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Statics and Dynamics of Systemsy

Having a Static Equilibrium
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8.1

Prob. 8.3.1 1In the fringing region near the edges of the electrodes (at a

distance large compared to the electrode spacing) the electric field is
am‘ ‘g
This field is unaltered if the dielectric assumes a configuration that is

(1)

essentially independent of 6. 1In that case, the electric field is everywhere
tangential to the interface, continuity of tangential‘E-is satisfied and there
is no normal E (and hence D) to be concerned with. In the force density and
stress-tensor representation of Eq. 3.7.19 (Table 3.10.1) there is no electric
force density in the homogeneous bulk of the liquid. Thus, Bernoulli's
equation applies without a coupling term. With the height measured from the

fluid level outside the field region, points (a) and (b) just above and

below the interface at an arbitrary point are rel ted to the pressure at infinity

by

Pa +(ﬁa%? Peo

(2)
Peo (3)

P, +4:9 ¥

The pressure at infinity has been taken as the same in each fluid because there

is no surface force density acting in that field-free region. At the interfacial

position denoted by (a) and (b), stress equilibrium in the normal direction
requires that
. = : ; (4)
LI SN 1T In,

Thus, if 4 a/g, it follows from Egs. 2-4 that

/G‘
/,,03? = ﬂ_\"né“"\% 5 Tuy = Ea D = =), W (5)

To evaluate the coenergy density, W', use is made of the constitutive law.

E
W= SED 3T = J <€,E9 Ia +E9>A B, --eE -\-25«1 +E, _h ©
0 4

Thus, Eq. 5 can be solved for the interfacial position. !

Fe g (e (] - @



8.2

Prob. 8.3.2 Because the liquid is homogeneous, the electromechanical
coupling is, according to Eq. 3.8.14 of Table 3.10.1, confined to the

interface. To evaluate the stress, note that

L&
, E L d /’—OB,‘\\\‘
W= DSE:‘SE'\' ',Quc«,Qd;E
2 e de
(o] ]

Hence, with points positioned as shown in the figure, Bernoulli's equation

requires that

"F%‘ =-"FLl (2)
= (3)
P +23%, = P +0S
and stress balance at the two interfacial positions requires that
Pu = Po @)
] Wid, E (3)
_fa, & FL, = :;; LL\ Ces ( L )

Addition of these last four expressions eliminates the pressure. Substitu-

tion for E with Vo/s(z) then gives the required result
s-3 = 2 4. COsL‘(B_t__\Lo) (6)
°
/30’; A(2)
Note that the simplicity of this result depends on the fact that regard-
less of the interfacial position, the electric field at any given z is

simply the voltage divided by the spacing.

— N
aE o = e
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8.3

Prob. 8.4.1 (a) From Table 2.18.1, the normal flux density at the surface
of the magnets is related to A by Bx=Bocos ky = 9A/3y. There are no magnetic
materials below the magnets, so their fields extend to x+w. It follows
that tﬁe imposed magnetic field has the vector potential (z directed)

-4
A=g’—°-/u;~g‘}, c&(x Y
e (1)

Given that & = Eo at y=0 where A=0, Eq; 8.4.18 is adapted to the case at hand.

-4
7) - _%- W%% c%(% ) 2)

and it follows from Eq. 8.4.19 with ’;‘“_,‘ % that
: B(g-4)
$=5, + 3,80 ain Ry FCF (3)
Ry C(ab-(a*B

Variables can be regrouped in this expression to obtain the given ‘f(y).

hand.

(b) Sketches of the respective sides of the implicit expression are

as shown in the figure. ﬂ,\-\.A | %(r_(
e

L.H. 2z J.Be

/l:-\ 4(P.fa)
N\

~ ¢

: R (5-2) 7 ey

The procedure (either graphically or numerically) would be to select a vy,
evaluate the expression on the right, and then read off the deformation
relative to Eo from the expression as represented on the left. The peak
in the latter curve comes ét k(E-—Eo)=l where its value is l/e. If the

two solutions are interpreted as being stable and unstable to left and
right respectively, it follows that if the peak in the curve on the right

is just high enough to make these solutions join, there should be an instab-

ility. This critical condition follows as

S.Ba/%(pb ) = axp]-R(4-%.)-1]



8.4

Prob. 8.4.2 (a) Stress equilibrium in the normal direction

2
< e,E,,/‘ f
at the interface requires that —\%l
2 —_
P +JZ—GBE“ -¥Vvn=o0 (1 fP

The normal vector is related to the interfacial deflection by

(-2 ) L+ (2 )] 2)
In the long-wave limit, the electric field at the interface is essentially

E =~ -V

- - (3
-~ " A__§
Finally, Bernoulli's equation evaluated at the interface where the height,
is ? becomes
P +/3?=o+/35#f>=/’%(5-f) (4)
These last three expressions are substituted into Eq. 1 to give the required
relation

it
X%I“I}; ;e(ll?)_pg(? b)=o0 (5)

/ /
(b) For small perturbations of % from b, let ?: ‘)4? where ? is "small".
Then, the linearized form of Eq. 5 is

45’ \
X&a Viéb} <d1>3] Fat=e @

With the "drive" put on the right, this expression is
2
c.\a?l _ §/ _ —-€oV o
Atal ,?,; 2 (4%

sja-ey”

(8)

is real to insure stability of the interface. To satisfy the asymptotic

condition as (a-foo » the increasing exponential must be zero. Thus, the



8.5
Prob. 8.4.2 (cont.)

combination of particular and homogeneous solutions that satisfies the

boundary condition at y=0 is
?l _ QV}g ( | _-‘a,/ﬂ,
(e )
(c) The multiplication of Eq. 5 by « = dg/dy gives

4 g_‘_a{(”“zs/“/‘ ¥ %% =0

P=s féo-}g -3 (5-)]

To integrate, define

where

so that {

u = (l-V&B \%

Then, Eq. 9 can be written as

v AV +AP=O
| -Vv*®

and integration gives

_\‘il--\lz + P = cCowust.

This expression can be written in terms of Ai/&a,?. A by using Eq. 10.

1 + ? = coewnst.
\ | +(S3)
dy

Because A%/AQQ—PO as ?-—D ?° » the constant is P(i’) - and

Eq. 14 becomes
]

N1+ (I
Solution for AY/J‘;leads to the integral expression
ki
b V[ I + P(f.)"?(f)]-l’ |ﬁ -

Note that the lower limit is set by the boundary condition at y=0.

= -P5) +Ps) +)

(8)

(9)

(10)

(11)

(12)

(13)

(14)

(15)

(16)



8.6

Prob. 8.6.1 In view of Eq. 31 from problem solution 7.9.2, the require-
NS
ment that 1}1- = O be zero with d=R but (329 shows that if ?>d is

to be finite then
f,(0,r,¥)= 0 @

provided that w # ¥ 2 £ . By the definition of this function, given

in Table 2.16.2, this is the statement that

¥ GIR o —8SGIR)

Jo(8R) Jo(4¥R)

So the eigenvalue problem is reduced to finding the roots 5 X‘og“of

31 (a‘KR)"O )

In view of the definition of ¥ , the eigenfrequencies are then written

(2)

in terms of these roots by solving

2 2

¥ = -)So_%_——.%z{‘“-a—%)& (4)
rR? e

for w .

-+

Wy = —ZQlﬁ (5)
| + Xon

(RRY

(b) According to this dispersion equation, waves having the same frequency
have wavenumbers that are negatives. Thus, waves traveling in thel z
directions can be superimposed to obtain standing pressure waves that

vary as ¢€o% Rz, According to Eq. 14, if p is proportional to <o$% Bz
then 'ljid_ Sin ﬁ! and the conditions that ‘I}E(O)HD,T{(I):O are satis-
fied if R = nn‘/E,mO,i,Z, *** . For these modes, which satisfy both
longitudinal and transverse boundary conditions, the resonance frequencies

are therefore

. tT20

woﬁ - = -
\[l + Xor £
(GRLAeh

(6)

~ - v



8.7

Problem 8.7.1 The total potential, distinguished from the perturbation

]
potential by a prime, is @& =-E,«.& +® . Thus,

02 _3% , 598 28,58 = 438 .0

=5 2% +w3t s, (B4 %) (1)
to linear terms, this becomes

22 g,y =0 (2)

St s

which will be recognized as the limit g=eow of Eq. 8.7.6 integrated twice on x.

Problem 8.7.2 What is new about these laws is the requirement that the

current linked by a surface of fixed identity be conserved. In view of the
generalized Leibnitz rule, Eq. 2.6.4 and Stoke's Theorem, Eq. 2.6.3, integral

condition (a) requires that

4 E‘ Ados &Fi 23 (7. 391 nda+£vx(3 «B)Fda (3

The laws are MQS, so J. is solen01dal and it follows from Eq. 3 that

£
QE{‘-—VX(‘Exfx‘):D (4)
at

With the understanding that f° is a constant, and that B =,Agl4 , the

remaining laws are standard.

