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8.1


I 	 Prob. 8.3.1 In the fringing region near the edges of the electrodes (at a 

distance large compared to the electrode spacing) the electric field is 

5E(8 	 (1) 

This field is unaltered if the dielectric assumes a configuration that is


essentially independent of 8. In that case, the electric field is everywhere


I tangential to the interface, continuity of tangential E is satisfied and there 

is no normal E (and hence D) to be concerned with. In the force density and 

istress-tensor representation of Eq. 3.7.19 (Table 3.10.1) there is no electric 

force density in the homogeneous bulk of the liquid. Thus, Bernoulli's 

equation applies without a coupling term. With the height measured from the


fluid level outside the field region, points (a) and (b) just above and


below the interface at an arbitrary point are rel ted to the pressure at infinity


3 	 by 

(2)


I F + bc¶ Pe 	 (3) 

The pressure at infinity has been taken as the same in each fluid because there


is no surface force density acting in that field-free region. At the interfacial


position denoted by (a) and (b), stress equilibrium in the normal direction


requires that


I p1,I = BTin 	 (4) 

Thus, if a < (/4 , it follows from Eqs. 2-4 that 

, ,I • ,• '-• : IEE,nD -iWa--(5)= - .W, 

EI 	 To evaluate the coenergy density, W', use is made of the constitutive law. 
E 

EG

--- =_o__.+_ _•_ _ 	 ,, (6) 

Thus, Eq. 5 can be solved for the interfacial position. 	 d


L1 =7+ 
!U'I61 0 -	 (7)­



8.2
 I 
I 

Prob. 8.3.2 Because the liquid is homogeneous, the electromechanical 

coupling is, according to Eq. 3.8.14 of Table 3.10.1, confined to the I 
interface. To evaluate the stress, note that 

I 
.L


(o) 6' 

blS= o 8 
F I 

IHence, with points positioned as shown in the figure, Bernoulli's equation


requires that


(3) 

I 
and stress balance at the two interfacial positions requires that


(4)R, : Pi 

(5) 

Addition of these last four expressions eliminates the pressure. Substitu­


tion for E with VOo/s(z) then gives the required result 

o, oJ(•.vo 3(6) 
- d ' -<a) 

Note that the simplicity of this result depends on the fact that regard-
 I 
less of the interfacial position, the electric field at any given z is
 I
simply the voltage divided by the spacing.


I

I
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8.3


Prob. 8.4.1 (a) From Table 2.18.1, the normal flux density at the surface


of the magnets is related to A by B =B cos ky = DA/Dy. There are no magnetic


materials below the magnets, so their fields extend to x+---. It follows


that the imposed magnetic field has the vector potential (z directed)


Given that = (O0 at y=O where A=O, Eq. 8.4.18 is adapted to the case at hand. 

hand. 
- -m -~ e(2)


I and it follows from Eq. 8.4.19 with - that 

=_+ (3) 

Variables can be regrouped in this expression to obtain the given f(y). 

g (b) Sketches of the respective sides of the implicit expression are 

as shown in the figure. .. t I( .@ 

L·e. 030o 

The procedure (either graphically or numerically) would be to select a y,


evaluate the expression on the right, and then read off the deformation


relative to go from the expression as represented on the left. The peak


in the latter curve comes at k( - o)=l where its value is l/e. If the


two solutions are interpreted as being stable and unstable to left and


right respectively, it follows that if the peak in the curve on the right


I is just high enough to make these solutions join, there should be an instab­


ility. This critical condition follows as


I 
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I 
Prob 8 4 2 (a) Stress e uilibrium i th l di .. . q n LLeJIIm ULrectL Lon 

at the interface requires that


P r~~~ ~P 

The normal vector is related to the interfacial deflection by 

--X4 (2) 1

In the long-wave limit, the electric field at the interface is essentially I 

SV (3)


Finally, Bernoulli's equation evaluated at the interface where the height,


is t becomes I 

These last three expressions are substituted into Eq. 1 to give the required 'I

1 4

L ± UII (L 

+E 4 -y-b)= Ti (5) 

(b) For small perturbations of from b, let . ? "small".I 4b where is 

Then, the linearized form of Eq. 5 is


+ 2- (6) 

With the "drive" put on the right, this expression is


where .V ­

[ (8)-ý)7 

is real to insure stability of the interface. To satisfy the asymptotic


condition as •-oeo , the increasing exponential must be zero. Thus, the


I 
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8.5


Prob. 8.4.2 (cont.)


combination of particular and homogeneous solutions that satisfies the


; 
boundary condition at y=O is 

£v:( -(8) 

(c) The 

I1 
where 

multiplication of Eq. 5 

(ý')C A 
by aL 

Ap 
cki/jd 

= 
gives 

(9) 

5 

To integrate, define 

V I -i-lo) 
so that z 

£ = ((1-1V•3 v 

Then, Eq. 9 can be written as 

() 

V dv + ?=o (12) 

I 
I 

and integration gives 

1 - iP+= co0s t. 

This expression can be written in terms of dg/ (A 

(13) 

by using Eq. 10. 

I_ __ _ + (14) 

Because d•/c½..o 

Eq. 14 becomes 

as Y--*T , the 

-- P(-)( 

constant 

++ 

is ( ) - ) and 

(15) 

Solution for 41/4leads to the integral expression 

II A-- I = 

6 +P(T. -P(Tl-t I a 
Note that the lower limit is set by the boundary condition at y=0. 

(16) 

I 



8.6


Prob. 8.6.1 In view of Eq. 31 from problem solution 7.9.2, the require­


ment that 1Pr =0 be zero with d=R but shows if pthat P-bo is 

to be finite then


provided that WZ t 2 CL . By the definition of this function, given 

in Table 2.16.2, this is the statement that I 

J j ______ (2) 3

So the eigenvalue problem is reduced to finding the roots, o)Coof


31 (i Y R) - O (3) 

In view of the definition of ' , the eigenfrequencies are then written I 

in terms of these roots by solving 

_rh=k t-(aa) (4) 

for w. W+O 2 

(b) According to this dispersion equation, waves having the same frequency


have wavenumbers that are negatives. Thus, waves traveling in the. z I

directions can be superimposed to obtain standing pressure waves that


vary as cos 91. According to Eq. 14, if p is proportional to coS R• 

then 1Ld • and conditions 7R(o)o=0 aresi a the that IJ()=O satis­

fied if a= Or/?fn =o0,i. . For these modes, which satisfy both 

longitudinal and transverse boundary conditions, the resonance frequencies 

are therefore 

C -(6)


I


I




1 8.7


Problem 8.7.1 The total potential, distinguished from the perturbation 

potential by a prime, is ' = - eno 
. Thus, 

I or'j~V_a~.~.a 4 4 LE,*Ži~ o (1)


to linear terms, this becomes 

= o0 
__ (2) 

which will be recognized as the limit a--poof Eq. 8.7.6 integrated twice on x. 

3, Problem 8.7.2 What is new about these laws is the requirement that the 

I 
I 

current linked by a surface of fixed identity be conserved. In view of the 

generalized Leibnitz rule, Eq. 2.6.4 and Stoke's Theorem, Eq. 2.6.3, integral 

condition (a) requires that 

A vJi1 4 v A (3) 

The laws are MQS, so J is solenoidal and it follows from Eq. 3 that 

V Y, C 4a X (4) 

i 
With the understanding that 

remaining laws are standard. 

