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6.1


Prob. 6.2.1 (a) The zero order fields follow from current continuity


and Ampere's law,


where d is the length in the y direction.


Thus, the magnetic energy storage is


I Z = IýU C 

afrom which it follows that the inductance is L =/MO /3c.


With this zero order H substituted on the right in Eq. 7, it follows that


-1 d~u - -f~i ; -i 

ý, V. A dt 

Two integrations bring in two integration functions, the second


of which is zero because H =0 at z=0.

y


3


So that the current at z= - on the plate at x=0 is i(t), the function f(t 

is evaluated by making Hyl=O there 

L= . A 
- & -a it 

Thus, the zero plus first order fields are


3 

7) 

The current density implied by this follows from Ampere's law


_ -_, - ­

Finally, the voltage at the terminals is evaluated by recognizing from Ohm'


law that v= ••E- C-/O-. Thus, Eq. 8 gives 

:9) 
ai




6.2


Prob. 6.2.1 (cont.)


where L=A, 4/3cJ and R= •/•/J .


Prob. 6.3.1 For the cylindrical rotating shell, Eq. 6.3.2 becomes 
 5 
and Eq. 6.3.3 becomes


I ;X = o(2) 

The desired result involves D Ag, which in view of Ampere's law is Kz . So, 

between these two equations, K9 is eliminated by operating on Eq. 1 with T ( V/N 

and adding to Eq. 2 operated on by V7-( )/ . 

Then, because K,=; l4 j, the desired result, Eq. (b) of Table 6.3.1, is obtained. 

Prob. 6.3.2 Equation 6.3.2 becomes


=
K 4-(1) 1 
or, in cylindrical coordinates


L'Ž5.U,'r)Wa (2)
_ 

Equation 6.3.3 is


while Eq. 6.3.4 requires that


The S of Eq. 2 and a/ of Eq. 3 then combine (to eliminate ck /•~


to give


A (5) 

Substitution for ) from Eq. 4b then gives Eq. c of Table 6.3.1. 

I

I




5 6.3


£ Prob. 6.3.3 Interest is in the radial component of Eq. (2) evaluated


at r= . 

In spherical coordinates, Eq. 3 becomes 

KI9) + 001 =) 

To eliminate K , multiply Eq. 2 by A- e and subtract Eq. 1 operated 

on by /X$. Because Eq. 4 shows that =-" Eq. (d) of Table 6.3.1 

follows. To obtain Eq. (e) of Table 6.3.1, operate on Eq. (1) with da A8) , 

on Eq. (2) with (d 1o8 )and add the latter to the former. Then use 

Eq. (4) to replace Kt with 9. 

Prob. 6.3.4 Gauss' law for B in integral form is applied to a pill-box 

I enclosing a section of the sheet. The box has the thickness h of the sheet 

and an incremental areaSA in the plane of the sheet. With C defined as 

•I a contour following the intersection of the sheet and the box, the integral 

law requires that 

AI .L,,, All =o 
(1) 

I C 

Tne surrace aivergence is aefinea as 

I.7H E-Z(1 49 (2)
I A-o ,A 

Under the assumption that the tangential field intensity is continuous through 

the sheet, Eq. 1 therefore becomes the required boundary condition. 

S,, . ,,=o (3) 

, In cartesian coordinates and for a planar sheet, V-VC(and Eq. 3 becomes 

In terms of complex amplitudes, this is equivalent to 

I W - ÎI = ( 5 ) A/AA ('V B '9 



6.4


I
Prob. 6.3.4 (cont.) 

From Table 2.16.1, the transfer relations for a layer of arbitrary I 
thickness are k0A I 

I

(6)


Subtraction of the second expression from the first gives
 I

Int - sA (tk thisE (7) 

In the long-wave limit, cosh ka- I4(&IZ and sinh k,& - AA so this express ion I 

becomes 'I 
_ 13 _ , _ + (8) 

continuity of tangential H requires that )C-~fso that this expression agrees 
i3 

with Eq. 5. I 
Prob. 6.3.5 The boundary condition reflecting the solenoidal nature of the


flux density is determined as in Prob. 6.3.4 except that the integral over
 I

the sheet cross-section is not simply a multiplication by the thickness. Thus,
 I


Co - -b x -a 9 D Iis evaluated using H + &4(4- . To that end, observe that=H H 

+b- ' . = (2)
 I
ýO 
so that Eq. 1 becomes 

I j <14 >."7 9 B4R (3) I 
C 

In the limit this becomes the required boundary condition.