Problem 8.7.3 Note that v and J_. are automatically solenoidal if they take

f

the given form. The x component of Eq. (¢) from Prob. 8.7.2 is also an identity

while the y and z components are

% _ 32 -0 (1)
dt 3"
SIS -3, oY, -0 ‘ (2)
St S X

Similarly, the x component of Eq. (d) from Prob. 8.7.2 is an identity while

the y and z components are
L 8,3, + 7D_l)g (3
/° 5t

(4)

>V, _ 'Y
/<> St ESO:S%-+‘7 ‘b)(z

Because B is imposed, Ampere's Law is not required unless perturbations in the

magnetic field are of interest.
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Prob. 8.7.3(cont.)
In terms of complex amplitudes 19 GL jx?aﬁdt Eqs. 1 and 2 show that

o A A A Xx

Substituted into Eqs. 3 and 4, these relations give
IS
(7‘("-3.”/:5 a3‘6%o J
S0 Do -] 4
s (78 =3P |,
The dispersion equation follows from setting the determinant of the coefficients

equal to zero.
(78 -q20)% =

with the normalization 'T; =z Az(a/7 , Tuv = 7/.S°B°A R ¥ =Y%A

* 3.%, (7)

it follows that

J
:i‘(.z + ¥, = ['.11';—7‘“+J a,‘,-r)‘*é“m'l (8)

k3

Thus, solutions take the form

A A '6' x A -§,% A Y X A ‘Xz X

V= Ale +Aie +Ae & Ae 9

From Eq. 6(a) and the dispersion equation, Eq. 8, it follows from Eq. 9 that

X A -\JX A Gl A -sz
aA Aze +3A5e _3A“e

The shear stress can be written in terms of these same coefficients using

(10)

Eq. 9.
a A \‘,x A -X,X A A —x,_
g = 7(‘$|A. e -¥,A,e YA e“lx_ ¥.Ay e x) (11)

wn 3

Similarly, from Eq. 10,
A B A -0,x
Sa‘z 7(3X, . e -\-ab, A e + 'a zA e— -l,- 3\6 Qe ) (12)

Evaluated at the respective d and A surfaces, where x = QA and x=0,

Eqs. 9 and 10 show that
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Prob. 8.7.3(cont.)

LG A =
, ,f\\ ,&c -3 & 4e -3
s S I T
o ? [ (13)
rd | = ° -
LR A, | Q= RO T S
I\a ~
2 A4J | [ { |
Similarly;bffgm Egs. 11 and 12, é;aluation at thexsurfaces gives - o
[ ad 9 S o “h .13 Bl
S A, e Se yYe RIS
&, A, ' ALY PATIPY O
~dl =U] £ Uz X ¥ —_\61 (14)
Six [" Ay ‘37 Y, e_f‘ Yo foe he
AB ~
_Sax AA ¥\ -¥, L R
The transfer relations foilow fré& inversion of 13 and multiplication with 14
Aad aol
Xy 1’?,
S Vv - (15)
Aax =[V‘J ﬁ?’ ;“‘I,'r [ Q"b-( { U"l)-]
Se X
as B8
Ssix 1&

All required here are the temporal eigen-frequencies with the velocities

constrained to zero at the boundaries. To this end, Eq. 13 is manipulated

to take the form (note thatA‘e“-l'Age-—xi(A.* A?-\M-VX + (AFAz) A«’-ﬂx )*

&;_ -3‘ wﬁi 'j,p«'-ﬂlf, éwﬁl{i aMﬁﬁi "A._M
A: '3 o A o A.*ﬁz
A: ) Y oLy, ol X, ol ¥, i\;ﬁ4 (16)
AR .
v 0 I 0 L [[ArA

The condition that the determinant of the coefficients vanish is then

Wﬁfl“"ﬂ.xz—ﬂ“j!l F‘:‘Eﬁrz‘:—- Wa(}.‘?;): 1 (17)

*
Transformation suggested by Mr. Rick Ehrlich.
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Prob. 8.7.3(cont.)
This expression is identical to coq 6(‘6, _Kt) =\ and therefore I
has solutions l

18
‘&<\‘il—lt):‘;n“’>n‘=olli2"' (18

With the use of Eq. 8, an expression for the eigenfrequencies follows

)
7 o) 4497 = 2 s

Manipulation and substitution s= a‘u shows that this is a cubic in s.

3 2 2\ _o (20)
A T, + (nwW) A ——4%;,

If the viscosity is high enough that inertial effects can be ignored, the ordering

ﬂ

of characteristic times is as shown in Fig. 1

-~
o
-
L

Then, there are two roots to Eq. 20 :
Fig. 1 "Q Tav Y
given by setting ‘1; =0 and solving for l
S.
=+ 1 (21)

A=t /yq, nu |
Thus, there is an instability having a growth rate typified by the magneto-
viscous time :)n'n‘T‘MV. l

In the opposite extreme, where inertial effects are dominant, the ordering of
times is as shown in Fig. 2 and the middle

term in Eq. 20 is negligible compared to

. L | 1 >
i
the other two. In this case, Y '7’~w Ty 0
‘ 2 2.8
A RYCS (22)
D = \/ z - o —©
(47N

¥s

Note that substitution back into Eq. 20 shows that the approximation is in fact

self-consistent. The system is again unstable, this time with a growth rate

determined by a time that is between 7\; and \1:“ .

Prob. 8.7.4 The particle velocity is simply U=bE = 3Q€E1/7. Thus,

the time required to traverse the distance 2a is Jal = 7/éEz
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Prob. 8.10.1 With the designations indicated in the

figure, first consider the bulk relations. The

perturbation electric field is confined to the

insulating layer, where
éé u—(‘f%i &
=t ,.e (1)
ex = uJ%A ]

The transfer relations for the mechanics are applied three times. Perhaps it is
best to first write the second of the following relations, because the
transfer relations for the infinite half spaces (with it understood that k > 0)

follow as limiting cases of the general relations.
. L A
g__;wﬁ_&‘ —~pP ™ (2)
l )y 2
d _.c&CZQEJ —_— ﬂ& cotng ;:IEZ n
g Abl (3)

el

Now, consider the boundary conditions. The interfaces are perfectly conducting, so

nxE-o D —E.%% =€, (5)
In terms of the potential, this becomes

£ = §,%° (6)
Similarly,

éb = EOS"’ (7

Stress equilibrium for the x direction is

Upln, = 1T, In; -¥v-7in, (8)

In particular,

(T, +0) - (T + ¢ )-‘e(E +€5) -\-1§(s i Ez) (9)

d2*

Hence, in terms of complex amplitudes, stress equilibrium for the upper interface is
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Prob. 8.10.1l(cont.)

R P i e A 10

Similarly, for the lower interface,

2 b
AL A ~e s (1D
-P +P€+€E°€x'@\6? 0
Now, to put these relations together and obtain a dispersion equation, insert

Egs. 5 and 6 into Egq. 1. Then, Egs. 1-4 can be substituted into Egs. 9 and 10,

which become

]—_ﬁ A ‘-_’f V,zZQ<(+€F gc‘,{[&] %@Iﬁﬁa %g_jl %o.

adld g

a
For the kink mode (i ‘i ) » both of these expressions are satisfied if

= ( 2+ (s ke )RR odRd - “mlRT-o o

With the use of the identity (u&u-i)/sonlv'f&.\‘l//g this expression reduces to

&(F“’M%) ¥R - GE@M& :1// o

““.@Z_ eg_%_l 5&22),%“&&4,,65:%%5_@‘5] ;

ot )

For the sausage mode ( i = '? ), both are satisfied if

—-( + MM*‘_L,.A)»feE ?&[cd@:‘ 1 R'Y¥=0 (15)

and because(wAuu)/va = ¢ u{z_

( uxj@c() _YR*— CE. @ud_i /\/ (16)

‘e

In the limit kd<<{ 1, Egs. 14 and 16 become

—"‘_’.L A s@_‘_“, - _ GE:J %‘7‘ (17)
<(0 ﬂ ) <\6 ) (18)
Lo+ Fe' AGE
(P g =Y s
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Prob. 8.10.1(cont.)

Thus, the effect of the electric field on the kink mode is equivalent to
having a field dependent surface tension with \( - Y - GE:J/l

The- sausage mode is unstable at k— 0 (infinite wavelength) with Eo=0 while
the kink mode is unstable at E = SJX/GA . If the insulating liquid
filled in a hole between regions filled by high conductivity liquid, the
hole boundaries would limit the values of possible k's. Then there would be

a threshold value of Eo.

Prob. 8.11.1 (a) In static equilibrium, H is tangential to the interface and
hence not affected by the liquid. Thus, H = EQHO(R/r) where HO=I/21YR. The
surface force densities due to magnetization and surface tension are held
in equilibrium by the pressure jump (/.4“5/4‘, , My 5/,4)
- -1 z ¥
—“Q _-“‘b = -2 (/“a.“/“b) H, & (D
(b) Perturbation boundary conditions at the interface are, at r = R+%
- T bg
. = -L .—- ‘. R
Ao DRl = (4~ 555 % - 5 o) (D G+ DM +hgigr i 1),
which to linear terms requires
) A
A —_ H wA
ﬂ/‘\"vu == ﬁ/‘*“ —-—-{:l\ ? (3)
and nX “ ﬂﬂ:o which to linear terms requires that ﬂheﬂ:o and “ha“ =0

These are represented by

Jgpl=o ()

With "-;‘IP“ :H‘[;suh. +an stress equilibrium for the interface requires that

lpl= "‘Lﬂ/“(“a +\19)ﬁ - Y7 (5)
To linear terms, this. expression becomes Eq (1) and

1pl = Il/uﬂ\'\ g ﬂ/ﬂﬁ\-\ 3___% +-—[(:-h~) (@R)]?
where use has been made of h MW/R

Perturbation fields are assumed to decay to zero as r—»@ and to be finite

at r = 0. Thus, bulk relations for the magnetic field are (Table 2.16.2)
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Prob. 8.11.1 (cont.)