0 is a constant, and that B =,~U~I , the 

Problem 8.7.3 Note that v and Jf are automatically solenoidal if they take 

I 
the given form. The x component of Eq. (c) from Prob. 8.7.2 is also an identity 

while the y and z components are 

-3, O (1) 

3 
I "t 

Similarly, the x component of Eq. (d) from Prob. 8.7.2 is an identity while 

(2 

the y and z components are 

* 

1t 
(3) 

(4) 

Because B is imposed, Ampere's Law is not required unless perturbations in the


magnetic field are of interest.


I 



8.8 I 
Prob. 8.7.3(cont.)
 I 
In terms of complex amplitudes 1= MJxi , Eqs. 1 and 2 show that 

-- A
-bs~ ~ a bZ (5) 

Substituted into Eqs. 3 and 4, these relations give


(6) 

The dispersion equation follows from setting the determinant of t:he coefficients


equal to zero.


(7) 1(7ý'- Ac t)8.6 = 

with the normalization -~/& - ,T3ot ,t 

it follows that


Thus, solutions take the form


,A , -6 A -L A+ 

4 Ae k As XA% + Ae + A a 4 

From Eq. 6(a) and the dispersion equation, Eq. 8, it follows from Eq. 9 that (9) I 
,,A,=e,+ -3 A - ,A eA (10) 

The shear stress can be written in terms of these same coefficients using


Eq. 9.

, A0 4X^_. 2(1 A, - e.A. T, A3e - I..4Aa ) (11) 3 

Similarly, from Eq. 10,
 I 
(12)
=A, e 4" Ae e aA) I 

Evaluated at the respective CL and /3 surfaces, where x = A and x=0, 

IEqs. 9 and 10 show that


I 
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Prob. 8.7.3(cont.) 

A .!z 

i FA 

(13)


A
'- IýI e." I I 

Similarly, from Eqs. 11 and 12, evaluation at the surfaces gives


AtS A, ie' ,ah "6i 

^ 
 -- •L (14)
-=6C 41L 

;_ K -16, e-

AA~


The transfer relations follow from inversion of 13 and multiplication with 14


Sp, 
A a 

(15)£KW1 IWrub ­x Ot-

A;'I lyý I


All required here are the temporal eigen-frequencies with the velocities 

constrained to zero at the boundaries. To this end, Eq. 13 is manipulated 

to take the form (note thatApe+Ate -(A,+XL" x + (A,-A,4 ",X )* 

~3 

Aji a
"y1 

1 


AA04 

A-A
0AX 

A0 0 A+Z 
A


IJ( oAJ6 c*c1a A;PA4 
(16) 

The condition that the determinant of the coefficients vanish is then


- - =- LbO ) 12 (17) 

Transformation suggested by Mr. Rick Ehrlich.




8.10 I

Prob. 8.7.3(cont.) 

This expression is identical to C04 ( -r) = t and therefore I 
has solutions 

(18) 

With the use of Eq. 8, an expression for the eigenfrequencies follows


(19) 3 
Manipulation and substitution s= c shows that this is a cubic in s. 

A V+ o 
(20) 

If the viscosity is high enough that inertial effects can be ignored, the ordering 

of characteristic times is as shown in Fig. 1 , I
Then, there are two roots to Eq. 20 fo


Fig. 1
 i 
given by setting 'r =0 and solving for


A-=tI ,, ,(21) 

Thus, there is an instability having a growth rate typified by the magneto-
 I 
viscous time VT1ýV"


IIn the opposite extreme, where inertial effects are dominant, the ordering of


times is as shown in Fig. 2 and the middle


term in Eq. 20 is negligible compared to


,r_~- ,c~i I,--~-
IA& .V I 

In th 
two. 

e, w v• 
the other v 

(22) I 
Note that substitution back into Eq. 20 shows that the approximation is in fact
 I 
self-consistent. The system is again unstable, this time with a growth rate
 Idetermined by a time that is between 1 and 9AV. 

Prob. 8.7.4 The particle velocity is simply U=bE = a9E;/ 7 . Thus, I 
the time required to traverse the distance 2a is actaU= yE. 

U

I
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8.11


Prob. 8.10.1 With the designations indicated in the


figure, first consider the bulk relations. The


perturbation electric field is confined to the


I I nsult-
4 

n lar wher 

I -'--. ^e • .- -"C 
eI Ae(1)

e.Ikd1d 1 
The transfer relations for the mechanics are applied three times. Perhaps it is


best to first write the second of the following relations, because the


transfer relations for the infinite half spaces (with it understood that k > 0)


follow as limiting cases of the general relations.


P (2) 

4(4) 

* A/• .1W A (3)
Ae _--" I anj 

Now, consider the boundary conditions. The interfaces are perfectly conducting, so


y• -o 3 _• - e (5) 

In terms of the potential, this becomes


A C"'(6) 

I Similarly, 

Stress equilibrium for the x direction is


I t1 D7 - -67 (8) 

In particular, 

'C ' z(9 z ) 

Hence, in terms of complex amplitudes, stress equilibrium for the upper interface is 

I

I




8.12 II 
Prob. 8.10.1(cont.) 

In 
Similarly, for the lower interface,


P̂ p ^e (11
P +i-P +4E 'E e-x ­ I 

Now, to put these relations together and obtain a dispersion equation, insert 

Eqs. 5 and 6 into Eq. 1. Then, Eqs. 1-4 can be substituted into Eqs. 9 and 10, I 
which become 

F +' 
A4k 

TIciL±Z)3 'Y; + z 
t,, 

,C~A, CEO4 
I 
I 

~Ž~cW +14A-.~ 0= 

(12 

I 

For the kink mode ( - )),both of these expressions are satisfied if I 
(13 

With the use of the identity C t.i)/s;,LIJ=t/&/pethis expression reduces to 

, - ,° * (14 

I 
For the sausage mode ( ), both are satisfied if 

u 4-JA- + E t?- k[COcZ0 (15 I 
and because( uli•VS L# " .. 

(16 

In the limit kd( 1<,Eqs. 14 and 16 become


(17 

(18
,I 
I 



I 
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8.13


Prob. 8 .10.1(cont.)


Thus, the effect of the electric field on the kink mode is equivalent to


having a field dependent surface tension with y • -- E~d~/ 

The sausage mode is unstable at k-O (infinite wavelength)with Eo=O while 

the kink mode is unstable at E = . If the insulating liquid 

filled in a hole between regions filled by high conductivity liquid, the


hole boundaries would limit the values of possible k's. Then there would be


a threshold value of E

o 

Prob. 8.11.1 (a) In static equilibrium, H is tangential to the interface and 

hence not affected by the liquid. Thus, H = ieoH (R/r) where Ho=I/ZR. The 

surface force densities due to magnetization and surface tension are held 

in equilibrium by the pressure jump (• -/, , E-=) 

(1)


(b) Perturbation boundary conditions at the interface are, at r =R+ 
- - -. ,-- a 

which to linear terms requires


T'k (3) 

and kXS 0=o which to linear terms requires that fO-oo• and hB o 

These are represented by 

A 0 o11 (4) 

With nr,-JpJ=Tt•- - h stress equilibrium for the interface requires that
T s 


BpI= I1i240-5 + ý'7. -ý (5) 

To linear terms, thisexpression becomes Eq. (1) and


Ilý J_ +A O (6) 
A 

where use has been made of fi = ýU// 

Perturbation fields are assumed to decay to zero as r-ep• and to be finite 

at r = 0. Thus, bulk relations for the magnetic field are (Table 2.16.2) 

I 



8.14 I

Prob. 8.11.1 (cont.) I


IA" (8) 

From Eqs. (3) and (4) together with these last two expressions, it follows
 I

that 


(9)


This expression is substituted into Eq. (6), along with the bulk relation
 I

for the perturbation pressure, Eq. (f) of Table 7.9.1, to obtain the desired
 U
dispersion equation.


