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4.1


Prob. 4.3.1 With the positions as shown in t)


the sketch, the required force is Cto) -

b 
With the objective of finding • , first observe that the boundary conditions


are.

4S A A. 6 - c. - 'PS 

L%~ - 114 

and the transfer relations of Table 2.16.1 applied to the respective regions


require that


]F1A
I ipeahV1 r~~co4~ 1 A--- L 
1< · cb · pP(3)

js~di~cL Peg ' I~ 
U, II 

Here, Eqs. 2a and 2d have already been used, as has also the relation _­


In view of Eq. 2c, Eqs. 3 are used to write


4 i~b~~u C- - 4uL ,' )< )+! A J. = a -... 6S____ 
6AL (4)


and it is concluded that


9t = - A 

This relation could be argued from the symmetry. In view of Eq. 2b, it follows


that


, =-2. 

so that the required normal flux on the rotor surface follows from Eq. 2b


13 _______ - CO4L GI


Siwkh Ve 3 al


Finally, evaluation of Eq. 1 gives 

r A - ., A i . 
-a =IZ.~ 'akI ~ s ~ r 

This result is identical to Eq. 4 .3.4a, so the results for parts (b) and (c)


will be the same as Eqs. 4 .3.9a.




4.2


Prob. 4.3.2 Boundary conditions on the stator and rotor surfaces are


foA A0 AL 

where


S= B e(ut 

From Eq. (a) of Table 2.16.1, the air gap fields are therefore related by


[1 [-,.o4,h • , 

In terms of these complex amplitudes, the required force is


£, AL~e~KH4 

From Eq. 5b,


Ha =j* ( ,y r 
4­c -AS~~ 

Introduced into Eq. 6, this expression gives


= A A-A+'­

4 Cosh W 

For the particular distributions of Eqs. 3 and 4,


A iW- *a r" it..-C'\ 
e a c 54 6S.d'Da


4 co, UA 

Under synchronous conditions, this becomes


4 cos_I ,Ad 



4.3
 I

I

IProb. 4.3.3 With positions as designated


in the sketch, the total force per unit


(&)
 I

area is


4-F (4)
 I

I


With the understanding that the surface charge on the sheet is a given
 I

quantity, boundary conditions reflecting the continuity of tangential electric


field at the three surfaces and that Gauss' law be satisfied through the sheet I

are


V•.% g , ) 4 (2)-(4 

Bulk relations are given by Table 2.16.1. In the upper region
 I 
C- J[rc. (5) 

I
and in the lower


6~a ItL~1(6) I

In view of Eq. 4, Eq. 1 becomes


I

so what is now required is the amplitude . The surface charge, given by Eq. I


4,11as the difference - D• , follows in terms of the potentials from taking
 Ithe difference of Eqs. 5b and 6a. The resulting expression is solved for


f* r O A,J 

I

tE& 9d (8)eA ~ 

Substituted into Eq. 7 (where the self terms in V Q are imaginary and can
 I

I
therefore be dropped) the force is expressed in terms of the given excitations.




1 	 4.4 

IProb. 4.3.3(cont.)2 	 4 

I i c 9-A 	 (9) 

b) Translation of the given excitations into complex amplitudes gives


1-46, V. t(10) 

Thus, with the even excitation, where =


I -i2.oef .fd (11) 

and with the odd excitation,(O =0. 

I 	 c) This is a specific case from part (b) with O =0 and -= Thus,)1/4 

< - V. C.-4 (12) 

The sign is consistent with the


I 	 sketch of charge distribution on the 

sheet and electric field due to the 

potentials on the walls sketched. 

I 

I

I


I


I


I




4.5


Prob. 4..4.1 a) In the rotor, the magnetization, M, is specified. Also, it


is uniform, and hence has no curl. Thus, within the rotor, 

V )(16 - V A ([Ark).(io va (1) 

Also, of course, B is solenoidal. 