A

@* = /s (0, R) 7
Bir/ . (0,R) (®

From Eqs. (3) and (4) together with these last two expressions, it follows

w0 = DA HE R R) 4, 5. (0,000 @

This expression is substituted into Eq. (6), along with the bulk relation
for the perturbation pressure, Eq. (f) of Table 7.9.1, to obtain the desired
dispersion equation.

et oFu(om)= (e L DA 1
© Wl = M R[/& @R AR (10)

-ka’"v L= ) -(%FS}

(¢) Remember (from Sec. 2.17) that Fm(O,R) and fm(O,R) are negative while
fm(w ,R) is positive. For /ub 5/4(,' the first "imposed field" term on the
right stabilizes. The second "self-field" term stabilizes regardless of
the permeabilities, but only influences modes with finite m. Thus, sausage
modes can "exchange" with no change in the self-fields. Clearly, all modes

m#0 are stable. To stabilize the m=0 mode,
2
(/Jb ~Ma) B_‘.’. > —\-‘;_ (b
R 1LY

(d) In the m=0 mode the mechanical deformations are purely radial. Thus,
the rigid boundary introduéed by the magnet does not interfere with the
motion. Also, the perturbation magnetic field is zero, so there is no
difficulty satisfying the field boundary conditions on the magnet surface.
(Note that the other modes are altered by the magnet). In the long wave
limit, Eq. 2.16.28 gives Fo(o,r():-f:;o"ﬂ)-p(.%ZK/_}).' and hence, Eq. (10)

becomes simply

e gy

_—-——-——_———
Thus, waves propagate in the z direction with phase velocity J(/u /.l,)\-\ //2
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Prob. 8.11.1- (cont.)

Resonances occur when the longitudinal wavenumbers are multiples of n

Thus, the resonance frequencies are

$o= oo e - a
2g N7

Prob. 8.12.1 1In the vacuum regions to either

side of the fluid sheet the magnetic fields
take the form
H=-R¢ +h )

ii = ‘*02; +h (1
where h = -V Y.

In the regions to either side the mass density is
negligible, and so the pressure there can be taken

as zero. In the fluid, the pressure is therefore

A (uwt-Ry-R2
P = Jsﬂo“-:*@pc1(“ s ? R’E)

3)
where p is the perturbation associated with departures of the fluid from static
equilibrium. Boundary conditions reflect the electromechanical coupling énd

are consistent with fields governed by Laplace's equation in the vacuum regions
and fluid motions governed by Laplace's equation in the layer. That is one
boundary condition on the magnetic field at the surfaces bounding the vacuum, and
one boundary condition on the fluid mechanics at each of the deformable

interfaces. First, because '8 =0 on the perfectly conducting interfaces,

n: -0 X ) ) (4)
- - - - - ad . >
[ ‘3‘?5 ";;'?s‘zc'e]‘i-f/,ca +hlze Ri={BSH, e
A (6)
H?=—éga "W,
h (7)
hx =0

In the absence of surface tension, stress balance requires that

Ipin, = ITTIn. > @
In particular, to linear terms at the right interface

~d
pC= -/,Hoﬁj =‘j€%"‘°\'\° Y (9)



8.16

Prob. 8.12.1(cont.)
Similarly, at the left interface

5f = o Qéu Ho & (10)
In evaluating these boundary conditions, the amplitudes are evaluated at the
unperturbed position of the interface. Hence, the coupling between interfaces
through the bulk regions can be represented by the transfér relations. For the

fields, Egs. (a) of Table 2.16.1 (in the magnetic analogue) give

-(i’c _ 3 !- - u‘tzﬁa — ™ rhi -
"ql ¢ ) :,;::Z—Ecn ul/gaj -hx-‘
- A | - - -
(ra | [~ Cddgﬂ 74, LRa h’?

s (12)
L‘/ f :& c,o-(j@a n:'J -

For the fluid layer, Eqs. (c) of Table 7.9. l become

[ ¢ I M %e]
P [ et/ Rd —ad e
af

P = cOl[fu "?
- -MQJ L Ms; ab

Because the fluid has a static equilibrium, at the interfaces, 3“5 ‘0?

I
|

(13)

It sounds more complicated then it really is to make the following substitutions.

First, Egs. 4-7 are substituted into Egs. 11 and 12. In turn, Egs. 1llb and 1l2a
are used in Egs. 9 and 10. Finally these relations are entered into Egs. 13

which are arranged to give

uﬁj%cl -\-/u, t w{[ﬁc\ ,:,_‘fg | -P%q-

(14)

1]
&)

£

—f ._Lfc,ld%A /“QH M@A %L
AR AL o b -
For the kink mode, note that setting ? =Ii insures that both of Egs. 14 are

satisfied if

— Mﬂu"l - M\EM
¥ doeh b = du ol ut

D f

=
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Prob. 8.12.1(cont.)
2 A2
9{,2 M%éz /uoHOBE coth Row (15)
B

Ao b
Similarly, if ? =“'?)so that a sausage mode is considered, both equations are

satisfied if

wp hBd - wutobe el
3 g

These last two expression comprise the dispersion equations for the respective

(16)

modes. It is clear that both of the modes are stable.‘ Note however that

perturbations propagating in the y direction (kz=0) are only neutrally stable.

This is the "interchange" direction discussed with Fig. 8.12.3. Such perturbations

result in no change in the magnetic field between the fluid and the walls and
in no change in the surface current. As a result, there is no perturbation

magnetic surface force density tending to restore the interface.
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Problem 8.12.2

Stress equilibrium at the interface requires that

L (1)
-T- El”’e Tw-\-0=> P =/.H,,? +MoH, \'—‘\9 W= 4 uH
. 231
Also, at the interface flux is conserved, so
) (2)
ﬁ'ul =0 D Ré = -'a"\a""‘ S
"’y L
While at the inner rod surface
A% _ : 3
K =0 (3)
At the outer wall,
re
e =0 4
Bulk transfer relations are
r Acn - _
P | TRy G (a,®)]f0
==._foca (5)
~d A
P ..Gm{ﬂno‘) Fm(‘uﬂ)_j L?J

hel (R Gn (D[R ®
=
Re] B [ Gub®) FL(m )]0

The dlspers1on equation follows by substituting Eq. (1) for pé in Eq.

(5b) with ‘19 substituted from Eq. (6a). On the right in Eq. (5b), Eq. (2)

is substituted. Hence,

R e S O TN
A
Thus, the dispersion equation is
2
wz——'_"’_{iﬁ_‘i__% —_:FM(L,RYK (8)
PRE (aR) R

From the reciprocity energy conditions discussed in Sec. 2.17, Fm(a,R):> 0
and Fm(b,R) ¢ 0, so Eq. 8 gives real values of ¢J regardless of k. The

system is stable.
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Problem 8.12.3 In static equilibrium v=0, ¢ , UV
2
1
_‘To..—“-b = -3 MoH, and
P ::.TT;-zﬂgi( (1)

With positions next to boundaries denoted

as shown in the figure, boundary conditions

from top to bottom are as follows. For the conducting sheet backed by an

infinitely permeable material, Eq. (a) of Table 6.3.1 reduces to
LYY S
- AC (2)
% \'\la - -/“Oc;gg(w —Ba USI'\‘

The condition that the normal magnetic flux vanish at the deformed interface

is to linear terms

hl o RMT=o @

*

The perturbation part of the stress balance equation for the interface is

A 2d _RYS _ oq$
-p¢ = o R] - RYT - o953 )

A A
In addition, continuity and the definition of the interface require that t&=éﬁ5§

Finally, the bottom is rigid, so

A

1}5 =0 (5)

Bulk relations for the perturbations in magnetic field follow from Eqs. (a)

of Table 2.16.1

F: - u—tﬁ Qm | }3,"’

% ,qmg\ &‘\ 3 )
. o - AJ
hé d &ﬂ .g| Zo ethBa h‘d

where ﬂ5 :éﬁ‘}(i/ has been used.
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Problem 8.12.3 (cont,)

The mechanical perturbation bulk relations follow from Egqs. (c)
of Table 7.9.1

[ e I T Y
3 -eatlRb P 1YY | R (7)

et R - 2t
P L el Rb “dg"- L%

where

;,f__:éwé (8)
Equations 2 and 6a give

P PAA IO BU)h‘( 9)

T WOy G pit (-8 0) citlfa]

This expression combines with Eqs. 3 and 6b to show that

QHS Q -4 Mo%a o (e -RU) eshle FJ (10)
AMQ %al@ +a A/Jp&(w g U)coﬂtﬁq 4

a
Thus, the stress balance equation, Eq. 4, can be evaluated using h from

A

Eq. 10 along with %C from Eq. 7a, Eq. 5 and Eq. 8. The coefficient of ?

is the desired dispersion equation.

——;ﬁudgL = (ﬂg *% 4 .(11)

|+ °"'(w BU coth Ra
T M, —awﬁa (S )
1 +3ﬂo‘% (w-R0) Jo L Ba
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prob. 8.12.4 The development of this section leaves open the configuration
beyond the radius r=a. Thus, it can be readily adapted to include the effect
of the lossy wall. The thin conducting shell is represented by the boundary
condition of Eq. (b) from Table 6.3.1.

(UG- g7 = T by ’
where (e) denotes the position just outside the shell. The region outside the
shell is free space and described by the magnetic analogue of Eg. (b) from

Table 2.16.2.
V. (@,0)K8 = ¥, (w,a) hE @

Equations 8.12.4a and 8.12.7 combine to represent what is "seen" looking

inward from the wall.

