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10.1
Prob. 10.2.1 (a) 1In one dimension, Eq. 10.2.2 is simply

T _ o 1)
dx? -

The motion has no effect because v is perpendicular to the heat flux.
This expression is integrated twice from x=0 to an arbitrary location, x.
Multiplied by —kT, the constant from the first integration is the heat flux

_ s .
at x=0, 11. The second 1nte°ration has T? as a constant of integration.

T-= - ( fq((x)a "d 1;_’\ + T8 @

Evaluation of this expression at x=0 where T = ‘r gives a relation that can

Hence,

be solved for -T1B . Substitution of 'P” back into Eq. 2, gives the desired

temperature distribution.
/,

A x,
I R T I N
T= &Tj J‘PJ(X }d x"dx +T{$— _)g_(—\—(-'\_-\-"')_'_z% go ffbé(x )dx"dx' (3)

(b) The heat flux is gotten from Eq. 3 by evaluatlng

T=-R Jﬂ(,«)c{x + T(—rﬁ I )_ f [d?(x")éx"clx (4)

o
At the respective boundarles, this expression becomes x’

T I&(x’)dx + 'r(‘]‘/z )—-‘ ‘(‘NX")({ “dx’ ()

Té= b (i) -5 J%cx"ux"csx' ©

Prob. 10.3.1 In Eq. 10.3.20, the transient heat flux at the surfaces is
Ao 2 A

zero, so T =T =0,

- | 1rAdN ih

—eoth¥a —— |IT 1§
mh a A
T )3, /8., "

. ap| Elriny, Rigif,-R,U
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. o

These expressions are inverted to find the dynamic part of the surface

temperatures o
- Aqﬂ - ‘. T
0 (-9 co*thA _':_|_
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T KT —coth¥ a (-')‘
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10.2
Prob. 10.3.2 (a) The EQS elec- [R5 zol '(Ut'a'ﬂ
_Re & e
trical dissipation density is o
-, . CS e U
¢, =cE'E =cEE ety

( \p\a iﬂ e'éfu‘)t.'-&‘:&\.
= & (Wt =By - A Cot-R) Ay —olwie
- W[P\e E(X)é “ %):\ = % Y. E_ c3< t &El? E’Oca(wt @g)]z

] (L

a 2 =z J(w,t-R,
.—.-‘icr[F_~ fReE-Eca<‘ 4)

Thus, in Eq. 10.3.6

::..L -'-‘-.-’-‘—#’ ! 4 = -1 £
= +TE-E P = L oE -
The specific EA(x) follows from
A Ad A
$ex) = & eimhBx  _ &% sinh @(x-8) .
s-nh Aa sinh Ra
so that A
A
= _ _dé=
E = -Gl +afB
- [_Pééd cosh @x + B@ cos h B(x- b)}
sinh Ro sinh Ba (4)
ot
A . Aﬁ . -
+‘E Sll'l"\gx - Sl"\\’\ %(K—O)
) [é sinh és 2 sinh &0 JL
Thus,

§°=“zso‘-f:¢ Q{IQ(Q Jeosh Rx (Q Q § ﬁ )cosh Bx cosh@(x-»)
+ 3¢ §“ cosh R(x-8Y]

+[§ E sinh® B x - ('Qd@ @ Qa>5m\s%x sink B(x-8) (3
+ 808 s-nhfé()“é)]}



10.4

Prob. 10.5.1 Perturbation of Eqs. 16-18 with subscript o indicating

the stationary state and time dependence, exp st, gives the relations

s+(1+5) Qo Too i 1]
X
“0o sx0) T || T |20 w0

Thus, the characteristic equation for the natural frequencies is

Z("“ sz ¥)+('*0 R,
+ S [ +|] 4 I + P 2o+ ] o

+i(l+$)1+ O, + QT R 4+RIT,, (k=0

To discover the conditions for incipience of overstability, note that it

i.
=)

takes place as a root to Eq. 2 passes from the left to the right half s
plane. Thus, at incipience, §=igg. Because the coefficients in Eq. 2
are real, it can then be divided into real and imaginary parts, each of
which can be solved for the frequency. With the use of Eqs. 23, it then

follows that

= {<|+s)+<';“ w“-(,fﬁ)]%}

St = ZXR&’-%)H/[_Z_(_‘_‘;ﬁ_\. I

The critical Ra is found by setting these expressions equal to each other.
The associated frequency of oscillation then follows by substituting that

critical Ra into either Eq. 3 or 4.