I

I

I
(c) Remember (from Sec. 2.17) that Fm(O,R) and fm(0,R) are negative while


term on the 
fm(a/ ,R) is positive. For /4., the first "imposed field" I

right stabilizes. The second "self-field" term stabilizes regardless of


the permeabilities, but only influences modes with finite m. Thus, sausage
 I 
modes can "exchange" with no change in the self-fields. Clearly, all modes


m#0 are stable. To stabilize the m=0 mode,
 I

2. (11) I


(d) In the m=0 mode the mechanical deformations are purely radial. Thus,
 I 
the rigid boundary introduced by the magnet does not interfere with the


motion. Also, the perturbation magnetic field is zero, so there is no
 I

difficulty satisfying the field boundary conditions on the magnet surface.
 I

(Note that the other modes are altered by the magnet). In the long wave


limit, Eq. 2.16.28 gives Fo(O,,)=ý
-I 

a IV,> - /V 
I 

and hence, Eq. (10) I

becomes simply .


, wa -/ (12) I

Thus, waves propagate in the z direction with phase velocity u/ 

I




8.15


Prob. 8.11.1 (cont.) 

Resonances occur when the longitudinal wavenumbers are multiples of n


Thus, the resonance frequencies are


S.. = t (13) 

Prob. 8.12.1 In the vacuum regions to either


side of the fluid sheet the magnetic fields


I take the form 

(11


where 7 = -P e' 

I n the regions to either side.the mass density is


negligible, and so the pressure there can be taken


as zero. In the fluid,the pressure is therefore


.&%, I-"c-/T• 
P' r &.DLHy$.-r gi (3) 

where p is the perturbation associated with departures of the fluid from static


equilibrium. Boundary conditions reflect the electromechanical coupling and


I are consistent with fields governed by Laplace's equation in the vacuum regions 

and fluid motions governed by Laplace's equation in the layer. That is one 

boundary condition on the magnetic field at the surfaces bounding the vacuum, and 

one boundary condition on the fluid mechanics at each of the deformable 

interfaces. First, because F.B%=0 on the perfectly conducting interfaces, 

(6)


I (7)


In the absence of surface tension, stress balance requires that


In particular, to linear terms at the right interface


UP Y (9)= # 



8.16


Prob. 8.12.1(cont.) 

Similarly, at the left interface 

P? 44. Wo S= oj (10) 

In evaluating these boundary conditions, the amplitudes are evaluated at the 

unperturbed position of the interface. Hence, the coupling between interfaces 

through the bulk regions can be represented by the transfer relations. For the 

I 

I 

fields, Eqs. (a) of Table 2.16.1


For the fluid layer, Eqs. (c) of


:i r a:d 

(in the magnetic analogue) give


,443~O Ib 

.I I 

~a~ I J~2ia 

Table 7.9.1 become


~ fd•II4 

(11) 

(12) 
i 
I 

(13) 
I 
I 

/ .'&-Because the fluid has a static equilibrium, at the interfaces, 


It sounds more complicated then it really is to make the following substitutions


First, Eqs. 4-7 are substituted into Eqs. 11 and 12. In turn, Eqs. llb and 12a


are used in Eqs. 9 and 10. Finally these relations are entered into Eqs. 13


which are arranged to give

I. - -^ 

%- O-C9 • (14)
=O


Ad AaL 
For the kink mode, note that setting ---Iinsures that both of Eqs. 14 are
 I 
satisfied if


I 
0.jt4 CJ~ 
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Prob. 8.12.1(cont.)


15) 

Similarly, if T =- so that a sausage mode is considered, both equations are


satisfied if L (


.(16) 

These last two expression comprise the dispersion equations for the respective


modes. It is clear that both of the modes are stable. Note however that


perturbations propagating in the y direction (kz=O) are only neutrally stable.


This is the "interchange" direction discussed with Fig. 8.12.3. Such perturbations


result in no change in the magnetic field between the fluid and the walls and


in no change in the surface current. As a result, there is no perturbation


magnetic surface force density tending to restore the interface.
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Problem 8.12.2


Stress equilibrium at the interface requires that


-T'44e-TY,=o P =r, + ,. ;" =4 ,o• (1) 

Also, at the interface flux is conserved, so


(2)


While at the inner rod surface


:= 0 (3) 

At the outer wall,


ta = (4)


Bulk transfer relations are


,o-) G., (oL T) 0,l 
III T(5)

PJ


The dispersion equation follows by substituting Eq. (1) for p in Eq.


(5b) with V substituted from Eq. (6a). On the right in Eq. (5b), Eq. (2)


is substituted. Hence,


A (7) 

Thus, the dispersion equation is


U ~(8) 

From the reciprocity energy conditions discussed in Sec. 2.17, F (a,R)> 0


and F (b,R) < 0, so Eq. 8 gives real values of c regardless of k. The 

system is stable.


II 
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Problem 8.12.3 In static equilibrium v=0,


= - and _ _ 
(1) 

' With positions next to boundaries denoted ' (4 

as shown in the figure, boundary conditions 

from top to bottom are as follows. For the conducting sheet backed by an 

infinitely permeable material, Eq. (a) of Table 6.3.1 reduces to


a 
 (2) 

The condition that the normal magnetic flux vanish at the deformed interface 

is to linear terms 

4- of = 0h (3) 

The perturbation part of the stress balance equation for the interface is


Ae ~. d _IbX s 

J - -. - / oq 

A A 

In addition, continuity and the definition of the interface require that ý=aA


Finally, the bottom is rigid, so


e A=o 
0 

Bulk relations for the perturbations in magnetic field follow from Eqs. (a)


of Table 2.16.1


(6) 
So -l­

where - has been used. 
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Problem 8.12.3 (cont.) 

The mechanical perturbation bulk relations follow from Eqs. (c) 

of Table 7.9.1 

aI [6I (7) 

where 

Ae (8) 

Equations 2 and 6a give 

- a49z , (4J-V)o4 

This expression combines with Eqs. 3 and 6b to show that 

3 

Ai=__ _ __._ ? t_r) _-_ _ (1 0 ) 

Thus, the stress balance equation, Eq. 4, can be evaluated using R from 

Eq. 10 along with p from Eq. 7a, Eq. 5 and Eq. 8. The coefficient of 

is the desired dispersion equation. 

W c (11) 

IC.~b~i 

+ 

-- 

( 

I 

I 
*1 
I 
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Prob. 8.12.4 The development of this section leaves open the configuration


beyond the radius r=a. Thus, it can be readily adapted to include the effect


of the lossy wall. The thin conducting shell is represented by the boundary


condition of Eq. (b) from Table 6.3.1.


+'r(1)


where (e) denotes the position just outside the shell. The region outside the


shell is free space and described by the magnetic analogue of Eq. (b) from


Table 2.16.2.


