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Electromechanical Kinematics:
Energy-Conversion Models and

Processes




4.1
Prob. 4.3.1 With the positions as shown in (ay
T
the sketch, the required force is te) = — ==
L % As * A\
= A b b_{i¢ (1) ¢
L= A& 8 A, -0

~b
With the objective of finding st , first observe that the boundary conditions

are.
C.

. ol
M= iy 4 S = <8, =80 - i =] @

and the transfer relations of Table 2.16.1 applied to the respective regions

require that

~g ~C,
8] [et R [R) et wva])
» Si A ’ 0
b ='“ ?:\b ) 4 =,a°& ~3 <
~ 0 ~ - |
-1 3 = —  cothBd]|-K
B Sinh fd coth@d 3P B sinhd © Y

Here, Eqs. 2a and 2d have already been used, as has also the relation f:\{=a’&l¥

In view of Eq. 2c¢, Egqs. 3 are used to write

~ g ~ S
~b -K coﬂﬁi - Hecoth8l _ KK°
Bx 2/(,& apt PN ] g4 + I Ex ”ﬁ{ afz a& sinh QJ] (4)

and it is concluded that

N e

L\ = "\%{ ‘ )

This relation could be argued from the symmetry. In view of Eq. 2b, it follows

that ~b \2"
2 z (6)
so that the required normal flux on the rotor surface follows from Eq. 2b as
S Ar
~b - K
B =/U°%[ } ~ coth g4 _\_é__l
® sinh Bd 32 3R (7)

Finally, evaluation of Eq. 1 gives

=-A A ~LQA) =HoA ___3»____,@_‘.__5 @)

$\r\\’\ g‘(

This result is identical to Eq. 4.3.4a, so the results for parts (b) and (c)

will be the same as Eqs. 4.3.9a.



4.2

Prob. 4.3.2 Boundary conditions on the stator and rotor surfaces are

~ ~ A 1
H: =K (L
B, =& (2)
where ces bt
”ﬁ.-_ Y. ac"
K=-3Ko e (3)
R =8B, e %)
From Eq. (a) of Table 2.16.1, the air gap fields are therefore related by
- A s
~nl {
B —eth & o %
- ]
= Mo R (5)
v all shed|| W,
B"_‘ Sinh &J ce ;f

In terms of these complex amplitudes, the required force is

< \“

-Y-i = _é_ de gx Fli (6)

From Eq. 5b,
T hed (B, RS
= ‘% “.. “ = 4 2 (7
Hy =3 T kT TR sk &D

Introduced into Eq. 6, this expression gives

_ ¥
£ = A L Re A2 R (8)
A cosh Rd P

For the particular distributions of Eqs. 3 and 4,

) ~lwt ﬁ
L, T v (Ut+8)
%1 N _é- co\sl—: 64@2 <3 Ko e )<B° e? ) (9)
=—% \\nﬁ&\/(:'B: s'.ns_(&(j-co)t 1R§]
cos .
Under synchronous conditions, this becomes
§ = - AKIBI oinRS
z & cosh Rd



4.3

Prob. 4.3.3 With positions as designated

in the sketch, the total force per unit ‘E‘
3

area is

¢ 4.4
Gy = Cofe-oiE A e

éﬁ

1l

Lge(BEES-S €MD

2

With the understanding that the surface charge on the sheet is a given

field at the three surfaces and that Gauss' law be satisfied through the sheet

are ~cC Ni ~Me NA ~
O gvan | T ogivan, B 28 V-0 =Ty givan (2)-(4)

Bulk relations are given by Table 2.16.1. In the upper region

= -

ﬁ: —- el Rd ] Picﬂ

|
= ej% A Rd

fS: ' we (5)
Rl L"Mga MEJ- e

and in the ];_oxzer _ A ( a4 T wdn
& - oURd —57 17§

quantity, boundary conditions reflecting the continuity of tangential electric '

- b
O, STy c-2dRl ] (6)
In view of Eq. 4, Egq. 1 becomes ‘
G =4al-rEGE]A o

. c
so what is now required is the amplitude § . The surface charge, given by Eg. 4,

Ar

~e
as the difference'E%‘ - D, , follows in terms of the potentials from taking

the difference of Egs. 5b and 6a. The resulting expression is solved for

g = e wotd Rd ¥ T3 codd Rd ()

e
Substituted into Eq. 7 (where the self terms in éF 013 are imaginary and can

s

therefore be dropped) the force is expressed in terms of the given excitations.