10.5

Prob. 10.5.2 With heating from the left, the thermal source term enters

,

in the x component of the thermal equation rather than the y component.
Written in terms of the rotor temperature, the torque equation is unaltered.

Thus, in normalized form, the model is represented by

i}=—ﬂ—\—;-"‘}(l+ﬂli v

k

Ve — &)
- A—-— = -0 + . \ x

R oat

In the steady state, Eq. 2 gives Ty in terms of T  and ), and this sub-

stituted into Eq. 1 gives TX as a function of ﬂ Finally, T_ Ny,

substituted into the torque equation, gives

Q = - $(1)R. @
(1+4) + Q2

The graphical solution to this expression is shown in Fig. P10.5.2. Note

that for Te >0 and d >0 the negative rotation is consistent with the left
half of the rotor being heated and hence rising the right half being cooled

and hence falling.




10.6
Prob. 10.6.1 (a) To prove the exchange of stabilities holds, multiply
AR A
Eq. 8 by % and the complex conjugate of Eq. 9 by | and add. (The

~
objective here is to obtain terms involving quadratic functions of -U& and

~

T that can be manipulated into positive definite integrals.) Then, inte-

grate over the normalized cross-section.

{
- A A A
‘g{ﬁgf[ﬁsz (Efz’ﬁ})-+~tf]'bL +-T%A“f%_T-Laf-.(t;i.ﬁ?)]—r”}¢1x=:o (L
T™
°

The second-derivative terms in this expression are integrated by parts

to obtain {
AR A 1 4 A 2 2(f A~ 2 Apgp A 1 l A 2
2 5103,] - {joda dx- Bl 134 1 ' ] - 1004
p'rM o - F?r“ ema 0 %5
(2)
2 ‘A 2 A | { -z 2 A 2
+Raﬁ /')'*S‘T\AK -TOT +[[IDT\ +g‘T‘ ]c‘x =0
Boundary conditions eliminate the terms evaluated at the surfaces. With
the definition of positive definite integrals
i A 2 1. A 2
T,z (Ioulds 5 T, =51—r\ dx
i 0 (€Y
! 2 2 ! 2 T
- ~ A 2 _ A A 2
L= [R1a5 R —_rqzj[mns 1] dx
o
The remaining terms in Eq. 2 reduce to °
» 2 Q?
~%" 12 —_-Et T A RC‘W\%I3 + Rc\q _-‘—-4 =0 (ﬁ)
TAM
Now, let s= 9_{43‘3 » where & and & are real. Then, Eq. 4 divides into
real and imaginary parts. The imaginary part is
2
) —
o T + QRLR T=0 )

™
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10.7

Prob. 10.6.1 (cont.)

It follows that if Ram) 0, then & =0. This is the desired proof. Note
that if the heavy fluid is on the bottom (Ram < 0) the eigenfrequencies
can be complex. This is evident from Eq. 17.
(b) Equations 8 and 9 show that with 5=0"
A 2 z

¥R + R, _R =0 ()
which has the four roots ﬂf& , pa Xb evaluated with & =0. The steps
to find the eigenvalues of Ram are now the same as used to deduce Eq. 15,
except that _4 =0 throughout. Note that Eq. 15 is unusually simple, in
that in the section it is an equation for &« . It was only because of
the simple nature of the boundary conditions that it could be solved for
\6&_ and Kb directly. 1In any case, the X’s are the same here, éh‘l’? s
and Eq. 6 can be evaluated to obtain the criticality condition, Eq. 18,
for each of the modes.

Prob. 10.6.2 Equation 10.6.14 takes the form

A o
T, T ’

[’“ia] C = }‘;: (1
i) |

~
In terms of these same coefficients —r‘ « = TQ , it follows from

Eq. 10.6.10 that the normalized heat flux is
A
_ﬁ =-)% —/\:-n .QX"X (2)
X n
n=\

and from Eq. 11 that the normalized pressure is

A \6‘“7\
P =ZBHT|-| C
=i

(3)
_ Ro\mPTM.w[(,J (}( &)Th
Bn - K a
2 d
Evaluation of these last two expressions at X = 4 where T’x = T‘x
A A
and /F; = Isd and at X = 0O where sz x(.': and {3 = “5(3 gives



10.8

Prob. 10.6.2 (cont.)