> 4.,&V7.<* ý-ES =O (4) 

With the definition 

=(5 )
 III
Iand the assumption that contributions to the line integration of H through the


sheet are negligible compared to those tangential, Ampere's law still requires


I 



S6.5


Prob. 6 .3.5(cont.) 

£i that 

A x (6) 

The combination of Faraday's and Ohm's laws, Eq. 6.2.3, is integrated over the 

sheet cross-section. 

Y, + t. Y. )1. (7) 

This reduces to

£(V 
0 

U (8) 
where evaluation using the presumed constant plus linear dependence for B shows 

I that 

= (9) 

It is still true that 

1, 0 (10) 

i To eliminate K , the y derivative of Eq. 9 is added to the z derivative of 

3 
Eq. 10 and the z component of Eq. 6 is in turn used to replace K 

the second boundary condition becomes 

. Thus, 

ý:_ It 1K + >U (11) 

Note that this is the same as given in Table 6.3.1 provided B is taken as the 

average. 

I 
I 

I 
I 
I 



6.6 	 1 

I 
Prob. 6.4.1 For solutions of the form


eXp- (o 9- k where W = kV, let 

/ = - V9. Then, boundary conditions I 
begin with the conducting 	sheet


or, in terms of complex amplitudes,


x.IA(2) 

At this same boundary the normal flux density is continuous, but because the


region above is infinitely permeable, this condition is implicite to Eq. 1.


At the interface of the moving magnetized member,


~ *' 1=o ^dd 	 £ 
and 	 ­


R- a4 	 -N, AA (4) 

and because the lower region is an infinite half space, -po.o as X-*-~o. 

Bulk relations reflecting Laplace's equation in the air-gap are (from 

Table 2.16.1 with Bg-hue) 1 

- ~R.i -AJ 	 Aj (5) 

In the lower region, V/.M=O , so again 1V = - 0 and the transfer relation 

(which represents a solution of ji=-4ewhere py'o and hence B•-"iPa.0 with ,4--.Ue 

+Of course, in the actual 	problem, Bx= .(• + A ) )is 

10 " r W 	 (6) 

Looking ahead, what is desired is


C A 	 C 

From Eq. 2 (again with 	 - -- L I 
S C ' (8) 

I 



6.7


Prob. 6.4.1 (cont.)

Tofor, plug Eqs. 2
solve 


To solve for Cr Iplug Eqs. 2 and 3 into Eq. 5a


A n b 4 • A­
.oon6 wet WI 

~o i65 F" 
(I + eC.4kd) M 

-

The second of these follows by using Eqs. 3,4 and 6 in Eq. 5b. Thus,


Ac 
(10) 

Janktd -6aS.Bd('Sea Ad) (I+cokv-I Q~c 

Thus with gQ u O(U , Eq. 8 becomes 

anoi 4) col)To2s;h'A -.n-,l - CoikL + 4 (11)to 

To make<V'proportional to U, design the device to have


coL a(1 +r-*44 A) z< < ('+ cof+ 8II 
(12) 

e'l VI)II - o 

In which case


t : •L •A) 
(13)

s; Ad ( I + cota 
so that the force per unit area is proportional to the velocity of the rotor.




6.8


Prob. 6.4.2 For the circuit, loop equations are


[oAA itj (LL+M)4.5 ft kj [0J 

Thus,


R + C•z A/A (2) 

and written in the form of Eq. 6.4.17, this becomes


(L,L)j•" Z (L M( ,+L•A - (3) I 
where comparison with Eq. 6.4.17 shows that


L,1 +M =wXN_W.c.V (5) 

ss&/,~=, £.../ a s(6) 
These three conditions do not uniquely specify the unknowns. But, add to them


the condition that L =L2 and it follows from Eq. 6 that


- S. -. )M S'No4.*. (7) 

so that Eq. 4 becomes an expression that can be solved for M


A= WA/ I-*.f (8)' 
and Eq. 5 then gives


LaL, - L - Wi t 4&€ - )(9) 
Finally, a return to Eq. 7 gives


4 r (10) 

These parameters check with those from the figure.


I 



6.9


Prob. 6.4.3 The force on the "stator" is the negative of that on the "rotor". 

,. -. 1 ... . .-. ,r--.:. 

In the following, the response is found for the + waves separately, and 

then these are combined to evaluate Eq. 1. 

