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11.1 1 

Prob. 11.2.1 With the understanding that the time derivative on the left


is the rate of change of t' for a given particle (for an observer moving


with the particle velocity ' ) the equation of motion is


-= ( +(1) 

Substitution of = and dot multiplication of this expression with 

v gives (2) I 

Kcl
Because y is perpendicular to , 

3t •--IV 1~~ (3) 

By definition, the rate of change of ) with respect to time is 

r I -> ý I -) + . (4) 

where here it is understood that / means the partial is taken


holding the Eulerian coordinates (x,y,z) fixed. Thus, this partial deriva­


tive is zero. It follows that because the del operator used in expressing


Eq. 3 is also written in Eulerian coordinates, that the right-hand side of


Eq. 4 can be taken as the rate of change of a spatially varying I with I

respect to time as observed by a particle. So, now with the understanding


that the partial is taken holding the identity of a particle fixed (for


example, using the initial coordinates of the particle as the independent


spatial variables) Eq. 3 becomes the desired energy conservation statement.


a) + 0 (5) 1 
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11.2


Prob. 11.3.1 (a) Using (x,y,z) to denote the


cartesian coordinates of a given electron between


the electrodes shown to the right, the particle t-


equations of motion (Eq. 11.2.2) are simply


h! 	 e 

m =Co 
 (3)


There is no initial velocity in the z direction, so it follows from Eq. 3


that the motion in the z direction can be taken as zero.


(b) To obtain the required expression for x(t), take the time derivative


of Eq. (1) and replace the second derivative of y using Eq. (2). Thus,


When the electron is at x = 0, 

= 0 A 	 0) ( (5) 

I 	 So that Eq. 4 becomes


++ -	 (6) 

Iote that for 	operation with electrons, V < 0 

I 	 (c) This expression is most easily solved by adding to the particular 

solution, .V/ 42?2,the combination of S;ir WAx and Cos w x(the 

homogeneous solutions) required to satisfy the initial conditions. 

However, to proceed in a manner analogous to that required in the text, 

Eq. 6 is multiplied by c4K/jt and the resulting expression written in 

the form IX[+Z ?-	 (7) 

I 	 so that it is evident that the quantity in brackets is conserved. To


satisfy the condition of Eq. 5, the constant of integration is zero


I 
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11.3


Prob. 11.3.1 (cont.)


(the initial total energy is zero) so it follows from Eq. 7 that


,./
?_ % (8) 

where e V<O. 1 
The potential well picture given by this 

expression is shown at the right. Rearrange- I

ment of Eq. 8 puts it in a form that can be
 I

integrated. First, it is written as


Z+ eV9X ~c t (9) 
I 

Then, integration gives
 I

.r _eV 

Cos ' • •t3 x- oS Wt -,• |M-• = (10) 

Of course, this is just the combination of particular and homogeneous


solutions to Eq. 6 required to satisfy the initial condition.


The associated motion in the y direction follows by using Eq. 10 to I

evaluate the right-hand side of Eq. 2. Then, integration gives the


velocity e-C• V () (11) 1 

dt ( Co. cj' 

where the integration constant is evaluated to satisfy Eq. 5. A second


integration, this time with the constant of integration evaluated to make


y=O when t=0, gives (note that . =-- C/Am ). 

Thus, with t as a parameter, Eqs. 10 and 12 give the trajectory of a


particle starting out from the origin when t=0. Electrons coming from


the cathode at other times or other locations along the y axis have


similar trajectories.


1 



11.4


Prob. 11.3.1 (cont.)


(d) The construction shown in the figure is useful in picturing


particle motions that are the planar analogous of those found in cylind­


rical geometry in the text.


I (e) The trajectory just grazes the anode if the peak amplitude given


I by Eq. 10 is just equal to the spacing, a. The potential resulting from


this equality is then the critical one.


1 (13)
I V~ -mL 2 (2 
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11.5 £


Prob. 11.4.1 The point in this problem is to appreciate the quasi-one­


dimensional model represented by the paraxial ray equation. First, observe 


that it is not simply a one-dimensional version of the general equations of


motion. The exact equations are satisfied identically in a region where


Er, 1E and .r are zero by the solution r = constant, 
= constant 

and a uniform motion in the z direction, z=Ut. That the magnetic field, 

Bz, has a z variation (and hence that there are radial components of B) I 

is implied by the use of Busch's Theorem (Eq. 11.4.2). The angular vel­

ocity implicit in writing the radial force equation reflects the arrival 5

of the electron at the point in question from a region where there is no


magnetic flux density. It is the centrifugal force caused by the angular


velocity created in the transition from the field free region to the one 
 j

where B is uniform that appears in Eq. 11.4.9, for example.


Prob. 11.4.2 The theorem is a consequence of the property of solutions to


Eq. 11.4.9. (1)


In this expression, "y '•(t),reflecting the possibility that the Bz


varies in an arbitrary way in the z-direction. Integration of Eq. 1 gives I


d t i, (2)


Because the quantity on the right is positive definite, it follows that the


derivative at some downstream location is less than that at the entrance. 
 5

(3) 

a Il • 

Prob. 11.4.3 For the magnetic lens, Eq. 11.4.8 reduces to


-e (1)


Integration through the length of the lens gives


ItI


I,+d8[ · 5 Jda 



11.6 

Prob. 11.4.3 (cont.) 

and this expression becomes 

Ar r - - -ee r (3) 

On the right it has been assumed that the variation through the "weak" lens 

SI 
of the radial position is negligible. 

Fig. 11.4.2 is 

• _ 6-•(4) 

The definition of f that follows from 

I so that for electrons entering the lens as parallel rays, it follows from 

Eq. 3 that 

d-a 

I 
I 

which can be solved for f to obtain the expression given. As a check, 

observe for the example given in the text where B = B over the lengthz o 

of the lens, 

+ • R (6) 

I 
and it follows from Eq. 5 that 

1__M_ (7) 

This same expression is found from Eq. 11.4.12 in the limit j• (<( 1 

1 Prob. 11.4.4 For the given potential distribution 

•(1) 

3A 
the coefficients in Eq. 11.4.8 are 

C (2) 

I 
and the differential equation reduces to one having constant coefficients. 

0Ir---A +-1_ =o (3) 

At z = z+, just to the downstream side of the plane z=0, boundary


conditions are


I
I ,(4)




11.7 1

Prob. 11.4.4 (cont.) 

Solutions to Eq. 3 are of the form 

Z>e + • - ((5) 

and evaluation of the coefficients by using the conditions of Eq. 4 

results in the desired electron trajectory. 

Prob. 11.5.1 

are 

A A 

In Cartesian coordinates, the transverse force equations 

e ea (1) R 

0 eULe+ 

With the same substitution as used in the zero order equations, these 

relations become 

e.­ 0 
_e"~V 

A 
- dX 

aim" 

where the potential distributions on the right are predetermined from 

the zero order fields. For example, solution of Eqs. 3 gives 

(2) 

(3) 

I 

I
1 

I1I 

If the Doppler shifted frequency is much less than the electron cyclotron 

frequency, lc = ./ I3 

Typically, A8/l l . and ' so that Eqs. 4 and 11.5.5 show 



11.8 

Prob. 11.5.1 (cont.)


I that A


-(- (J-( 	 ) - i) (6) 

so, if I J-kUj<L•3, then the transverse motions are negligible compared to the 

longitudinal ones. Most likely W'-QU "O•p so the requirement is essentially 

3 that the plasma frequency be low compared to the electron cyclotron frequency. 

Prob. 11.5.2 (a) Equations 11.5.5 and 11.5.6 remain valid in cylindrical


geometry. 	However, Eq. 11.5.7 is replaced by the circular version of Eq. 11.5.4


combined with Eq. 11.5.6


!15 	 0 (1) 

Thus, it has the form of Bessel's equation, Eq. 2.16.19, with k-.-'. The deriva­

1 tion of the transfer relations in Table 2.16.2 remains valid because the displace­

ment vector is found from the potential by taking the radial derivative and that 

" involves 1 and not k. (If the derivation involved a derivative with respect to 

z, there would be two ways in which k entered in the original derivation, and 

Icould not be unambiguously identified with k everywhere.) 

(b) Using 	(c), (d) and (e) to designate the radii r=a and r=+b and -b respect­


ively, 	the solid circular beam is described by 

DI = Ef,(, ) e (2) 

I while the free space annulus has


S(3) 

Thusin ;]: 	 (b,) 61 [ i Eq 2 1 

Thus, in view of the conditions that : D= and ,Eqs. 2 and 

I 3b show that 

S__h,_(_6,_0___ (4) 

0Cb,•,6 ) (C_) 	 • 



11.9


Prob. 11.5.2 (cont.)


This expression is then substituted into Eq. 3a to show that


6 )(5) 

which is the desired driven response.


(c) The dispersion equation follows from Eq. 5, and takes the same form as


Eq. 11.5.12


For the temporal modes, what is on the right (a function of geometry and the


wavenumber) is real. From the properties of the f determined in Sec. 2.17,


( ,Qb)) O for 406 and ;,(}b,<)(O, so it is clear that for Y real, 

Eq. 6 cannot be satisfied. However, for X=-d•where c1 is defined as real,


Eq. 6 becomes


-CL ___ _ (7) 

This expression can be solved graphically to find an infinite number of solutions,


dm . Given these values, the eigenfrequencies follow from the definition of


given with Eq. 11.5.7.