A o -

X

where (note that B, = E,.'% R.= "R, Y BJ= B, 2 Bq = -BB')

.Tl -
T
- N.,] A
M s,
T
[

i Yu ~¥a
X, e Y. e
- Y. Yo

¥a. Ya
B, ¢ -B.<
L Bk - -Bk

-Y,

-Y,
%)

Bbeb

B,

Thus, the required transfer relations are

- g

3

T%; 02 —4>—

So - -

C.=

“

[ A o7

=
T
= 1] o

4] )

- g

L1t
iy
3,
“B.e

-B,

(4)

(5)

(6)

(7

The matrix (:di is therefore determined in two steps. First, Eq. 10.6.14

is inverted to

obtain



10.9

Prob. 10.6.2 (cont.)

{

/\A:a = [4-(5-&) sinh¥y sih\—\\/g,]-‘

(8)

-

o -
2b sinh Yb -2k s:nhxbe -2 sinhY, Zs.'nhx&e-\‘“

Ya 3.
-2.b sin‘nX‘, 2b S‘"h\(be 2 sinh Yb -Zs:thbe

%

-2a s:h‘qx,‘ 2o Sih\ﬂxa e- 2 Sih\'lxa -25;.4.(“&-"

b ¥
205wk Y, -2a0 sinhBa@ o ik Y, 2sinkYe®

Finally, Eq. 7 is evaluated using Eqs. 5 and 8.

—| Y]
C‘:é = [(b-a) s:hhxas:nhh’h][c‘.a.]

where

[C£3]=

[ IO&XB S‘I"h\‘qws\"xb “a‘b sznkxb- [‘(Qsm\nx\’cos\:x,, [sz:nhxa
- b¥, sinhY, co>h¥&1 T s‘nh\nb’ul =¥, sinh¥,cosh¥, | -X“s'mhn]

[0.7b sinh ¥ LbY, sinh¥y cosh¥s 1, sinhY, - [¥, sinh ¥ cosh¥,
bY,sin \11&1 - o?dbs'.n\-\‘(aco shb’,’] {psin h‘b’a] - “5;nh‘o'b¢:osh‘(4

[bBusink¥ycosh¥e  [-bB, sinh¥yt [ sinh¥,cohbi  [& sink¥y-
-QBbs:nthCD‘sth] qu sin\'lxe..l —-B&S'.h‘vxbcoshxul Ebs‘.nh(&]

[Eﬁus‘mkxh [O‘Bb SRn\-\\(ac os\-lxb {-Bﬁsanhxb [Bas-‘hh\lbcoshro.
_Q_Bbsin\ﬂfal -b BQCothksinthl +By sinhY, ] -Bysinh¥,cosh¥, ]

-



10.10

Prob. 10.6.3 (a) To the force equation, Eq. 4, is added the viscous force

L -
density, 7V V. Operating on this with [-curl(curl)], then addsto Eq. 7,

A
7V4’ 7}& . In terms of complex amplitudes, the result is

[7(01-&‘)1-3@0(0‘—3‘3—0‘(/40 H) D], = —apgh T

Normalized as suggested, this results in the first of the two given equations.

The second is the thermal equation, Eq. 3, unaltered but normalized.
(b) The two equations in (vX,T) make it possible to determine

the six possible solutions exp ¥x.

(=R -42 (¥ ) - T [ B -3l s B =0

R 7 (2)
The six roots comprise the solution
T=) T.e (3)

R=1

The velocity follows from the second of the given equations

6 : x
8 Lo 04T,

To find the transfer relations, the pressure is gotten from the x

component of the force equation, which becomes
A . 2 F':) ~ A

pp= -2 + R(S-ROID + RepT ®

Thus, in terms :f the six coefficients,
T 2 ? 2 ¥, X
6= -—q ~ e - -B )|+ . —ﬁi ke
o) {laonog- B~ (-8 mep R N
B=i R

For two-dimensional motions where vz=0, the continuity equation suffices

"~
to find vy in terms of Hence,

v

X

A | A

% = 5 P ™
99



10.11

Prob. 10.6.3 (cont.)