*A 
From Eq. 6.4.9, 

(2) 

So that I • ,.- (3) 

Now, use is made of Eq. 6.4.6 to write Eq. 3 as 

IIn;,- IM s1nh dr 
I + S , d (4)c.oh( 

I 
So, in general 

I 4' ----- +"'I - (5)_ 
I + oi • W-,, 

With two-phase excitation (a pure 

traveling wave) the second term does 

not contribute and the dependence of 

3 the normal force on Sm is as shown 

to the right. At low frequency (from 

5I the conductor frame of reference) the 

magnetization force prevails (the for 

Ir 
is attractive). For high frequencies 

U 



6.10 U 
Prob. 6.4.3 (cont.)
 I 
VS I) 1) the force is one of repulsion, as would be expected for a force 

Iassociated with the induced currents.


With single phase excitation, the currents are as given by Eq. 6.4.18
 i 
4 = c = -No, 

and Eq. 5 becomes


(f',, 3­d.N•>,.1,.iC. I 

where _ ­
m T 

The dependence of the force on the


speed is illustrated by the figure.


,aking the velocity large is


equivalent to making the frequency


high, so at high velocity the force


tends to be one of repulsion. In t


neighborhood of the synchronous


condition there is little induced


current and the force is one of


attraction.


(6)


I 
a + ,-k (7) U 

I 

I 

I 
-I 
I 
I

I

I 



1 6.11 

I 
Prob. 6.4.4 Two-phase stator currents are


represented by I


and this expression can be written in terms 

of complex amplitudes as 

S](2) 
K a~lK;+I~_ r 

w rl~le A • IJl 

Boundary conditions are written using designations shown in the figure.


At the stator surface,


S= - (3) 

while at the rotor surface (Eq. b, Table 6.3.1)


-'%- 'e (4) 

In the gap, the vector potential is used to make calculation of the


terminal relations more convenient. Thus, Eq. d of Table 2.19.1 is


I K [ (5)
F4)A 

To determine H, write Eq. 5b using Eq. 3 for ; and Eq. 4 for .


H , r. (6) 

This expression is solved and rationalized to give


im &+J=IX0 

Here, Hevis written by replacing m--m and recognizing that Fm and Gm are


even in m.


I 



3 6.12 


Prob. 6.4.4 (cont.) 

The torque is 

<Je V4r A W (8) 1 

which in view of Eq. 5b and s,= - A/ becomes 

Finally, with the use of Eq. 7, 

-- I,n 6"w__ 

%+ 

__ 

F,·(r~ ,)a 

___A, 

( L (10) 

where m=p/2. This expression is similar in form to Eq. 6.4.11. 

I 
I 
I 
I 
I 
I 
I 
I 
I 



Prob. 6.4.5 From Eq. (f), Table 2.18.1 

S AW)-A*('+ P 

Because fAi,'+lt )= A4 (0') the flux linked by the total coil is just 

P/2 times that linked by the turns having the positive current in the z 

direction at 0' and returned at e -+T/p. 

In terms of the complex amplitudes 

so 

Sso 

- A+e 
pwRe [A+ee-
1T/P

3,ANos(Q~a 
.+A] 

ce' 

-A-]c 

e'a 

(2) 

(3) 

* or 

" Ae + e de'e 

I ~P 
The only terms contributing are those independent of 19 

,-A= NA-wc 4. 

I 
I 
I 
I 

Substitution from Eqs. 5a and 7 from Prob. 6.4.4 then gives 



(+

6.14


Prob. 6.4.5 (cont.)


(6) 

G.G(ka, b) 14 G,(La); (u-(L(), 

(,b) 
•o_(,Lf<-G.L bo%•I A/+ 

For two phase excitation + -

this becomes 

.'t" 
=n;Rn 

n) 

I), 
= 

+ 

O 

b);,a(0- a) 

)••(..,~ 

(7) I 
where 

4­ w 06 L 

+ (4,). (Ia). 

S" = "". 0ý 1 ( 

s,
rrsL 

-~ 

L + 7' 

For the circuit of Fig. 6.4.3, 

={p(L,+t)
a-6 i W-

a~l~+,AA) 

(L,~ +M) 

-u^^. 

['4(iaM4" 

CS-(lz+Mý·' + 

S+ m) (nldci~ilrZ 
+c 

& 

't.~P 

] 



6.15 
Prob. 6.4.5 (cont.)


compared to Eq. 7 with .At h - this expression gives•_ b= 

(9)
b4. 