S= 'PJ -+ (8) 



11.10


Prob. 11.6.1 The system of m first order differential equations takes


the form


!•__,S-A + i,-3) (1) 

where i =1 .... m generates the m equations. 

I (a) Following the method of "undetermined multipliers, multiply the ith


I equation by "• and add all m equations


1 + ýLx)= 

a 

= 0i (2) 

I 

I I . 

These expressions, j =di1 .... m can be written as equations in the 

I 



11.11 1


Prob. 11.6.1 (cont.)


M 

The first characteristic equations are given by the condition that the


determinant of the coefficients of the As' vanish. i


&-=­

(b) Now, to form the coefficient matrix, write Eq. 1 as the first m of


the 2 m expressions


N 
F,, G,, F,. , - Fm , 

XV 
0 

U 
K_, F?. G F G r-t o 

I 
X~,0

6F - . V,.G,, G,, .* * G.. a I 
drX,


* a I0 

ax, 

The second m of these expressions are


I

3t


To show that determinant of these coefficients is the same as Eq. 6,


operate on Eq. 7 in ways motivated by the special case of obtaining


Eq. 11.6.19 from Eq. 11.6.17. Multiply the(m+1) 'st equation through


'
2mth equation (the last m equations) by dt-1. Then, these last m


I

I


http:11.6.17


11.12


Prob. 11.6.1 (cont.)


rows (m+l....2m) are first respectively multiplied by F1 1, F1 2 ... lm


and subtracted from the first equation. The process is then repeated


using of F2 1, F22 "... F2m and the result subtracted from the second


equation, and so on to the mth equation. Thus, Eq. 7 becomes


o -F GI r aS * 

o Gmt-, Ao . 
C7 

& 0 0o 0 

0 a * I 

Now, this expression is expanded by "minors" about the i is that appear 

as the only entries in the odd columns to obtain 

G,,-F, a G," _,P (10) 

J-4 E4 *t·'L mm 

Multiplied by (-1) this is the same as Eq. 6.




11.13 1 

Prob. 11.7.1 Eqs. 9.13.11 and 9.13.12, with V=0 and b=O are i 

I 
at _ +_ (1) 

a (01) )=O (2) 
a t CI 

In a uniform channel, the compressible equations of motion are Eqs. 11.6.3


and 11.6.4


I 

These last expressions are identical to the first two if the identification


1,1,--aw 6-X and -b- . =is male , 0 a 4 Because tx 

(Eq. 11.6.2) the analogy is not complete unless O /54 is independent 

of e . This .requires that (from Eq. 11.6.2)
c19 atZ' (3) 

I 

I 
`I 
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Prob. 11.7.2 Eqs. 9.13.4 and 9.13.9 with A f defined by =--((-E~and ,) 

and 6 = T•2 are 

s-s + -p . . r~~d 
Si *La1 PC 

40 
1.


These form the first two of the following 4 equations.


0 ____ _ -% 

11(3 rj3 (1+ 

At


The last two state that d 
I n 

and 
I-I are computed along the 

characteristic lines. 

The Ist characteristic equations f from requiring that the 

determinant of the coefficients vanish. 

To reduce this determinant divide the third and fourth columns by dt 

and At/? respectively, and subtract from the first and second respectively. 

Then expand by minors to obtain the new determinant 

Sdt 
dt (E- E.V -Y 

1 3 OIL 

= O 
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Prob. 11.7.2 (cont.)


Thus, the Ist characteristic equations are


or


--t _ _ on C (6) 

The IInd characteristics are found from the determinant obtained by substituting 

the column matrix on the right for the column on the left. I 

o a. 

0I

9 dt o 

(7)
do 


l1

itdgo dt de 

Solution, expanding in minors about a19 and c , gives 

d)tj (8) 

With the understanding the + signs mean that the relations pertain to C,


Eq. 6 reduces this expression to the IInd characteristic equations.


'Z D- . on C (9) 

I 
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Prob. 11.7.3 (a) The equations of motion are 9.13.11 and 9.13.12 with 

V= 0 and 6=o . 

C) + - + - o 

These are the first two of the following relations


,It 0 

'-' I~­

o di L 
The last two define 4,6 and C as the differentials computed in the 

characteristic directions. 

The determinant of the coefficients gives the Ist characteristics. 

Using the same reduction as in going from Eq. 11.6.18 to 11.6.19 gives 

F A Sat

t I d 
cdt jt 

A I , - -Lý t I T-CT) n( (T) = -a 
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Prob. 	11.7.3 (cont.)
 I 
The second characteristics are this same determinant with the column matrix


on the right substituted for the first column on the left.
 I

I
o	 o0 3­ (6) 

I 13 

a 13 E o0	 + AdT~ -) I 
o At 

In view of Eq. 5, this expression becomes
 II 
13L + A = o	 U 

Integration gives


I*1 

- t fX (T)= C* I 
(b) The initial and boundary conditions are as shown to the right. C+


characteristics 	are straight lines.


On C from A-13 the invariant is


A 
-At B, itfl-l (9) 

At B, it follows that 

fro= C- R ( 
(10) 

and hence from C-, I)s( ) 

C+ j- T2,( 5 S~,)X(P) + (F) = Z. R (TS)'5~ 

(11)


Also, from -o C


c= (12)
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Prob. 11.7.3 	(cont.)


Eq. 8 shows 	that at a point where C+ and C- characteristics cross 

:-: C++C. (13) 

I R) C+-C. 	
(14)


So, at any point on 1-'C , these equations are evaluated using Eqs. 11 

and 12 to give 

I -	 (15) 

(16)
SR(T) 	 = R (T,) 


'3 Further, the slope of the line is the constant, from Eq. 5, 

-aT 
(17)


Thus, the response on all C+ characteristics originating on the t axis is


3 determined. For those originating on the z axis, the solution is i'= 0 

and = 'Tr 

ft 	 (c) Initial conditions set the invariants C t 

3-+ct 	 2-y z(18)


The numerical values are shown on the respective characteristics in


IFig.
11.7.3a to 	the left of the z axis.

3 	 (d) At the intersections of the characteristics, 1Y and g follow 

from Eqs. 13 	and 14


I 
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Prob. 11.7.3 (cont.)


S-(C4 +C) 	 (19) 

(20)


The numerical values are displayed above the intersections in the


figure as ( t1, ). Note that the characteristic lines in this figure


are only schematic. 
 3

(e) The slopes of the characteristics at each intersection now follow from


Eq. 5.


(d _ 	 (21) 

The numerical values are displayed under the characteristic intersections I

as [A•)1 ( ) . Based on these slopes, the characteristics


are drawn in Fig. P11.7.3b.


(f) 	Note (t., 1) are constant along characteristics C* leaving the "cone".


All other points outside the "cone" have characteristics originating


where ~= I and T= 
 I (constant state) and hence at these points 	 I


the solution is IL = I 


function of z when f = 
O , and 4 in Fig. P11.7.3c. As can be seen 	 I

from either these plots 


into shocks.


and $ =I . The velocity is shown as a 

or the characteristics, the wavefronts steepen


I

I

I

I

I


http:P11.7.3b
http:P11.7.3c
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I


I


I

I

I


:I 
I
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t=o


A i 
i Lm m g · 

i D 
Ig 1 a 

1 II 
1 1 I 

I I
5 I 

2.


I~_- -­_L~L~
v 

|-- B iI I- I 

4 

Fig. P11.7.3c




11.23


Prob. 11.7.4 (a) Faraday's and Ampere's laws for fields of the given 

forms reduce to 

7" 

0 

E 0 = ~-cE31 c)YEt 

E + 3 3 tEZ 

0
0 

o 

The fields are transverse and hence solenoida 1, as required by the remaining 

two equations with = 0 . 

(b) The characteristic equations follow from 

IVO 
'o7 

E 41E Z 0 

a t 

AN 

The I'st characteristic equations follow by setting the determinant


of the coefficients equal to zero. Expanding by minors about the two terms


in the first row gives


...( tt j( Io(-3~'1) o(_ 

VA,( + E)2) 



11.24


I Prob. 11.7.4 (cont.) 

IInd characteristic equations follow from the determinant formed
SThe 

by substituting the column matrix on the right in Eq. 3 for the first column


I on the left.


U 
(5)
o 0o 1

I =O 

o o o o 

I AN o cit C( 

Expansion about the two terms in the first column gives


-dA dAt-cdi (dcr)-r)=O4 Ae+ dc-t (6) 

With ct/d+ given by Eq. 4, this becomes 

UdE+ k + d o (7)A'o 

This expression is integrated to obtain 

w N 6.(E)= C.± (8) 

where


Sa(E3 •{E4¾. 1 3 

I (c) At point A on the t=O axis t] 

invariant follows from Eq. 8


as


I- UR ( 0) 

I 
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Prob. 11.7.4 (cont.)


Evaluation of the same equation at B when E =o(t) then gives


kZ- 0A u)=- 6ý(o)4= 9 =- 9(0) + (R . (10) 

Thus, it is clear that if H were also given (l4•t))at z=0, the problem would 

be overspecified. 

