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6.1

Prob. 6.2.1 (a) The zero order fields follow from current continuity

and Ampere's law,

B =(3/0) (, (0

3=3,0 ;
) - L a
31 3, ?H =~ I3 (2)

where d is the length in the y direction.

Thus, the magnetic energy storage is

.2 2z _ A ,ucuq .2
‘—;-L(.:A—Z& H% 3—3—3—:" ¢ (3)

=5

from which it follows that the inductance is L /AO.,Q/SA

With this zero order Hy substituted on the right in Eq. 7, it follows that

SH_ G- d¢

Two integrations bring in two integration functions, the second

of which is zero because H =0 at z=0.

,Mfi d( . (5)
‘r\.é| —11 It r §(He

So that the current at z=-§ on the plate at x=0 is i(t), the function f(t)

¥<

is evaluated by making Hy =0 there

sl Al (6)
b= ¢4 I+ ' ’

Thus, the zero plus first order fields are

- - Ac { 3
M=t AT ()

The current density implied by this follows from Ambere's law

3=—¥h=i;wwd( Efyﬁ
" 3t 4J 22/ 4+

Finally, the voltage at the terminals is evaluated by recognizing from Ohm's

(7

law that v= QE,E':- QX“(—X)/O'. Thus, Eq. 8 gives

ﬁ:ﬂc+L% 9)
*



6.2

Prob. 6.2.1 (cont.)

where L= u fa /3¢l and r= & /g4 .

Prob. 6.3.1 For the cylindrical rotating shell, Eq. 6.3.2 becomes

v [ OKe _)(:K ‘?)l_ o P
w158 "l s & o Rm. o
and Egq. 6.3.3 becomes
¥ 26 >

The desired result involves ﬂ\-\e“, which in view of Ampere's law is Kz‘ so,

between these two equations, K, is eliminated by operating on Eq. 1 with + ¢ )/3

(]
and adding to Eg. 2 operated on by «22C YNe .
2 2
v 2 - —va 2 (2 S\.Qﬁ) (3)
(f S T ;9‘51&* - s 35( 3T Y558

Then, because Kz= ﬂHe“’ the desired result, Eq. (b) of Table 6.3.1, is obtained.

~
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Prob. 6.3.2 Equation 6.3.2 becomes

(Vx RQ( = -G‘si-—Bf + aslvx (v xt‘*)],« (1) '
or, in cylindrical coordinates a
1 3% _ DKo _ OB, By ()
a 36 "3"{‘—¢’<a-t +u>a -
Equation 6.3.3 is ;K é K I
- ‘ 9 k
. =g == + T =oO -

while Eq. 6.3.4 requires that

[Hel=1Ky 5 -THf= Ko (4)
The o) /3& of Eq. 2 and o /dOof Eq. 3 then combine (to eliminate Sl‘(i/Q9>Z)

to give
“(dzbe‘+a&*)'49' O;Aa(bf +U5)8

(5)

Substitution for HO from Eq. 4b then gives Eq. ¢ of Table 6.3.1.



6.3
Prob. 6.3.3 Interest is in the radial component of Eq. (Z)Vevaluated
at r= d
| ;<K¢me>_a<l<ad)},_c.(ggmdwse,)
d® aan 6 o8 d ¢ AR Y (1)

In spherical coordinates, Eq. 3 becomes

. 2 -
Y [%(Kadm B) + S-é(lqd)l =

To eliminate KQ , multiply Eq. 2 by geﬁ”" € and subtract Eq. 1 operated
on by) /Ab Because Eq. 4 shows that“ H¢“= —Kﬂ’ Eq. (d) of Table 6.3.1
follows. To obtain Eq. (e) of Table 6.3.1, operate on Eq. (1) with d%a(m;-ze),

on Eq. (2) with %(cl A0 )and add the latter to the former. Then use

Eq. (4) to replace I‘(d’ with n Hau

Prob. 6.3.4 Gauss' law for B in integral form is applied to a pill-box

enclosing a section of the sheet. The box has the thickness A of the sheet

and an incremental area$§A in the plane of the sheet. With C defined as
a contour following the intersection of the sheet and the box, the integral
law requires that

A/A<§>ﬁ~¢7n49 +3A0RL]=0 .

The surface'divergence is defined as
% H S <%\~\ W48 (2
z-HE= JA=»o SA

Under the assumption that the tangentlal field intensity is continuous through
the sheet, Eq. 1 therefore becomes the required boundary condition.

su v=-H + {B.1=0 (3)
In cartesian coordinates and for a planar sheet, \:\ = -V ¢/ and Eq. 3 becomes

—A/Aij ;%1-1_‘, “B“ 15) (4)

In terms of complex amplltudes, this is equivalent to

A/A@z‘; + (8 —%il =0 (5)



6.4

Prob. 6.3.4 (cont.)

From Table 2.16.1, the transfer relations for a layer of arbitrary

thickness are ~o . ~a
Bx - CMQ s /q,\,.\,a Ra q/

=uR .
B . o) @ ©

Subtration of the second expression from the first gives

g -8, —/"31 _l( @) (7

In the long-wave limit, cosh ka- l-l(b\/z and sinh kA — Ra so this expression
becomes “ N
2 a o~
sa b G+ °)
LA NPT & @
”» o~

- a . .
continuity of tangential H requires that (//-vl,V,so that this expression agrees

with Eq. S.
Prob. 6.3.5 The boundary condition reflecting the solenoidal nature of the
flux density is determined as in Prob. 6.3.4 except that the integral over

the sheet cross—sectlon is not simply a multlpllcatlon by the thickness. Thus,

,u%{[uc JxlAQ + %Ai\BB o (1)

is evaluated u51ng Ht = (H,‘ . To that end, observe that
A -
- 7 e - - G, ~ b - Y L
gu.c.‘clx:ut-(_,,b +.'3¢>(\.\£_H£).L,‘ = A{RY>-C (2)
o

so that Eq. 1 becomes

§<H>t..c\9 + {B.l=0 3)

SA
In the limit this becomes the required boundary condition.
wuaVy WY & B.1=0 (4)

With the definition

-— A
K. = |3 dx (5)
1 °
and the assumption that contributions to the line integration of H through the

sheet are negligible compared to those tangential, Ampere's law still requires



6.5

Prob. 6.3.5(cont.)

that
(6)

The combination of Féraday's and Ohm's laws, Eq. 6.2.3, is integrated over the
sheet cross—sectlon.