Ab

= F (roo) B 5 oo, )2 4 R A

Thus, substitution of Egs. 2 and 3 into Eg. 1 gives

b _ 6. (a R 4 RUL)T
T X_F (oo, a.) F (R, a?)l ~ ST “’)/("— +@1)

Finally, this expression is inserted into Eq. 8.12.11 to obtain the desired

(4)

dispersion equation.
wl{arm (eR) =/‘;‘:_\'.\.t —pto (W +F&H°) m (1)
AL

—iko (B, +RU) G (R,) G (aR)
s [ F(00,0) - F (R o)) — e )25 +RY)

The wall can be regarded as perfectly conducting provided that the last term

(5)

is negligible compared to the one before it. First, the conduction term in

the denominator must dominate the energy storage term.

0',’\:-:\ >‘_< ) F( ) | (6)
— (o) -F . (Ra)v0
(% +¥)
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Prob. 8.12.4(cont.)

Second, the last term is then negligible if

[« A R XY -
Mo Ts 1ot > G.. (R,a)G., (G\,R)/gr (aR)>0 7
(m.? +6RY) ™ )
at
In general, the dispersion equation is a cubic in <« and describes the coupling
of the magnetic diffusion mode on the wall with the surface Alfvén waves
propagating on the perfectly conducting column. However, in the limit where

the wall is highly resistive, a simple quadratic expression is obtained for

the damping effect of the wall on the surface waves. With the second term in

i

-4 -
the denominator small compared to the first, (c;-\,\:) ~ a‘— L/&t and

(8)

- pFa(0RYj) + B(w) + K =0

where an effective spring constant is

2 2 m .
= _/ﬁﬁ\t + Mo (—;(ﬂ- H{*% H‘;F"‘(“»n\) + Ao (Tk-f/t*eﬂ“)en(“.“) G_(@R)(9)
™ Fh\ (w)a) -Fm(ﬂ.a)

and an effective damping coefficient is
2
B = -4y (% Ht+ &Ho.) G-.(H'“)Gn (a,R) ,
(Fu (@) -F (a0 (=48
Thus, the frequencies (given by Eqg. 8) are
3'w _ -B ¥ ‘] Bz_(_fﬁ(olﬂ)ﬂ{ (11)
[~ % (o,R)]

Note that F_(O,R) < O, F (a,R) »0, F (@ ,a)-F_(R,a)> 0 and G (R,a)G (a,R) € O.
m m m m m m

(10)

Thus, the wall produces damping.



8.23

Prob. 8.13.1 1In static equilibrium, the 6,2,¢)

radial stress balance becomes
[ { )
= =Sl +5 1
“Fm ﬁ-T;rn ‘K<¥ﬂ R (1)
so that the pressure jump under this
condition is
~tapg?_ Y ——
“-ﬂ-“ T oa eoEo (2) E°
In the region surrounding the column,
the electric field intensity takes the form

—-—

E=Eo¥‘;<—}+é , @=-v%

(3)

while inside the column the electric field is zero and the pressure is given

by . %(ut-W\O—QE)
¢

P= “b-\—P (T,G,'?:,t) = -\Tb -\-kﬂ.\ p(ﬂ e (4)

Electrical boundary conditions require that the perturbation potential vanish

as r becomes large and that the tangential electric field vanish on the

deformable surface of the column.

(e ¢

N
e, =-E°.§-,_

111

F’\xf-:\ =0 (5)

{

! R3O "3z =

r:R4S : :

E’og-*er Qg ez,‘

In terms of complex amplitudes, with Ez = 3% Q’
A A

&
§ - Eoi (6)
Stress balance in the radial direction at the interface requires that (with some
linearization) (Pg.l <o)
4
™ \ R 1
L N
a--R = 36, I E°(ﬂ+‘t) +ex| + (W), N

To linear terms, this becomes (Egs. (f) and (h), Table 7.6.2 for '_I‘—s)

A

GEIA AQ \( 2 ng A

B= GE:% - e 2% - & (1ot -@R)S ®
R n

Bulk relations representing the fields surrounding the column and the fluid

within are Eqg. (a) of Table 2.16.2 and (f) of Table 7.9.1
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Prob. 8.13.1(cont.)

Ao
ér= f (or)E (10)

8% = {(w-.U)~F.(0R)%, (1)

A
Recall that ‘\3,.'23'(4.0-&0)?, and it follows that Egs. 9,10 and 6 can be

substituted into the stress balance equation to obtain

2 A Za 2 o 2 g8
- (U 'ﬁU)/dE.(O;R)s - e‘f" s - €0Eo SM(Q'R)€—§1(\—|~\ - %K)§ (12)

If the amplitude is to be finite, the coefficients must equilibrate. The result

is the dispersion equation given with the problem.
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Problem 8.13.2

The equilibrium is static with the distribution of electric field

. : ()
intensity 1
—— IRET
E:: -—:L——- € > 1
ooaner | Lo D

and difference between equilibrium pressures

required to balance the electric surface force

density and surface ten31on

1
T,T.=1 ﬂ. 2/eu il eeolm

With the normal given by Eq. 8.17.18, the perturbation boundary conditions
require ﬁxﬂﬁﬂwat the interface.
A ~ A -
§‘_§"_§_1_[€ eﬂ-.—o (3)
4+t Q]* €€,

that the jump in normal D be zero,

~d
€25 - cey =0 (4)

and that the radial component of the stress equilibrium be satisfied

Ac ad €-€, $
-(p-¥ )(A_\-OQF(“)‘? Al o (e- “e-r) (n--szﬁ 0

In this last expression, it is assumed that Eq. (2) holds for the equilibrium
stress. On the surface of the solid perfectly conducting core,
Ae 2 e
- ' - 6
% =0 3 §§ =0 (6)
Mechanical bulk conditions require (from Eq. 8.12.25) (F(b,R) {0 for _>b
’ ~
A - kA
pSzo ;Pc{: —w{ﬂ‘:(b,ﬂbf &)
*
while electrical conditions in the respective regions require (Eq. 4.8.16)
AC - A A A A J
&er = NPT gel = eH(bR)E (1%0
‘7\ d nC AJ

Now, Egqs. (7) and (8) are respectively used to substitute for p )P ,e %8

in Eqs. (5) and (4) to make Egs. (3)-(5) become the three expressions

*,&\; (b, R)=-n/r 5 ¥(b,R) <0 Ser wOD
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Problem 8.13.2 (cont,)

& (nt) -£5(4,m)
R

(n+)
a7 ne

-3&(%,:&)

4R

- (G—éq
AvrRiee,

- o:b F( b,fs) -231(5".)_1_0\ -Q(mz:"L

@amyrce, B

The determinant of the coefficients gives the required dispersion

equation which can be solved for the inertial term to obtain

-co"‘/E‘(L,R):
@n)ym €€, X
9 (€-€) (n+0)§(b

e NG +‘.‘§3(n-n<mz>

R

() B € ¢ {- €5 (bR)R+€, ()]

The system will be stable if the quantity on the right is positive.

limit b < { R, this comes down to the requirement that for instability

T 53{2(6‘__&2 _ (.6_ -§(n+0n

or € €, ° -2—:\ 4+ (n+1)
(n-)(n +2)
T 3
{(-2— MCIOL -3(E-)
° Shenti 3
where °
qil

= Yand 'Re,

and it is clear from Eq. (11) that for cases of interest, the denominator

of Eq. (12) is positive.

} + (h-N(n+2) {0

€o
€

In the

~) >

-

~ o ~~
[Ye]

~~

=
E-en T .

=
o Gn S SE @

:
L
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Problem 8.13.2 (cont. )

The figure shows how the conditions for incipient instébility can be
calculated given e/e° . What is plotted is the right hand side of Eq. (2).
In the range where this function is posif:ive, it has an asymptote which
can be found by setting the denominator of Eq. (12) to zero
€ ) _ n 4+3n 42
(2), = =5
The asymptote in the horizontal direction is the limit of Eq. (12) as € 50—000

(13)

T'n = n+2 (14)
The curves are for the lowest mode numbers n = 2,3,4 and give an idea of
how higher modes would come into play. To use the curves, take G/G, =20
as an example. Then, it is clear that the first mode to become unstable is
n=é and that instability will occur as the charge is made to exceed about a
value such that T‘ = 6.5. Similarly, for €/€°=10, the first mode to become
unstable is n=3, and to make this happen, the value ofT must be T =9.6. The
higher order modes should be drawn in to make the story complete, but it
appears that as €/6° is reduced, the most critical mode number is increased,

as is also the value of T required to obtain the instability.
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(cont.)
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Problem 8.13.2



8.29

Prob. 8.14.1 As in Sec. 8.14, the bulk coupling can be absorbed in the

pressure. This is because in the bulk the only external force is
F=-Vv& ¢ & = ?_}5 (1)
3
where %:Q %’.“R is uniform throughout the bulk of the drop. Thus,

the bulk force equation is the same as for no bulk coupling if p—bTTE Pt ‘}_i .

In terms of equilibrium and perturbation quantities,
A " (wt-m &)
M= Pl ¢ ?, & () + Re w(¥) R(Cos 8) Qa -
whereTY;Pb(r)-}aE’(r) and '?\' plays the role ﬁ in the mechanical
2
transfer relations. Note that from Gauss' Law, '§° = q‘(‘ /4 eo , and that
because the drop is in static equilibrium, C(T\—/AY':O and H is independent

of r. Thus, for a solid sphere of liquid, Eq. (i) of Table 7.9.1 becomes

Al
&b :éw/BF'h(O,R)—\}Y (3)

In the outside fluid, there is no charge density and this same transfer
relation becomes
A o ~a
P = Ewﬁ"‘ LN CR RN (4)
At each point in the bulk, where deformations leave the charge
distribution uniform, the perturbation electric field is governed by Laplace's

equation. Thus, Eq. (a) of Table 2.16.3 becomes

A
C
Al
S
e, = gK(O.R) ¢ (5)
Boundary conditions are written in terms of the surface displacement
Ao AL %
‘U‘* = —l/(‘ = —aw (6)
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Prob. 8.14.1 (cont.)