S(Lt+ A (pb) = (L + ^) (10)
A)

R b RA-)I 

••a .Aol4pwa Gr(a, b6) G, ( L,a) (11) 

4 
Assume L = L2 and Eqs. 2 and 3 then give 

21 o 

F,(o, L) - "epWO v, (,, a) (12)
b,

fb fa s4 
from which it follows that


.4 pW,. F,, (6, b)

4crs o ,6 (13)


Note from Eq. (b) of Table 2.16.2 that F, ( ,a)/F(a,L) = -/ so Eq. 6 

becomes


At PWa (14)
4c' b 

From this and Eq. 4 it follows that


4 a6 
(15) 

Note that G,(a,bm = - G, (=,a)ba , so this can also be written 

as


1I~is pwO- G. (,L'C)) 
(16) 

Finally, from Eqs. 2 and 9


L = L, =L 
4 

_ 6a__.. - F , 
6 
(b,a) G,,, (b,a 

(17) 



I 6.16 

Prob. 6.4.6 In terms of the cross-section

I 

shown, boundary conditions from Prob.


6.3.5 require t-ha 

Ai_(l,,,C•4 • (a, -C);o 0 1) S/7 

6P(i (b AbTOLA')b(2) 

In addition, the fields must vanish as x-o*o and at the current sheet 

(3) 

Bulk conditions require that


(4)


o I 

la 

A CL
- I Lk & (5) 

-••c~ • • 
In terms of the magnetic potential, Eqs. 1 and 2 are


tA C 
) (6)


These two conditions are now written using Eqs. 3 aLnd 5a to eliminate Bc and Bb 
x x 

UI9,A 

A (8) 

I 
From these expressions it follows that
 I 

A, C &ý'W -[( _ 

I 
i + a• 



6.17


Prob. 6.4.6(cont.)


31 Inthe limit where ,A -14/o , having 44o. - >r)/> 

results in Eq. 9 becoming


_(10)


Thus, asaar6(i-jU)/P is raised, the field is shielded out of the region 

above the sheet by the induced currents. 

In the limit where --- 1- , for (tR•4/,) 1, Eq. 9 becomes 
A 

and again as Qa'&o is made large the field is shielded out. (Note that 

by the requirements of the thin sheet model, k& <<1 , sou/A4must be very large 

to obtain this shielding.) 

With ha6/ finite, the numerator as well as the denominator of Eq. 9 

becomes large as • "~r, - i) / F is raised. The conduction current 

Ishielding 
tends to be compromised by having a magnetizable sheet. This conflict


should be expected, since the conduction current shields by making the normal


flux density vanish. By contrast, the magnetizable sheet shields by virtue


of tending to make the tangential field intensity zero. The tendency for the


magnetization to duct the flux density through the sheet is in conflict with


the effect of the induced current, which is to prevent a normal flux density.


I

I

I

I

I

I




6.18 1


Prob. 6.4.7 For the given distribution of surface current, the


Fourier transform of the complex amplitude is


It follows from Eq. 5.16.8 that the desired force is


-S W 4 4 &V* W9 . ., (2) II 
In evaluating the integral on k, observe first that Eq. 6.4.9 
can be 

used to evaluate B . 

K C-
(3)5 

Because the integration is over real values of k only, it is clear that I


the second term of the two in brackets is purely imaginary and hence makes


no contribution. With Eq. 6.4.6 used to substitute for Hr, the expression


then becomes 
 1


t A0d( +3~~c ')-C 
The magnitude IKSl is conveniently found from Eq. 1 by first recognizing


that


-4 -A (5) 3 
Substitution of this expression into Eq. 4 finally results in the integral 

given in the problem statement. 

I

I

I




6.19 

Prob. 6.4.8 From Eq. 7.13.1, the viscous force retardinq the motion of


I
* the rotor is


Thus, the balance of viscous and


* magnetic forces is represented


graphically as shown in the sketch.


* The slope of the magnetic force curve


3 near the origin is given by Eq. 6.4.19.


As the magnetic field is raised, the static equilibrium at the origin becomes


3 one with U either positive or negative as the slopes of the respective curves are


equal at the origin. Thus, instability is incipient as


* _ _ _ (2) 

I> where )t/ 7 4a.2/AU.. 

I

I

I

I

I

I

I

I




6.20


Prob. 6.5.1 The z component of Eq. 6.5.3 is written with • -I'(& and

110


A=A(OA by recognizing thateC,t) 

7A A 

so that


- •^


A v xA= N\JA 
-- L -L A.~~ 

.3. 