I(sz;) dx =0 ilb-g’—"- + v x (=8I, 13* )
This reduces to

@ % \’<¥)h = - c’Ai gt + U —-1( B.D (8)
where evaluation using the presumed constant plus linear dependence for Bn shows

that ¥\

g’B,c‘x = & {BD

(9)

It is still true that
VZ . \‘(; =0

To eliminate Ky, the y derivative of Eq. 9 is added to the z derivative of
Eq. 10 and the z component of Eq. 6 is in turn used to replace Kz. Thus,

the se ond boundary condition becomes

R TREEEE 1L S A RS S

Note that this is the same as given in Table 6.3.1 provided Bn is taken as the

average.



6.6 i
Prob. 6.4.1 For solutions of the form AL —>00
s B - EV ;i T T /./I/.' -a-. rE PECEY |
expa(wt' ‘33 where ¢3S , let . ’& 2 2 a‘) = ” -t
F/ = - V(P Then, boundary conditions
L . «d) L,
begin w1thb:t:§conduct;ng sheet . . 1 ]—l l [“(I(CT ') 1
- = -q2_ é_)B (1) o = a8Vt -y
ﬁ? s a«g( Y A M= Qe (e :
or, in terms of complex amplitudes, \l | [ 1 |
2 A e Ac AL . 2 A
& H‘) a;wa Hs( $/‘o“a = —4E- ‘-VT (2)
L)

At this same boundary the normal flux density is continuous, but because the
region above is infinitely permeable, this condition is implicite to Eq. 1.
At the interface of the moving magnetized member,
o ~d e

nxjHi=o = Yy =@ (3
and (wf Qg)

neehl=-R-Ju.ml= &Ia,Me H He

ad e = He-Ha= %)

and because the lower region is an infinite half space, '-P-DO as X-»-00,

Bulk relations reflecting Laplace's equation in the air-gap are (from

Table 2.16.1 with B —»u.H,)

AL ] ~ e
el _a —eoth R T q)é
ﬁ: __—st::\ Rd ccth R} | & )

In the lower region, V-/II.J\:O » SO again Vt(’= O and the transfer relation
(which represents a solution of [J=-V¢where Y"‘/’=O with 4A—»A, and hence Bx"/lo H,..

Of course, in the actual problem, Bx= /(.( Hx + M,‘) )is

RS = - e | )

Looking ahead, what is desired is

4

<—r>--/xoaeu i =- wh @ el o
From Eq. 2 (agaln with H = a&w )

(T, =8 G 7 (B 5"
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Prob. 6.4.1 (cont.)
‘e
To solve for ({/ s plug Egs. 2 and 3 into Eq. 5a

- .p‘z - AQ- - =
. b Pe coth Rd Q 0]
Mo Sy .o sin® Rd ¥
-2 "€
——x R (1reatbhied) || ¢ M| ()
I sinh fd i L _J L

The second of these follows by using Eqs. 3,4 and 6 in Eq. Sb. Thus,

e . MR (10)
inh > - tco R co '&t
sin {l R coth J(H- *h@JB]-E:C___;(HcAH @A)g}

sinhRd
Thus wit}x'(_jsﬂ.q“u "» Eq. 8 becomes
(T, = LM ¢
9 e T
R Y 7 LT D TTY) FYORSTEIS A C

To make <T%>tproportional to U, design the device to have

2 2 (12)
Clammar - coth Bl (eeoth BA << (4 coth €d)
In which case 2 Q{ )
- zqu ¢ ‘¢$v
mz 3 sinh*Rd (1 +ceth &4) (13)

so that the force per unit area is proportional to the velocity of the rotor.
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Prob. 6.4.2 For the circuit, loop equations are

A A
1:‘0<L|+M) "—ACJM L'“ “ﬂc..
= (1
SjeM <L'+M)*£'.. i 0
Thus,
4 8 4o (L +M)+ - ]
(= (2)

L (l,+M)[1u (Lo +M)+ = 1 4 ME

and written in the form of Eq. 6.4.17, this becomes

A wM R M) 4.
Y = {.sw(t M) - 3«.4,0..[3 "'“M(L‘ )"‘] 5
ﬂ [I-&-w (Lz"’M)
TR
where comparison with Eq. 6.4.17 shows that

A= i (Li+m) = S, coth RS “
L +M = i&_ﬁ coth Rd ()
A wM?/p = S... whNaHo/ 3 R sinhRd (6)

These three conditions do not uniquely specify the unknowns. But, add to them

the condltion that Ll-L2 and it follows from Eq. 6 that
LI 1

A _
R S‘n\htgd 4“‘ o AT
so that Eq. 4 becomes an expression that can be solved for M
t R 2
M= N ﬁJgi/u;,g (8)
A’“ Sth\'l ﬁ&
and Eq. 5 then gives
L= L. —1%-&[& Ahoed- L -wx agezuz(%)(g)
“ A 3
Finally, a return to Eq. 7 gives
Qm — S. _A4vW (10)
R W WAL

These parameters check with tﬂége from the figure.
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Prob. 6.4.3 The force on the "stator" is the negative of that on the "rotor".