On the C+ characteristic, Eqs. 8 and 11 and the fact that E=E at B 

serve to evaluate 

c4 = 1 t( .)= - (o)0 + 2-1 (E,) )(11) 

Because is the same for all C characteristics coming from the z axis,


it follows from Eqs. 8, 9 and 12 that


H + 6C(E)P = - (0) +- . J (E~ ) (12) 

- -W - ( ) (13) 

So, on the C+ characteristics originating on the t axis,


E .(E)- 6?(0) (14) 

X (E) (15) 

Because the slope of this line is given by Eq. 4 

--t (16) 

evaluated using E inferred from Eq. 16, it follows that the slope is the 

same at each point on the line. 

For 6 = E = , the C+ characteristics have the slopes 

and hence values shown in the table. These lines are drawn in the figure.


Remember that E is constant along these lines. Thus, it is possible to


I 

I 
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Prob. 11.7.4 (cont.) 

plot either the z or t dependence of E, as shown. t Eo 

Note that the wave front tends to smooth out. 0 0 I-I 
0.Z 8S 0.0o493 o.Bsl 
o,8s7 0.188 

1. 14 0.688 

0.813 

1.71 0.950o o.s9 

2.o 1.0 o.SO 

Prob. 11.7.5 (a) Conservation of total flux requires that


Thus, for long wave deformations, radial stress equilibrium at the interface


requires that "P o


P =(-TVB icQ -¶ (2) 

By replacing IrT - A(O) , the function on the right in Eq. (2) 

takes the form of Eq. 9.13.5. Thus, the desired equations of motion are 

Eq. 9.13.9 

) A + A A L = o+ (3) 

and Eq. 9.13.4


_ Ž2 ÷,1 c A (4) 

tI

where 1 w 

C. A)I-t:7-

I 



I 
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Prob. 11.7.5 (cont.)


Then, the characteristic equations are formed from


0 FAt 

C 
0 ­

SA 

0 0 

dt JI 9d 

The determinant of the coefficients gives the I'st characteristics


dt 

while the second follows from


0 

o


A


o dt 

which is


dtRR LI(L +d~i ý0)= 0 
with the use of Eq. 6, this becomes


dA 

The integral of this expression is 

-ot (A) (10) 

where 

atR 2Ao(A 
-q 
2 I 

FN' 
A

- A 
(11)tot/
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Prob. 11.7.5 (cont.) 

Now, given initial conditions 

= () A =A.9 (12) 

where the maximum A (z) is Amax , invariants follow from Eq. 10 as 

+= (Aa) - 6(Ac) (13) 

so solution at D is


2 2

Thus, the solution R at D is the mean of that at B and C. The largest


possible value for A at D is therefore obtained if either B or C is at the


maximum in A. Because this implies that the other characteristic comes


from a lesser value of A, it follows 
that A at D is smaller than Aax


I


I

I

I

I

I

I

I

I

I
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-

Prob. 11.8.1 For "plane-wave" motions of arbitrary orientation, v 

and H = A~-(At) , the general laws are: 

Mass Conservation 

= (Xt) 

+4(1) 

Momentum Conservation (three components) 

)(F +'•14 ,)- - ( °lo (3) 

Energy Conservation (which reduces to the insentropic equation of state) 

( =t+O 

The laws of Faraday, Ampere and Ohm (for perfect conductor), Eq. 6.2.3 

(5) 

0 (6) 

(8) 

* 

I 

These eight equations represent the evolution of the dependent variables 

( ', r r,I, J,-a+ HA, j-!,; H4) 
From Eq. 6, (as well as the requirement that H is solenoidal) it follows 

that H is independent of both t and x. Hence, H can be eliminated fromx x 

Eq. 2 and considered a constant in Eqs. 3, 4, 7 and 8. Equations 1-5, 7 

and 8 are now written as the first 7 of the following 14 equations. 

I

I

I

I
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Prob. 11.8.1 (cont.)


Following steps illustrated by Eq. 11.15.19, the determinant of the


coefficients is reduced to


0 p 0 0 0 0 

0 

o 
0 0 0 ) -At 4 x 0 

o (10) 

o 0, 0 0 
- (6.P cxt a (-) a o 

0 t 
-W1 0 -QL'.-•) o 

o o -0 o o -( ) 1 
The quantity - can be factored out of the fifth row. That row is then 

subtracted from the second so that there are all zeros in the second column 

except for the A52 term. Expansion by minors about this term then gives 

X 0 o o 

o /"l 

O3 (11)(x ) 
0 0 - o -uM 

=0 
0. o pN I(_) 0 

o - 1k, q-J o RT 

0 - o H4x o -jj-9)H 

Multiplication of the second row by -) p0/ and subtraction from the 
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Prob. 11.8.1 (cont.)


first generates all zeros in the first row except for the A12 term. Expansion


about that term then gives


I

" o o ___ 

Io 0 

-4"/K) (12) 

=0 

0o k Io aa -( 0 ~


H a 0 K I

Multiplication of the second column by /y -_dx ) and addition to the 

fourth column generates all zeros in the second row except for the A22 term, 

while multiplication of the third column by JoH_(-_)and addition to 

the last column gives all zeros in the third row except for the A33 term. 

Thus, expansion by minors about the A22 and A33 terms gives 
 I


-#1Y( 7>4.)ý{&(_AX 6 2 .c 

cJ;d~l H,-~ AH
 (13) I


d%-(f 

I


0I


I


I

I

I
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Prob. 11.8.1 (cont.)


This third order determinant is then expanded by minors to give


*,,N-(&- +? (14)


This expression has been factored to make evident the 7 characteristic


lines. First, there is the particle line, evident from the outset (Eq. 5)


as the line along which the isentropic invariant propagates.


c\X (15) 

The second represents the two Alfven waves


3 +KQ-* ~ S4I(16) 

and the last represents four magnetoacoustic waves 

4AL64(17) + 

where


I

I 

I
I

Olb 'ýe = Fn Ti 
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Prob. 11.9.1 Linearized, Eq. 11.9.17 becomes 


de -- (1) 

Thus,


(2)


and integration gives 

e + , = Co~o• • (3) 

where the constant of integration is evaluated at the upstream grid where


oo

n=0 and e=e..


Prob. 11.9.2 Linearized, Eqs. 11.9.9 and 11.9.10 reduce to


S--e (1)


(2) 

Elimination of e between these gives 

A'¾ (3)-- + (3O 

The solution to this equation giving n=O when t=t is


U U 
and it follows from Eq. 1 that


To establish A(t ) it is necessary to use Eq. 11.9.15, which requires that


-A+A(fI ) ,A:a / (6) 

For the specific excitation 0 0
A 
V \?'e. (z)


it is reasonable to search for a solution to Eq. 6 in which the phase and


amplitude of the response at z=0 are unknown, but the frequency is the same


as that of the driving voltage.


I

I


3 

http:11.9.15


U
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Prob. 11.9.2 (cont.)


A= Oe A% 

Observe that · if I_. AIt-
A(t -U)e C - z. 

and ,2t 

V~\ (10)2 -cei~i~ e 
~a 

Thus,


U + i 
(11) 

.S(-4I-'I) 

Substitution of Eqs. 7, 8 and 11 into Eq. 6 then gives an expression that can 

be solved for A. 

Z (12)
U4 ( - )U 3­
(I +'-')' ~(I- 02) 

Thus, the solution taking the form of Eq. 4 is


wheregivenAisby Eq. 12. (13)


where A is given by Eq. 12.
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Prob. 11.10.1 With P = O , Eqs. 11.10.7 and 11.10.8 are 

S+ d e (AAi)=+ 

+ 

- Mi+ ; C
4.6 

In this limit, Eq. 1 can be integrated.


Initial conditions are


eoz)0 

. = 9,(', o) () 

These serve to evaluate C+ in Eq. 3


At a point C
where the characteristics cross Eq. 3 can be solved simultaneously(6)


At a point C where the characteristics cross Eq. 3 can be solved simultaneously 

to give 

4 [1M4-I)c- (MA- c­

C-i i • 

PM4I 

S[C- - C4 

Integration of Eqs. 2 to give the characteristic lines shown gives 

= (/ ) t ÷ :A

8




,,,,

I 1I1. J 

Prob. 11.10.1 (cont.)


3 For these lines, the invariants of Eqs. 6 are 

With A and B evaluated using Eq. 8, these


invarients are written in terms of the (z,t) at


point C.


C'+ + (,AA (A(10) 

and, finally, the solutions at C, Eq. 7, are written in terms of the (z,t) at C.


I

(11)


|-( AM-I*)- - (M•AI),(Me, •(M-o)to[ I)[,•-

e = 9, 4 - (M-I)t]4 (Mivi li - (M-') 61 (12) 

I 

I 

I

I




___
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Prob. 11.10.2 (a) With Y= O , Eqs. 11.10.1 and 11.10.2 combine to give 

+UC£ 
IL . 1g-

Normalization of this expression is such that


/-rI = T/ OIL l= = -/'-r 

gives


· b-Pk (I­
(i rr 

where


(b) With the introduction of v as a variable, Eq. 3 becomes


a, __ 3~­(k+ ~tl


R=Lr
+ 

where 3tP~ 

r 

The characteristics could be found by one of the approaches outlined,


but here they are obvious. On the I'st characteristics


Am.. 
'= 4 

the II'nd characteristic equations both apply and are
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Prob. 11.10.2 (cont.)