From Eqs. 6 and 7, the stress components can be written as

A A A
= - 4 (8)
S, =-b +270%
A r ) a 9)
= K, - % W
and the thermal flux is similarly written in terms of the amplitudes -—T;.
T =_QTDT (10)

These last three relations, respectively evaluated at the d and A& surfaces

/
provide the stresses and thermal fluxes in terms of the —ﬁés.
[ At T B 7

6:4>Jr1ﬂ;4’urb;4t

2ol
Sat=TA (11)
09 - P
Sy 0
Aad
T
S8
T L
By evaluating Eqs. 3, 4 and 7 at the respective surfaces, relations are obtained
[~ M
I
I3 A
e Bg
Ao .
RN ES (12)
An “1 4
', -
T &
A0
|+, e,

Inversion of these relations gives the amplitudes —ré in terms of the

velocities and temperature. Hence,

-Ad_,
E )
g’i -1 ?; (13)
o= LAllB] e
T T
Ap .Y
L X i ]




10.12

Prob. 10.7.1 (a) The imposed electric field follows from Gauss'

integral law and the requirement that the integral of E from r=R to r=a be V.

}-Vzn‘e

E= e T O (__) W

o
The voltage V can be constrained, or the cy11nder allowed to charge up, in
which case the cylinder potential relative to that at r=a is V. Conservation

of ions in the quasi-stationary state is Eq. 10.7.4 expressed in cylindrical

coordinates.

vr( LRV V éﬂ) 2)

2'\16“"

One integration, with the constant evaluated in terms of the current i to

the cylinder, gives

2w, Si.é- = 3

The particular solution is —COC/L) » while the homogeneous solution follows

from
Séﬁ: b gclr )
£ 2eme K, ) ¥
Thus, with the hbmogeneous solution weighted to make /aCaJ::/ao , the
charge density distribution is the sum of the homogeneous and particular
solutions,

(s SEY(E) - £ v

b2
where f = 7/ZTT€°%T.
(b) The current follows from réquiring that at the surface

of the cylinder, r=R, the charge density vanish.

. |
= /ﬁg}_ (6)

< 1@

With the voltage imposed, this expression is completed by using Eq. 1b.
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10.13

Prob. 10.7.1 (cont.)

(c) With the cylinder free to charge up, the charging rate

is deteminet'l by A) )
= ;

This expre551on can be 1ntegrated by wrltlng it in the form

ﬁ’——ét -_-J R) “147\ (8)
(S

[o]
By defining ° %5 2 (a/rﬂ this becomes

)

_____;ic( = 3) , 32 +%} _(9)
Cé) . 22 3

/Q\T GO%T)/,&‘(Q,/R> this takes the

o
By defining )Dg-é- = (

~—4P

normalized form
3

2
t - ) + b + ) + (10)
11 -2 331
where
t = tlT, M= &b
> = 2
Prob. 10.7.2 Because there is no equilibrium current in the x direction,

E-NK, 42 .
b N o ey
For the unipolar charge distribution, Gauss' law requires that
€eE
A =P 2
Substitution for (0 using Eq. 2 in Eq. 1 gives an expression that can

be integrated once by writing it in the form

£ (FPE-K, 58 =0 @

As x-»0 , E—»0O and there is no charge density, so AE/A;(—’ 0. Thus,
the quantity in brackets in Eq. 3 is zero, and a further integration can be

performed E, o

de _o b [y - @)
B %X,

E X




10.14

Prob. 10.7.2 (cont.)

It follows that the desired electric field distribution'is
X
E=E/(-7) (5)
where ,QAE ZK*/on .

The charge distribution follows from Eq. 2

/‘9=—€E /<' /4 | N

...? 4
The Einstein relation shows that /Ql 2-(8T/‘~7')/E 2 (asxi0 )/’0 =5

Prob. 10.8.1 (a) The appropriate solution to Eq. 8 is simply

—§ — C.os\'\(x‘%)
cosh(A/2)

Evaluated at the midplane, this gives

T_=~S/cosh(as2) @)

(b) Symmetry demands that the slope of the potential vanish

%
I

~
=
~

at the midplane.. If the potential there is called § » evaluation of the term

in brackets from Eq 9 at the midplane gives -cosh § , and it follows that
( >_Cosh§_——c=>s\—\'§ @

so that instead of Eq. 10, the expression for the potential is that given

in the problem.