(i, =-el gl T =4

x4t Hg*

ar ot A rw-i S N e D

¥ H H,‘_ -, H,-
In the following, the response is found for the + waves separately, and

then these are combined to evaluate Eq. 1. From Eq. 6.4.9,

Ay " A Ay
Hy =54l ot & coth fd @7 @

xt sinh fd

So that AaA
i (TR | cothRARAAT L &
DARTME { Rl mhee\[\x\*u"’”*“v} e ®
+ (ot bd-D) 1, T
Now, use is made of Eq. 6.4. 6 to write Eq. 3 as
| W, a ‘HH' \K:H |- S:t
sinh | + Sy coth® 84 0

So, in general

al Aal S‘ )
<_$ > __ng U {“'( l (‘ Sm*) “'('l(l— M- (5)
x 8 skl ]| tS; mh‘ﬁd N+ S] _cathid

With two-phase excitation (a pure

traveling wave) the second term does ‘\\\\\\\\\

not contribute and the dependence of —

, ™4
the normal force on Sm is as shown

to the right. At low frequency (from

the conductor frame of reference) the

magnetization force prevails (the force

is attractive). For high frequencies
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Prob. 6.4.3 (cont.)
qu!> 1) the force is one of repulsion, as would be expected for a force
associated with the induced currents.
With single phase excitation, the currents are as given by Eq. 6.4.18
A~
Ke =R = £ Nacy 6)

and Eq. 5 becomes

4 T 2
<-F> - Pgw dON:"O-’ Sm* - 1 + Sm- - l
¥ 32 sinht fd { +S:‘f°ﬂ’\l 8A | & S:‘Sdhtﬁd n

where Smt = U0, (w:ﬁ())/ﬁ

The dependence of the force on the _

A,

speed is illustrated by the figure.
ilaking the velocity large is
equivalent to making the frequency

high, so at high velocity the force

tends to be one of repulsion. In thé
neighborhood of the synchronous
condition there is little induced

current and the force is one of

attraction.
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Prob. 6.4.4 Two-phase stator currents are

represented by 'w't

~

K ac(. e Na COS(.Q.E) (1)

+('be N COSR&Q)-ﬂl

and this expression can be written in terms

of complex amplitudes as
e z(ut -mB) , 1(o't+m9’
K = Re[K; +iCe 1@
where A T ‘ ‘

K: =% (G Na+ 25/\/5 €ta?>

Boundary conditions are written using designations shown in the figure.

" At the stator surface,

H =-KK , (3)
(]
while at the rotor surface (Eq. b, Table 6.3.1)
T A AP P A
- 0em ¢ AY
B Ho = 2 (@-=)Be D Hy= qlo-m)GA) @

In the gap, the vector potential is used to make calculation of the

terminal relations more convenient. Thus, Eq. d of Table 2.19.1 is

At Fo(ba)  Guen®) || HE
ap = Uo (5)

Ar

A G (b,a) F.(a,b)|| H,

av Aa ar
To determine HG , write Eq. 5b using Eq. 3 for -HO and Eq. 4 for A

i . .
° = Mo Gm( L’a) lA&'\'—/“(’ F:n (°‘) B) HG ©

-§ G(w-mQ)
This expressio;l is solved and rationalized to give
'1:\;, = R:G.n“ °)ﬂ.0;(w:m fo_;i +R.Q@Qb G wima)] o)
) Vo (o, ) [4,0; (w3 madl’

Here, HeY is written by replacing m—#-m and recognizing that Fm and Gm are

even in m.
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Prob. 6.4.4 (cont.)

The torque is

S A 4,.% AV A
()= ambw L Re[ &7, (A7) +R. (A7)

(8)

which in view of Eq. 5b and é\,z --am'A/Q' becomes
e wid e A sae F LAY LAy B 9)
<‘1‘)t = “BW&°[J§"‘A4(HQJ +-3{'-"A-(H,-) ]
_ 2 N Ana .\,t . AN Ar ¥
=W Reldmse (06 (b, o)1} ~smu, K G (b)) ]
Finally, with the use of Eq. 7,
~ A k4
<’T>t= ﬂbwrn/u, G:‘(L,a){ “'<.|.l MU (w-m L)
b+ F:\ (Q\L)Y_/(QO} (u-mn)ll (10)

|1 24 03 (0w 02 }
L+ FL @S e DT

where m=p/2. This expression is similar in form to Eq. 6.4.11.




Prob. 6.4.5 From Eq. (f), Table 2.18.1

o, = e |A(6") -Ae'+ 2]

A, , A
Because A (9 +%)=A (9') , the flux linked by the total coil is just
P/Z times that linked by the turns having the positive current in the z
direction at §' and returned at 6+ w/p.

In terms of the complex amplitudes

_ a 4(wi-me’) . wt+me’)
§)‘22'.!p‘°'lA+ ¢ + A c/a(

ra a(wt mMmE-NT) A, a(:..-t-|»m9+ﬂ‘)

- A, -A_e I (2)

AL - t-ne A e’ ‘wt
= PWRCI_A.;Q +A‘.' arm ]ca
so T/p
X§7 Nycos(e2)ade’ (3
e
or

P el o'

. 0 . ’
2= MaPware |[Ae

> X4
2 (4)

(2]
Nl P O

The only terms contributing are those independent of e’
= Nopwa fa gay g9t
-_Lf_—_ReIA*+A_1¢ ()

Substitution from Eqs. 5a and 7 from Prob. 6.4.4 then gives
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Prob. 6.4.5 (cont.)

7\&'-'-'- _Ni??_w:.: RQ%-/M,FM(L,Q)\"\(_:L —/uormcL,A>)2f.

e (6)
o G0, D) Ry G (b,0)2, 030 -me)5 + E. o, b, 05 (- mad)

I+ T:(a,L)[/«,OZ(w-waﬂz
MGV REC (4 2)ug s ma)5 +R. (a, b)u,T; (i ma)]

+

|+ Fo (6, D) 1o (0 4mDT?

A2 | * 1
For two phase excitation |A+ = 3 /\/u le. . =o
this becomes
A awf (7
ﬁa = RQ ?“ e. )

where

A
'

[
S = Moo puab f
4

-Fa (b | Ga(ab)6.(le) .
o b*
‘ .y R (a,b

I+ Bs (o)) S
b'l.