A- (7) 

0 z- j- (8)
at 

I Multiply the left-hand side of Eq. 7 by the right-hand side of 

Eq. 8 and similarly, the right-hand side of Eq. 7 by the left-hand side of 

Eq. 8. 

I (c) It follows from Eq. 9 that 

I z.?L (10)


or specifically


z 1T i ++T -o 

Phase-plane plots are shown in the first quandrant. Reflecting the 

unstable nature of the dynamics, the trajectories are open for P> , showing 

a deflection that has --- as 4 (the sheet approaches one or0oo i .-- the 

other of the electrodes). The oscillatory nature of the response with - ­

is apparent from the closed trajectories. 

I 
I 
I 
I 
I 
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Prob. 11.10.3 The characteristic equations follow from Eqs. 11.10.19­


11.10.22 written as


I 
1 M, A, M,-I 0 oo o 

U) 
0 I -1 0 0 o o 0	 0

I	 ji, 

I 
ft dt 0 0 o o o a 

o o dt dz o o o o 
ell 

de, 
(1) 

I 
o a o ao I M ZM•M-I P.: 
0 o o a o I -I o 0 

o o o o d d1 o o0 VI 
e,it 

eza 
o 0 	 o o o 0o t lC de, 

I Also included are the 4 equations representing the differentials 

I 0,. * * Aez. These expressions have been written in such an order 

that the lack of coupling between streams is exploited. Thus, the determi-

I 	 nant of the coefficients can be reduced by independently manipulating the


first 4 rows and first 4 columns or the second 4 rows and second four


I 	 columns. Thus, the determinant is reduced by dividing the third rows 

I by dt and subtracting from the first and adding the third column to the


second.


0 00 0 
A 0 -aI o o -I o 

diAt o o At Ak o A (2)

I 	 o di di dn o A- dt At 

I 
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Prob. 11.10.3 (cont.)


This expression reduces to


,.zfI .4 .l.. ,4 . _ 
=Cat) I( ,i -"M ) -I I Ik "E- ',)Y -)-\ o 

and it follows that the Ist characteristic equations are Eqs. 11.10.24


and 11.10.26.


The IInd characteristics follow from


PI, M-Z 0 0 0 

0 I 
O o 0 0 

A19, dt 
0 

d e, 0 

0 I rA/ M. 

0 o I -I 
0a­
0 

0 
0 

da 
dt dc o d• 

0 0 0 o o dit 

Expanded by minors about the left column, this determinant becomes


+ 012 M,=t (M,-0jID, 

Thus, so long as • 0\O (not on the second characteristic equatioin) 

Eq. 5 reduces to 

In view of Eq. 2, this becomes
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Prob. 11.10.3 (cont.)


Now, using Eq. Sa,


AA.(Mt ) +(M-1)(AM 1(Mt t Ae,=?T I(M,+ \·1 At 

and finally, Eq. 11.10.23 is obtained


d-01 4 (/v\A, de, = PSdt 
These equations apply on C1 respectively. To recover the IInd


characteristics, which apply where •t)= O and hence Eq. 4 degenerates,


substitute the column on the right in Eq. 1 for the fifth column on the


left. The situation is then analogous to the one just considered. 

The characteristic equations are written with Ad,-- AAon CI


originating at A, etc. The subscripts A, B, C and D designate the change


in the variable along the line originating at the subscript point. The


superscripts designate the positive or negative characteristic lines.


Thus, Eqs. 11.10.23 and 11.10.25 become the first, second, fifth and


sixth of the following eight equations.


I 	 0 0O 0 0 

I 0 M&I 0 IA 
-P~gIAIzABbtMý-I o 

0 
0 o eIB 

-I o 0 
-( 	eIAsI,3 

0 O	 M/I 0 

0 0 o M+JI - ( e -4 

0 0 0 0 
-1,9z- C- 30 

etc_~q,
0 o 	 0 0 1 -I 
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Prob. 11.10.3 (cont.) 

The third, fourth and last two equations require that 

+- + 

46E== C e A e 

Clearly, the first four equations are coupled to the second four only 

through the inhomogeneous terms. Thus, solution for 4 A and a A 

involves the inversion of the first 4 expressions. 

The determinant of the respective 4x4 coefficients are 

SI - 2 1 

and hence 

+ 

IA Z 

A I TZ 0 /I-*I 0 

(10) 

(11)I 

I 

So 
PL(IIAj A)&t 

fts 3)t-( 

-( IA- ,~s) 

e-( A-4,3) 

0 

AM 0 

-I 

O 

A11-I 

0 

o 

I 

-I 

0 

0 

o 

-I 

( 

r 

1 

I 

I 
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Prob. 11.10.3 (cont.)


which is Eq. 11.10.27 Similarly,


o P ýlAbt o0 

+ I 
IA


-I -( *IA"2LY) 0

-L9 0,M 

-o -(~IA- () O


-- tI+(,d_A7,1 3 ) o (13) 

F4 ,, 4t 
- (M,+I) 

IAt+()A" 

- 1 
-I 

-( e IA- e-IM) 

-(CIA 

which is the same as Eq. 11.10.28.


+ + 
The expressions for VZ _ and et, are found in the same way 

from the second set of 4 equations rather than the first. The calculation


is the same except that A -- C , --• D) 1- 2 and 
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Prob. 11.11.1 In the long-wave limit, the magnetic field intensity above


and below the sheet is given by the statement of flux conservation


Thus, the
x-directed force per unit area on the sheet is


Thus, the x-directed force per unit area on the sheet is


T , +.[(-/ol,[ Ad) Ai) 

This expression is linearized to obtain


To ,lD-.)44i 2-(-A 

-L~~~~~i·.~-~ 3 -74;2~YH3-;B~ 
o.I


CL 
Thus, the equation of motion for the sheet is


C) 'Z 
·pi~+UA_ T=/ Z~f 

+ Za4°A_OL 9 A 

Normalization such that


ý = t -T ) ? = ýZ VE 236'/~( 
gives


(ztC V 3t _Lr X 2 Z/IIUH>2AJ
(-rv T t4 

2. 2.~­

which becomes the desired result, Eq. 11.11.3


-~+? 
t ~17) +where


p,_zU/ 
4loC CA 2 ,) = AAo/, 



I 

11 1.03
.LI
'4 

Prob. 11.11.2 The transverse force equation for the "wire" is written


by considering the incremental length ~t shown in the figure


and in the imit 6Ia -.Divided by L 

I Divided by dt and in the limit 6 -- o , tabt 

this expression becomes


nI2 =L 4T (2) 

The force per unit length is


I + X, (3) 

Evaluated at the location of the wire, Y =- , this expression is inserted 

into Eq. 2 to give


This takes the form of Eq. 11.11.3 with 


VV and 

I _(5) 

I 
I 
I 
I 
I 
I


/VM=O and ý=o with f=••' , 
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A A 
Prob. 11.11.3 The solution is given by evaluating A and B in 

Eq. 11.11.9. With the deflection made zero at a = , the first of the 

following two equations is obtained ( - = Y = = where X ./ 1"V ) 

-i 2


C

(1)


d *clj 

The second assures that (1) 6e". Solution for A and 
A 

b gives 

- A-AAa 

A


-;,a-Ca 

and Eq. 11.11.9 becomes


e- +e e cW. t 6e ýA C. 
e-a,k .R,-dlh, e 

With the definitions


Me -l -A 

Eq. 3 is written as Eq. 11.11.13


- 9'e 5{.j U eI ''' (5) 

For CO >p (z I) (sub-magnetic, < 0 and M ), 

is real. The deflection is then as sketched




I 
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Prob. 11.11.3 	(cont.)


I ON 	 - -- - -1-zt/ 

I	 a 

I

Note that for M < 1. , < and the phases propagate in the 

-z direction. The picture is for the wavelength of the envelope greater 

than that of the propagating wave ( zrr/I)2T/ I < 171 
I 	 The relationship of wavelengths depends on C. , as shown in the figure, 

and is as sketched in the frequency range 

I 	 C< e (J< . For frequencies 

, P- , 	the deflections are more


I 	 complex to picture because the wavelength of


the envelope is shorter than that of the


traveling wave. With the frequency below cut-


U -I 	 - j*~ .

I 	 off, - becomes imaginary. Let 0 =a and Eq. 5


becomes


I Q. 	 (6) 

I 	 Now, the picture is as shown below 

i 
I 
I 

Again, the phases propogate upstream. The decay of the envelope is likely


to be so rapid that the traveling wave would be difficult to discern.
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Prob. 11.11.4 Solutions have the general form of Eq. 11.11.9 where


A­

° g.= Je( Ae + Z 
.e . 

) e. 

Thus 

-dl z 
e e )7-dL 

U° 
and the boundary conditions that 0 ) -­

ýI /ý Z evaluated at Z =0 be zero require that 

AT 

-ý I 

so that A A 

i. -_ _ 

kZ - @I 

and Eq. 1 becomes


Ae 4Z, ~i1e ) a 

. Z - Q 1 

With the definitions


a / M_ -I M - - I 

Eq. 5 becomes




I Prob. 11.11.4 (cont.)