A c (2) 

Equations 8.12.4a and 8.12.7 combine to represent what is "seen" looking


inward from the wall.


A6 =F 6Nt (3) 

Thus, substitution of Eqs. 2 and 3 into Eq. 1 gives


3 ) ") (4) 

Finally, this expression is inserted into Eq. 8.12.11 to obtain the desired


dispersion equation.


*'( -14.4) + Oc +12 
7 (5) 

The wall can be regarded as perfectly conducting provided that the last term


is negligible compared to the one before it. First, the conduction term in


the denominator must dominate the energy storage term.


1 Jc (6) 

3O




8.22


Prob. 8.12.4(cont.)


Second, the last term is then negligible if


,a, S I_W - - G., , ( ) .), G. js.( k, (7) 

In general, the dispersion equation is a cubic in c> and describes the coupling


of the magnetic diffusion mode on the wall with the surface Alfven waves


propagating on the perfectly conducting column. However, in the limit where


the wall is highly resistive, a simple quadratic expression is obtained for


the damping effect of the wall on the surface waves. 


the denominator small compared to the first, (c-


' 
-/0r(o, E k) + o () + JI o 

where an effective spring constant is


and an effective damping coefficient is 


5 =- 01-,+ RM. G-c')G, 

Thus, the frequencies (given by Eq. 8) are


With the second term in 
 I 
0- i/C$#. C) and 

(8) I 

(R.a) 

(10)


Note that F (0,R) < 0, F (a,R))0, F (W ,a)-F (R,a)) 0 and G (R,a)G (a,R) < 
m m them m m m 

Thus, the wall produces damping. 

0. 

3 
I 
I 
I 
I 
I 
I 



U 

I Prob. 8.13.1 In static equilibrium, the 

radial stress balance becomes 

so that the pressure jump under this 

condition is 

-11 e°E _- _ (2) 

In the region surrounding the column, 

the electric field intensity takes the form 

- %^ (V. (3) 

while inside the column the electric field is zero and the pressure is given 

by (cat -E-l) 
I ? b P(rIt) (4) 

Electrical boundary conditions require that the perturbation potential vanish 

as r becomes large and that the tangential electric field vanish on the 

deformable surface of the column. 

I )e 

(5) 

I In terms of complex amplitudes, with P-, 

*I " -' (6) 

Stress balance in the radial direction at the interface requires that (with some 

linearization) (p• • 0O) 

To linear terms, this becomes (Eqs. (f) and (h), Table 7.6.2 for T ) 

P, =U-E - °E' -C.-( (8) 

Bulk relations representing the fields surrounding the column and the fluid 

I 
within are Eq. (a) of Table 2.16.2 and (f) of Table 7.9.1 

I 
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Prob. 8.13.1(cont.) 

S= (10) 

A- (11) 

Recall that ~ --(&o-4U) , and it follows that Eqs. 9,10 and 6 can be 

substituted into the stress balance equation to obtain 

A tA A (12 

If the amplitude is to be finite,the coefficients must equilibrate. The result 

is the dispersion equation given with the problem. 

I 
I 
I
I
I

I

I


I

I


I




8.25 

Problem 8.13.2


The equilibrium is static with the distribution of electric field


i i-


E II 
and difference between equilibrium pressures 

required to balance the electric surface force 

density and surface tension 
•Z . . 

T, =I- -t1.-' a!1 (2) 

With the normal given by Eq. 8.17.18, the perturbation boundary conditions


require n~j-EQ0Oat the interface.


A , A (3) 

that the jump in normal D be zero, 

A - A(4) 

and that the radial component of the stress equilibrium be satisfied


___ _ ? (5) 

In this last expression, it is assumed that Eq. (2) holds for the equilibrium


stress. On the surface of the solid perfectly conducting core,


= ', -- o (6) 

Mechanical bulk conditions require (from Eq. 8.12.25) (F(b,R) < 0 for i>b 

I (7) 

while electrical conditions in the respective regions require (Eq. 4.8.16)

I (1*0 

Now, Eqs. (7) and (8) are respectively used to substitute for ~?~ d, C 

in Eqs. (5) and (4) to make Eqs. (3)-(5) become the three expressions 

3* F(b., ) -/ . C,,) <o9r, 


I


I
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Problem 8.13.2 (cont.) 

I -I AC I 

~(n.+i) -~ .~b s ___ 

I 

Vr T 4rre C
Y1~ + 1) 

The determinant of the coefficients gives the required dispersion 

equation which can be solved for the inertial term to obtain 

(A-.>;?-(4 E I)- EI(,),*oi,­

The system will be stable if the quantity on the right is positive. In the 

limit b < R, this comes down to the requirement that for instability 

or 

(-i,)(t-

oE 

2) 

hS (h+ 1) 

(11 

where C 

and it is clear from Eq. (11) that for cases of interest, the denominator 

of Eq. (12) is positive. 

I 
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Problem 8.13.2 (cont.)


The figure shows how the conditions for incipient instability can be


calculated given w/ 4 What is plotted is the right hand side of Eq. (2).
e. 


In the range where this function is positive, it has an asymptote which


can be found by setting the denominator of Eq. (12) to zero


Sh - (13) 

The asymptote in the horizontal direction is the limit of Eq. (12) as CI/o-oo


Tn = n + (14) 

The curves are for the lowest mode numbers n = 2,3,4 and give an idea of


how higher modes would come into play. To use the curves, take /•o, =20


as an example. Then, it is clear that the first mode to become unstable is


n=2 and that instability will occur as the charge is made to exceed about a


value such that r = 6.5. Similarly, for 6/-o=10, the first mode to become


unstable is n=3, and to make this happen, the value of T must be T =9.6. The


higher order modes should be drawn in to make the story complete, but it


appears that as C/o is reduced, the most critical mode number is increased,


as is also the value of 1 required to obtain the instability.


I


I


I


I
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Problem 8.13.2 (cont.) 

I

I


U 

I

BI 
I

I
I


I

%I 
I


2 3 Q4 7 10 0o 30 4o So 70 /oo


I

I

I
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Prob. 8.14.1 As in Sec. 8.14, the bulk coupling can be absorbed in the


pressure. This is because in the bulk the only external force is


I -(1)


where Q•= ,/qR/is uniform throughout the bulk of the drop. Thus,


the bulk force equation is the same as for no bulk coupling if p--IT=E p44 . 

In terms of equilibrium and perturbation quantities,


3r= pU * r ) + e T(r) P co 9)(Cos (2) 

where• -o()T r) and i plays the role p in the mechanical 

transfer relations. Note that from Gauss' Law, = I 1- C/, , and that 

because the drop is in static equilibrium, Jf/dr=o and - is independent 

of r. Thus, for a solid sphere of liquid, Eq. (i) of Table 7.9.1 becomes 

In the outside fluid, there is no charge density and this same transfer


relation becomes


(4)
A
3470, 

At each point in the bulk, where deformations leave the charge


distribution uniform, the perturbation electric field is governed by Laplace's


equation. Thus, Eq. (a) of Table 2.16.3 becomes


= (4)
r•NV 


LR) 0 i (5) 

Boundary conditions are written in terms of the surface displacement


5 I(6)


I 
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Prob. 8.14.1 (cont.)