For the circuit of Fig. 6.4.3,

R N AR MR
ﬁ“:éw ,.:a'w{(L.‘*'M)'{ MZ(Z'+M2+3 Mﬂ-]}
g <)-1+M) + (%)l

. (8)
=éw{ (Li+m) oM a L + o (Lam)z] }
U1+ (2ot m]

A TS G T AR S EE T R O S N O OE s OB & @G &=



6.15
Prob. 6.4.5 (cont.)

compared to liq. 7 with 4,,% SM//I,G;LU =(l-”‘.%.l) this expression gives

L+M = —poNapwba  E,(b,a) 9)
4 b
w(l_z-r/\/\)-"-‘-: Fin (a,b) = (Lz"’M) (10)
R b R M, 05 b
A uNipwab Go(a.b) Gu(b,e) (a
17\/400-_55 4 bz
Assume Ll = L2 and Egs. CI; and ‘13) then give
F’m(O‘;L):_ /\/:P“’“ V. (3,0) (12)
b Ros 4 b

from which it follows that

/\l: PWOL Fm (L'a)

R = -
4 9s F (G‘!B) (13
Note from Eq. (b) of Table 2.16.2 that Y, (L,a)/F_(a,L) :--A/l) so Eq. 6
becomes
N pwa
R= N
4-6'_;\7 (14)
From this and Eq. 4 it follows that
z 2 \
M = HMolNe. pwa - G,..(2, BYG,, (1,%) (15)
& - ab '
Note that Gm (a‘!,): - G, (L,&)\)/A » So this can also be written
as
1
M = Ao Ne. Pw ab G. (L,a) 16
&b
Finally, from Eqs. 2 and 9 .
L = L. :/u,/\/,,pwlag -F:., (L,a) _ Gm(L'“)}
& b b an
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Prob. 6.4.6 1In terms of the cross-section

PERLCD) AT yA
shown, boundary conditions from Prob. — /u = IJ Y '
o
(ay
6.3.5 i that A
reCIu:Lre& a e b e b Y i / w0 /// C// . '
-“}."E—‘AO'\ '*H s (8, -® )0 oy s 7, /- T a 3(”¢
» ab
-@(H - H )+0'Ag(w RU)EAR,) @
In addition, the flelds must vanish as x-»00 and at the current sheet
AQ -~ a A A A .
e =gkt =k > o= R4k
Bulk conditions require that
Ae AC
Sl ¢ (R0

&, ~odRe —pER || ¢
Aa =/“°%' -1 W, (5)
Y e ||

In terms of the magnetic potential, Eqs. 1 and 2 are

z A P Py AN

&-f—e<</’c+ ") + (B, -B))=0 (6)
z A ~ b ce b (7)

‘a& (L/’ - @ >+¢A(“"@U)<‘3x ""Bx>=0
These two conditions are now written using Egs. 3 and 5a to eliminate B}c{ and BZ.

“c] 'ao\k ]
[, (Rau s R ¢ | LeXo
/”0(::/,“) (Tﬁ+wd J) ;}M&h’-d

(8)

n

"b ‘o'A(w-PkV)/!l\?_o
LQ[ 3+¢A§u %U}}_l% —-@_@_’:&%ﬂﬁl} -‘f’ 1 B d ]

From these expressions it follows that

~e R.’ {‘ +-$}_‘2{_A.(w—ﬁ(f><—%‘?;%)-§ | (9)

¢ e
{[<,+udg4>+m] sl alnd (.wtﬁm]}
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Prob. 6.4.6(cont.)
In the limit where ,u—o/(/,, , having «,0° & (U 'QU)/& >>14

results in Eq. 9 becoming

(;/f_ - M&A /{u aa(w-RoO Ro) o) a(j@c{] (10)
&

Thus, as ,u,ﬁ'b(w-ﬂv) /Q is raised, the field is shielded out of the region

above the sheet by the induced currents.

In the limit where g >0 ., for (ﬂé)/a./o) ¥4, Egq. 9 becomes

v &l:w'\FéJ i (B24) an

and again as &b/‘/ﬂ' is made large the field is shielded out. (Note that

by the requirements of the thin sheet model, ka 4<1 , so ,u//l, must be very large
to obtain this shielding.)

With &A/A//dﬁ finite, the numerator as well as the denominator of Eg. 9
becomes large as /,CI'A(L.;-QU)/ @ is raised. The conduction current
shielding tends to be compromised by having a magnetizable sheet. This conflict
should be expected, since the conduction current shields by making the normal
flux density vanish. By contrast, the magnetizable sheet shields by virtue
of tending to make the tangential field intensity zero. The tendency for the
magnetization to duct the flux density through the sheet is in conflict with

the effect of the induced current, which is to prevent a normal flux density.
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Prob. 6.4.7 For the given distribution of surface current, the

Fourier transform of the complex amplitude is

~ (-8
K*= R, f A A @
o 0 a‘(@-@)
It follows from Eq. 5.16.8 that the desired force is
*fp by ¥ oo
=36 gB,‘(H%)Ai =2 Q| B (7 )4R @
- 00 —co

In evaluating the integral on k, observe first that Eq. 6.4.9 can be

used to evaluate B;.

+c0
":<A Ae “r*
(8% =&\ 4] omT ek kd By T( H, ) 4R ‘3)

Because the integration is over real values of k only, it is clear that
the second term of the two in brackets is purely imaginary and hence makes

no contribution. With Eq. 6.4.6 used to substitute for ﬁ;, the expression

then becomes

TIKT S, AR @
=W oy m §
G‘&Z ww RS (1 + S5l R4)

The magnitude |KS| is conveniently found from Eq. 1 by first recognizing

that M __( [ @9 0
\< [c _ ]ca ;K MI(E-M] .A(iég)

36&-@) 24 - jR-8) )

Substitution of this expression into Eq. 4 finally results in the integral

given in the problem statement.
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Prob. 6.4.8 From Eq. 7.13.1, the viscous force retarding the motion of

the rotor is 1
—wpl /272U
£, = et (L) e

Thus, the balance of viscous and

ﬁ.?t oy '?v

magnetic forces is represented

graphically as shown in the sketch.

The slope of the magnetic force curve

near the origin is given by Eq. 6.4.19.