. _ ---	 -(7) 

Iz/

For CO ( - ) (< electric below "cut-off") is 

I imaginary, 'ji . Then, Eq. 7 becomes 

+ - (super 	 f 

At 	 .. Ct 7 

Note that the phases propagate downstream with an envelope that eventually


is an in
Iis 	 an inc 

I 
I	 L 

I 
U 	 This is illustrated by the experiment of Fig. 11.11.5. If the frequency 

is so high that C0 4 - /() )O , the envelope is a standing 

wave 

Note that at cut-off, where 4),= (a -I) , the envelope has an 

I infinite wavelength. As the frequency is raised, this wavelength shortens. 

3 This is illustrated with --O by the experiment of Fig. 11.11.4. 

I

I




11.53


Prob. 11.11.5 (a) The analysis is as described in Prob. 8.13.1 except 

that there is now a coaxial cylinder. Thus, instead of Eq. 10 from the 

solution to Prob. 8.13.1, the transfer relation is Eq. (a) of Table 2.16.2 I 

with ~=O because the outer electrode is an equipotential. I 

^a ' (1) 

Then it follows that (m=l) I


PR Rz 
(b) In the long-wave limit, (2)


01 Kj= = ( 0o, (3) 

and in view.of Eqs. 28, for (<ci and = 0O 

(oj - (4) 

To take the long-wave limit of l(c•,3) , use Eqs. 2.16.24 

_S 1 2 1 

j
to evaluate 


R (ac. _•)+ (6) 

so that Eq. 2 becomes 

Z I R+ Z 

P @,U) (C + A(7) I 
The equivalent "string" equation is 

L ) * (8) 

3
Normalization, as introduced with Eq. 11.11.3, shows that 


-(9)-- 'V1io - .n) I 
i 
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5 	 Prob. 11.12.1 The equation of motion is 

and the 	 (1)
temporal and 	spatial 

and the temporal and spatial transforms are respectively defined as


2T (2)


I -0t	 2ff 

-	 & (3)
i(*,,= C • c ,•= •¢•,j8C•,,,,•(3)


00COZ 

i 	 The excitation force is an impulse of width At and amplitude O in space 

and a cosinusoid that is turned on when t=O. 

I ( 1)•=w a U" ( ) ý" Cs SC"0•ie 	 (4) 

It follows from Eq. 2 that


&-a U 	 (5) 

I 	 In turn, Eq. 3 transforms this expression to


I 	 With the understanding that this is the Fourier-Laplace transform of f(z,t),


it follows from Eq. 1 that the transform of the response is given by


where


I 	 Now, to invert this transform, Eq. 3b is used to write 

44I_I L (C~~-"') - I _ _(9)


I 	 -x 

I 
I

I
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1Prob. 11.12.1 (cont.) 


5This integration is carried out using the residue theorem 


=
d 2N. M• += zw• 

CU(k) N(k&) 

It follows from Eq. 7 that
 3- h =- - - (10) 

and therefore


-The open -called Eq. 8 is equivalent to the closedintegral contourfor with 

3The open integral called for with Eq. 8 is equivalent to the closed contour 


integral that can be evaluated using Eq. 9 

in Fig. 11.12.4. Poles,D (Lj) *=0, in the I 
k plane have the locations shown to the
 U 
right for values of C) on the Laplace 

contour, because they are given in terms I 
of CW by Eq. 10. The ranges of z assoc­

iated with the respective contours are I 
those reauired to make the additional


parts of the integral added to make the contours closed ones make zero


contribution, Thus, Eq. 8 becomes


e r 7 e~ _I? 

I% 
Here, and in the following discussion, the uppei


Iand lower signs respectively refer to 2 <0 ana


I 
The Laplace inversion, Eq. 2b, is evaluatE


using Eq. 12
 I

I

I 
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Prob. 11.12.1 (cont.)


I C . . I •._ (13) 

Choice of the contour used to close the integral is aided by noting


Sthat (ti(•• • + - -wa(t+ (14) 
e e( 

5 and recognizing that if the addition to the original open integral is to 

be zero, t - ->0 on the upper contour and - +t <O0 on the lower one.
V \Vt 

The integral on the lower contour encloses no poles (by definition


so that causality is preserved) and so the response is zero for


3 (15)


V 
Conversely, closure in the upper half plane is appropriate for 

> ?-(16) 

3 > 'V 
By the residue theorem, Eq. 9, Eq. 13 becomes


W dt + WI 

gC / 
 C. (17) 

-J) '0()= W4-(OA- w) 

e O 

This function simplifies to a sinusoidal traveling wave. To encapsulate


I Eqs. 15 and 16, Eq. 17 is multiplied by the step function


P - ) 5itrw(t I) (t01; (18) 

I

I

I

I 
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 I

1


Prob. 11.12.2 The dispersion equation, without the long-wave approximation,


is given by Eq. 8. Solved for CO it gives one root I

I


That is, there is only one temporal mode and it is stable. This is suffi­


cient condition to identify all spatial modes as evanescent.
 I

The long-wave limit, if represented by Eq. 11, is not self-consistent. 

This is evident from the fact that the expression is quadratic in CJ and it I

is clear that an extraneous root has been introduced by the polynomial
 I 
approximation to the transcendental functions. In fact, two higher order


terms must be omitted to make the -k relation self-consistent, and Eq. 5.7.11 I

becomes


t
U-u I 
+ 

Solved for 0 , this expression gives I

w=IQ I


which is directly evident from Eq. 1.


To plot the loci of k for fixed 
0r -o.5
 I


values of Wr as O- goes from 60


to zero, Eq. 2 is written as


IU = o.2 

(4)
 I 
The loci of k are illustrated by
 I

the figure with U= 0,. ­

I

CWr= -05 0.5 

a
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Prob.ll.13.1 With the understanding that the total solution is the super­

position of this solution and one gotten following the prescription of Eq. 

11.12.5, the desired limit is tc 

M" r Ce(tt)=x.- C 
where Eqs. 11.13.8 and 11.13.9 supply


Aecsa 
(W) = t 

- -- %) -= 

IE J)63-v 

The contour of integration is shown to

It 

the right (Fig. 11.13.4). Calculated here is the CL


response outside the range z<o,#)Iso that the


summation is either n=l or n=-l. For the 

particular case where P ) 0 and M < 1 (sub-elect C'% 

Eq. 11.13.16 is 
rrr\ r 

(4)


Note that at the branch point, roots k coalesce at k From
nEq. in the k plane.11.13.15, 

Eq. 11.13.15,


t -- (5) 

as shown graphically by the coalescence of roots in Fig. 11.13.3. As t--~c , 

the contributions to the integration on the contour just above the c),axis 

go to zero. ( W = WC,4W&Jý makes the time dependence of the integrand in 

Eq. 1 (exp jCttXexp-&J t) and because W>)0, the integrand goes to zero 

as t -• .) Contributions from the integration around the pole (due to f(w)) 

at J = •o are finite and hence dominated by the instability now represented 

by the integration around the half of the branch-cut projecting into the lower 

half plane. 

The integration around the branch-cut is composed of parts C1 and C2


paralleling the cut along the imaginary axis and a apart C3 around the lower


branch point. Because D' on C2 is the negative of that on C1, and C1 and C2
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Prob. 11.13.1 (cont.)


are integrations in opposite directions, the contributions on C1+C2 are


twice that on C1. Thus, for C1 and C2, Eq. 1 is written in terms of 4(* =-8G) 5 

-2.o )(a 2 (6) 

In evaluating this expression approximately (for t-eo- ) let <, be the origin j 
by using G-4- as a new variable o ~ - Q ~ r-- - Then, Eq. 6 becomes 

Se (7) 

Note that (< O as the integration is carried out. Thus, as , 

contributions to the integration are confined to regions where 'C- -9•0. I 
The remainder of the integrand, which varies slowly with 3- ,is approximated 

by its value at a = - . Also, 0 is taken to co so the integral of 

Eq. 7 becomes (kl-7 k i--i ks ) 

Tat (_ý i O N I(ik't 

- . 0(8) 

The definite integration called for here is given in standard tables as


(9) 
The integration around the branch point is again in a region where all


but the ~ in the denominator is essentially constant. Thus, with 

C' 4-+ iGJ , the integration on C3 of Eq. 1 becomes essentially 

S' ~ g 3 q"s4 nt 

_- -, (10) 

Let n = R'Sp and the integral from Eq. 9 becomes 

In the limit R-- 0, this integration gives no contribution. Thus, the


asymptotic response is given by the integrations on C + C2 alone.


I

I
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Prob. 
11.13.1 

(cont.) 

TOM __ _ N- _ __ _ (12) 

The same solution applies for both z ( 0 and <(z. The z dependence in Eq. 11 

renders the solution non-symmetric in z. This is the result of the convection, 

as can be seen from the fact that as M-90, k--v 0. 
s


Prob. 11.13.2 (a) The dispersion equation is simply


Solved for CJ , this expression gives the frequency of the temporal modes. 

I + 72 4 Z (2)7 

I Alternatively, Eq. 1 can be normalized such that


= 
 l
WI )- TTV1• = (3) 

and Eqs. 1 and 2 become


I 

£ To see that f >V (M > i') implies instability, observe that for 

I "small" 9 , Eq. 2 becomes 

C' = (OV)+ +() M) (5) 

Thus, there is an .4 O A > I . Another examination of Eq.5 

j is based on an expansion of M about M=l, showing that instability depends 

on having /MI>1. 