(c¢) Evaluation of the integral expression at the midplane

gives §e.

_ 4@ (%)
s\/Z(CO'::\-| B-coshd,

In principal, an iterative evaluation of this integral can be used to determine

8
2

Qc and hence the potential distribution. However, the integrand is singular
at the end point of the integration, so the integration in the vicinity of

this end point is carried out analytically. In the neighborhood of gc)(’.oskg'z

Cosh § +sinh i(&_&c)and the integrand of Eq. 4 is approximated by
e T\ L "2

' \

P

& (cosh B-cosh )= —'ﬁ—{ sinh @;(&-ﬁﬂf

With the numerical integration ending at §c+ 88 , short of §‘ , the

remainder of the integral is taken analytically.
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Prob. 10.8.1 (cont.)

§+A§ § +08

L 2(3 §‘ ( } ©®
w |lsinh 8 M &= (?.:ﬁ" BAa vy )
3. 5
Thus, the expression to be evaluated numerically is

¢ +20d - 5 y
- dd - r( & © )
=\2 [(— z

2 -g\/Z(cosk§—Cos\-\§¢)\ Sinh @.)

where g‘ and 6§ are negative quantities and S is a positive number.
At least to obtain a rough approximation, Eq. 7 can be repeatedly evaluated
with i‘altered to make A the prescribed value. For &A/z =1 ,§ = -3 the

distribution is shown in Fig. P10.8.1 and §_=1.

AX

Fig. P10.8.1. Potential distribution over
half of distance between parallel boundaries
having zeta potentials §-=.3.
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program Zeta_Potentials

integer istep, imid
real*4 delta,delx,phi(9999),phic,phierr,zeta,perror
common istep,delta,delx,phi,phic,phierr,zeta

call input
delx delta/real (istep-1)

imid 1 + istep/2
phic = 0.0
continue

CALCULATE THE VALUE OF PHIc
do 4 i=1,imid-1

phi(i+l) = phi(i) + delx * sqrt(2*(cosh(phi(i))-cosh(phic)))
continue

DETERMINE IF THE UNCERTAINTY IN PHIc IS LESS THAN THE ERROR

- perror = (phi(imid)-phic)/(phic + 1.0e~06)

if (abs(perror) .gt.abs(phierr)) then
phic = phi(imid)
goto 3

endif

PREPARE AND SEND THE DATA TO THE OUTPUT FILE
do 5 i=1,imid-1
phi(istep-i+1)=phi(i)
continue
call output
STOP ’GOOD BYE’
END -

SUBROUTINE INPUT

integer istep

real*4 delta,delx,phi(9999),phic,phierr, zeta
common istep,delta,delx,phi,phic,phierr, zeta

INPUT THE NECESSARY PARAMETERS FOR THE PLOT

write(*,*) ’Enter the zeta potential:’
read(*,*,err=8) zeta

write(*,*) ’‘Enter the normalized distance:’
read(*, *,err=9) delta

write(*,*) ’‘Enter the (odd) number of steps across the layer:’
read(*,*,err=10) istep

write(*,*) ’Enter the error fraction for the midplane phi:’
read(*,*,err=11) phierr

phi(1) = - zeta

RETURN

END

Courtesy of Andrew Washabaugh. Used with permission.



FbUTINE OUTPUT

Jea1*4 delta,delx,phi(9999) ,phic,phierr, zeta,x
common 1step,delta delx,phl,phlc,phlerr zeta

WRITE THE DESIRED DATA TO AN OUTPUT FILE, READY FOR ENABLE TO PLOT
open(unit=6,file=’e:zeta.out’,status="new’)

write(6,*) ’‘The potential parameters are’

write(6,9500) istep,delta,phic,zeta,phierr

9500 format(’ Steps= '/, ’,’,15,/,’ Delta= ‘', ’,’,F10.4,/,

& * Phi c= ’, ’,’,F10.4,/,’ Zeta= ‘', ’,’,Fl10.4,/,
' & , ! Error= ‘', ’,’, F10.4)
: write(6,*) ’ X position Phi(x)
. do 100 i=1,istep
l X = real(i-1) * delx