As the magnetic field is raised, the static equilibrium at the origin becomes

one with U either positive or negative as the slopes of the

equal at the origin. Thus, instability is incipient as
2 (A
%A RMiKM coth Q‘A - ],_ >‘"’\1;A
.2 2 2
/‘W& qd [RM coth Rd 41 1

/ 2
where R = w‘ﬂﬂ)-’i‘;g/uao;/ﬁ) TMV:.' 7/44,H,,

respective curves are

v (2)
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Prob. 6.5.1 The z component of Eq. 6.5.3 is written with U~=(Q Yt and

[+
1-5; = A(f, 9,{;) (; by recognizing that
x - 1A 7 DA
VIAE IS TS e W
so that _ _ - _
¢ o ¢
BrUxA= ° s =-¢, )a'—A (2)
L T
[ Y 998 PR ]

Thus, because the z component of the vector Laplacian in polar coordinates

is the same as the scalar Laplacian, Eq. 6.5.8 is obtained from Eq. 6.5.3

A qu = E_A_ + .Q..)_A. (3)
MT dt >0
Solutions A= kge :&\(“) [Rp JA (ot ~m o) are introduced into

this expression to obtain

/Ao-)_r dr ) m ] (- -mOdA “
which becomes Eq. 6.5.9

<§Zi& _L_<& K‘ z-+- Eé% A =0

e s Sy - (¥ \‘.;)P\ (5)

where

\61 = é,u@ (0 -ma)

Compare this to Eq. 2.16.19 and it is clear that the solution is the

linear combination of \-\ - XY ) and ‘X ¢ that make
-3 ~ (4
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Prob. 6.5.1 (cont.)

A Ad A A p
Aa) = A A(g) = A
This can be accomplished by writing two equations in the two uknown

coefficients of Hm and Jm or by inspection as follows. The "answer" will

look like
Aov= AMLC OHGED (I gem]
( ) ( ) (6)
+ Aﬁi (____)H,.(éxﬂ)f ( )jm(én)]

( ) ( )

The coefficients of the first term must be such that the combination multiply-

N
ing A vanishes where “‘=13 (because there, the answer cannot depend on
A

A ). To this end, make them _Sm (a‘@) and H...(a 6’/3) respectively,
4a
The denominator is then set to make the coefficient of A unity where

A
\*=d, Similar reasoning sets the coefficient of A . The result is

A(ey= A LG 5.G8) -3, Gro) W (50)]
[ B (389) T(86) = I (3¥) H - ()]

N
o BT (89) 3. (89 - (0 ML (53]
[ Hu GY6) T (34) =30 GY6) Ho (550 ]
The tangential H, HB = - (QA/Q\’)//A so it follows from Eq. 7 that
?\9=-g{;\°‘[ni( ¥, G¥) -G B GYed]
MG ETGI9 -3 G ¥a) M (300
N "A@[H.ﬁ (¥ T G¥A)-3IGSY) N (554)] ®

[ Ko GG38) T (3¥e)- T (UMY |
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Prob. 6.5.1 (cont.)

* d
Evaluation of this expression at Y =d gives F‘O

HG = ‘?m(ﬁ,d,ﬂ;\d’r a (d,6,%) AA} 9
where
L (aex) = 3 L@ RG¥- K. (83, (]
| Hyo (8 ) 30 (336)- T YR KL (3369
and

Qun(t,6.6) = 4 13~ GE) Ho GY)-H, G¥l) 3. G¥al]
T4 H GIO) T GE)- 3. Gye) Mg

Of course, Eq. 9 is the first of the desired transfer relations, the first of

Eqs. (c) of Table 6.5.1. The second follows by evaluating Eq. 9 at ¢ =43
Note that these definitions are consistent with those given in Table 2.16.2
with &—D-X . Because ¥ generally differs according to the region being
described, it is included in the argument of the function.

To determine Eq. (d) of Table 6.5.1, these relations are inverted.

For example, by Kramer's rule

F_(g,d¥)=L I CN R
/'—':—ikm(ﬁ,dﬁ)-f... (du@;X)—%""(‘g’d 'X)%"‘(dlﬁzb')]

(10)
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Prob. 6.5.2 By way of establishing the representation, Eqs. g and h of

Table 2.18.1 define the scalar component of the vector potential.

A 7 - A= AF (1)

9 \
?3 2
s Ale, @

Thus, the @ component of Eq. 6.5.3 requires that (Appendix A)

- \ /\—
B= w5l

_\_P_ LA 1 L UIA (3)
> \v ar< vA) ;2" Dt 2
In terms of the complex amplitude, this requires that

2

Acwz _L_c\ﬁ - (x +:‘-3_)1-\=o (4)

where }( k + j(LJ-kUL;4d‘ The solution to this expression satisfying the

appropriate boundary conditions is Eq. 156.14.15. In view of Eq.l ,

H = Ba - 3A ‘ (5)
2 /«Y‘ 3?
Observe from Eq. 2.16.26d (evaluated using m=0) thatuR +R, = (UR) = “R

where Rm can be either Jm or Hm and the prime indicates a derivative with respect

to the argument. Thus, with Eq. 6.5.15 used to evaluate Eq. 5, it follows that
{ 2% LHGYES.Gm 3,640 H( Yo
[Hl(am)xn(dkﬁ:&(gﬂﬂ\-\‘(a‘ Yel)] (6)
+ A° L3, YO HGY) - H GYa) T, G ve) ]
[T ¥ HGY8) - R GY) T (YR

Further, observe that(Eq 2.16.26¢c) 'S (aKX) = --S (3¥K> so, Egq. 6 becomes
Hz=-___ A [3» (1%8) H,(axr)-\-\,(gXﬁ)Xe G
¥ TH YT, (Y-, AVTHAT )
A LM (YT ) - 37 (YA, (3] }
$¥ 13, (ED W (8- W, (4¥a) T, (3¥8))

This expression is evaluated at r= d>and r 3B respectively to obtaln the

H, =45
/0\

equations e of Table 6.5.1. Because Eqs. e and f take the same form as

Egs. b and a respectively of Table 2.16.2, the inversion to obtain Egs. f has

already been shown.
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Prob. 6.6.1 For the pure traveling wave, Eq. 6.7.7 reduces to
i ab, Abd ac ac g
(5= kB ROG-RGES)

The boundary condition represented by Eq. 6.6.3 makes the second term

zero while Eq. 6.6.5b shows that the remaining expression can also be

written as

Ho
<SA>‘#-_---‘5(‘-J’%U)&1 a?;[ i

wzﬁaa (e | (;\:)*

The "self" term therefore makes no contribution. The remaining term is

evaluated by using Eq. 6.6.9.