SA _A 0
rae ao 

Thus, because the z component of the vector Laplacian in polar coordinates


is the same as the scalar Laplacian, Eq. 6.5.8 is obtained from Eq. 6.5.3


I__Z _ ._AA A 
/C" • -i ae 

= ~ • (ctt e)Solutions A A (r) , -n are introduced into 

this expression to obtain


£( d ]=4A'yL)r ~dr 

which becomes Eq. 6.5.9


AZA 4 A -- Z+ "kZ"VY, - (-& 7ýj = 0 
8 rZ 

where


Compare this to Eq. 2.16.19 and it is clear that the solution is the 

linear combination of . (ý % ) and . ( ) that make 



6.21 

Prob. 6.5.1 (cont.) 

A(0) = A Mis) = A 
This can be accomplished by writing two equations in the two uknown 

coefficients of Hm and Jm or by inspection as follows. The "answer" will 

look like 

I
I 

( ) ( ) (6) 

A 
( ) ( ) 

The coefficients of the first term must be such that the combination multiply­

ing A vanishes where ( =i (because there, the answer cannot depend on 
Id 

A ). To this end, make them -SA and60(Ln) respectively. 

The denominator is then set to make the coefficient of A0 unity where 
I~C= C . Similar reasoning sets the coefficient of A . The result is 

I A() 6,s ­ U) 

I + Pt+-(++++-(j +- J-(i+6+ )(id)T 
(7) 

The tangential H, - (- A/ 1,)/ so it follows from Eq. 7 that 

A '·­ 1 r1)2'(&r) r), ,. 

~ I7$ +:̀ r)Yk (i)-7(d r) H. (6 J(8) 

I

I




6.22


Prob. 6.5.1 (cont.)


Evaluation of this expression at *= 4 gives He 

6) +%h (d (9) 

where


and


Of course, Eq. 9 is the first of the desired transfer relations, the first of


Eqs.(c) of Table 6.5.1. The second follows by evaluating Eq. 9 at I- S 
 U 
Note that these definitions are consistent with those given in Table 2.16.2


with ---m4. Because 1 generally differs according to the region being 

described, it is included in the argument of the function. 

To determine Eq. (d) of Table 6.5.1, these relations are inverted. 

For example, by Kramer's rule 

(10


I


I

I




6.23 

Prob. 6.5.2 By way of establishing the representation, Eqs. g and h of


Table 2.18.1 define the scalar component of the vector potential.


A = ' AC(~),t2 ) (2) 

Thus, the 9 component of Eq. 6.5.3 requires that (Appendix A) 

*I (L' (rA) + ,A - (3) 

In terms of the complex amplitude, this requires that


c A LA - (4) 

where ) =k + j(cd-kU),4C- . The solution to this expression satisfying the


appropriate boundary conditions is Eq. 156.14.15. In view of Eq.l


b Be=- A (5) 
Observe from Eq. 2 .16.26d (evaluated using m=0O) thattl-li, = (+4L -- (R,, 

or H 


to the argument. Thus, with Eq. 6.5.15 used to evaluate Eq. 5, it follows that


where R can be either J and the prime indicates a derivative with respect


* . I A- ) YV) 

A (3 H fo) 3- 1(6 ol) (ý Y4)1 (6) 

A[ Y( Q)ýo(i'M)- NH1 C~) 3-,(i 

Further, observe that(Eq. 2.16.26c) v, X) = -3 (K) so, Eq. 6 becomes


This expression is evaluated at r= 4. and r a1 respectively to obtain the 

equations e of Table 6.5.1. Because Eqs. e and take the same form asf 


Eqs. b and a respectively of Table 2.16.2, the inversion to obtain Eqs. f has


I already been shown.


I 
already been shown.


3 



I 
6.24


Prob. 6.6.1 For the pure traveling wave, Eq. 6.7,7 reduces to


4 ^6Y AC. AC 

< t • 'cw•-• •A -A H 

The boundary condition represented by Eq. 6.6.3 makes the second term 

zero while Eq. 6.6.5b shows that the remaining expression can also be 

written as AA 

< 4.A4d (2)+fV'9 


The "self" term therefore makes no contribution. The remaining term is


evaluated by using Eq. 6.6.9.


Prob. 6.6.2 (a) To obtain the drive in terms of complex amplitudes, write


the cosines in complex form and group terms as forward and backward traveling


waves. It follows that


A. A 

To determine the time average force, the rod is enclosed by a circular cylind­

rical surface having radius R and axial length k . Boundary locations are 

as indicated in the diagram. Using the 

theorem of Eq. 5.16.4, it follows that 

HCr 

S(2) . .'. :......."..._ .