V* =o= V (2) 

So, the derivation of transfer relations between B and A is the same as in Sec.


2.19 so long as ~/H is identified , with B. 

b) The condition on the jump in normal flux density is as usual. However, with 

M given, Ampere's law requires that 1 XUIt 1A and this can be 

rewritten using the definition of E, E=•~ao7 + A1) Thus, the boundary


condition becomes


where the jump in tangential B is related to the given surface current and given


jump in magnetization.


c) With these background statements, the representation of the fields, solution


for the torque and determination of the electrical terminal relation follows the


usual pattern. First, represent the boundary conditions in terms of the given


form of excitation. The magnetization can be written in complex notation, perhaps


most efficiently, with the following reasoning. Use x as a cartesian coordinate


ro~tate to th~ t~~ i,: l,, ^ ~ 

in the figure. Then, if the gradient is


pictured for the moment in cartesian


coordinates, it can be seen that the


uniform vector field M i is represented

ox


by


/' 
(4)


I

I


I 
I 
I 
I 

I

I

I


I

1


I

I

I




4.6


I Prob. 4.4.1(cont.) 

Observe that x = r cos(9- Or) and it follows from Eq. 4 that M is 

written in the desired Fourier notation asI 1eo9-4=+ (5)6 e-

Next, the stator currents are represented in complex notation. The distribution


5 of surface current is as shown in the figure and


represented in terms of a Fourier series. - + i(t)
j 

t )•= 4 e (6) 

I The coefficients are given by (Eq.2.15.8) 4j(4) ! 4 

In i•) ) AA.;, 019 

Thus, because superposition can be used throughout, it is possible to determine


the fields by considering the boundary conditions as applying to the complex


Fourier amplitudes.


Boundary conditions reflecting Eq. 2 at each 

I of the interfaces (designated as shown in the 

sketch) are, 

A: ---- (8) 

I% (9) 

while those representing Eq. 3 at each interface are


-I ° (10) 

That H=0 in the infinitely permeable stator is reflected in Eq. 10. Thust, Eq. 8


3 is not required to determine the fields in the gap and in the rotor.


I 



4.7


Prob. 4.4.1(cont.) I


In the gap and within the rotor, the transfer relations (Eqs. (c) of


Table 2.19.1) apply I


Bfo e IA P_I (12) 

Before solving these relations for the Fourier amplitudes, it is well to


look ahead and see just which ones are required. To determine the torque, the


rotor can be enclosed by any surface within the air-gap, but the one just inside


the stator has the advantage that the tangential field is specified in terms of


the driving current, Eq. 10. For that surface (using Eq. 3.9.17 and the


orthogonality relation for space averaging the product of Fourier series, Eq.


2.15.17), 

Re . --B


Because e is known, it is that is required where 

Subtract Eq. 13 from Eq. 12b and use the result to evaluate Eq. 11. Then, 9

in view of Eq. 9 the first of the following two relations follow.


rI 
d4I 

_ J 

(
(15)L ,R-~O~~ Aie 

_M0 o 

I

The second relation comes from Eqs. 12a and 10. From these two equations in 

two unknowns the required amplitude follows 

AA, 
o. (16) 

where (- ( 1 IR 



4.8


I Prob. 4.4.1(cont.) 

Evaluation of the torque, Eq. 14, follows by substitution of em as determined 

by Eq. 16 and as given by Eq. 10. 

*r d(17) 

The second term involves products of the stator excitation amplitudes and it


must therefore be expected that this term vanishes. To see that this is so, 
-observe that A L, is positive and real and that f and g are even in m.
Sm 

Because of the m appearing in the series it then follows that the m term cancels


I with the -m term in the series. The first term is evaluated by using the 

expressions for Me, and given by Eqs. 10 and 11. Because there are only


two Fourier amplitudes for the magnetization, the torque reduces to simply


IA,,,R 0A M. A,-9 K A, (4), (18) 

I where 

I From the definitions of gm and f 
m 

, it can be shown that K=R2/R
0 
, so that them 

final answer is simply


4
5AV Z 0M AA0 N (±) (19) 

Note that this is what is obtained if a dipole moment is defined as the product 

of the uniform volume magnetization multiplied over the rotor volume and 

I directed at the angle Gr 

t 7'.1= .TI; 0 (20) 

5 in a uniform magnetic field associated with the m=l and m=-l modes,


Aic' 9i)o (21) 

with the torque evaluated as simply s-- / . (Eq. 2, Prob. 3.6.2) 

I




4.9


Prob. 4.4.1(cont.)