Ll M,H%ir #s i‘
(S, =¥ 7 £ wmamduf)
Y Mo

Prob. 6.6.2 (a) To obtain the drive in terms of complex amplitudes, write
the cosines in complex form and group terms as forward and backward traveling

waves. It follows that

A 2 S 3 N p ALl
K-\- = ‘a../\_/ﬂ'. + ‘b_/\_/_b_ e ' L\/_c-_ Qs 3 (1)
a

To determine the time average force, the rod is enclosed by a circular cylind-
rical surface having radius R and axial length £ . Boundary locations are

as indicated in the diagram. Using the

theorem of Eq. 5.16.4, it follows that

§,= ;nmx(% H>
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Prob. 6.6.2 (cont.)

the "self" terms are dropped and Eq. (2) becomes

{8 =T &It"a,m.u,&)(f\ij-i%«(R*“'"%Xﬂ:-y] )

Ad
So, *\2§ is desired. To this end observe that boundary and jump conditions are
Ac A A
Ha = K (4)
AJ e
He = W, (5)
~d A

::Ae = //\\A';?\e (6)

It follows from Eqs. (f) of Table 6.5.1 applied to the air-gap and to the

rod that
,/\\ » i (7)
e .5 (on .Y)\-\i -He %O(R, BIK™ -/-%(QRB)H
Hence, - 2 Y
iszi_ - 94n, c(,'tQ)K Xg\/%.;é,uo'(w:&(f) (8)
A (R ETHE ;Ms;(om)
4
Prob. 6.6.3 The Fourier transform of the excitation surface current
is . e - 1‘—@)'3
A TR WSS (7' W
5 (k-0 A z

In terms of the Fourier transforms, Eq. 5.16.8 shows that the total force

(5= —-M(B)H 0 .

In view of Eq. 6.6.5b, th1s expression becomes

Al ~b
s i)

is

(3)

. Abrbe
where the term in }-\.3 0433 has been eliminated by taking the real part.

With the use of Eq. 6.6.9, this expression becomes

TORTR
= -
G=im & S R Rd1E4 eo(f\’cq-ci(fﬁ.l] ®

With the further substitutlon of Eq. 1, the expression stated with the

problem is found.
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Prob. 6.7.1 It follows from Eq. 6.7.7 that the power dissipation

(per unit y-z area) is
A gl Ag, A
- _ A (w-BRV) Gy, - A 1
7e sy demalR R o
The time average mechanical power output (again per unit y-z area) is the

product of the velocity U and the difference in magnetic shear stress acting

on the respective surfaces
Ad LA ¥ 23 ,and
R =L &l (H) -8, (&) u @

A A
Because B":‘é% A, this expression can be written in terms of the same

combination of amplitudes as appears in Eq. 1
Q . Ad ‘d* AB Aa* (3)
sz “3&31_A (H.a) "'A (Hg)l
Thus, it follows from Egqs. 1 and 3 that

E.. = B = U )
£t .+ (w/R)

From the definition of s,

Y = -~ (5)
(w/R)
so that
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Prob. 6.7.2
The time average and space average power dissipation per unit y-z

area is given by Eq. 6.7.7. For this example n=1 and

8y, = - Ged(=-RY) 4 ACRYY -
— Re.i(0-RU, Ab¥ b
= Qe 4 (= RUAY 1,

because H% Hi = 0.

From Eq. 6.5.5b

A ¥
wRD) g0 RE b @
<i E;A\> <Sz¢ 3 g;—-iz—-—'igi.[ — }‘} ]

f Sinh fd 9
AL Al

where, in expressing A , the term in H'& has been dropped because the
real part is taken.

In view of Eq. 6.6.9, this expression becomes

Aa2
<SJ> = - @e{,(“‘ﬁv)//o ‘ R"'l (3)
%t [ fé S'\\-\\-\z BJI%-/% co‘H1 Kﬁ‘\‘c"ﬂ’l QJJ

Note that it is only because \‘ = vc&a\l-}—é S. /OL is  complex that

this function has a non-zero value.

In terms of Sh‘ E,uG'O»l (cﬁ-@V}

(4)

<S> =-Qe S""‘/“(" ll:{:]z
d'yt 2uG o® & sinh’gd [%'f} coth¥a + coth &A:(

Note that the term in E ] is the same function as represents the S'“ depend-

ence of the time average force/unit area, Fig. 6.6.2. Thus, the dependence



Prob. 6.7.2 (cont.)

of < S

. 4%

on

6.28

:SL, is the function shown in that

figure multiplied by f;ﬁh

03¢F

10
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Prob. 6.8.1 Equations 6.8.10 and 6.8.11 are directly applicable. The
’\@ Aol
skin depth is short, so ¥L} is negligible. Elimination of §4g between

the two expressions gives
M
<T> = - .QCY'%)( SJ> \I;—-; < Sé}}t (1)

where is the time average power dissipated per unit area of the
d \3

interface. Force equilibrium at the interfaces

b
can be pictured from the control volumes shown. 5%?‘

=0 PR P
Pb' (2) ? “a

{T,) +R, =0 @

Bernoulli's equation relates the pressures at the interfaces inside the

liquid.
VR VR T (4)
Elimination of the p's between these last three expressions then gives
= -29% (5)
LT, =

So, in terms of the power dissipation as given by Eq. 1, the "head" is

= Ve =S, ©
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Prob. 6.9.1
With
— X, jJuT
TN
3
£ :
2 HD=H = Lhe ¢ 4
and
1
X 45 ax 2 33
Taking this latter derivative again gives
l
2 - -1 2
Di = 3 \uo ¢’ EEIR LY df
bx / diz % 4 d?z
Thus, Eq. 6.9.3 becomes
- 5 3
| / —_— %
;E-t A——%-Hl = - Xyug tf ‘iﬂ'é
a3 4%

or,

In view of the definition of f? ,.Eq. 1, this expression is the same as

Eq. 6.9.7.