I

I

I

I
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Prob. 11.13.2 (cont.)


.nmnl ,z t.) c n riin .t--nn nf' r•,l I ' , -- ; "11-e 114.,. FiV 4a 
r. ,. . L ..... 

M=2 
C.), 

k 
Fig. 11.3.2a


(b) To determine the nature of the instability, Eq. 4 is solved 

for compllex k as a function of C= C-) 

M-I 
or


(C c W- -? a (AAf)]+ Y[0,M(4rar-' + 

,=Mc.-·~\i~;~nnr;~AK-I~~,· 

Note that as O--0 c 

- I 

and for AK) both roots go to -- 0-0. Thus, the loci of complex k 

for 0 varying from -W to zero at fixed CJr move upward through the


lower half plane. The two roots to Eq. 7 pass through the kr axis where c3


reaches the values shown in Fig. 11.3.2a. Thus, one of the roots passes


into the upper half plane while the other remains in the lower half plane.


There is no possibility that they coalesce to form a saddle point, so the


instability is convective.


http:11.3.2a
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Prob. 11.14.1 (a) Stress equilibrium at the equilibrium interface 

P - =; 

In the stationary state, 

Eo = (1) 

(2) 

I 
P =Tb 

and so, Eq. (1) requires that 

OL 2-• -.'b - FO (3) 

All other boundary conditions and bulk relations are automatically 

satisfied by the stationary state where t-= rUC in the upper region, 

1)= 0 in the lower region and 

P= 9 2 (4) 

I 

I 

(b) The alteration to the derivation in Sec. 11.14 comes from 

the additional electric stress at the perturbed interface. The mechanical 

bulk relations are again 

-P raAL: [ co44i!ho*C0+ -~~c 

L 

141 (5) 

i [:] lSthh ,•J -I5 fýb 
The electric field takes the form =-

perturbations, e , are represented by 

S 

Lx 

I 

III
-= eL --

Ib 

I 
- and 

(6) 

I

I
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Prob. 11.14.1 (cont.) I 

SSi f(7) 1 

in the upper region. There is no E in the lower region. 

Boundary conditions reflect mass conservation, 

I (8) 

that the interface and the upper electrode are equipotentials, 

A A A C 
_ 0 Z El 1 

-Lc - -~­
(9) 

and that stress equilibrium prevail in the x direction at the interface 

The desired dispersion equation is obtained by substituting Eqs. 8 into 

Eqs. 5b and 6a, and these expressions for P and p into Eq. 10, and 

Eq. 9 into Eq. 7b and the latter into Eq. 10. j 

To make 
A 

I' 

, 

o C•, • ,Y C) 

the term in brackets must be zero, so 

A/CB.+[ 4C"bc.",L k 

-( 11) 

(12) 

5 

I 
1 

This is simply Eq. 11.14.9 with an added term reflecting the self-field-

effect of the electric stress. In solving for C0, group this additional 

term with those due to surface tension and gravity (B 4-. (pb-- .)%· 

I 

+e - ~ a)C-OA i •O). It then follows that instability 

-- i;---3'b~f+(,qO p~g-e 
i 
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i 	 Prob. 11.14.1 (cont.) 

results if (Eq. 11.14.11) 

For short waves IeL' I k.( I>>i ) this condition becomes 

The electric 	field contribution has no dependence in this limit, thus


g making it clear that the most critical wavelength for instability remains


the Taylor wavelength


F I j(15)aI-1 

I 	 Insertion of Eq. 15 for P in Eq. 14 gives the critical velocity


U ( + - (-a -Q C-( E 	 (16)'-

By making


I 2-ý I Y 	 (17) 

£ the critical velocity becomes zero because the interface is unstable in 

the Rayleigh-Taylor sense of Secs. 8.9 and 8.10. 

I In the long-wave limit (IA << i• ,I I8I ) the electric field 

has the same effect as gravity. That is (- -g 4 --­• 

Wea+ V(E-ht&-1 and the i dependence of the gravity andPE~ 2 


I 	 electric field terms is the same.


(c) Because 	the long-wave field effect can be lumped with that


I 	 due to gravity, the discussion of absolute vs. convective instability


given in Sec. 11.14 pertains directly.


I
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Prob. 11.14.2 (a) This problem is similar to Prob. 11.14.1. The


equilibrium pressure is now less above than below, because the surface I 
force density is now down rather than up. 
 3 

= • o(1)


The analysis then follows the same format except that at the boundaries


of the upper region, the conditions are D) I 

ik~,CL~c +5 A(2)


and :o I


=o 3) 
Thus, the magnetic transfer relations for the upper region are


W+I s.nh Fee,


4F1 S V1 1 1

The stress balance for the perturbed interface requires (VIA


+P -d ̂ &-++p H.;A =o0 (5) 1 
Substitution from the mechanical transfer relations for £P and 

^ d
(Eqs. 5, 6 and 8 of Prob. 11.14.1) and for Ad from Eq. 4 gives the 

desired dispersion equation. 

Z (6)


Thus, the dispersion equation is Eq. 11.14.9 with +±÷~(( -(---. 
 I 
- ((h -pc) 4/,74 '4 : Co' ~Q/, . Because the effect of stream- I 

ing is on perturbations propagating in the z direction, consider = a 

Then, the problem is the anti-dual of Prob. 11.14.2 (as discussed in B 
Sec. 8.5) and results from Prob. 11.14.1 carry over directly with the I 
substitution - E "a/4o 
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Prob. 11.14.3 The analysis parallels that of Sec. 8.12. There is now


an appreciable mass density to the initially static fluid surrounding the


I 	 now streaming plasma column. Thus, the mechanical transfer relations are 

(Table 7.9.1). 

) Gc F0l 	 (1) 

SG,,, 
(2)


where substituted on the right are the relations t1 -	 and 

) == • CA- • U (- The magnetic boundary conditions remain the 

same with d =-O (no excitation at exterior boundary). Thus, the stress 

equilibrium equation (Eq. 8.12.10 with p included) 

I 	 is evaluated using Eqs. lb, and 2, for p and p and Eqs. 8.12.4b, 

8.127 and = 00.for A to give 

IO V7-	 (4)

5 	 -/Ua1A~/O-Itc+ (*' + I)Mc L) 

This expression is solved for w.


k • F (5) 

to give an expression having the same form as Eq. 11.14.10
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Prob. 11.14.3 (cont.) I


(F., (o,j Z(a0)o, F , > o 

The system is unstable for those wavenumbers making the radicand


negative, that is for i


-z[10 (OV=/0 I(F.(I)- (6) 101 

Prob. 11.14.4 (a) The alteration to the analysis as presented in


Sec. 8.14 is in the transfer relations of Eq. 8.14.12, which become 1


[Inh= UjO_ Q3T) (1) 

where boundary conditions inserted on the right require that

AC AAd I 

and LK • , - = (W - 9,U)T. Then evaluation of the interfacial


stress equilibrium condition, using Eq. 1, requires that I


kI 

(2)


%(6 -ea- + E.( 66-9)+- E (c .1

(b) To obtain a temporal mode stability condition, Eq. 2 is solved


for W. I


CLi L T A dBk k ý + c o k P eL 1+ 
C b a


I, i

IZ


ýcr'i%A(O-+CA I


u-o'•i•C. ''-'-" 

I 



I 
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I Prob. 11.14.4 (cont.) 

Thus, instability results if 

CA Ratl,g. + coý Ub) 

5 ý'h b cot+ 4a 
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I
I

ItProb. 11.15.1 Equations 11.15.1 and 11.15.2 become


i

Thus, these relations are written in terms of complex amplitudes as


=O (3) 

and it follows that the dispersion equation is a I

L(w -&4+ P]?)j( M -&+P+ - 0 (4) 3


Multiplied out and arranged as a polynomial inQ , this expression is 

Jr + [z -2 g(e•,'- T p- 1=0Z-, (5) 

Similarly, written as a polynomial in k, Eq. 4 is


• •,•-,1i÷+ f P -2-C-•-,Z 6&I)+• 4,•f+2.• P+ X4---o I

These last two expressions are biquadratic in wJ and k respecively, and can


be conveniently solved for these variables by using the quadratic formula twice I

,
't ' 

- O'4 ) -F ) 4 9 7) A % 

o IM C)-P~l~l 7. 

ý-=+ I 
,zLMt _') (8) 

First, in plotting complex ( for real k, it is helpful to observe that


in the limit --+1*, Eq. 7 takes the asymptotic form 

W--D t_ (Mt 0) (9) I

These are shown in the four cases of Fig. 11.15.1a as the light straight lines.


I

Because the dispersion relation is biquadradic in both W and k, it is clear


that for each root given, its negative is also a root. Also, only the complex
 5 
i is given as a function of positive k, because the plots must be symmetric in k.


I
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j Prob. 11.15.1 (cont.)


The subcritical magnetic case shows no "unstable" values of c. for


j real k, so there is no question about whether the instability is absolute or


convective. For the subcritical electric case, the figure 
 00


below shows the critical b 

5 plot of complex k as


is varied along the trajectory

U 

U 

I' 

shown at the right. The plot makes it clear that the instabilities


are absolute, as would be expected' from the fact that the streams are sub-


Scritical.