The flux linked by turns at the position e having the span R dG is

o 

(22) 

Thus, the total flux is


3ijd~d (23).
H-

The exponential is integrated


_A N 9 Ao- (24) 

where the required amplitude, , is given by Eq. 16. Substitution shows


that


=L'(W)= + A'r",o ýa (25) 

where 

~o~ ~0-1 
." ' E + Co -ý , (ýO, IR;) I 

1,a a-­¢CDI)3 
I3-ý(17,z'I') RZ 

AV J2,4 0. 



4.10


Prob. 4.6.1 With locations as indicated by the sketch,


the boundary conditions are written in terms of complex ". '. ".< )'.


amplitudes as


I

Because of the axial symmetry, the analysis is simplified by recognizing that


0. = ~ A ; t(2)-- 0 


This makes it possible to write the required force as


The transfer relations for the bdam are given by Eq. 4.5.18, which becomes


Iz I L h (4) 

These also apply to the air-gap, but instead use the inverse form from Table 2.16.1.


From the given distribution of P it follows that only one Fourier mode is required


(because of the boundary conditions chosen for the modes).

1 .O V ; -=o (6)

-7YZ,= o o 1 o Vo I 

With the boundary and symmetry conditions incorporated, Eqs. 4 and 5 become


- : 
(7)


I J s hkJd 

I 



4.11


Prob. 4.6.1 (cont)


,, 1 ,-­
I coL\Bb I 1L 

l.I z K I11..61,tr-- s.. E.J¶

L J Ls51 •6 JL "J -"- 6 ­

These represent four equations in the three unknowns ,D1 , They 

are redundent because of the implied symmetry. The first three equations 

can be written in the matrix form (9) 

-I O D vol 
- sLI' $d 

o Ceo-I siLn E0 ' 

SI - t, 

In using Cramer's rule for finding 21 (required to evaluate Eq. 3) note that 

terms proportional to V, will make no contribu. on when inserted into Eq. 3 

(all coefficients in Eq. 9 are real), so there is no need to write these terms 

out. Thus, 

=I , G.; GS $' VN ll(10) 

and Eq. 3 becomes


• =Ac •£-•.•,o 
(11) 

b) In the particular case where +11,•) 

(12) 

the force given by Eq. 11 reduces to


- =-,A G. (, s- Y,V(13) 
The sketch of the wall potential and the beam


charge when t=0O suggests that indeed the force

- 4ý -qw 

should be zero if 5 and be iefg;..if <O(<'(T


-I 



I 4.12 

It 

44

Prob. 4.6.1 (cont.) -x-­


I c) With the entire region represented by the relations .'. 

I 
of Eq. 4, the charge distribution to be represented by 

the modes is that of the sketch. With 4E2A ----­

I and ', = Co X , Eq. 4.5.17 gives the mode amplitudes. 

100La 0 (14) 

I 
So, with the transfer relations of Eq. 4.5.18 applied to the entire region,


I 
1o, r~l1b[NI OIý i= I: (15) 

I 
J~~Lj LD~] 

Symmetry requires that D, =-D , which is consistent with both of Eqs. 

15 reducing to the same thing. That is, the modal amplitudes are zero for i odd. 