write(6,9510) x,phi(i)
100 continue -

9510 format(’ /,F10.5,’,’,F10.5)
close(unit=6)
RETURN

' END

Courtesy of Andrew Washabaugh. Used with permission.
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Prob. 11.17.6 (cont.)
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See, Briggs, R.J., Electron-Stream Interaction With Plasmas, M.I.T. Press (1964)

pp 32-34 and 42-44. .
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Prob. 10.9.1 (a) 1In using Eq. (a) of Table 9.3.1, the double layer is

assumed to be inside the boundaries. (This is by contrast with the use made
of this expression in the text, where the electrokinetics was represented by
a slip boundary condition at the walls, and there was no interaction in the

bulk of the fluid.) Thus, 1}d= o,vlﬂ:o and T = cE Aﬁ/clx . Because the

potential has the same value on each of the walls, the last integral is zero.

ST Ax-g %@iax- ¢E,[B() -Bal]=0 W

and the next to last 1ntegra1 becomes

j‘-r dx = €E,|8(x)-&(0)]= eE%Imwf%l @)
Thus, the velocity profile is a superposition of the parabolic pressure
driven flow and the potential distribution biased by the zeta potential so
that it makes no contribution at either of the boundaries.

(b) If the Debye iength is short compared to the channel
width, then @ =0 over most of the channel, Thus, Eqs. 1 and 2 inserted
into Eq. (a) of Table 9.3.1 give the profile, Eq. 10.9.5.

(c) Division of Eq. (a) of Table 9.3.1 evaluated using
Eqs. 1 and 2 by GE.’Q‘.T/?7 gives the desired normalized form. For example,
if S“ »3 and A =2, the electrokinetic contribution to the velocity profile

is as shown in Fig. P10.8.1.

Prob. 10.9.2 (a) To find Syx’ note that from Eq. (a) of Table 9.3.1

with the wall velocities taken as €SE3 /7

2 ’ 2
"x=€§753+-§5%%[(—’,§—)—%1 (1)

Thus, the stress is

= ,2Y _ 899 (2x
S'a*_ 73-;9 = 2 3g V& |> (2)

This expression, evaluated at x=0, combines with Egs. 10.9.11 and 10.9.12
to give the required expression.

(b) TUnder open circuit conditions, where the wall currents
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Prob., 10.9.2 (cont.)

due to the external stress are returned in the bulk of the fluid and where
the generated voltage also gives rise to a negative slip velocity that tends
to decrease Ey’ the generated potential is gotten by setting i in the given

equation equal to zero and solving for Ey and hence v.

= ((Sae/y) ap )
[Aﬁ” + grﬁ.,S‘G de ]
7 (&T/3)
Prob. 10.10.1 In Eq. 10.9.12, what is (5 € SD/;) E%compared to %: S‘ax?

To approximate the latter, note that ~ (4/R » where from Eq. 10.10.10,
yx d

2
U is at most (6 S/?)Eo . Thus, the stress term is of the order of SDQS/R
and this is small compared to the surface current driven by the electric

field if R>> 3¢

Prob. 10.10.2 With the particle constrained and the fluid motionless at

infinity, U=0 in Eq. 10.10.9. Hence, with the use of Eq. 10.10.7, that

expression gives the force.

_ MRESE,
-Fi— l + Js (v
TR

The particle is pulled in the same direction as the liquid in the diffuse
part of the double layer. For a positive charge, the fluid flows from
south to north over the surface of the particle and is returned from

north to south at a distance on the order of R from the particle.

Prob. 10.10.3 Conservation of charge now requires that
R I d
-0 p — ___1 g . ]:= (1)
oY R sin & ;ac 5E9+ﬁ59")5'"9 o

with.K9 again taking the forq’of Eq. 10.10.4. Using the stress functions

with & dependence defined in Table 7.20.1, Eq. 1 requires that

o8
-0 (E-28) s Z]m (et Ay v e Se. |0 @
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Prob. 10.10.3 (cont.)