(1)

(2)

(3)

(4)

(5)

(6)
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Prob. 6.9.2 (a) The field in the liquid metal is approximated by

Eq. 6.9.1 with U=0. Thus, the field is computed as though it had no y

dependence and is simply . ' "
H, = & N oe? c1(wt *s) (1)
Y p)
The amplitude of this field is a slowly varying function of y, however,
given by the fact that the flux is essentially trapped in the air-gap.

-~ A
Thus, H%'-'- QH,/h and Eq. (1) becomes

A RS
H, = @l“H" P )
4
(b) Gauss' Law can now be used to find H . First, observe from Eq. (2) that
. R
oHe _ DMy _ g, all, dh § i(w+R)

Then, integration gives H

’\ X '(Lat "%?)
H =0k a Ho3 \é—he (4)
* 14§ W4y 3

The integration constant is zero because the field must vanlsh as x —9 -o,

(c) The time-average shearing surface force density is found by integrating

the Maxwell stress tensor over a pill box enclosing the complete skin region.

’ A Ax
<Tg>t =L R H W

y 1|H\3 (5)

dy

X=0
As would be expected, this surface force density goes to zero as either the
skin depth or the slope of the electrode vanish.

(d) 1If Eq. 5 is to be independent of y,

AL‘ = constaut= '—S-f
\—\3 ay ' ol
Integration follows by mu%;iplying by dy
h
oo ("5 4
i
[» 8 o

and the given distribution h(y) follows.

(6)
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Prob. 6.9.2(cont.)

(e) Evaluated using h(y), Eq. 6 becomes

AN (8)

Prob. 6.9.3 From Eq. 6.8.11, the power dissipated per unit area is (there

is no @ surface)

S, = | 4
— (1)
< ‘(>1.t Zo—g" )
where
/ Z N
3 e
Thus, Eq. 2 of Prob. 6.9.2 can be exploited to write Hacxzcb in Eq. 1 as
<SS = AT +2 S (2
d4:~ 2oy )]

The total power dissipation per unit depth in the z directiomn is

y 1
5< 52,9 =

o

A
' gp zg<%>143—lz“¢yo sty @
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4

’ — - -7
Prob. 6.9.4 Because .S& = :S; and 3}; ZG'E)the power dissipation per

unit y-z area is

S;: JE-:& dx = S
—w .

-0

)i ©
o

&l-‘S dx (1)

In the "boundary-layer" approximation, the z component of Ampere's law

becomes

ohy _DHe L DHy = T, 2

——— —

% 3y Idx

So that the dissipation density is

2 2
S -l (éﬂ%> 3)
o S \dx
In view of Eq. 6.9.8, €?l
2 2 2 Hz > e.’ 2(»)?5'
TR f (D= ( )
-6_3 = ?[ax 1 g \ yw [/ \ax
2 (4)
2 -2%
= Ho /.t‘-— e
M
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Prob. 6.9.4 (cont.)

So, for %)Vﬁ where ¢ = '3,/(/’

r o H T S Ut
_ : H&
Sc( _{ ,S Ty,\cr't
= (6)
UM
—_ 5 0 <y KUt
L )Y %¥I'g
For (/¢ {L the total power per unit length in the z direction is
vt . L .
o = Jrz",uu, +JFZ",«H, dy )
Tucy
. U Ut\/ﬂ/uc-t
and this becomes
2
! -
P=E—‘_M_H°[2JFM‘+\)'_?—(L Ut)] (8)
\ W ua
/
I pHe
—___/L'__[U\)t +L/\}T]
N Taud

The time dependence of the

total force is pherefore as .

shown in the sketch. F




6.35

Prob. 6.10.1 Boundary conditions for the

. . s
eigenmodes are homogeneous. 1In terms of %,/{/ ./”////r/ ;s ////5

the designations shown in the sketch,

A

M, =0

ca)
d
(b)
(1)
2.-1“\6.' -'( )" ) -I.‘Ia.?—-—u
.. . .t ced). . .. N
2 .
(2) P 5

@ §/// ST

a

(5)

(6)

The bulk conditions are conveniently written with these conditions incorporated

from the outset.

6.5.1 with suitable identification of properties and dimensions.

In all three regions they are as given by Eq. (b) of Table

air gap, it is the second equation that is required.

Ab

A

For the slab
+b

1e

A

—
—

¥

ranll 18A

= Mo pef R4 lt\.;
e

ab
M_wij:l‘(a ;"‘!7'5‘('& H}

In the upper

(7)

(8)

while for the lower gap it is the first equation that applies
Ae Ae
N = 4 ot Rd R,

f

Now, with EgS. 7 and 9 used to evaluate Eq. 8, it follows that

g
-4
¥
L

Note that both of these equations are satisfied if H§=H

wth Rd -%‘1 cothifo

———————

Avndh XA

1

2
¥ pufiXa

Mo R4 + A cothon
¥ Y ]

e
Yy

(9)

o
y

(10)

Ae

H:l

. Jd

so that
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Prob. 6.10.1(cont.)

— \ —
-:‘_;f coth fécf-,_%_(ucﬁam + ikav )=o0 (1)

with the upper sign applying. Similarly, if H§= —H;, both expressions are

satisfied and Eq. 11 is found with the lower sign applying. In this way, it
has been shown that the eigenvalue equation that would be obtained by

setting the determinant of the coefficients in Eg. 10 equal to zero can be
factored into expressions that are given by Eg. 11l. Further, it is seen that
the roots given by these facto;s can respectively be identified with the even
and odd modes. By using the identity ((‘,o'iﬁ X —l)/AaJ-QX = M("/Q)

and (mﬁ X *‘)/,M;ﬁx = ud(XIz) it follows that the eigenvalue equations

can be written as _ b,n :a o L eV en
» MBJ _ éf& (12)
T Re | ety¥a . ,dd

|fm

so that the expression for the odd solutions is the same as Eg. 6.10.1 with

roots given by the graphical solution of Fig. 6.10.2 and eigenfrequencies given by

Eg. 6.10.7. The even solutions are represented by the graphical sketch

shown. The roots of this expression |

can be used in Eg. 6.10.7 to

obtain the eigenfrequencies for

M3

'

]

]

)
these modes. Note that the é%o

Moo 8|
fo

dominant mode is odd, as would ;r

A

be expected for the tangential
magnetic field associated with a current tending to be uniform over the sheet

cross-section.
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Prob. 6.10.2 (a) In Eq. (d) of Table 6.5.1,

~a
HO

of the coefficients is zero. But, the result-

A
and Hg are zero so the determinant

ing expression can be written out and then
factored using the identity footnote to

Table 2.16.2. This is the common denominator

of the coefficients in the inverse matrix, Eq. (c) of that table. Thus, the
required equation is (see Table 2.16.2 for denominators of xm and 3,“ to

which the determinant is proportional).