I From either equation it follows that 

^I I [- q & I" a 
__ _ (16)I d.o [o55w'iEa 


I 
The terms multiplying Vo are not written out because they make no contribution to 

the force. so 

I O•; <:..# .. +­AOT 

A ~~A J CA S;ný~ Li (17) 

(Cask 14 *-) 1 L 11 

I (pV,-)


Thus, the force is evaluated using as surfaces of integration surfaces at


I (a) and (f). 

I 
Sk, (-j -+,R A- (18)x+4.. D 

I B6 IV. '0
=-AC+oi•.°.,.,+, + ,:••i(•V+m

I 



4.13
 I 
Prob. 4.6.1 (cont)
 I 
In terms of the z-t dependence given by Eq. 12, this force is


I

&i Aafsn\= + 

c- o 4- (19)
C '• 

L=
 I

A V JV% 

Prob. 4.8.1 a)The relations of Eq. 9 are applicable in the case of the
 I

planar layer provided the coefficients F and G are identified by comparing
m m U
Eq. 8 to Eq. (b) of Table 2.19.1.


I

Thus, the transfer relations are as given in the problem.


b) The given forms of A and J are substituted into Eq. 4.8.3a to show that
 I
p z 

I

where


--=A- -- (3)
 I

Solutions to Eq. that have zero derivatives on the boundaries (and hence


yP

make H =0 on the at and 4 surfaces) are


= • • ilr = I
=T• • ; - L oY (4) I

From Eq. 3 it then follows that
 I


A 7S x (5) 

Substitution into the general transfer relation found in part (a) then gives
 I

the required transfer relation from part (b).


I

In view of the Fourier modes selected to represent the x dependence, Eq. 4,


the Fourier coefficients are


I


I




I 

4.14


Prob. 4.9.1 Because of the step function dependence of the current density on


y, it is generally necessary to use a Fourier series representation (rather


than complex amplitudes). The positions just below the stator current sheet


and just above the infinitely permeable "rotor" material are designated by (a) 

and (b) respectively. Then, in terms of the Fourier amplitudes, the force 

per unit y-z area is +Oý W +V S* 

I = A. > 

The stator excitation is represented as a Fourier series by writing it as


I a 
The "rotor" current density is written so as to be consistent with the adaptation


of the transfer relations of Prob. 4.8.1 to the Fourier representation.


W (3) 

Here, the expansion on p accounting for the x dependence reduces to just the 

p=O term, so Eq. 3 becomes 

-(4)


The coefficients Jo are determined by


I the y dependence, sketched in the figure.


First, expand in terms of the series


' y-&V 

where y'=y-(Ut-%). This gives the coefficients


o M- ( 2 (6). 

Thus, the coefficients in the y dependent Fourier series, Eq.4, become


-z, • (7) 

Boundary conditions at the (a) and (b) surfaces reauire that 0 O and 

Hi -- . Thus, the first equation in the transfer relation found 

in Problem 4.8.1 becomes 



4.15


Prob. 4 .9 .1(cont.)


(8)


Thus, Eq.,l can be evaluated. Note that the "self" terms drop out because 

the coefficient of K is odd in m (the m'th term is cancelled by the 

If the stator current is the pure traveling wave


and Eq. (10) reduces to


7 (12) 

- 1 o0 I" 

I

I


I 



4.16


Prob. 4.10.1 The distributions of surface current on the stator (field) and
•.-r 

rotor (armature) are shown in


the sketches. These are represented


as Fourier series having the
 -.0

standard form +o -i k 

with coefficients given by


It follows that the Fourier amplitudes are


', -

' '-

41 

and 

Boundary conditions at the stator (f) and rotor (a) surfaces are : -•


HI= =P ql.- 14, 

Fields in the air-gap are represented by the flux-potential transfer


relations (Table 2.16.1)


_ , #P9 (7) 

The force is found by evaluating the Maxwell stress over a surface that encloses


the rotor with the air-gap part of the surface adjacent to the rotor (where fields


are denoted by (a)).


< 36 0 ) 



4.17


Prob. 4.10.1(cont.)