The viscous shear stress can be substituted into this expression using
v

Eq. 10.10.8b with 129 given by Eq. 7 and E_, in turn written using Eq. 10.10.4.

e

Hence,

a(g, +2A )+—-°’(E+R3) 287{3v + 3€2 (E+A)lo(3)

2

This expression can be solved for A/R
A E(-o+23-CAES )+—4§—ZU

—_— = 4
3 zo-+2;_(,,@e§ )

R rR*

Substituted into Eq. 10.10.4, this expression determines the potential dis-

tribution. With no flow at infinity, the field consists of the uniform
imposed field plus a dipole field with moment proportional to A. Note
that the terms in.;? resulting from the shear stress contributions are
negligible compared to those in 0'5 , provided that 30 <<{R. With no
applied field, the shear stress creates a streaming current around the
particle that influences the surrounding potential much as if there were

a dipole current source at the origin. The force can be evaluated using

Eq. 10.10.9. A
126 54 0ec) _ 12EST
; = -TTF(7 A 23%%’ )- i E. (5)
* 200 + 2% _ LRES

n?
Again, note that, because S {{R, all terms involving !@ are negligible.
v ]

Thus, Eq.- 5 reduces to

_ GESTE,
L=-6T9RU+ o+ 3 (6)
Bt}

which makes it clear that Stoke's drag prevails in the absence of an

applied electric field.
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Prob. 10.11.1 From Eq. 10.11.6, the total charge of a clean surface is
34 = Agg
For the Helmholtz layer,

02=€'\9<(

Thus, Eq. 10.11.9 gives the coenergy function as

w——jmmeﬂ ww&—-x(p\ A+ R (-5}

Ao
In turn, Eq. 10.11. 10 gives the surface tension function as

Y=Y, - jeﬂuw&_ - S (¥ -F)

and Eq. 10.11.11 prov1des the 1ncremental capacitance.
C =29 _ &
d a-gA o

The curve shown in Fig. 10.11.2b is essentially of the form of Eq. 4.

The surface charge density shows some departure from being the predicted

(1)

(2)

(3)

(4)

(5)

linear function of Vo while the incremental capacitance is quite differ-

ent from the constant predicted by the Helmholtz model.

Prob. 10.11.2 (a) From the diagram, vertical force equilibrium for the

control volume requires that
2 2
TR (p-pf)+2vR(Y, - $€E, ) =0

so that

d g/_-2 \ z
P-P =" (1, ~7€Ey8)
and because B, = V¢/a,
2
S_ 8 _ 2 (v _LeY
A =—".‘;\'<\‘o—-2—€'r>
Compare this to the prediction from Eq. 10.11.1 (with a clean interface

so that % ~*0 and with R, =R, = R )

o
P-—PB:_-E.:"%_%(_Q_ (4)

-With the use of Eq. 4 from Prob. 10.11.1 with EA = O , this becomes

(1

(2)

(3)
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Prob. 10.11.2 (cont. )

Pd- pl= - (‘o’ ) (5)
in agreement with Eq. 3. Note that the shift from the origin in the
potential for maximum ?ﬁg is not represented by the simple picture of
the double layer as a capacitor.

(b) From Eq. 5 with R—> R + §% (6)

ol
P, -Pf’+59='R+S$(K’ZAa) -2(s- 6v°)+2(f— )s?

and it follows from the perturbation part of this expre531on that

=2 (.- = %)% @

If the volume "within" the double-layer is preserved, then the thickness

of the layer must vary as the radius of the interface is changed in accord-

ance with
2 1N Y3 (8)
(A +58) 4 (R4357) = 64TR D 5o =~ 2 R

It follows from the evaluation of Eq. 3 with the voltage across the layer

held fixed, that
ol 2 15‘

R4 5% +SA ¢ 7/02 (9)
~_2 | ey Leud\8% _2 L€y
~-Z(Y-LEs €5 ) 42 (8- Z___)T{z T 358

In view of Eq. 8,

<x-l€‘%> %? 2 (4« 1edyss o)

What has been shown is that if the volume were actually preserved, then
the effect of the potential would be just the opposite of that portrayed
by Eq. 7. Thus, Eq. 10 does not represent the observed electrocapillary
effect. By contrast with the 'volume-conserving' interface, a '"clean"
interface is one made by simply exposing to each other the materials

on each side of the interface.
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Prob. 10.12.1 Conservation of charge 1 T T T T 1'

for the double layer is represented using

the volume element shown in the figure.