3‘*\(3‘)‘&)H\ﬂ(a'XL)—Xm('&XL)HMCéYQB_—_ o (1)
This 'can be written, using the recommended dimensionless parameters, and the

definition of H,."in terms of A, (Eq. 2.16.29) as

3_..\[-(,‘(3’&)] Nin L (32T =3, ;060 AN [ (¥a)] =0 (2)

where ):_:_L/aranges from 0 to 1 and XQ, = \/,&/“g—af (c.)-w\_ﬁ.\‘.

(b) Given Az db/m and the azimuthal wavenumber, m, Eq. 2 is a transcendental
equation for the eigenvalues Yo = (X(L) (which turn out to be real).
mn

The eigenfrequencies then follow. an

2

= mL -3 CXO“)MH (3)
uag ot

For example, for m=0 and 1, the roots to Eq. 2 are tabulated (Abramowitz, M.

and Stegun, I.A., Handbook of Mathematical Functions, (National Bureau of

Standards Applied Math Series, 1964) p. 415.) However, to make use of their

tabulation, the eigenvalue should be made ¥b and the expression written as

AN ERLY Nmi(a’“)%] - TGN (3¥b)=0 )
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Prob. 6.10.3 Solutions are of form

W = (e ClA/(Y‘\) phmexpé(wt'h'\d’)

(a) The first boundary condition is Eq. <‘,

Table 6.3.1

2 >
(395\"19 5\h6+

35

= —G'R Sin qu)(bt 4+ -O-b )

d BY
(2)
A A
With the substitution of the assumed form and Hd) =4wm Y/x sine
a‘m ((?}"‘__ (i/")IS&_ sihed_sine —\—r:‘] P:(C s 6)
R 48 de Sin B
(3)
— . AQ m
= -0 Rsin 6 m(-m O RY B (cos 6)
In view of Eq. 2.16.31a, this becomes
. Ao A Aoy -
..g_:{‘__(({) -y )h(hfl)z-—@sRB\. (4)
The second boundary condition is
A o A b
s = B, (5)

n H n () “o
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Prob. 6.10.3 (cont.)

Bulk relations are (Eq. (d) of Table 2.16.3)

LY

B, = M. (n+) @° )
u |

for the exterior region and (Eq. (c) of Table 2.16.3)

oAb Al
- _uhn
P, = /“———-R W %)

for the interior region.

These last three expressions, substituted into Eq. 4, then give

75&@‘: = ~;Rm (- m)B] (g

‘%——n(m)l

Thus, the desired eigenfrequency expression requires that the coefficients
Neo
of B‘. be zero. Solved for <O, this gives,

{ (n+)
mO +GT;&E/_“- i_ b+ /u//“‘] (9)

W =

(b) A uniform field in the z direction superimposes on the homogeneous solution
a field q/:' - H.,1 = - Ho‘f cos B, This has the same 6 depend-
ence as the mode m=0, n=1. Thus the mode necessary to satisfy the initial

condition is (m,n) = (0,1) (Table 2.16.2) and the eigenfrequency is

Cdo'
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Prob. 6.10.3 (cont.)

The response is a pure decay because there is no dependence of the excitation

on the direction of rotation.

(c) With the initial field uniform perpendicular to the z axis there is a

¢ dependence. ? 2
W=- H,X = —Hof' Ssine cos

~0.
This is the @-¢ dependence of the n=1, m=1 mode (Table 2.16.2).
So .

9 RHo S
r
A=Y¥5in0cosd

The decay rate is the same as before, but because the dipole
field is now rotating, there is a real part.
Prob. 6.10.4 (a) The temporal modes exist even if the excitation is

turned off. Hence, the denominétor of Eq. 8 from Prob. 6.6.2 must vanish,

#o §,(,RR) _ L (0rY) (D

_——J—-—‘l—-
M e ¥
(b) It is convenient to group

é,uo"(w—év): Sa

(2)
Finding the roots Sn to Eq. 1 is tantamount to finding the desired eigen-
frequencies because it then follows from Eq. 2 that
- S 3
W, = +%U (3)

h
Note that for Sn real both sides of Eq. 1 are real. Thus, a graphical

procedure can be used to find these roots.

N
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Prob., 6.10.5 Even with nonuniform conductivity and velocity, Eq. 6.5.3

describes the vector potential. For the z component it follows that

_L.VzA::?_A_ A (1)
AT ot +U_3..‘; '

Thus, the complex amplitude satisfies the equation

A__A -¥A=zo: X(x\;_ ﬁ +é,ucrm[w - ﬁU(x)] . (2)
dx* ’
On the infinitely permeable walls, Hy=0 and so

dA(x):o | éA(o):O (3)
dx ax
Because Eq. 1 applies over the entire interval 0 ¢ x<a+d=-.:ﬂ , there is no
need to use a piece-wise continuous representation. Multiply Eq. 2 by another

A
eigenmode, A , and integrate by parts to obtain

m
P ) N 2 A A ‘
A dAa| - (éﬁ: dA. A...A..) dx = 0 @)
- 3% dx &%
With the roles of m and n reversed, these same steps are carried out and the
result subtracted from Eq. 4." 1
A A A A
A”c_\___Aw ..A“A_A_\» - (\6: ‘\(‘:);&v— An AX =0 (3)
dx d x

07_0

z .
Note that by definition, ¥, -\5,,, = qM o (wn-“’w)

In view of the boundary conditions applying at x=0 and x= { , Eq. , the required

orthogonality condition follows.

|

(Wn-wu) G'(%);\,.A.. d % (6)