Because there is no surface force density (The permittivity is E. in eacih1 

region and there is no free surface charge density.) 

D 9 ___T1, 

This requires that


(8)


T++ 

Continuation of the linearization gives


(9)


for the static equilibrium and


(10) 
3Ea


for the perturbation. In this last expression. Eq. (1) of Table 7.6.2


has been used to express the surface tension force density on the right.


That the potential is continuous at r=R is equivalent to the condi­


tion that F x•E•l=o there. This requires that


(11) 

where the second expression is the 4 component of the first. It follows 

from Eq. (11) that 

(12) 

and finally, because 2 E0 -

(13) 

The second electrical condition requires that •b• ) --O 

which becomes 

j e - ae q 
14)
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Prob. 8.14.1 (cont.)


Linearization of the equilibrium term gives


Tr + O 	 (15) 

Note that outside, E.= 3R /•.V while inside, Y/3 ..E.= Thus, 

Eq. 15 becomes 

M L 0o (16)

I, 
Equations 4 	and 5, with Eq. 13, enter into Eq. 16 to give


3(t) - < 	 ) A (17)(117) 

which is solved for . This can then be inserted into Eq. 10, along 

with P and IT given by Eqs. 2 and 3 and Eq. 6 to obtain the desired dis­

persion equation 

(%V 	 3Ec (18) 

The functions 0I,••"( )andCOn({ n(0,')- (p,R)=(l)/• so it follows


I 	 that the imposed field (second term on the right) is destabilizing, and that


the self-field (the third term on the right) is stabilizing. In spherical


geometry, the surface tension term is stabilizing for all modes of interest,


I All modes first become unstable (as Q is raised) as the term on the 

right in Eq. 18 passes through zero. With I TIR(, this condition is 

therefore ( i ) 

3= 	 C -ý Rf(h+Z)(Z h + 1) (19) 

The n=0 mode is not allowed because of mass conservation. The n=1 mode,


which represents lateral translation, is marginally stable, in that it gives


I

I
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Prob. 8.14.1 (cont.)


LJ=0 in Eq. 18. The n=l mode has been excluded from Eq. 19. For ) 0, 

Q is a monotonically increasing function of n in Eq. 19, so the first 

unstable mode is n=2. Thus, the most critical displacement of the interfaces


have the three relative surface displacements shown in Table 2.16.3 for p


The critical charge is


Q, l/60 TTZ fn"Y 6 0 = 7.3 E0'`I( 

Note that this charge is slightly lower than the critical charge on a


perfectly conducting sphere drop (Rayleigh's limit, Eq. 8.13.11).


Prob. 8.14.2 The configuration is as shown in Fig. 8.14.2 of the text,


except that each region has its own uniform permittivity. This complica­


tion evidences itself in the linearization of the boundary conditions,


which is somewhat more complicated because of the existence of a surface


force density due to the polarization.


The x-component of the condition of stress equilibrium for the


interface is in general 


This expression becomes


'~-~j,Iy T - ~i 'i1j (,5 4+e,) +b(1 + 0)=O(2) 

Note that Eo=Eo(x), so that there is a perturbation part of E 2 evaluated 

at the interface, namely DEo A/,/d. Thus, with the equilibrium part of 

Eq. 2 cancelled out, the remaining part is 

as4 (( 4' (Ad AP~-be)cA (3)O 

A 
It is the bulk relations written in terms of T that are available, so 

this expression is now written using the definition p =I - J'. Also, 

0o1jx=-Eoand EdEc 0 =X , so Eq. 3 becomes 

3 
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Prob. 8.14.2 (cont.)


I The first of the two electrical boundary conditions is 

=_0 0 (5) 

and to linear terms this is


+3 + 2 •'I (6) 

The second condition is


I '0V. (7)A 

By Gauss Law, e /fc-=j and so this expression becomes 

I AA. 

Cc0,cI + a 11 =o (8) 

These three boundary conditions, Eqs. 4, 6 and 8, are three equations

AA e AA -e - e 

in the unknowns T ,1! • ,. Four more relations are 

provided by the electrical and mechanical bulk relations, Eqs. 12b, 13a, 

14b and 15a, which are substituted into these boundary conditions to give 

r 

I 7- -3ýr­

+.o!! -I (9) 
I ;i!
I 

ii 40U ReA.ec~oiLBc 

i· 
I This determinant reduces to the desired dispersion equation.


I 

I 
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Prob. 8.14.2 (cont.) 

I 
+- d(Eb-Ep) C3+ L (10) 

R(E,-E~j16' C-3 

In the absence of convection, the first and second terms on the


right represent the respective effects of gravity and capillarity. The i

third term on the right is an imposed field effect of the space charge,


due to the interaction of the space charge with fields that could largely


be imposed by the electrodes. By contrast, the fourth term, which is also I


due to the space-charge interaction, is proportional to the square of the


space-charge discontinuity at the interface, and can, therefore, be inter­


preted as a self-field term, where the interaction is between the space


charge and the field produced by the space charge. This term is present,


even if the electric field intensity at the interface were to vanish. The I


fifth and sixth terms are clearly due to polarization, since they would not


be present if the permittivities were equal. In the absence of any space-


charge densities, only the sixth term would remain, which always tends to


destabilize the interface. However, by contrast with the example of


Sec. 8.10, the fifth term is one due to both the polarizability and the I


space charge. That is, Ea and Eb include effects of the space-charge. 

(See "Space-Charge Dynamics of Liquids",Phys. Fluids, 15 (1972), p. 1197.) 3


I

I

I
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Problem 8.15.1


Because the force density is a pure gradient, Equation 7.8.11 is


applicable. With . =. /r-- it follows that A = -•Tl/r .•(•lrO 

so that & =- ,A and Equation 7.8.11 becomes 

Note that there are no self-fields giving rise to a perturbation field, as in


Section 8.14. There are also no surface currents, so the pressure jump at


the interface is equilibrated by the surface tension surface force density.


3· (2)


while the perturbation requires that


3 , (3)\ S 

I Linearization of the first term on the left (P.( tvX) x substitution to 

I obtain complex amplitudes and use of the pressure-velocity relation for a 

column of fluid from Table 7.9.1 then gives an expression that is homogeneous 

I• )(=cJ O . Thus the dispersion equation, )(jt)= O , is 

(c) Recall from Section 2.17 that Fm (0,R) (0 and that the m = 0 mode is


excluded because there is no z dependence. Surface tension therefore only


tends to stabilize. However, in the m = 1 mode (which is a pure translation


of the column) it has no effect and stability is determined by the electro-


I mechanical term. It follows that the m = 1 mode is unstable if 3:~ < 0 

Higher order modes become unstable for - 0=(H"-I)/~U . Conversely, 

I 
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Problem 8.15.1 (cont.)


all modes are stable if ~)9O. With Jo and I of the same sign, the


po0 4M force density is radially inward. The uniform current density


fills regions of fluid extending outward providing an incremental increase


in the pressure (say at r = R) of the fluid at any fixed location. The


magnetic field is equivalent in its effect to a radially directed gravity 

that is inward if 0T)> 3O 

Problem 8.16.1 In static equilibrium


- TT (1)


In the bulk regions, where there is no electromechanical coupling, the


stress-velocity relations of Eq. 7.19.19 apply


61 
 (2) 

and the flux-potential relations, Eq. (a) of Table 2.16.1, show that


(3) 1 
The crux of the interaction is represented by the perturbation boundary 
 3 
conditions. Stress equilibrium in the x direction requires that


iSKJ4 + ti r1, =o (4) 

With the use of Eq. (d) of Table 7.6.2 and =1¶/4 the linearizedx , 

version of this condition is 
Ae A 

The stress equilibrium in the y direction requires that


and the linearized form of this condition is


E ae 0 (7), 

I 
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Prob. 8.16.1 (cont.)