With the use of Eqs. (e) from Table 2.19.1 to represent the air-gap fields


I 

I 



6.25


Prob. 6.6.2 (cont.)


the "self" terms are dropped and Eq. (2) becomes


So, i is desired. To this end observe that boundary and jump conditions are 

oA	C. c t 
4 =X(4) 

eee 

It follows from Eqs. (f) of Table 6.5.1 applied to the air-gap and to the


rod that


SC I6O)K t)R 

Hence,
 e4 K	 It _ \ 
: \d ~\r ~ t i~AO~LJ +ORijj 

1 0 

Prob. 6.6.3 The Fourier transform of the excitition surface current 

is 

AiA-.9AI.d-
- 1 (1)Kit 	 I-, 04.e 01ý,8.(k0) fe-- ( 

In terms of the Fourier transforms, Eq. 5.16.8 shows that the total force 

is . 
(2)


In view of Eq. 6.6.5b, this expression becomes


Aa	 (3) 

-co 
where the term in ( has been eliminated by taking the real part. 

With the use of Eq. 6.6.9, this expression becomes 

(4) 

With the further substitution of Eq. 1, the expression stated with the


problem is found.




6.26 3 

Prob. 6.,7.1 It follows from Eq. 6.7.7 that the power dissipation 

I 
(per unit y-z area) is 

PA <S4=ý = II 
The time average mechanical power output (again per unit y-z area) is the 

product of the velocity U and the difference in magnetic shear stress acting 
(1) I 

on the respective surfaces I 

Because 1b g A,this expression can be written in terms of the same 
I 

combination of amplitudes as appears in Eq. 1 

I 
Thus, it follows from Eqs. 1 and 3 that 

(U ) 

From the definition of s, 

(LI• 

pH\E 
Pf ·P~ ,~ 

(4) 

(5) 

1 
I 
I 

so that 

F = I -A 
I 



6.27


Prob. 6.7.2 

The time average and space average power dissipation per unit y-z


area is given by Eq. 6.7.7. For this example n=l and


K =· - A (A 6(3LT 

because 1 -~ - O. 

From Eq. 6.5.5b


I5;hkfPdea% L S 

where, in expressing A , the term in 4 has been dropped because the 

real part is taken. 

In view of Eq. 6.6.9, this expression becomes 

AZ<S'j> =~ 6" eW&tJ)a 1(3) 
Wt tZ S A(- C& + A il 

Note that it is only because -"V( ýo 6 is complex that 

this function has a non-zero value. 

In terms of s a c-9 ) 

A Lt t yr ae? sA A.d 
It ZA4C. 

Note that the term in i ) is the same function as represents the S, depend­

ence of the time average force/unit area, Fig. 6.6.2. Thus, the dependence




6.28


Prob. 6.7.2 (cont.)


of < on S, is the function shown in that figure multiplied by .


0.3


O.Z


s._I


0 Z 



I 
6.29


Prob. 6.8.1 Equations 6.8.10 and 6.8.11 are directly applicable. The 

skin depth is short, so 4 is negligible. Elimination of between 

the two expressions gives 

where < Sjlis the time average power dissipated per unit area of the 

interface. Force equilibrium at the interfaces 

can be pictured from the control volumes shown. 

3' (2) 

--

I K''-0 (3)I( 
Bernoulli's equation relates the pressures at the interfaces inside the 

liquid. 

5. P, (4) 

Elimination of the p's between these last three expressions then gives 

So, in terms of the power dissipation as given by Eq. 1, the "head" is 

< S,4 (6) 

I 

I 
I 



6.30


Prob. 6.9.1 

With 

TV ~ -x.L C 

and 

-ý -i I; IJlzdF 

Taking this latter derivative again gives


- /tP~ c4 
4 

Thus, Eq. 6.9.3 becomes


-L z

I t I


"IA (T- -X\,Jk cr 1 
/' 

AZ4II, t2X.L(N (4k = o 
Ck ý 

In view of the definition of , 1, this expression is the same as
,Eq. 


Eq. 6.9.7.
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Prob. 6.9.2 (a) The field in the liquid metal is approximated by


Eq. 6.9.1 with U=0. Thus, the field is computed as though it had no y


dependence and is simply


The amplitude of this field is a slowly varying function of y, however, 

given by the fact that the flux is essentially trapped in the air-gap. 

Thus, H Ac0o/h and Eq. (1) becomes 

A K 

t- 6baHe 

(b) Gauss' Law can now be used to find H . First, observe from Eq. (2) that x 

"
x -- (3) 

Then, integration gives H

x X 

(4) 

The integration constant is zero because the field must vanish as x-- C-o.


(c) The time-average shearing surface force density is found by integrating


the Maxwell stress tensor over a pill box enclosing the complete skin region.