In view of the transfer relations, Eqs. 7, this expression becomes


(9)


In turn, the surface currents are given in terms of the terminal currents by


Eqs. 3 and 4. Note that the self-field term makes no contribution because the


sum is over terms that are odd in m. That is, for the self-field contribution,


the m'th term in the series is cancelled by the -m'th term.


+09 2i&ffe) 

This expression reduces to the standard form


= - '(11) 

where


, ITG'o/Ao 4.1fZ (12) 

To find the armature terminal relation, Faraday's integral law is written


for a contour that is fixed in space and passes through the brushes and


instantaneously contiguous conductors.


(13)


In the conductors, M=O and Ohm's law requires that


fthcodtos 
-(14)


The armature winding is wound as in Fig. 4.10.3a


with the axes and position of the origin as
 I

sketched to the right. Thus, Eq. 13 becomes X II 

"W 

Each of the solid conductors in Fig. 4.10.3 carries half of the current. Thus,


the second term in Eq. 15 becomes


;~(16)
SC~ - , 

A 2G- Aa,A ""•, '


A




I 

4.18 

Prob. 4.10.1(cont.) 

The third "speed-voltage" term in Eq. 15 becomes 

and this becomes (17)


and this becomes


U t N 
2,2 

.Icl 

Iv~·i 2_13,, 
w.t* ii-.. 

r 

* - (18) 

z ­

From the bulk transfer relations, Eq. 7b, this becomes


(19)


The second term makes no contribution because it is odd in m. Thus, the speed-


voltage term reduces to


I , b" U (20) 

where Gm is the same as defined by Eq. 12. 

To evaluate the right hand side of Eq. 15, observe that the flux linked by 

turns in the range z'+dz' to z' is 

(A .) .~.L' (21) 

so that altogether the flux linked is 

3ý . (22) 

Expressed in terms of the Fourier series, this becomes 

(23)


The normal flux at the armature is expressed in terms of the terminal currents 

by using Eqs. 15b and 3 and 4. . 

I 



4.19
 I 
Prob. 4.10.1(cont.) 

IThe first term in this expression is odd in m and makes no contribution.


Thus, it reduces to simply
 I

whereI = (25) 

where 5 A 2 \, _06 

LCJ 3 3? (26) 

Tr (.d a)
So, the armature terminal relation is in the classic form


I

where R ,L and G are defined by Eqs. 16, 26 and 12.
a a m I


The use of Faraday's law for the field winding is similar but easier because


it is not in motion. Equation 13 written for a path through the field winding
 I

becomes


--_ = (28) I

The term on the right is written in terms of the Fourier series and the integral I

carried out to obtain


S d It6 az (29) 
r 

Substitution of Eqs. 3 and 4 gives


(30)


The last term vanishes because it is odd in m. Thus,


(31)


and the field terminal relation, Eq. 28, becomes


(32) 

I

I

I

I




4.20


I Prob. 4.12.1 The divergence and curl relations for E require that


1_' (r E,) + (1) 

;E ;--e --O (2) 

Because E =0 on the z axis, the first term in Eq. 2, the condition that the


curl be zero, is small in the neighborhood of the z axis. Thus,


Ir (3) 

3 and Eq. 1 requires that 

'.) (4) 

Integration of this expression on r can be carried out because the right-


hand side is only a function of z. Because Er=O at r=0, it follows that


NE= -+" A,/ci (5) 

Now, if it is recognized that E = - /dt without approximation, it follows


that Eq. 5 is the required expression for E .r


I


I

I

I

I

I

I

I

I




4.21 

Prob. 4.13.1 Using the same definitions of surface variables and potential

A - 0% 0%Y =a1% ý 

difference as used in the text, (V• C ¶oT ­
(1) 

At each of the electrode surfaces, the constant potential boundary condition


requires that 2 I


ntj A EZ -a"B I (2) 

For example, at the rotor surface,


where the irrotational nature of E is exploited to write the second equation.