Probably the most interesting case is the supercritical magnetic one,


I 	 because the individual streams thel tend to be stable. In the map of complex 

k shown on the next figure, there are also roots of k that are the negatives 

of those shown. Thus, there is a branching on the kr axis at both kr .56 

I 	 and at kr 'F -.56. Again, the instability is clearly absolute. Finally, the


last figure shows the map for a super-electric case. As might be expected,


from the fact that the two stable (P=-l) streams become unstable when coupled,


this super-electric case is also absolutely unstable.


I 
I 



Prob. 11.15.1 (cont.)


11.73


3 

' ' 

P= 1


.4 .z .3 

i; 

I0 

o oa•" 
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Prob. 11.16.1 With homogeneous boundary conditions, the amplitude of an


eigenmode is determined by the specific initial conditions. Each eigen-


JI mode can be thought of as the response to initial conditions having just


the distribution required to excite that mode. To determine that distrib­


one of the amplitudes in Eq. 11.16.6 is arbitrarily set. For example,


suppose A1 is given. Then the first three of these equations require that


Sution, 


IAz -A, 

5 A, -4 AA 

3, c? JqL A4 - pqA 

and the fourth is automatically satisfied because, for each mode, CG is


I zero.such that the determinant of the coefficients of Eq. 11.16.6 is 


With Al set, A2 , A3 and A4 are determined by inverting Eqs. 1. Thus,


within a multiplicative factor, namely AL, the coefficients needed to


I evaluate Eq. 11.16.2 are determined.


I 
I


I 
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I


3f
Prob. 11.16.2 (a) With M=-/Mi =AA 

and IIA) ( 1 , the characteristic lines if 
are as shown in the figure. Thus, by the 

arguments given in Sec. 11.10, Causality I

and Boundary Condition , a point on either
 I 
boundary has two "incident" characteristics.


Thus, two conditions can be imposed at each I

boundary with the result dynamics that do


not require initial conditions implied by
 Is 
subsequent (later) boundary conditions.


The eigenfrequency equation follows from evaluation of the solutions
 I

I


•,= 
h=1I
"•-Q A.ete 

'I

I;


where (from Eq. 11.15.2)


_z2I.W- • ~_A~p I

P 

Thus, a 
I


Ri 
e e"~ A. 

Q, Qz q4 A3 I

-ba 

Q4,e 4P- A4 I

S

I
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Prob. 11.16.2 (cont.) 

Given the dispersion equation, D(c•.,~) 

an eigenfrequency equation. 

Det (w) = 

In the limit ~-.-o , Eqs. 11.15.1 

and 11.15.2 require that 

(4()8, this is 

(5) 

For both of these equations are satisfied if 

zJ, 

and for 

and it follows that 

Q I= ) 

Thus, in this limit, Eq. 

I 

4 becomes 

Qq= -

cI 

e- I­
e­
-I 

- Z•, 

- I filla (10) 



11.77 5 

Prob. 11.16.2 (cont.) 

and reduces to 

U 
j 

The roots follow from I 

' Z --. = I ,3... (12) 

and hence from Eqs. 7 and 8 

, - P (13) 

Instability is incipient in the odd 

P r• 

m=l mode when 

(14) I 

(b) For M)1, the characteristics are as 

boundary has two incident characteristics. 

Thus, two conditions can be imposed at each 

boundary. In the limit where O , 

the streams become uncoupled and it is most 

likely that conditions would be imposed on 

the streams where they (and hence their 

associated characteristics) enter the region 

of interest. 

-- 

shown in the figure. Each 

I 
I 

I 
I 

From Eqs. 11.15.2 and 11.15.5 

4r~ -
6? 

t -tit 
A,(15) 

3tz 

4b ,BAR tA (16) 

I 
I 
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I Prob. 11.16.2 (cont.) 

I Evaluation of Eqs. 11.15.2, 15, 11.15.5 and 16 at the respective boundaries 

where the conditions are specified then results in the desired eigen-

I frequency equation. 

Q4 "A, 

I 1~3Q-3 f-4 P4, A? (17) 

=O


€ e 3 A, 
ra ýze AA 

Given that , = b( ) , the determinant of the coefficients comprises a 

complex equation in the complex unknown, c 

Prob. 11.17.1 The voltage and current circuit equations are


Ik%'t) L Lc (1)


I c&~t)= h 4 (2)) 

I 
In the limit Ly-P O, these become the first two of the given expressions. In 

I 
addition, the surface current density is given by 

K, ti + &V)-vi c~c~, (3)N( 

and in the limit Ay--O, this becomes


By Ampere's law, " J=Kz and the third expression follows. 

1I 
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r% , , .. ,r 1-· .*.)--- L - - A .. l 
prob. 11­ ..L witn amplituaes designated as


in the figure, the boundary conditions


representing the distributed coils and


transmission line (the equations summarized in I


Prob. 11.17.1) are


L) 

Is -. "* - = •n (C


3) 
 1

The resistive sheet is represented by the boundary condition of Eq. (a) from
 I
Table 6.3.1.


^d ^-B 
3)


The air-gap fields are represented by the transfer relations, Eqs. (a), from
 I 
Table 6.5.1 with '2- k. 

5) I

These expressions are now combined to obtain the dispersion equation. Equatiic)ns 1

1 and 2 give the first of the following three equations


-CL- 0C-doM o A I
I 

A f-i.. 'C 
-'C 

AdC s) I_e -+tT:ic, .- __-.,,Cwo ,X~ a 9

' i .4-•(,- •"('
 Ado • • , .f. "÷A I
,-·p ~---7 

The second of these equations is Eq. 5a with H4 given by Eq. 3. The third is

Y


Eq. 5b with Eq. 4 substituted for . The dispersion equation follows from I

the condition that the determinant of the coefficients vanish.
 I


I

I
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Prob. 11.17.2 (cont.)


5( · (7) 

As should be expected, as n-- 0 (so that coupling between the transmission line


and the resistive moving sheet is removed), the dispersion equations for the


transmission line waves and convective diffusion mode are obtained. The coupled


system is represented by the cubic obtained by expanding Eq. 7. In terms of


characteristic times respectively representing the transite of electromagnetic


waves on the line (without the effect of the coupling coils), material transport,


magnetic diffusion and coupling,


I ___ ~~CO-/4~Th- hZc& (8) 

and the normalized frequency and wavenumber


S' = •/ r ' "/(9) 

the dispersion equation is


I 
tt+ C'4 

TVe 

L i 
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Prob. 	11.17.2 (cont.) 


The long-wave limit of Eq. 10 is


'rfem N 

In the form of a polynomial in k, this is


: L 	 4t--iC 
- -- _ 	 - W (12),-, 	 I 

-C7 

where it must be remembered that <( t 

As would be expected for the coupling of two systems that individually I 

have two spatial modes, the coupled transmission line and convecting sheet


are represented by a quartic dispersion equation. The complex values of


for real k are shown in Fig. 11.17.2 a. One of the three modes is indeed g

unstable for the parameters used. Note that these are assigned to make the


material velocity exceed that of the uncoupled transmission-line wave.


It is unfortunate that the system exhibits instability even as k is


increased beyond the range of validity for the long-wave approximation < I


The mapping of complex shown in Fig. 11.17.2b is typical of a convective


instability. Note that for 0,= 0. the root crosses the k axis. Of course,
r 

a rigerous proof that there are no absolute instabilities requires considering 

all possible values of r> O 

I 
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Prob. 11.1 7 .2a(cont.)


Fig. 11.17.2a Complex tj for real k. 
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Prob. 11.17.2 (cont.) tI


I

£

I


~'F1


I

I

I

I


Prob. 11.17.3 The first relation requires that the drop in voltage across


the inductor be 

Divided by hI and in the limit where dt-PO this becomes 

- = L A•t (2) I

The second requires that the sum of currents into the mode at + •t


be zero. I


where 0 is the net charge per unit area on the electrode I

- ao• (4) 

Divided by • and in the limit htI O , Eq. 3 becomes 

- - c L0 + W (5)I 
T 3t at 

3 
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Prob. 11.17.4 (a) The beam and


air-gaps are represented by


Eq. 11.5.11, which is (%R=0 )


ACr 
1 	 o. 

(~b)

(1)	 a (C) 

' (d'· ·. :~ 

The transfer relations for the 

region a-b, with T -O require 

(n)
that 

D (2) 

.A A6 AC 
With the recognition that --i = I the traveling-wave structure 

equations from Prob. 11.17.3 require that 

A C =;o L 

(3)


dRT ~ A C_ ( A6 _A c-

The dispersion equation follows from substitution of Eqs. 1 and 2 (for


A C A6 
D and D, 	 ) and Eq. 3 (for t ) into Eq. 4. 

