamics. The long-wave model represented by Eq. 21 is equivalent
to a "string'" having the equation of motion

Be+UR)T = (VAL V4G T @)

XS o~ 3t

The characteristics for this expressiqn are
da _ +\' SR VA 28
a—t'—-u— V+Va (28)

and it follows that if [J > Vz-}V: , the instability must be

convective.
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Prob. 11.17.6 (a) With the understanding that the potential represents an
electric field that is in common to both beams, the linearized longitudinal

force equations for the respective one-dimensional overlapping beams are

VW |, V% _ 238 &
St ‘3T T m 3%

W, _ e 28 (2)
33%-‘ +U‘3}§' T m 3%

To write particle conservation, first observe that the longitudinal current

density for the first beam is

T, = -en, U, ¢-e(n U +hoty,) (3)
and hence particle conservation for that beam is represented by

St 'St s T

o2

Similarly, the conservation of particles on the second beam is represented
b
7 Ohe 17 M2 4y, ez =0 (5)

ot o o

Finally, perturbations of charge density in each of the beams contribute

to the electric field, and the one-dimensional form of Gauss' Law is
%
- & (h (6)
= rh
322 e, (Mrhe)

The five dependent variables 1%l,1%2.12§’ R, , and N, are described by

Eqs. 1, 2, 4 and5. 1In terms of complex amplitudes, these expressions are

represented by the five algebraic statements summarized by

- 61% A N
w-RU, o = o o 4l [o
o GJ"%tz. %g? o o 22 (o)
- %no| 0] O w ’%UI 0 ‘§. P o (7)
[ e e A
0 0 C €, < [|™] |9
- -JL - L.
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Prob. 11.17.6 (cont.)

The determinant of the coefficients reduces to the desired dispersion

equation.1 - Qj;‘ N &J:; (8)
(w-RUF (w - RTLY

where the respective beam plasma frequencies are defined as

/ N e’ /h,, e "
D, = [t * Wa, = [J—02% 9
P! €, M > P® €, m

(b) In the limit where the second "beam" is actually a plasma
(formally equivalent to making U2=O), the dispersion equation, Eq. 8,

becomes the polynomial,

F-20R+at(l -2

;‘i‘?}‘) =0 (10)

2
where T2 (WP‘ /wpz))o_«D_E w/wpzand ;Q;E%U;/&)Pz . The

mapping of complex R as a function of ¢J =CJ,.—3‘G— ,» @ varying

from @ -0 with ¢J, held fixed, shown in Fig. P11.17.6a, is that
characteristic of a convective instability (Fig. 11.12.8, for example).

(¢) In the limit of counter-streaming beams U, = U, = U, Eq. 8

1 2

becomes

RY - (2“’1+V+I)Ea+ 2w (1-0OR + wz[w2;<r+|)1=o (1)

where the normalization is as before. This time, the mapping is as

illustrated by Fig. P11.17.6b, and it is clear that there is an absolute

instability. (The loci are as typified by Fig. 11.13.3.)
W, R~ =
I w = LJ/QJ *"“ E'-"'F'g'//("‘)l-'o|/v)
‘ P2 3t
2k
s s | '+ g
: ' {1 1ol o5 o “r
\ \ s 0 ! A :/k TR T T,
-1F 4 & 1
-z—
Fig. P11.17.6a
=31
1234
1 2 3 A ’

R = W
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See, Briggs, R.J., Electron-Stream Interaction With Plasmas, M.I.T. Press (1964)

pp 32-34 and 42-44.
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	Text2: Courtesy of James Brennan. Used with permission.