Because there is no surface force density (The permittivity is €, in each

region and there is no free surface charge density.)

D pl =T, )
r=RAY
This requires that

A [%"Y 1([01 =l ¢)

—ﬂ‘_\_& P 'a(wf {-IT q‘él.‘.ﬂe(“' Q&)P }-.-‘E (8)

Continuation of the linearization gives
-2¥%
T, ST, 98 = 25 ®
for the static equilibrium and
A
PR'_?‘_B ; ? +} @ -— —X—z(H‘IX(h‘)Z)? (10)

3€.
for the perturbation. In this last expression. Eq. (1) of Table 7.6.2

has been used to express the surface tension force density on the right.
That the potential is continuous at r=R is equivalent to the condi-
tion that P XJE[l=0 there. This requires that

[ c‘\- te to

| 1 oY -lbf —o> (e u+___3?§|5‘“— (11)

r 30 tsinb 26

lemeed fel  1¢f

where the second expression is the .P component of the

Zirst. It follows
from Eq. (11) that

181 «+SIEN =0 (12)

and finally, because | E.[ = O
2}

é“ - & =0 (13)

The second electrical condition requires that ¥ - il éu =0

which becomes

c + & ll=o0
ﬂ CoEo“ R‘bs ﬂe "'ﬂ . (14)
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Prob. 8.14.1 (cont.)

Linearization of the equilibrium term gives
E
Hévoﬂi + ﬂerﬂ‘:O (15)

3
Note that outside, B, = QA 3/36,\'1 while inside, E.= ed_“'/3 €, . Thus,

Eq. 15 becomes
A AQ " L
_l€ + 2y -2, =0 (16)
Equations 4 and 5, with Eq. 13, enter into Eq. 16 to give

—3—% + Hn(w,ﬂ)—gn(o,R)l&:O (17)
° al,

which is solved for & . This can then be inserted into Eq. 10, along

AQ A
with P and T given by Eqs. 2 and 3 and Eq. 6 to obtain the desired dis-

persion equation

wz lﬂxﬁ(wlﬂ) _/45}7“(0, )1 = :‘ﬁz (n~l)( r\+z) -3::;%0 (18)
| 3

€° [ ;h‘(wlR)“¥h(OlR)]
The functions Fh(ao,R)> o)Fn(o,R) ¢oand S;n(oo,R)—-fh(o,R) 2@n)/R so it follows

+

that the imposed field (second term on the right) is destabilizing, and that
the self-field (the third term on the right) is stabilizing. In spherical
geometry, the surface tension term is stabilizihg for all modes of interest,
n >4

All modes first become unstable (as Q is raised) as the term on the
right in Eq. 18 passes through zero. With ;E Q/%m’(s, this condition is

therefore (N # i)

Qz=—§—"Tz€.XR3(h+Z>(Zh+\) (19)

The n=0 mode is not allowed because of mass conservation. The n=1 mode,

which represents lateral translation, is marginally stable, in that it gives
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Prob. 8.14.1 (comnt.)

Ww=0 in Eq. 18. The n=1 mode has been excluded from Eq. 19. For N0,
CQZ is a monotonically increasing function of n in Eq. 19, so the first
unstable mode is n=2. Thus, the most critical displacement of the interfaces

have the three relative surface displacements shown in Table 2.16.3 for fl

The critical charge is

@ =/ 497 R Ye, = 7.3rr‘/eox R’

Note that this charge is slightly lower than the critical charge on a

perfectly conducting sphere drop (Rayleigh's limit, Eq. 8.13.11).

Prob. 8.14.2 The configuration is as shown in Fig. 8.14.2 of the text,

except that each region has its own uniform permittivity. This complica-
tion evidences itself in the linearization of the boundary conditionms,
which is somewhat more complicated because of the existence of a surface
force density due to the polarization.

The x-component of the condition of stress equilibrium for the
interface is in general

-lplin, +BT,511H6 + T, =0 (1)

This expression becomes

_sax _ ‘ € (e 2 At 2 A
-1-12,+T -3 “m el +1 Z(E°+ex)[\x=;b’(§§z )0

Note that E0=E°(x), so that there is a perturbation part of Ei evaluated
at the interface, namely 2F, AE,/J;. Thus, with the equilibrium part of

Eq. 2 cancelled out, the remaining part is
H?C(E"“?*S%(/«‘/’s)“(d %)+ 1€E, &, +1¢EE: B?-Xf%?-o 3

A
It is the bulk relations written in terms of W that are available, so
. , . . s A A A
this expression is now written using the definition p=W -a& . Also,

A@ofsz-annd ec(E,/sz'} » 80 Eq. 3 becomes

a(fa )T - 171 +1381+ JeE &, ]-¥KT=0 ©
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Prob. 8.14.2 (cont.)
The first of the two electrical boundary conditions is

nx1ED O:‘?ﬂﬁlh»ﬂE'ﬂj--—o (5)
X=%

and to linear terms this is

18] +1E1S =0 )

The second condition is

Sjc—tn\ zo>flee]+0€

-
-

dE 1\5 )

By Gauss Law, GAEo/c(x:“ and so this expression becomes
A A
feeci + Ig1% =0 ®

These three boundary conditions, Eqs. 4, 6 and 8, are three equations
cdae 34 gegd o
in the unknowns ? A\ ,§ . & ’@x ¢, . Four more relations are

provided by the electrical and mechanical bulk relations, Egqs. 12b, 13a,

14b and 15a, which are substituted into these boundary conditions to give

ar -

/b) —X?Q %a'(’ €°E°Pec€| kga A
'3 </:—w (/“cﬁkea-‘/ coth) -%54 6,ELethEl b4

I E.1 = ‘ |

I310 €. B cothBe abent |3

L 4L

This determinant reduces to the desired dispersion equation.
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Prob. 8.14.2 (cont.)

Lo ba et B = g (A-) T 1 v R,

<
+ (9= 90) _ 2(€,-€)(3E, cothBliq E cotlba) (10)
€ocothBa +€ cothRb €. coth Bo + €, cothBL

R (ea" ek‘;EaEL“
€a_+&.u\'\ %—L'\'eb +Q~\L|B°\

In the absence of convection, the first and second terms on the
right represent the respective effects of gravity and capillarity. The
third term on the right is an imposed field effect of the space charge,
due to the interaction of the space charge with fields.that could largely
be imposed by the electrodes. By contrast, the fourth term, which is also
due to the space-charge interaction, is proportional to the square of the
space-charge discontinuity at the interface, and can, therefore, be inter-
preted as a self-field term, where the interaction is between the space
charge and the field produced by the space charge. This term is present,
even if the electric field intensity at the interface were to vanish. The
fifth and sixth terms are clearly due to polarization, since they would not
be present if the permittivities were equal. In the absence of any space-
charge densities, only the sixth term would remain, which always tends to
destabilize the interface. However, by contrast with the example of
Sec. 8.10, the fifth term is one dﬁe to both the polarizability and the
space charge. That is, Ea and Eb include effects of the space-charge.

(See "Space-Charge Dynamics of Liquids", Phys. Fluids, 15 (1972), p. 1197.)
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Problem 8.15.1

Because the force density is a pure gradient, Equation 7.8.11 is
A
applicable. With B,, =/u°I/)“Y=_3_Y‘-)it follows that A = —(/‘oI/Dﬂ'ﬂ,QV-("/K)

so that £ = "3,A and Equation 7.8.11 becomes

p= 11 - K_Lk(r)+,aét (1)

Note that there are no self-fields giving rise to a perturbation field, as in
Section 8.14. There are also no surface currents, so the pressure jump at
the interface is equilibrated by the surface tension surface force density.

(2)
_“c.-—“’.‘a = _\%\

while the perturbation requires that

2
b \
°/“°T' (“*f =Y P, N —-:.D—-i._l ®
n ™6
Linearization of the first term on the left (ﬂ. (I-\—x) ~x) , substitution to

obtain complex amplitudes and use of the pressure-velocity relation for a

column of fluid from Table 7.9.1 then gives an expression that is homogeneous

%D(w,m) = 0 . Thus the dispersion equation, D(w,wm)=0 , is
2
-w/\:..\(o,ﬂ% _-_, (rowd) & 3T O
Tanm

(c) Recall from Section 2.17 that F (0,R) { 0 and that the m = 0 mode is
excluded because there is no z dependence. Surface tension therefore only
tends to stabilize. However, in the m = 1 mode (which is a pure translation
of the column) it has no effect and stability is determined by the electro-
mechanical term. It follows that the m = 1 mode is unstable if :S,I <0 .