The tangential electric field must vanish on the interface, so


I d = 	 (8) 

I 	 and from this expression and Eq. 7, it follows that the latter condition


can be replaced with


Equations 2 and 3 combine with (9)


Equations 2 and 3 combine with Eqs. 5 and 9 to give the homogeneous equations


L^ I 
I	 C-a)e id ~7/ ~dt, ) j(8-rB 

-Ae-A,•	 (10)

I 
aclr-"~(a 	 * a) ^Pj 

m 
'5 	 Multiplied out, the determinant becomes the desired dispersion equation.


With the use 	of the definition 6 


I L 

I Now, in the limit of low viscosity, 


A 

which can be 	solved for C .


I 

iL this expression becomes


-(12)


9/I--6 0 and Eq. 12 become


E: 0 	 (13) 

_ 	 (14)4rcDJ) 

Note that in this limit, the rate of growth depends on viscosity, but the


I field for incipience of instability does not.


In the high viscosity limit, / • and Eq. 12 become


I [ 	 (15) 

I3 
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Prob. 8.16.1 (cont.) 

Further expansion of the denominator reduces this expression to 

S+c +f'Y, -E. (16) 

Again, viscosity effects the rate of growth, but not the conditions for 

incipience of instability. 

Problem 8.16.2 In static equilibrium, there is no surface current, and 

so the distribution of pressure is the same as if there were no imposed H. 

S-Ito- ; ()>o 

SX A 

The perfectly conducting interface is to be modeled by its boundary conditions. 

The magnetic flux density normal to the interface is taken as continuous. 

Fi. •l•=o (2) 

With this understood, consider the consequences of flux conservation for a 

surface of fixed identity in the interface (Eqs. 2.6.4 and 6.2.4). 

r ii d 4vx($)]. 4 =oI(3) S I 

Linearized, and in view of Eq. 2, this condition becomes 

(4) 

Bulk conditions in the regions to either side of the interface represent the 

fluid and fields without a coupling. The stress-velocity conditions for the 

lower half-space are Eqs. 2.19.19. 

I 

While the flux-potential relations for the magnetic fields, Eqs. (a) of 

Table 2.16.1, reduce to I 

5X ' T' /U(6 I 


I 
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Prob. 8.16.2 (cont.)


Boundary conditions at the interface for the fields are the linearized versions


I of Eqs. 2 and 4. For the fluid, stress balance in the x direction requires


where V;- t . Stress balance in the y direction requires 

S-1 A+L/ o \ o 	 (8) 

I	 Z' 'A"el 
[(9)


AOQ 	 =0I	 ýlzý 
I I
I	 I 

It follows that the required dispersion equation is


I) 	 = 0 (10) 

In the low viscosity limit, 4/jL'1 and therefore


the last term goes to zero as -- so that the equation factors into the


dispersion equations for two modes. The first, the transverse mode, is repre-


I sented by the first term in brackets in Eq. 10, which can be solved to give the


dispersion equation for a gravity-capillary mode with no coupling to the


magnetic field.


The second term in brackets becomes the dispersion equation for the mode 

involving dilatations of the interface. Z3 

{ 3 C ] ; GPO3O dI(12) 1 
I 	 If )CW,, then in the second term in brackets of Eq. 10, jj~ )> . . 

and the dispersion equation is as though there were no electromechanical 

coupling. Thus, for o )>>LJ the damping effect of viscosity is much as in 

Problem 8.16.1. In the opposite extreme, if WO<<QJ , then the second term 
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Prob. 8.16.2 (cont.)


has (f•)<(K / and is approximated by the magnetic field term. In 

this case, Eq. 10 is approximated by


+=4j ?- (13) 

In the limit of very high Ho, the last term is negligible and the remainder 

of the equation can be used to approximate the damping effect of viscosity.


Certainly the model is not meaningful unless the magnetic diffusion


time based on the sheet thickness and the wavelength is small compared to I


times of interest. Suggested by Eq. 6.10.2 in the limit d--eo is a typical


magnetic diffusion time A,&rc/P , where a is the thickness of the perfectly


conducting layer.


I


I

I

I

I


I
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Prob. 8.16.3 A cross-section of the configuration is shown in the figure.


I 

I £E= O=,EoE•_= pe 

.'(eC7

I 
In static equilibrium, the electric field intensity is 

= o (1) 

and in accordance with the stress balance shown in the figure, the mechanical


stress, Sxx, reduces to simply the negative of the hydrodynamic pressure.


S7. _L _ (2) 

Electrical bulk conditions reflecting the fact that E=-Vi where


satisfies Laplace's equation both in the air-gap and in the liquid layer are 

Eqs. (b) from Table 2.16.1. Incorporated at the outset are the boundary 

conditions =O and I=0, reflecting the fact that the upper and lower 

I electrodes are highly conducting. 

3x =iCd k ý (3) 

e (4)

5 The mechanical bulk conditions, reflecting mass conservation and force equilibrium 

for the liquid which has uniform mass density and viscosity)are Eqs. 7.20.6. 

3 At the outset, the boundary conditions at the lower electrode requiring that 

I both the tangential and normal liquid velocities be zero are incorporated in 

writing these expressions( 1 , -=O). 

I + (5)


3e ee (6) 
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Prob. 8.16.3 (cont.)


Boundary conditions at the upper and lower electrodes have already been


included in writing the bulk relations. The conditions at the interface


remain to be written, and of course represent the electromechanical coupling.


Charge conservation for the interface, Eq. 23 of Table 2.10.1 and Gauss'law,


require that


4 - -V% (•) - .11a (7) 

where by Gauss'law C0.- Efl .


Linearized and written in terms of the complex amplitudes, this requires that 

dkE Sjý + (re- (8) 

The tangential electric field at the interface must be continuous. In linearized 

form this requires that 

F-0 = 0 (9) 

Because I /ca and 4 , this condition becomes 

Ag ^e (10) 

In general, the balance of pressure and viscous stresses (represented by S..)


of the Maxwell stress and of the surface tension surface force density, require


that


S TA h + hjý 0 (11) 

With i=x (the x component of the stress balance) this expression requires that


to linear terms


+ ((O F (12)


By virtue of the forsight in writing the equilibrium pressure, Eq. 2, the


equilibrium parts of Eq. 12 balance out. The perturbation part requires that 

E - (13)*<a.•-
0-0

El


I

I


I

I

I


II

I

3


I

I

I

I

I

I


I
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Prob. 8.16.3 (cont.)


I With i-y, (the shear component of the stress balance) Eq. 11 requires that


Obrs( ' )a y (14)a 
Observe that the equilibrium quantities VtSI=k-L E- and ~T-1V -E-

so that this expression reduces to


" o E 7-.l o O (15) 

The combination of the bulk and boundary conditions, Eqs. 3-6,8,10,13 and


15, comprise eight equations in the unknowns(C> ,Sxt, 9, )*•s c 

The dispersion equation will now be determined in two steps. First, consider


the "electrical" relations. With the use of Eqs. 3 and 4, Eqs. 8 and 10


become


aj·

I

(16) 

I S-1 rC0^e

I 1"E"ca ~oa~bo *j9X 
U i ·· 

From these two expressions, it follows that


4 (E 
(17) 

I 

In terms of , is easily written using Eq. 3. 