OE, +V; G P03 U@E) ns.aoge(“-‘ﬂ sin6)=0

It is assumed that the drop remains spherical
and is biased away from the maximum in the

electrocapillary curve at OZ-‘:G; . Thus, with

the electric potential around the drop repre-

sented by
§="E°TCO$9+_A_COSS (2)
Yz
Eq. 1 becomes
. N e
..O'(-E°<‘.os e-2A CoSG)-\-cro' 25inhOcosbd v\e =0
‘ Rr® R sin ©
and it follows that the 6 dependence cancels out so that
~c
ch’19 + Z(I'/\ = -TE, (3)
R @ RS
Normal stress equilibrium requires that
g™ - SB _ 28 _ (4)
°r re R
With the equilibrium part of this expression subtracted out, it follows that
S 2cos @ — S r2C050 & 23}@ =0 (5)

In view of the stress-velocity relations for creep flow, Eqs. 7.21.23 and

7.21.24, this boundary condition becomes

S(EA3IN G 4 2%y

—_— = 2 < 6
= =3 >R 7.U=29E, . (6)
where additional boundary conditions that have been used are 1} :7% and
d ¢
7}'.: 1,9.(:0 . The shear stress balance requires that
~ e ~ d
Sge Sin6 - S, s.ne+¢E Q)

or
In view of Eq. 2 and these same stress-velocity relations, it follows that

3 nNE _ oL 3% . _ (8)
p\<7¢a+75)7}9 ——"?"-A +—E%-U-"' Co Eo
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Prob. 10.12.1 (cont.)
Simultaneous solution of Eqs. 3, 6 and 8 for U gives the required relation-

ship between the velocity at infinity, U, and the applied electric field, Eo'

_ o R €,
v 27a_+37b ®

To make the velocity at 1nf1n1ty equal to zero, the drop must move in the z-

direction with this velocity. Thus, the drop moves in a direction that would
be consistent with thinking of the drop as having a net charge having the same
sign as the charge on the '"drop-side" of the double layer.

Prob. 10.12.2 In the sections that have both walls solid, Eq. (a) of Table

ol
9.3.1 applies with 1} =0 and 1}5-0.
o0 =57 (38) [(2)- =
2_7h~ o a
Integration relates the pressure gradlent in the electrolyte (region a) and

in this mercury free section (reglon I) to the volume rate of flow.

I

Q“:wxq}éx:_lzﬂ.( (2)

o
Similarly, in the upper and lower sectlons where there is mercury and electro-

lyte, these same relations appiy with the understanding that for the upper

region, x=0 is the mercury interface, while for the mercury, x=b is the inter-

ace. o
f (= U(1-2) + o5 7_7“ %g)q[(%)z- 3:;1 (3)

b (E N
“UX 2 xy X (4)
1)‘,(*3—U6 29 DQL{()) b]
The volume rates of flow in the upper and lower parts of Section IT are then
3
I piy
Q, = Vaw _ov éﬁ) (5)
2 I2.7.,~

X _ (Ubw _ (6)
Qy 2 12.7 )

Because gravity tends to hold the interface level, these pressure gradients
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Prob. 10.12.2 (cont.)

need not match. However, the volume rate of flow in the mercury must be zero.

N

and the volume rates of flow in the electrolyte must be the same

Qr=QFs (&) =32V ®
oY /o ot

Hence, it has been determined that given the interfacial velocity U, the

velocity profile in Section II is

A (x) (9)

i
<
At
Pamn Y
|
1%
S
+
o
~—
=
pix
7’%
9 ix
¥

7&()0: U{_’i +3[ ),.’i]} (10)

Stress equilibrium at the mercury-electrolyte interface determines U. First,

observe that the tangential electric field at this interface is approximately

p
By * 3oaw v

Thus, stress equilibrium requires that

ST ') - P_ﬂ\ =0 (12)
ZG"OxW & Xxso b éx X= )

where the first term is the double layer surface force density acting in shear
on the flat interface. Evaluated using Eqs. 9 and 10, Eq. 12 shows that the

interfacial velocity is

T L (13)
20W(£4 +424,)

Finally, the volume rate of flow follows from Eqs. 5 and 8 as

Qaz Ueaw
4

Thus, Eqs. 13 and 14 combine to give the required dependence of the electro-

(14)

lyte volume rate of flow as a function of the driving current I.

- c\(L——)]Z

k(59 + 87!:1,

(15)



	Text1: Courtesy of Andrew Washabaugh. Used with permission.