2
Higher order modes become unstable for -TOI =(""‘ "I)AWY//I,R . Conversely,
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Problem 8.15.1 (cont)

all modes are stable if IOI>O. With Jo and I of the same sign, the
ix/u,ﬂ force density is radially inward. The uniform current density
fills regions of fluid extending outward providing an incremental increase
in the pressure (say at r = R) of the fluid at any fixed location. The
magnetic field is equivalent in its effect to a radially directed gravity

that is inward if J T 0

Problem 8.16.1 In static equilibrium

E& =-p= _TR > X20 (D
* M, +egax+LeB, 5 x<o0

In the bulk regions, where there is no electromechanical coupling, the

stress-velocity relations of Eq. 7.19.19 apply

S [RasR) (R [

- (2)
e -7 | £
S, (O-R) TR |

and the flux-potential relations, Eq. (a) of Table 2.16.1, show that
Ad 24
E, = k& 3
The crux of the interaction is represented by the perturbation boundary
conditions. Stress equilibrium in the x direction requires that
: . - AN, =0
ﬂ Sxé“na + DTxa Hna X"'v x (4)

A Al
With the use of Eq. (d) of Table 7.6.2 and § =Y /a'w, the linearized

version of this condition ié
. Ae ~d A2 2

ok SIS S NS O N
R (off) ~ e >

The stress equilibrium in the y direction requires that

ﬂ Sﬂi“ni + “T‘a;;“”é _‘(ﬂ_(v.a),,,a -0 (6)

and the linearized form of this condition is

z A€ ~A4q
e&e%—QEﬁ -S =o )

e X gx

(5)

i
0o
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Prob. 8.16.1 (cont.)

The tangential electric field must vanish on the interface, so

g
éé - ERS (8)

9 w °

and from this expression and Eq. 7, it follows that the latter condition

can be replaced with

g:x p )

Equations 2 and 3 combine with Eqs. 5 and 9 to give the homogeneous equations

itk pfwe R

(10)

§ (Y-8 (¥ +R) &:
Multiplie& out, the determinant becomes the desired dispeszi:on -equation.
2 2
: ~RY-¥(¥+R) | 2 %
@t 1RCY-R) = - (eREC-V.R -0q) (11)
. R(¥+RY | (e, af=p
With the use of the definition ¥ = @, 4+ awf/;) this expression becomes

_aw7(4RY uoN QY _ v (12)
4;;2(————“& +3—7—ﬁ>_pg+ . -€RE.

Now, in the limit of low viscosity, Q/ ¥ — 0 and Eq. 12 become

o' —jaRhw - (g + RV -€RE]) =0 (13)

which can be solved for 3.
4@ Riye " 2
@i V‘G’oj) + 5 ¢y +EVa-ehel) "

Note that in this limit, the rate of growth depends on viscosity, but the

field for incipience of instability does not.

In the high viscosity limit, ¥ % R +a'°"/°/§ 7£ and Eq. 12 become

2 X%
op| B ER)  w . .
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Prob. 8.16.1 (cont.)

Further expansion of the denominator reduces this expression to

%%ﬁ:;éw73 +p8 +BY, —e,RE (16)

Again, viscosity effects the rate of growth, but not the conditions for

incipience of instability.

Problem 8.16.2 In static equilibrium, there is no surface current, and

so the distribution of pressure is the same as if there were no imposed H.

-1, L X0
—'W°+/o%x 3 %<0

(1)

The perfectly conducting interface is to be modeled by its boundary conditioms.

The magnetic flux density normal to the interface is taken as continuous.
R-181=0 @)

With this understood, consider the consequences of flux conservation for a

surface of fixed identity in the interface (Eqs. 2.6.4 and 6.2.4).

A 2.1 = EEE R XV A = (3)
c_ﬁggn&o\ 3 + % (B )]h a= 0

S S
Linearized, and in view of Egq. 2, this condition becomes

HD NSty = W RV /e “
st 59

Bulk conditions in the regions to either side of the interface represent the
fluid and fields without a coupling. The stress-velocity conditions for the

lower half-space are Egs. 2.19.19.
A AL
&l [FC® ) [

§¢—7 J06-R)y  wR

ax
While the flux-potential relations for the magnetic fields, Eqs. (a) of

Table 2.16.1, reduce to
e

ad A A ad A A
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Prob. 8.16.2 (cont.)
Boundary conditions at the interface for the fields are the linearized versions

of Eqs., 2 and 4. For the fluid, stress balance in the x direction requires

% ‘f ‘(Jé -~ Su = (7

w N
where A:’ - a‘w % . Stress balance in the y direction requires

" "d
—S;‘ +auoH, \\.g=0 @)
-’ \‘ g-l (K ( R . (X Q) 9 P&eﬂ
M it (DR jo(s-8) |1 o

=0
. . Hz% e
%7("’&) 7(X+%)’a:)ﬂo ° 4

It follows that the required dispersion equation is
2 2 Z
[tk (RleRe (- &7 G-R)w=0 o
In the low viscosity limit, ¥ NX;'w(a/7 * “i&? 3vr g-l and therefore

the last term goes to zero as 7—-—-0 so that the equation factors into the
dispersion equations for two modes. The first, the transverse mode, is repre-
sented by the first term in brackets in Eq. 10, which can be solved to give the

dispersion equation for a gravity-capillary mode with no coupling to the

magnetic field.

“=qR +*649. (1)
/0

The second term in brackets becomes the dispersion equation for the mode

involving dilatations of the interface. 2/
= R
3 .47, = | Moo
w = w,_[ 3 +%_] = I ] (12)

l7¢”

2

If w)W,, then in the second term in brackets of Eq. 10, 7(K+Q)) )/a,Ho Q/;o
and the dispersion equation is as though there were no electromechanical
coupling. Thus, for < >4, the damping effect of viscosity is much as in

Problem 8.16.1. In the opposite extreme, if <LK &), , then the second term
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Prob. 8.16.2 (cont.)

2
has 7(‘{1-&)((2/{.“’ B/&a and is approximated by the magnetic field term. In

this case, Eq. 10 is approximated by

Ny ' 2_3&2- = (13)
(o%.-\-‘&@ &7‘8-‘-37““_32/0[-{:% o 13

In the limit of very high Ho’ the last term is negligible and the remainder

of the equation can be used to approximate the damping effect of viscosity.

Certainly the model is not meaningful unless the magnetic diffusion
time based on the sheet thickness and the wavelength is small compared to
times of interest. Suggested by Eq. 6.10.2 in the limit d—eee is a typical

(N3 "
magnetic diffusion time QAT O /ﬂ » where a is the thickness of the perfectly

conducting layer.
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Prob. 8.16.3 A cross-section of the configuration is shown in the figure.

e A Ed -

b-L e EoaTi= gt
%

. {8)

In static equilibrium, the electric field intensity is
(v} x<K0

and in accordance with the stress balance shown in the figure, the mechanical

stress, Sxx’ reduces to simply the negative of the hydrodynamic pressure.

B A\
Sun— p= og % +-\5'€°E:--“'

Electrical bulk conditions reflecting the fact that E=-Y® where $

(2)

satisfies Laplace's equation both in the air-gap and in the liquid layer are
Egs. (b) from Table 2.16.1. Incorporated at the outset are the boundary
Ao A

c 5
conditions Q =0 and § =O, reflecting the fact that the upper and lower

electrodes are highly conducting.

éi = %u-l‘jﬁo. $ | (3)
e =_R uthRb &° (@)

The mechanical bulk conditions, reflecting mass conservation and force equilibrium

for the liquid, which has uniform mass density and viscosity, are Egs. 7.20.6.
At the outset, the boundary conditions at the lower electrode requiring that
both the tangential and normal liquid velocities be zero are incorporated in
A* A g
writing these expressions( 1},‘ =0, 1}‘3 = O}.
Ae ~ e ~e (5)
S, = 79\1& + 7‘3\31}1

XA
.e (6)

AQ e
S, = 7B + yARTLN
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Prob. 8.16.3 (cont.)

Boundary conditions at the upper and lower electrodes have already been
included in writing the bulk relations. The conditions at the interface
remain to be written, and of course represent the electromechanical coupling.

Charge conservation for the interface, Eq. 23 of Table 2.10.1 and Gauss'law,

require that -
Eifi = -Vg- <GE{}) - Fi'ﬂ“'ﬁi“
32 ]

where by Gauss'law G'_"’ = n-Jeel.

(7)

Linearized and written in terms of the complex amplitudes, this requires that

46,8 - 88y = ke E W L o8 ®

The tangential electric field at the interface must be continuous. In linearized

form this requires that
le,l NEL (9)
% .
Because? '!}/aw and C = aki » this condition becomes

Q-Q-xE—o (10)

e
In general, the balance of pressure and viscous stresses (represented by Sij
of the Maxwell stress and of the surface tension surface force density, require

that
PR
“ S“H + ﬂ'ﬁ]lh + "‘;\5 — =0 (11)
With i=x (the x component of the stress balance) this expression requires that

to linear terms
: D?) u( ) 3?
- < (12)
HS“H + US,“‘U( D‘é +ﬂ n X ;\3
By virtue of the forsight in writing the equilibrium pressure, Eq. 2, the
equilibrium parts of Eq. 12 balance out. The perturbation part requires that
A
e
~ o9V ae ad 2.0 (13)
L _ S. +€E e; YR 3
) Ax ‘__"
¢ 44
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Prob. 8.16.3 (cont.)