. A 2...z II 

(Ti=-6 1,U I - -'4Q.Z. WA 'Z iI 
" -*" "L4'I - V--

As would be expected, this surface force density goes to zero as either the


skin depth or the slope of the electrode vanish.


(d) If Eq. 5 is to be independent of y,


. _IIL 5 Z 
-- Con St •­

Integration follows by multiplying by dy 

andgiven
the
distribution h(y) follows.

and the given distribution h(y) follows.
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Prob. 6.9.2(cont.)


(e) Evaluated using h(y), Eq. 6 becomes


Prob. 6.9.3 From Eq. 6.8.11, the power dissipated per unit area is (there 

is no 4 surface) 

A 

d>k 2 I ' 

where


Thus, Eq. 2 of Prob. 6.9.2 can be exploited to write H (= o) in Eq. 1 as 

<Sj, i I iE [ I +a h - - IHI 
- I'll 

The total power dissipation per unit depth in the z direction is


: it=d 266·RI-z( kia2H (3), I~ 



I 
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Prob. 6.9.4 Because 3 3- and crthe power dissipation per 

unit y-z area is


0 
jg= VAi.= SA-

In the "boundary-layer" approximation, the z component of Ampere's law


becomes


Y. bC\~ = 3, 
3x 

So that the dissipation density is


1.a 

In view of Eq. 6.9.8,


z M°I•-•o~c~- 4° 

T'T 

Note that the only X dependence is now through Thus, 

0

's '- O -2 CF a ROI If'H -zj~CZTfr t 
WQ 

3 1A i- C~iW) 
11 J-t7' a(~i7 )= ,ae \4D'YY 

OTýCr 0 
rTV)"7 



6.34


Prob. 	6.9.4 (cont.) 

So, for C )Vi~ t'= ~ /Cr> where 

oa# 	Foz 

ZoA
= 
94 	 z7.T 

· T11bt ; o0 < ut 

For 	 /Ut<L the total power per unit length in the z direction is 

L 

2=	 L --I4/ -Z t 

+ 	 et 
w 

and this becomes


/4 1 	 -Ut 

+ LATI 

The time dependence of the


total force is therefore as


shown 	in the sketch.
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Prob. 6.10.1 Boundary conditions for the


eigenmodes are homogeneous. In terms of


the designations shown in the sketch,


S(1)


A,' (3) 

.4 = e(4) 
* 6Ag

A- (5) 

(6)


The bulk conditions are conveniently written with these conditions incorporated


from the outset. In all three regions they are as given by Eq. (b) of Table


6.5.1 with suitable identification of properties and dimensions. In the upper


air gap, it is the second equation that is required.


r = W-At 1dC I(7)


For the slab . 

heA J2 l ai Ae li'ON 7 
L Ij 

while for the lower gap it is the first equation that applies 

A e 

Now, with Eq s. 7 and 9 used to evaluate Eq. 8, it follows that


1140- j-etd~~p Y? 
(10)


=0 

'q 

1 AAb4~Or .~ 

Note that boith of these equations are satisfied if Hb=He so that 
Y Y 
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Prob. 6.10.1(cont.)


- .4 0 (11) 

with the upper sign applying. Similarly, if Hb = -He, both expressions are 
y y 

satisfied and Eq. 11 is found with the lower sign applying. In this way, it 
 I 

has been shown that the eigenvalue equation that would be obtained by


setting the determinant of the coefficients in Eq. 10 equal to zero can be 
 i


factored into expressions that are given by Eq. 11. Further, it is seen that 

the roots given by these factors can respectively be identified with the even 

and odd modes. By using the identity X-o1/ = / IC-.4 a 

and (CA*x+ )/Ij c- (XlZ) it follows that the eigenvalue equations 

can be written as o 

Oh. (12) 

so that the expression for the odd solutions is the same as Eq. 6.10.1 with I 

roots given by the graphical solution of Fig. 6.10.2 and eigenfrequencies given by 

Eq. 6.10.7. The even solutions are represented by the graphical sketch 

shown. The roots of this expres


can be used in Eq. 6.10.7 to


obtain the eigenfrequencies for

.4. 

these modes. Note that the


dominant mode is odd, as would


be expected for the tangential


I 

U,

T


I

I


I i 

3magnetic field associated with a current tending to be uniform over the sheet 


cross-section.