-.4-g- .. C +(5) 

As a check, in the limit where L--+ D and C--pO this expression 

should be the dispersion relation for the electron beam (D=o in Eq. 11.5.11) 

with a of that problem replaced by a+d. (This follows by using the identity 

In taking the long-wave limit of Eq. ) = tanhere , ) and , 

In taking the long-wave limit of Eq. 5, e,< I ( and,n <Iwhere 	 a< 

http:11.5.11
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Prob. 11.17.4 (cont.)


the object is to retain the dominant modes of the uncoupled systems. These I 

are the transmission line and the electron beam. Each of these is repre­

sented by a dispersion equation that is quadratic in tj and in P I. 
Thus, the appropriate limit of Eq. 5 should retain terms in e3 and 

of sufficient order that the resulting dispersion equation for the coupled 

system is quartic in WJ and in . With .C 4WG/ , Eq. 5 

becomes 

L-(6) 7 

w 

With normalization


- WL C ) I 

this expression becomes


(~C_-C',.) "•
-
S(7)


Written as a polynomial in CO , this expression is 

(8) 3

3 -,,Z_\ (8)­.+I.,Zja. ,[YPP c _!iTJC 

I
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l Prob. 11.17.4 (cont.)


5 This expression can be numerically solved for C to determine if the 

system is unstable, convective or absolute. A typical plot of complex c 

I for real 


unstable.


II. 

I 
I

I

I


I~


fi

I·


I 

, shown in Fig. P11.17.4a, shows that the system is indeed 
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5
Prob. 11.17.4(cont.) 


To determine whether the instability is convective or absolute, it


is necessary to map the loci of complex k as a function of complex


4d = •'r- - . Typical trajectories for the values of j shown by 
... . . . . . 

r 
the inset are shown in Fig. 11.17.4b. 

I

I)

I

I


I

I

I


U


I 

i 



_I n_ 

I Prob. 11.17.5 (a) In a state of stationary equilibrium, - U (C) 

and p T = constant, to satisfy mass and momentum conservation condi-

I tions in the fluid bulk. Boundary conditions are automatically satisfied,


5 with normal stress equilibrium at the interfaces making 

I t I ., II 
II = Z tA H 0 %_L 

where the pressure in the low mass density media


I surrounding the jet is taken as zero.


(b) Bulk relations describe the magnetic


5 perturbations in the free-space region and the fluid 

I motion in the stream. From Eqs. (a) of Table 2.16.1, 

U with 

l = NC, ,+-= -V,+P (2) 

CSllh6 6CL Ce (3)A[A]~oko Sih1 iF,'1 
iL -J c JL.I, and from Table 7.9.1, Eq. (c),


b̂ l "[̂ :1 
rS1ii: iP (4); 

Because only the kinking motions are to be described, Eq. 4 has been


1 written with position (f) at the center of the stream. From the symmetry 

Iof the system, it can be argued that for the kinking motions the perturb­

ation pressure at the center-plane must valish. Thus, Eq. 4b requires 

that _ 7) 

=x' s=nk e b _b cSl fab (5) 

3I so that Eq. 4a becomes


I

I
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Prob. 11.17.5 (cont.)


Ae(6)


p (-O s lnh%9b 6 f 

or


= ., )*Ib ,,i) |-revJ 

where the last equality introduces the fact that =(I(c,- U)p. 

Boundary conditions begin with the resistive sheet, described by Eq. (a)


of Table 6.3.1. 
 1 
(7)


which is written in terms of W as (V). 

AC _(8)


At the perfectly conducting interface, -̂ - - L ) 

Stress equilibrium for the perturbed interface is written for the x component,


with the others identically satisfied to first order because the interface is


free of shear stress. From Eq. C
7.7.6 with e-x


nph, = _'d(v.Th), (10) 3T j 
Linearization gives


Ae AA Z,A(11)


where Eq. (d) of Table 7.6.2 has been used for the surface tension term.


With - , Eq. 5 becomes 

e 0 (12) 

Now, to combine the boundary conditions and bulk relations, Eq. 8 is


expressed using Eq. 3a as the first of the three relations


I

I
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SProb.
11.17.5 (cont.)


5­

I + 0TAa, 0 -C 
Y 

Ad (13) 

I -0 

I 
The second is Eq. 9 with h," expressed using Eq. 3b. The third is Eq. 12 

with 4p given by Eq. 6. 

Expansion by minors gives 

I' ' 4 QJ Co+~iP,.O..Jo,,44U1 

I (14) 

Some limits of interest are:


St--bo
so that mechanics and magnetic diffusion are uncoupled.


Then, Eq. 14 factors into dispersion equations for the capillary jet and


the magnetic diffusion


(co u)0 3 (15) 

(£'J C, (16) 

The latter gives modes similar to those of Sec. 6.10 except that the wall 

I opposite the conducting sheet is now perfectly conducting rather than 

I 
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Prob. 11.17.5 (cont.) 

infinitely permeable. 

q--wo , so that Eq. 14 

equations 

can be factored into the dispersion 

3 (17) 

This last expression agrees with the kink mode dispersion equation 

(with Y--'PO) of Prob. 8.12.1. 

In the long-wave limit, coth P-+I /~ , tanh -- 6- L and Eq. 14 

becomes 

) (19) 

1 

In general, this expression is cubic in 

limited to frequencies such that 

< i 

W . However, with interest 

(20) 

I 

f 

and , the expression reduces 

c. r OL' 

to 

- (21) 

I 

where and 

low frequency approximation, 

, //o)( ). Thus, in this long-wave 

SI (22) 

I 
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Prob. 11.17.5 (cont.)


- tu- v'_v-) 

-St(UL 7 VL VL) 

It follows from the diagram that if /V+V , the system is unstable.


To explore the nature of the instability, Eq. 21 is written as a polynomial


in .


T- - - -7.. . (23) 

This quadratic in q is solved to give 

(24)


With =.-8d' , this becomes 

Vu 
(25)
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Prob. 11.17.5 (cont.) I 

where


-c)(V'+MV)A (c= 4(V-VTVY ) Vq. 

The loci of complex k at fixed CJr as Or is varied from co to o for 

TZ>(VL 4 V.) could be plotted in detail. However, it is already I 
known that one of these passes through the k axis when c6( O (that one


temporal mode is unstable). To see that the instability is convective it


is only necessary to observe that both families of loci originate at 
 5

ý----C2 . That is, in the limit "-Poo , Eq. 25 gives 

' -_ '_ V_ýv_ - a-' (26)

u'•-rVt - VC 

and if LI V Vz it follows that for both roots A- -6-t as 

Cr-wco . Thus, the loci have the character of Fig. 11.12.8. The 

"unstable" root crosses the kr axis into the upper half-plane. Because the


"stable" root never crosses the kr axis, these two loci cannot coalesce, as 
 f

required for an absolute instability.


Note that the same conclusion follows from reverting to a z-t model


for the dynamics. The long-wave model represented by Eq. 21 is equivalent


to a "string" having the equation of motion


I& F _)L-2i (27) 

5The characteristics for this expression are 


_U \ z (28) 

and it follows that if tT t , the instability must bev, 

convective. I 

I 
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5 Prob. 11.17.6 (a) With the understanding that the potential represents an 

i electric field that is in common to both beams, the linearized longitudinal 

force equations for the respective one-dimensional overlapping beams are 

---- + - e (1) 

5 V )ar e aH (2) 

To write particle conservation, first observe that the longitudinal current


I density for the first beam is


S I =- e-k I.U, C,- e- ( h , + ho )(3) 

Sand hence particle conservation for that beam is represented by


-_I+ U + oho j 
(4) 

Similarly, the conservation of particles on the second beam is represented


I by V17. + T (5) 

Finally, perturbations of charge density in each of the beams contribute


to the electric field, and the one-dimensional form of Gauss' Law is


1 (6) 

The five dependent variables 19CI , 1, and t1 are described by 

Eqs. 1, 2, 4 and5 . In terms of complex amplitudes, these expressions are 

. represented by the five algebraic statements summarized byI n 

U Se o o 
0 

-Ont-, oo 0e, o 

I 0 0 e 0 

AI n,, 
0 (7) 

0 

U A,

o a ~1"2 0 
_ 

KC


I 
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Prob. 11.17.6 (cont.) 

The determinant of the coefficients reduces to the desired dispersion 

Z 
equation. ) (8) 

where the respective beam plasma frequencies are defined as 

(b) 

f____oI O 

In the limit where the second "beam" is actually a plasma 

(9) 

(formally equivalent to making U2=0), the dispersion equation, Eq. 8, 

becomes the polynomial, 

Ri-2.CJ k QT(- - I (10) 

where ¶ (We,/W3 = /' p andW @ - /Cj pz. The 

mapping of complex R as a function of L = CJ,r , d varying
-


from c -- O with CO, held fixed, shown in Fig. P11.17.6a, is that


characteristic of a convective instability (Fig. 11.12.8, for example).


(c) In the limit of counter-streaming beams U1 = U2 E U, Eq. 8 

becomes 

• 4 (V ~ z+ 4 (-Z) L %CL] Y'+j+o= (11) 

where the normalization is as before. This time, the mapping is 
as


illustrated by Fig. P11.17.6b, and it is clear that there is an absolute


instability. (The loci are as typified by Fig. 11.13.3.)


W:

A -- _- /pa 

1.01 I·o5 f?. /1,/: If, 

I 1 234 

-4 34 

I 
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Prob. 11.17.6 (cont.)

.. -,I

Wtp 

See, Briggs, R.J., Electron-Stream Interaction With Plasmas, M.I.T. Press (1964)


pp 32-34 and 42-44.



	Text2: Courtesy of James Brennan. Used with permission.