With i=y, (the shear component of the stress balance) Eq. ll requires that

D?) ( 3 ) (14
-3 -=J)J=0 )
n S%xn + HS%%“"( D% +n —l;x] + BT«“HO )'4 .
Observe that the equilibrium quantities HSM'[I‘: - '\ieoE: and §| T‘l‘)“ = '-‘—zGOE,
so that this expression reduces to

A e 2 A B ~
= $gx - eei;% I}f"'}% €oE¢;~§ =0 (15)

The combination of the bulk and boundary conditions, Egs. 3-6,8,10,13 and
AJ a "J 28 A AC A S
. , . . e e e e
15, comprise eight equations in the unknowns(ex, Cx , § ,& ’g‘*, S‘a” 1}‘ , \ﬂ% )

The dispersion equation will now be determined in two steps. First, consider

the "electrical" relations. With the use of Eqs. 3 and 4, Eqs. 8 and 10

become
- N A1l T ae]l
ol wthBa  ocReothBh +oRetfBb| |3 [ReE Y
¥ e 3 ¢ o°9
- (16)
Ae e
- oS
1 1 ¢ | B3
- _l.t- - -3 o
From these two expressions, it follows that
Ae A
~d SEE WV 4 _E_"_Ue('QCcoLQEE +0‘u(jEL)
§=3°21 " jo 3 (17)
joo (€, cith Bos € coth L) + o otk
ﬁé ~ i
In terms of Q_ ' Q‘ is easily written using Eq. 3.
The remaining two boundary conditions, the stress balance conditions of
AR A
Egs. 13 and 15 can now be written in terms of (7’3 X 'tﬂf) alone.
. ~e
My M, '
¥ (=0
‘&e (18)
l. N\z\ Mzz '3
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where

My=-jsR -3 -IE +EER ctlla cthlth (juc 4o)
jw(eaw”ca+€cot(ﬁ)>)+ acatl Bb

an-?pls*' é€:Etgwd£a
je (¢, wthBa ve oth Bb) v o thRL
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R € E,
§0(€,cth Rou+ € cithBl) + o thRD
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T he dispersion equation follows from Eq. 18 as
__M_u Mu - Mz My =0

Here, it is convenient to normalize variables such that

1

=———2“"§, , & =% » Py = b P
2
= kf , U :.‘:QOYE, 5 we =zw¥
peegf L USNE e
R=Rb = v=X¢&
and to define b? d
C: %uljgg+oodg ;R:M@;S"u‘\‘j%f‘

so that in Eq. 19,

,—“ﬂz%‘;Mn: - "3 -/1 “Q +Q.U KS(Awr +1)

Ja:o‘(‘C + A
&\Zzhm\z:" 13 +3§2Y‘URS
7 w*(‘C + R
b . = -Bio - UR $32UG2y R
M‘Ll \‘MZ\ "3|3 3 a w‘-C +R
€
_b =P - BUET
M2 = 7 Mz <33 3‘.‘.""C =

(19)

(20)

(21)

(22)
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Prob. 8.16.3 (cont.)

.If viscous stresses dominate those due to inertia, the Pij in these
expressions are independent of frequency. In the following, this approximation
of low-Reynolds number flow is understood. (Note that the dispersion equation
can be used if inertial effects are included simply by using Eq. 7.19.13 to
define the Pij' However, there is then a complex dependence of these terms
on the frequency, reflecting the fact that viscous diffusion occurs on time
scales of interest.)

With the use of Egs. 22, Eg. 19 becomes

{@‘*"’C +R)4eBi- e - ) +EQRS<3°—"’+‘3}{-_P,,(§‘="‘C+P=)-%Ugf}

(23)

H{PalerrC ) SURS] - (Bi3er YR Cam) s RUGavdr] <o

That this dispersion equation is in general cubic in iaJ reflects the coupling
it represents of the gravity-capillary-electrostatic waves, shcar waves
and the charge relaxation phenomena (the third root).

Consider the limit where charge relaxation is complete on time scales of
interest. Then the interface behaves as an equipotential,r — 0 , and Eq. 23

reduces to

39: @QS -~ - %z) i (24)
(j;h]?ga - .Eal‘fgl )

That there is only one mode is to be expected. Charge relaxation has been

eliminated (is instantaneous) and because there is no tangential electric field

- on the interface, the shear mode has as well. Because damping dominates inertia,

the gravity-capillary-electrostatic wave is over damped, or grows as a pure

exponential. Th;:actor (a (—;-A«w&\ 2& _ -%‘)(/va'z& _ BI> N
— = = N 2 4
Eﬁufﬁn —'Eas fi: - ; -3 %.(%IAW~Q J!é -'g "!% )

is positive, so the interface is unstable if

u>( +R%)/SR (26)
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Prob. 8.16.3 (cont.)

In the opposite extreme, where the liquid is sufficiently insulating
that charge relaxation is negligible so that r > 1, Eq. 23 reduces to a

quadratic expression( Pa=- pSI) .

o.(a'w)1+\o(.3'w)+c,.—.o |
o=R Bt By be[(p R RptR(B E'é-"‘%l%,)- j“"’ Selic=Ba p+F-0hS]
€

The roots of this expression represent the gravity-capillary~-electrostatic
and shear modes. 1In this limit of a relatively insulating layer, there are
electrical shear stresses on the interface. 1In fact these dominate in the
transport of the surface charge.

To find the general solution of Eqg. 23, it is necessary to write it as
a cubic in jw

Qw)z +Pé@w§ + Ql(a‘“) +R=o

(28)

p';{ag,g;ca +BCIC (e +#)-kurg]4r(RAVE §

+BarClagR jhoraes)ioc(rn e §

Q= {P YC[(# +BYR- RUrS|+{RP -wC(/O-»B‘) B'QURS“QU&(.;%R].

+ [P, R-3E rvﬁs]lp R- Rrye, S’}/r C(RB,

R= {[f'é o Rl IRk ur@l}/f‘c” (P, P +B3)
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x
Prob 8.16.4 Because the solid is relatively T
conducting compared to the gas above, the [} TEo (e I‘3
equilibrium electric field is simply

- E.C, X >0

E=

o] x <0

In the solid, the equations of motion are- S

SR LIPSO }'" ey

ot® .
G (% 3% PRI (P AER OO
-p+

(3)

where

i =

It follows from Eq. 2b that

N
DX

so that the static x component of the force equation reduces to

=0 P §, =const=o (4)

2 T, ‘ X>0
;_E:-.Gs)ﬁx _(a%$ -{ * ’ (5)
I % Ty—28% 5 x<0
This expression, together with the condition that the interface be in stress
equilibrium, determines the equilibrium stress distribution
-—“'Q X>o (6)

>
- = 2
Sxx P /ng-\-ra +—.‘}'€°E° ; b )

In the gas above, the perturbation fields are represented by Laplace's equation,

and hence the transfer relations (a) of Table 2.16.1
Ao
é: -ud@a __._.‘___. §
1 |=® melien |y Q)
€. - ek o || @
b B

Perturbation deformations in the solid are described by the analogue transfer

relations .
Sxx g" N
-~ G A; J 2 _ wl
?’“ [ ] ?" where 8 = Y -a‘f (&)
S 17 3

gn ’
; A
SV_J 5% J

3

The interface is described in Eulerian coordinates by i(%‘ t) with this

variable related to the deformation of the interface as suggested by the figure.
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Prob. 8.16.4 (cont.) Boundary conditions on the fields in the gas recognize that

the electrode and the interface are each equipotentials.

A

[
¢ =o (9)
A J Ae
iﬁxé]=° 5> & = ES, (10)
xci '
Stress equilibrium for the interface is in general represented by

ﬂ 9‘3“"‘3 + n_‘—:a“nfo .- (i1 '

where i is either x or y. To linear terms, the X component requires that

- .- = 12
Sex * €E,En - 23570 (12)
where the equilibrium part balances out by virtue of the static equilibrium, Eq. 5..

The shear component of Eq. 11, i=y, becomes

d
(S3- 55+ (S-SR T (e

Because there is no electrical shear stress on the interface, a fact represented byl
Eq. 10, this expression reduces to '
e

ng =0 (14) '
In addition, the rigid bottom requires that

&5 -0, =0 as §

AR 2 e
The dispersion equation is now found by writing Eqs. 12 and 14 in terms of (i,,,ggt
Ae A
To this end, Eq. 8a is substituted for S” using Eas. 15 and e‘ is substituted

using Eq. 7b evaluated using Eqs. 9 and 10. This is the first of the two expressio'

. ) Gs P“-\-Elgecd’f\"a& E:"/Dg -G, p,; ? .

=0 (16) .

- G

S
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Prnb. 8.16.4 (cont.)
ne
The second expression is Eq. 14 evaluated using Eq. 8¢ for S,“with Eqs. 15.
It follows from Eq. 16 that the desired dispersion equation is
€ Etk cothfRa =P )
Pu Pss - Pss > Gy 4 - Rsp:n =0 an

where in general, Pij are defined with Eq. 7.19.13 ( ¥ defined with Eq. 8). 1In
R 2 w’-/ . .
the limit where % »? f Gs’ the Pij become those defined with Eq. 7.20.6.

With the assumption that perturbations having a given wavenumber, k, become

unstable by paésing into the right half jew plane through the origin, it is possible

to interprete the roots of Eq. 17 in the limit @W-»0 as giving the value of

2
COE‘,/GS required for instability.

P Pﬁ: P - €oEt__Q coth R -2 (18)
P13 Gs , Cs

In particular, this expression becomes

| 4
i"__E'l’ T 2. [ 3 sinh (;?ab)&%ﬁ{sml—. a%b-%':]-\z(ﬁg)
Gs Cs 4 snh (286y-BE[ kb - (R 1) )

so that the function on the right depends on kb and a/b. In general, a graphical

(19)

solution would give the most critical value of kb. Here, the short-wave limit of

Eq. 19 is taken, where it becomes

€E, = G,/ (20)
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Problem 8.18.1 For the linear distribution of charge density, the equation

3 7e +D? X . Thus, the upper uniform charge density must have value
of (34/4)7_ while the lower one must have magnitude of é‘/4)? Evaluation

gives

- 3 o - A (1)
9o ‘;e+4oqeé 5 = §e+4t>9tec{
The associated equilibrium electric field follows from Gauss' Law and the

condition that the potential at x=0 is V . A _
E= _o-\--%—()“—'), 7‘>2 (2)
x

Eo+§—(x-é') xed

and the condition that the °potential be V at x¥=0 and be 0 at x=d.