I

I

S
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Prob. 6.10.2 (a) In Eq. (d) of Table 6.5.1,


H9 and H are zero so the determinant


of the coefficients is zero. But, the result­


ing expression can be written out and then


factored using the identity footnote to


Table 2.16.2. This is the common denominator


of the coefficients in the inverse matrix, Eq. (c) of that table. Thus, the


I required equation is (see Table 2.16.2 for denominators of L and % to


which the determinant is proportional).


rx)o (1) 

I This can be written, using the recommended dimensionless parameters, and the 

definition of H in terms of A1. (Eq. 2.16.29) as 

where ')=•l,,rangesfrom 0 to 1 and %C--. ~~" ca(C'->'-•l . 

I (b) Given -h and the azimuthal wavenumber, m, Eq. 2 is_/W a transcendental 

equation for the eigenvalues -=- (a~o) (which turn out to be real). 

The eigenfrequencies then follow.an 

(3)I I4:1tri 
A-C­•t 


For example, for m=0 and 1, the roots to Eq. 2 are tabulated (Abramowitz, M. 

I and Stegun, I.A., Handbook of Mathematical Functions, (National Bureau of 

Standards Applied Math Series, 1964) p. 415.) However, to make use of their 

3 tabulation, the eigenvalue should be made '6 and the expression written as 

I J aN1) 1- ' Mtn(~) (4)h,(d4)=

I


I
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Prob. 6.10.3 Solutions are of form


(a) The first boundary condition is Eq. d,


Table 6.3.1


ýý_) 0­

With the substitution of the assumed 

*A s 

form and 

rnShe Slh8 

A 

Sih-

In view of Eq. 2.16.31a,this becomes(Co 

In view of Eq. 2.16.31a, this becomes 

A &. A 

Li17cY)hh~) 
A" c, 

-Brsa 

The second boundary condition is 

A O., ^ ).7 
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Prob. 6.10.3 (cont.)


Bulk relations are (Eq. (d) of Table 2.16.3)


(6)SA n 
R 

for the exterior region and (Eq. (c) of Table 2.16.3)


Afr· 

y, -(7) 

I 
for the interior region.


These last three expressions, substituted into Eq. 4, then give


1nm (8) 

I 
Thus, the desired eigenfrequency expression requires that the coefficients


of ~ be zero. Solved for co, this gives, 

I 

I 
I (b) A uniform field in the z direction superimposes on the homogeneous solution 

a field = - Ho : - H•o" Cos ). This has the same e depend-

I ence as the mode m=0, n=l. Thus the mode necessary to satisfy the initial


condition is (m,n) = (0,1) (Table 2.16.2) and the eigenfrequency is


C'=+ (10) 

I 
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Prob. 6.10.3 (cont.) I


The response is a pure decay because there is no dependence of the excitation


on the direction of rotation.


1
(c) With the initial field uniform perpendicular to the z axis there is a 


dependence.


,- Hx = -H shG co 

This is the 6•- dependence of the n=l, m=l mode (Table 2.16.2).


So


C4.) = + L +(i2+L() 
QsVSo A/(1


);'C S"heCos ­

The decay rate is the same as before, but because the dipole


field is now rotating, there is a real part.


Prob. 6.10.4 (a) The temporal modes exist even if the excitation is


turned off. Hence, the denominator of Eq. 8 from Prob. 6.6.2 must vanish.


(b) It is convenient to group


S1-( C-)tQV) S' (2)


Finding the roots Sn to Eq. 1 is tantamount to finding the desired eigen­


frequencies because it then follows from Eq. 2 that


Note that for Sn real both sides of Eq. 1 are real. Thus, a graphical


procedure can be used to find these roots.


I

I

I




6.41


Prob. 6.10.5 Even with nonuniform conductivity and velocity, Eq. 6.5.3


describes the vector potential. For the z component it follows that


S-- A = • 4+A A 
ta-t L4 

Thus, the complex amplitude satisfies the equation


5cA _ A = a ; (x() £ + iA4T(XtI[ 

On the infinitely permeable walls, H =0 and so


A() o , •A(o)=o 
Because Eq. 1 applies over the entire interval 0 < 

need to use a piece-wise continuous representation. 

eigenmode, Am, and integrate by parts to obtain 

A I- X " A A 

o o 

(1) 

- k U(K (2) 

(3)


x (a+de j , there is no 

Multiply Eq. 2 by another 

O (4) 

With the roles of m and n reversed, these same steps are carried out and the


result subtracted from Eq. 4. 0 

I 61A' 2V)A I-AV% 0 (5) 

Note that JA Cr ( Wn - CJ-) 

In view of the boundary conditions applying at x=0 and x= R , Eq. , the required 

I orthogonality condition follows.


I (6) 

0 

I 
I 
I

I

I 