The remaining two boundary conditions, the stress balance conditions of 

Eqs. 13 and 15 can now be 

/\ 
written in terms of ( 1 )alone. 

r 

S(18)


L 
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where


rY, = - jw3Fg -P% -`ba+CE,) dALa oRe (lr<c +<r) 

/c(ECAod +Ccf L)+i O4R+ 

M s= + , E'WaR-73 kD 

(C.( ctv-Ra + b)+6d) (cid ý I


M"= - +JP3,-CE.e+ ieJ (Jic4EC)+O~CAA+ 

yU (E~ ~t ccd rae dCo)+o-c~dsh 

% 2


Mi(( .c( ,C4PCRa a ti)+ c c bE e 

T he dispersion equation follows from Eq. 18 as


M•II,,Mý - i..2 MV = o 
Here, it is convenient to normalize variables such that


-_= ' *, p = bP . 
. o o '- - . 

and to define / 

so that in Eq. 19,


s_ I' -_ 

a~ s 4 ~ -i ¶b: '


1 - j( --+ 
Lo C ?­

I

I

I

I

I

3

I

I


(19) 1


3

I

I


(21) 1

I

I


(22) I


I

I

I
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Prob. 8.16.3 (cont.)


' 

I(23)

I 


I 


I 


If viscous stresses dominate those due to inertia, the P.. in these 

expressions are independent of frequency. In the following, this approximation


of low-Reynolds number flow is understood. (Note that the dispersion equation


can be used if inertial effects are included simply by using Eq. 7.19.13 to


define the P... However, there is then a complex dependence of these terms


on the frequency, reflecting the fact that viscous diffusion occurs on time


scales of interest.)


With the use of Eqs. 22, Eq. 19 becomes


That this dispersion equation is in general cubic in CJ reflects the coupling 

it represents of the gravity-capillary-electrostatic waves, shear waves 

and the charge relaxation phenomena (the third root). 

Consider the limit where charge relaxation is complete on time scales of


interest. Then the interface behaves as an equipotential,r -- 0 , and Eq. 23


reduces to


L= 4V, - 0 (24) 

( Fill F31 - 3 F)31 
That there is only one mode is to be expected. Charge relaxation has been


eliminated (is instantaneous) and because there is no tangential electric field


on the interface, the shear mode has as well. Because damping dominates inertia,


the gravity-capillary-electrostatic wave is over damped, or grows as a pure


exponential. The factor 1 z 

5.. AZ X a4 (25) 

is positive, so the interface is unstable if


I ( a-+ (26) 
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Prob. 8.16.3 (cont.) i 

In the opposite extreme, where the liquid is sufficiently insulating 

that charge relaxation is negligible so that r >> 1, Eq. 23 reduces to a I 
quadratic expression(Pi -PSI ) 

U 
F-+,P,+.j; b:_+(4)P,3 +Y(-P •-LŽ ,)-•t-. -'• •s (2J) .3 

The roots of this expression represent the gravity-capillary-electrostatic 

and shear modes. In this limit of a relatively insulating layer, there are 
I 

electrical shear stresses on the interface. In fact these dominate in the I 
transport of the surface charge. 

To find the general solution of Eq. 23, it is necessary to write it as I 
a cubic in j . 

I 
(C, +4p(<) + Q ,7) + = o 

(28) 3 
I 

13r•c,-- 13) Ca__+ I 

I 
60 ry's) C P. 4 P £ 

jr13 

I 
R C 

I 
I 
I 
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Prob 8.16.4 Because the solid is relatively


conducting compared to the gas above, the


tEa LW 
equilibrium electric field is simply 3iL~ (40

c--Op 

: go
(1) 

Sx<o0 

In the solid, the equations of motion are­

* c~ 

,oeZ'-V.+ =- (2)


3 Vtz

.h1r 

S = - +G, + (3) 
Ty~ 

It follows from Eq. 2b that


-x = 0 : = Co•s= 0 (4) 

so that the static x component of the force equation reduces to


7•T P=Y.>, 0 (5) 

This expression, together with the condition that the interface be in stress 

equilibrium, determines the equilibrium stress distribution 

= p 0+ 20 (6)SX 

In the gas above, the perturbation fields are represented by Laplace's equation,


and hence the transfer relations (a) of Table 2.16.1


Al (7)
I 

Perturbation deformations in the solid are described by the analogue transfer


relations


wher - - (8) 
At = ~j P e ere GA( 

The interface is described in Eulerian coordinates by C ) with this 

variable related to the deformation of the interface as suggested by the figure. 
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Prob. 8.16.4 (cont.) Boundary conditions on the fields in the gas recognize that 5

the electrode and the interface are each equipotentials.


Stress equilibrium for the interface is in general represented by 

hý + 0 (11) 

where i is either x or y. To linear terms, the x component requires that 

5+ Co o .. 0 (12) 

where the equilibrium part balances out by virtue of the static equilibrium, Eq. 5.5 

The shear component of Eq. 11, i=y, becomes

)+s•+ e e) ­

Because there is no electrical shear stress on the interface, a fact represented by


Eq. 10, this expression reduces to

At 

5,, -- 0 (14) 

In addition, the rigid bottom requires that 

0 0 (15) 1 

The dispersion equation is now found by writing Eqs. 12 and 14 in terms of ( , 

Ae A4 

To this end, Eq. 8a is substituted for SIX using Eas. 15 and e is substituted 

using Eq. 7b evaluated using Eqs. 9 and 10. This is the first of the two expressio 

I


O (16)


e
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5 Prnb. 8.16.4 (cont.)


The second expression is Eq. 14 evaluated using Eq. 8c for S with Eqs. 15.


5 It follows from Eq. 16 that the desired dispersion equation is 

P P 3 3  P31 .EAotk-- - PP3 = O (17) 

where in general, Pij are defined with Eq. 7.19.13 ( ( defined with Eq. 8). In 

I the limit where >G , the Pij become those defined with Eq. 7.20.6. 

With the assumption that perturbations having a given wavenumber, k, become 

I unstable by passing into the right half jeo plane through the origin, it is possible 

to interprete the roots of Eq. 17 in the limit CJ-0o as giving the value of 

SCoE/G 5 required for instability. 

P33  G, , 
In particular, this expression becomes


e"•'o•- =I
o ig i 4 TLSiH abC 4 (19) 

3 so that the function on the right depends on kb and a/b. In general, a graphical 

solution would give the most critical value of kb. Here, the short-wave limit of 

II Eq. 19 istaken, where it becomes 

£0,E, = G,0/ (20) 

I

I
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Problem 8.18.1 For the linear distribution of charge density, the equation 

is Yle +0lex . Thus, the upper uniform charge density must have value 

of(34/4) while the lower one must have magnitude of /4) . Evaluation 

gives 

+-De ; 4 (1) 3 
The associated equilibrium electric field follows from Gauss' Law and the 

condition that the potential at x=0 is V d 

EXV CO ( (2) 

and the condition that the potential be V at x=0 and be 0 at x=d. 