Thus, the conditions at the perturbed electrode surfaces are related to those U

in fictitious planes x=O and x=d for the rotor and stator respectively as


'Ea x 'Ex T (4) 

5 5 (5) 

First, find the net force on a section of the rotor having length . in the y 

direction and Z/~ in the z direction at some arbitrary instant in time. 

The periodicity condition, together with the fact that there is no material


in the air-gap, and hence no force density there, require that Eq. 6 can be


integrated in any x plane and the same answer will be obtained. Although


not physically meaningful, the integration is mathematically correct if


carried out in the plane x=0 (the rotor plane). For convenience, that is what


will be done here.


By way of finding the quantities required to evaluate Eqs. 4 and 5, it


follows from Eqs. 1 that


(At 4t A4) (7) 
~A=AA(.
*(64tda) 

' %SA A (dt4a)A+( eteC +(Vol ai~+IVOISý + )e




4.22 

Prob. 4.13.1 (cont.)


and that A ' (3t-ke)^ A - .(&t.6)


vOr + e ý ) e., + NOe- ) 
(8)3 1 

Thus, these last two equations can be written in the complex amplitude form


*f -5 I Q3S e %el ( ¶eed") (9) 

The transfer relations, Eqs. a of Table 2.16.1, relate variables in this


form evaluated in the fictitious stator and rotor planes.


Ss, (11) 
It follows that J. 

SA t Wt Ait (12) 

+ *' Va 7 e + Vo I e. Je 
Also, from Eq. 4,


*EE~=6 i [VO e I +7VV(13) 
Thus, the space average called for with Eq. 6 becomes


lt -# = (14)


which, with the use of Eqs. 12 and 13, is


7 #-sDoo- "#-Â  sA v 

I -- o.q I + V.V 5I e2 (15) 

The self terms (in ¶ * ) either are imaginary or have no time average. The 

terms in * also time-average to zero, except for the term that is 

I 



Prob. 4.13.1 (cont.) 

independent of time. 

average expression 

4.23 

That term makes the only contribution to 

,o 

the time-

I 

I 
I 

In the long-wave limit kd <((, this result becomes 

4whichisinagreementwith Eq. 4.13.12. 
which is in agreement with Eq. 4.13.12. 

(16) 

(17)%I 

II 

U 

IU 

I 
I 

I 

iI
I 
U 
U 



4.24


I Prob. 4.13.2 For purposes of making a formal quasi-one-dimensional expansion, 

I field variables are normalized such that


The MQS conditions that the field intensity be irrotational and solenoidal in


the air gap then require that


XI 343 _ o ( _ - '= 

If all field quantities are expanded as series in /') 

t. 2: 4 

then, the equations become


isTat -W 5 

i The lowest order field follows from the first two equations 

- -=0 6 
)x 7 

It follows that


H "Y (t) 8 

Boundary conditions at the stator and rotor surfaces respectively are


H• : 19(tt) = \~o • (-• - •)• (10) 

I In terms of the magnetic potential, these conditions are


- (-)i • L (a -)]t1) 12 

(X.=)=O 13 

where variables are normalized such that Ho=Ko t (0S 2/) 

I 



4.25 U 
Prob. 4.13.2(cont.)


Integration of H=-V7 between the rotor and stator surfaces shows that


-HoA T" -H<= v1oo>-x JJ 14) 
c: 

In view of Eq. 8, 

15


and so the integration function f(z,t) is determined.


om s9t-fo w d trh L6 L7From Eqs. 8 and 9 it follows that


1=i 

so that 

S= K~ (18) 3 
Actually, this result is not required to find the force, but it does complete


the job of finding the zero order fields as given by Eqs. 8 and 9.
 I 
To find the force at any instant, it is necessary to carry out an integration


of the magnetic shear stress over the lower surface of the stator.
 I

3


o 
Evaluation gives


I 
0 

I 
-A COQ. ý , 'A_J r(rt ­

0 

D~~'- ¶L.tvrot - (4-)Y 
The time average force (per unit area then follows as 

2 
2


0 
In the small amplitude limit, this integration reduces to ( <i) 1 

-I 



4.26 

Prob. 4.13.2(cont.)