4 )
_ - g.d N )
Vo = SE*&X'E° S S vl ?
With the use of Egqs. 1, this expression becomes
v, . &
E = 2 - —P%, (4)

° d [6E,

Similar to Eqs. 1 are those for the mass densities in the layer model.

- 2 . = 4
ppar et s A TR ®
For the two layer model, the dispersion equation is Eq. 8.14.25, which

evaluated using Eqs. 1, 4 and 5, becomes

D
In terms of the normalization given with Eq. 8.18.2, this expression becomes

° V"D D...
"(a*_ﬁ-)u«cﬂ Iw?ct f].‘. Sl—-—;a-—_: 3;]%?;:‘ (2

wieh ehe musbers Dy/loyel =1, ¥y ./w.,\=',%=t,o€-=o e §= 1,

Eq. 7 gives 0 =0.349. The weak gradient approximation represented by Eq.
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Prob. 8.18.1(cont.)

8.18.10 gives for comparison &« = 0.303 while the numerical result representing
the "exact" model, Fig. 8.18.2, gives a frequency that is somewhat higher
than the weak gradient result but still lower than the layer model result,
about 0.31. The layer model is clearly useful for estimating the frequency
or growth rate of the dominant mode.
In the long-wave limit, £ << | » the weak-gradient imposed field
result, Eq. 8.18.10, becomes
e BN ®

n* :
In the same approximation it is appropriate to set S=0 in Eq. 7, which becomes

4
o — @.5‘{[ (9

where OO~ 0 . Thus the layer model gives a freql.lency that is wN@ =Ll times
that of the imposed-field weak gradient model.

In the short-wave limit, g »71, the layer model predicts that the
frequency increases with &“ . This is in contrast to the dependence
typified by Fig. 8.18.4 at short wavelengths with a smoothly inhomogeneous
layer. This inadequacy of the layer model is to be expected, because it
presumes that the structure of the discontinuity between layers is always
sharp no matter how fine the scale of the surface perturbation. In fact,
at short enough wavelengths, systems of miscible fluids will have an
interface that is smoothly inhomogeneous because of molecular diffusion.

To describe higher order modes in the smoothly inhomogeneous system
for wavenumbers that are not extremely short, more layers should be used.
Presumably, for each interface, there is an additional pair of modes
introduced. Of course, the modes are not identified with a single inter-
face but rather involve the self-consistent deformation of all interfaces.

The situation is formally similar to that introduced in Sec. 5.15.
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Problem 8.18.2 The basic equations for the magnetizable but insulating
inhomogeneous fluid are
- T
— VU= - - I
/o( + BBz -vp-pg (- L Wk &Y
vV =0 _ (2)

vyd?:o (3)

- (4)
vxh =o
o (5)
-A =0
DX

(6)

|») =0
24

where {4 = W (» )(_ + h.
A
In view of Eq. 4, \’\=-V‘7U . This means that ) -Jéaw and for the

present purposes it is more convenient to use ﬁz as a scalar "potential"

A \ ~ A A
hx=-.3'—(t-abhi ",\-\‘3:%1‘1{ M

2
With the definitions,uyaa()k)-\-/u' and ﬂ=/30‘) +F’ » Egs. 5 and 6 link the

perturbations in properties to the fluid displacement

R LN = (8)
T o 4

Thus, with the use of Eq. 8a and Eqs. 7, the linearized version of Eq. 3 is
A 2 . Qz A 2 _ [ 2
D(/‘AD\‘Q:&/“,«&.%L—;- W.(Duu), o R = By +R, (9)

and this represents the magnetic field, given the mechanical deformation.

To represent the mechanics, Eq. 2 is written in terms of complex amplitudes.

and, with the use of Eq. 8b, the x component of Eq. 1 is written in the
linearized form

[« *90%u+i M D] 3, +k W (O, )oY, -JwHﬁ(D/uﬁ)Fzzng;) o
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Prob. 8.18.2(cont.)

Similarly, the y and z components of Eq. 1 become

jood, = 14,7 -1 WL Om a2
5 B N W (D )22 (13)
JeVT (R P TG T

With the objective of making Qka scalar function representing the mechanics,’
these last two expressions are solved for Gy anf Gz and substituted into

Eq. 10.

" X, g 5
(% O Vs =a% P --k P H,;(D/“ﬂ) » (14)

A
This expression is then solved for p, and the derivative taken with respect

to x. This derivative can then be used to eliminate the pressure from Eq. 1l.

ol eB)]- Ko 413, 43 ¥ Ha (a2 0 ()

»

T\~
-9 D/’a +'§(D/“A)D<“\A) =-3 D/’*
Equations 9 and 15 comprise the desired relations.

In an imposed field approximation where HS=H° = constant and the
properties have the profiles /a, .--,o,_exp(sx and/uﬁz/l, expax, Egs. 9 and 15

become

D L L

| Lk, - v@a’\.}o‘ﬂ }—&x=o a7

T
where L':". t)1 i—(&D 'R

For these constant coefficient equations, solutions take the form _gxg ¥ X

2
and L "'Xz +@X -& . From Eqs. 16 and 17 it follows that
2pl 2 3
N ?""/V.L + B Ey Ho3 Hm = 0
w T v (18)
[ w /m
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Prob. 8.18.2(cont.)

Solution for L results in ‘

Y *
L:o.ib,a:ﬂ;éc}. [(%a@f) (ﬁ% kf )] (19)

From the definition of L, the Y's representing the x dependence follow as

: i1
=Bty ez ((§)+ B ratb]® 20

In terms of these ¥ 's,

a ~Bx . CX ~ -CK & C.x ~C.X
b= e* [Ae +Ae ’ +A e +A4 l (21)

' The corresponding ﬂ; is written in terms of these same coefficients with the

help of Eq. 17
A Cx A -C

‘QEHﬁ[AC + Ae +£\____ Aqe ]e & @

oth atr b o-b
Thus, the four boundary conditions require that
i C,.,Q -CJ cy -c. R Tr/‘ T
¢ e e e A,
| l ! A
1
A" =0 (23)
C+R -Ql c.X ..C-g ” -
e € ¢ < Ax
P ot b a-§& a-b A
\ | L | A
L <+ % arbs a-b a-bJL 4

This determinant is easily reduced by first subtracting the second and fourth

columns from the first and third respectively and then expanding by minors.

willeis) al(en) 225 = 0 2

B‘L
Thus, eigenmodes are C_\’Q =4h‘“ and C_ﬂ:er . The eigenfrequencies follow

from Eqs. 19 and 20.

R R, h, o e - %FEZ : K,
Ko e K,

For perturbations with peaks and valleys running perpendicular to the imposed

()8 @

fields, the magnetic field stiffens the fluid. Internal electromechanical waves
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Prob. 8.18.2(cont.)

propagate along the lines of magnetic field intensity. If the fluid were
confined between parallel plates in the x-z planes, so that the fluid were
indeed forced to undergo only two dimensional motions, the field could be
used to balance a heavy fluid on top of a light one.... to prevent the grav-
itational form of Rayleigh-Taylor instability. However, for perturbations
with hills and valleys running parallel to the imposed field, the magnetic
field remains undisturbed, and there is no magnetic restoring force to pre-
vent the instability. The role of the magnetic field, here in the context
of an internal coupling, is similar to that for the hydromagnetic system
described in Sec. 8.12 where interchange modes of instability for a surface
coupled system were found.

The electric polarization analogue to this configuration might be as
shown in Fig. 8.11.1, but with a smooth distribution of € and /9 in the x

direction.

Problem 8.18.3 Starting with Eqs. 9 and 15 from Prob. 8.18.2, multiply

the first by Iﬁ: and integrate from 0 to {

g 3 A,
Sﬁibkaoﬁz)c\*-g%%\%\?{&-jEz(o,a,)u B
0o 009

Integration of the first term by parts and use of the boundary conditions

A
on ha gives integrals on the left that are posltlve definite.

R
R ~¥ .

1= a'ZJ—Iq s LF Slﬂﬂlbh HP"/“/"M’ ]Ax I SH (D/“A)v‘ R A" (3)

# o
and 1ntegrate.

I E . ¥
Xﬂ’ oA (0% )dx - & {0‘1”‘ (et &{X LY, dxs 3’5 }L‘D/uﬂ_l& l"zfl“’o(")
0

In summary

Now, multiply Eq. 15 from Prob 8.18.2 by

4

(4 0
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Prob. 8.18.3(cont.)
N
Integration of the first term by parts and the boundary conditions on

gives 1 X g
2 AR N
/JA_D‘? D" Ax -& {4,,.1’ V Ax+ —/Y'vl 3‘% \-\/SD/J‘& hzc‘)ﬁo
0 o o
and this expression takes the form

L S (falov\+&,oﬂ\v\ Jx /L7 &/\f\ﬂ\&x ®

[
Multiplication of Eq. 3 by Eq. 6 results in yet another positive definite

quantity 2
Ry
T,I,-T5 = R% T\ 7)
ot c?
and this expression can be solved for the frequency
3 2 A
- RR AT + T, (8)

Iz,
Because the terms on the right are real, it follows that either the
eigenfrequencies are real or they represent modes that grow and decay
without oscillation. Thus, the search for eigenfrequencies in the general

case can be restricted to the real and imaginary axes of the s plane.

Note that a sufficient condition for stability is A{ 2 O , because

that insures that I3 is positive definite.
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