Vo= A a )(3) 
With the use of Eqs. 1, this expression becomes


I1 
Similar to Eqs. 1 are those for the mass densities in the layer model.


p s= 7 Mc L (5)
7 

For the two layer model, the dispersion equation is Eq. 8.14.25, which


evaluated using Eqs. 1, 4 and 5, becomes


In terms of the normalization given with Eq. 8.18.2, this expression becomes


SwF•_._ _ )s ZandI 
With the numbers D =Z i,!C=>, e._ =0 and S , 

Eq. 7 gives J =0.349. The weak gradient approximation represented by Eq. 

!

I 
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Prob. 8.18.1(cont.) 

j 

3 

I 

8.18.10 gives for comparison W = 0.303 while the numerical result representing 

the "exact" model, Fig. 8.18.2, gives a frequency that is somewhat higher 

than the weak gradient result but still lower than the layer model result, 

about 0.31. The layer model is clearly useful for estimating the frequency 

or growth rate of the dominant mode. 

In the long-wave limit, II<4 , the weak-gradient imposed field 

result, Eq. 8.18.10, becomes 

In the same approximation it is appropriate to set S=0 in Eq. 7, which becomes 

I @. / (2. 

where D0,-OO . Thus the layer model gives a frequency that is -v/7=l.ll times 

that of the imposed-field weak gradient model. 

In the short-wave limit, >),I, the layer model predicts that the 

frequency increases with ' . This is in contrast to the dependence 

typified by Fig. 8.18.4 at short wavelengths with a smoothly inhomogeneous 

layer. This inadequacy of the layer model is to be expected, because it 

5 
presumes that the structure of the discontinuity between layers is always 

sharp no matter how fine the scale of the surface perturbation. In fact, 

at short enough wavelengths, systems of miscible fluids will have an 

interface that is smoothly inhomogeneous because of molecular diffusion. 

I 
5 

To describe higher order modes in the smoothly inhomogeneous system 

for wavenumbers that are not extremely short, more layers should be used. 

Presumably, for each interface, there is an additional pair of modes 

introduced. Of course, the modes are not identified with a single inter­

face but rather involve the self-consistent deformation of all interfaces. 

The situation is formally similar to that introduced in Sec. 5.15. 

i 



8.52


Problem 8.18.2 The basic equations for the magnetizable but insulating


inhomogeneous fluid are


(1)


(2)


(3) I

V? = 0 

(4) 
 1 

(5)


(6)


where _= ( L-) + . 

In view of Eq. 4, = -V . This means that -- CV and for the 

present purposes it is more convenient to use h as a scalar "potential"


J-d (7) 

With the definitions /,UA(x)+,L' and -- (() +r( , Eqs. 5 and 6 link thE 

perturbations in properties to the fluid displacement e I 

(8)


Thus, with the use of Eq. 8a and Eqs. 7, the linearized version of Eq. 3 is


(9) 3 
and this represents the magnetic field, given the mechanical deformation. !


To represent the mechanics, Eq. 2 is written in terms of complex amplitudes.


I
4S4i· (1) 

and, with the use of Eq. 8b, the x component of Eq. 1 is written in the I 
linearized form 

T.rz 

IGZpD3~t+ +Z XH~(~L·~ -U~y~l=' O (1 I 
5 
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Prob. 8.18.2(cont.)


Similarly, the y and z components of Eq. 1 become


S)l(12)


With the objective of making ^a scalar function representing the mechanics, 

these last two expressions are solved for v anf v and substituted into 
y z 

Eq. 10.


A 

This expression is then solved for p, and the derivative taken with respect


to x. This derivative can then be used to eliminate the pressure from Eq. 11.


I ~(15) t7 

I Equations 9 and 15 comprise the desired relations.


In an imposed field approximation where H =H = constant and the s o 

,k,e~pia,properties have the profiles =a.eppx and- Eqs. 9 and 15 

become


[Lr4 4 P O 7. J zo (16) 

go -0 o (17) 

where L o Do 

I 
For these constant coefficient equations, solutions take the form .2Y I


and L - 1% -w3 . From Eqs. 16 and 17 it follows that 

SL + L_,+ §.- o 18oIL + (18) 
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Prob. 8.18. 2 (cont.) 

Solution for L results in 

(]L9) 

From the 	definition of L, the Y's representing the x dependence follow as


2O)


I

In terms of these d's, 

I
-A xA CX -CK CX A _Cx 
Se A, +Ae e + A 	 ( 21) 

The corresponding l is written in terms of these same coefficients with the


help of Eq. 17


d 	 Ceire IT on io +ry4 -C X e 22) 

Tu theo+ub a-ib a-b 

Thus, the four boundary conditions require that 
.-C. I 	 A 


IA


eC+ 	 .C.1 c-. .-c9 - 0 (23) 
ec 	 e e Al 
*I+ I I- a	 I


This determinant is easily reduced by first subtracting the second and fourth
 I 
columns from the first and third respectively and then expanding by minors.


I
S(= 0=o (24)


Thus, eigenmodes are C*R 4 TT and C_Rjvs i . The eigenfrequencies follow I

from Eqs. 19 and 20.


I
7-k 	 Z- (25) 

For perturbations with peaks and valleys running perpendicular to the imposed I

fields, the magnetic field stiffens the fluid. Internal electromechanical waves


I 
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Prob. 8.18.2(cont.)


5 propagate along the lines of magnetic field intensity. If the fluid were


confined between parallel plates in the x-z planes, so that the fluid were


indeed forced to undergo only two dimensional motions, the field could be


I used to balance a heavy fluid on top of a light one.... to prevent the grav­


itational form of Rayleigh-Taylor instability. However, for perturbations


I with hills and valleys running parallel to the imposed field, the magnetic


field remains undisturbed, and there is no magnetic restoring force to pre-


I vent the instability. The role of the magnetic field, here in the context


I of an internal coupling, is similar to that for the hydromagnetic system


described in Sec. 8.12 where interchange modes of instability for a surface


-I coupled system were found.


The electric polarization analogue to this configuration might be as


f shown in Fig. 8.11.1, but with a smooth distribution of E and 1 in the x


direction.


Problem 8.18.3 Starting with Eqs. 9 and 15 from Prob. 8.18.2, multiply 

the first by 6 and integrate from 0 to . 

'Iý 0 (1)
lo~~?j ~ dA 

C 

Integration of the first term by parts and use of the boundary conditions


on , gives integrals on the left that are positive definite.


I - 4Axd t* X= oD (2) 

In summary ­

Now, multiply Eq. 15 from Prob. 8.18.2 by x and integrate. 

1 0 0 
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Prob. 8.18.3(cont.)


Integration of the first term by parts and the boundary conditions on A


gives AAjt 

0x(5)W 

0 0 o 

and this expression takes the form


A (6) 

50 
Multiplication of Eq. 3 by Eq. 6 results in yet another positive definite


quantity i


Tw X.3 (7) 

and this expression can be solved for the frequency


Because the terms on the right are real, it follows that either the 

eigenfrequencies are real or they represent modes that grow and decay i 

without oscillation. Thus, the search for eigenfrequencies in the general 

case can be restricted to the real and imaginary axes of the s plane. I 

3
Note that a sufficient condition for stability is l > 0 ,because 

that insures that 13 is positive definite.


I 
I

I


I 