= lr4 22 

Thus, the time average force is in general zero. However, for the synchronous


condition, where Lu E U/LAl/O 1 = , 

I it follows that the time average force per unit area is


3- / -.23

In dimensional form, this expression is 

I <'- (24) 

4 (•ad$ 
and the same as the long wave limit of Eq. 4.3.27, which as kd 0,becomes 

= < t<4 4 - - 4,<i' •(25) 

In fact it is possible to carry out the integration called for with Eq. 20 

provided interest is in the synchronous condition. In that case 

and Eq. 20 reduces to( G ((/JI i- T) 

I a+4W 
)-26 

where I - o 

3 q ( 4 x '4-- + 9) 0r-4w 
I In turn, this expression becomes


4M 4 

I The first integral vanishes, as can be seen from 

I A c .o (2e) 

I I T.UI0 



4.27


Prob. 4.13.2(cont.)


By use of integral tables, the remaining integral can be carried out.


;- ',, (- (29) 

In dimensional form, the force per unit area therefore becomes


Note that under synchronous conditions, the instantaneous force is independent 

of time, so no time-average .is required. Also, in the limit /•J<(I this 

expression reduces to Eq. 25. 

I
I
I
I
I
I
I
I
I
I
I
I

3 



1 

3 4.28


* 


3 


I 


Prob. 4.14.1 Ampere's law and the 

condition that R is solenoidal take 

the quasi-one-dimensional forms CI 

--_o0 (1) 
,- ! .-- , 

-- - (2-)(2 

and it follows that


(4) 

The integral form of Ampere's law becomes


I ·'C. (5) 

+ 22 Ala(+ -3 
Because the model represents one closed on itself, AOL =+- and 

it follows that Eqs. 5 become


s h' 14 U /t) < a< 

Z3 (6) 

and it follows that 6 3 

(7) 

At the rotor surface, wSere x=0, 

do,, ;-) 0< 1-<CI. + N,, (8) 

and so Eq. 7 can be used to deduce that 0


140.b 6 e(9) 

The force follows from an integration of the stress tensor over the surface


of a volume enclosing the rotor with depth d in the y direction and one


periodicity length, 2Zin the z direction.


Sz., (10) 
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Prob. 4.14.1 (cont.)


This expression is evaluated. +


6' b,
'z 


This detailed calculation is simplified if the surface of integration is 

pushed to x=0, where the impulses do not contribute and the result is the 

same as given by Eq. 11. 

Note that this agrees with the result from Prob. 4.10.1, where in the long­


3lwave limit (b/ <41) 

because h Il 

-- I:I 
To determine the field terminal relation, use Faraday's integral law 

Using the given fields, this expression becomes


2= '4 (16) 

This results compares to Eq. 31 of Prob. 4.10.1 where in this limit


'UA 9- I (17) 

The field winding is fixed, so Ohm's law is simply J:'Eand therefore Eq. 15 

becomes 3

+c l(18) 3 

Because
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Prob. 4.14.1 (cont.)


S = (19) 

the field equation is


Fr = + iL (20) 

For the armature the integration is again in the laboratory frame of reference. 

The flux linked is 

)(21)


where


SDRI, Cie +L A-I'22) 

Thus,


S . (23) 

This compares to the result from Prob. 4.10.1 ,­

C, -I& 

L• 4 -- 4 
' 

(24) 
6b -oo(.a)l -o- o* 

For the moving conductors, Ohm's law requires that


H, (25) 

and so Faraday's law becomes


+ d - (26)4zL ­

h
or 


+4-A4, o tI && - (27) 

Thus z., 

CIA (28) 

and finally 

S e - C 9 di (29) 

where 
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