~c 0 & + &
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Prob. 4.3.3(cont.)2

NPTy
80, = SR G 87«8 Tq

p) mﬁeé
b) Translation of the given excitations into complex amplitudes gives

= - G e e

0} reot
8% = V, e

. e b
Thus, with the even excitation, where §A= i

<§>, = ~RY.GA - Ry
R 2 cediRd T

and with the odd excitation,({izro.
c) This is a specific case from part (b) with & =0 and '3= /4 .
<¥E> = - %-Vo G:Q

2 —_— .

) cosh gd

The sign is consistent with the

sketch of charge distribution on the

(9)

(10)

(11)

sheet and electric field due to the

potentials on the walls sketched.
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Prob. 4.4.1 a) In the rotor, the magnetization, M, is specified. Also, it

is uniform, and hence has no curl. Thus, within the rotor,

Vx® = vr[u (A+M)]= Vxuti= 0 (1)
Also, of course, B is solenoidal.

vB=o > B - vxh @

So, the derivation of transfer relations between B and A is the same as in Sec.
2.19 so long as /4ﬁ-is identified - with B.

b} The condition on the jump in normal flux density is as usual. However, with
M given, Ampere's law requires that N x{ Fl] = Rs and this can be
rewritten using the definition of B, B= 4, (§ +AA) . Thus, the boundary
condition becomes

ARl Bl = K, +pmoh x1 A1 3

where the jump in tangential B is related to the given surface current and given
jump in magnetization.

c) With these background statements, the representation of the fields, solution
for the torque and determination of the e;ectrical terminal relation follows the
usﬁal pattern. First, represent the boundary conditions in terms of the given
form of excitation. The magnetization can be written in complex notation, perhaps
most efficiently, with the following reasoning. Use x as a cartesian coordinate
rotated to the rotor axis angle, as shown
in the figure. Then, if the gradient is
pictured for the moment in cartesian

coordinates, it can be seen that the

uniform vector field Moix is represented

by
/V\ - -ViH ) o = - AA°7(
(4)
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4.6

Prob. 4.4.1(cont.)

Observe that x = r cos(8 ~ 9‘_) and it follows from Eq. 4 that M is

written in the desired Fourier notation as ( -9,) ( 5-6,)
1 v
M= TIM,T e (g-6y)= v%‘_[ + c3 1& (5)
9 e 1O _ 6
= AQ { [C: e +-G? 133 l-+ 4 L}iﬂa 3 e ]
Next, the stator currents are represented in complex notation. The distribution
of surface current is as shown in the figure and l‘i(“=1K;)
represented in terms of a Fourier series. - 0 "!‘i +9‘ Nc'(t)
+ 00 N M9 .i.' A A I . >
H, e?d (6) 7 \ }* 1%
m = -0 (j.___| -] / \ o
The coefficients are given by (Eq 2.15.8) Nit) . GL %%'*eﬁ
3
”~
(t) = K(e + = iNe (2D . (7

Thus, because superposition can be used throughout, it is possible to determine
the fields by considering the boundary conditions as applying to the comple#
Fourier amplitudes.

Boundary conditions reflecting Eq. 2 at each
of the interfaces (designated as shown in the
sketch) are,'

~ NJ
As = An (8)

Xe _ A" (9)
while those representing Eq. 3 at each interface are

PR’
“Bon T Mo M (10)
e £ 2 59 ‘59" M (11)
Bon = Bon” HAMon =-p € 36 Sm Tobe

(4 -in 2

That H=0 in the infinitely permeable stator is reflected in Eq. 10. Thust, Eq. 8

is not required to determine the fields in the gap and in the rotor.
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Prob. 4.4.1(cont.)

In the gap and within the rotor, the transfer relations (Egs. (c) of

Table 2.19.1) apply

~

~d
By Y.(8: 8 9. (Re,R) || A,

B,.. 3 (Rz,B,) §un (AL, Ao 2

gi,‘ = 'Y',,(O,R.)g\i (13)

Before solving these relations for the Fourier amplitudes, it is well to
look ahead and see just which ones are required. To determine the torque, the
rotor can be enclosed by any surface within the air-gap, but the one just inside
the stator has the advantage that the tangential field is specified in terms of
the driving current, Eq. 10. For that surface (using Egq. 3.9.17 and the

orthogonality relation for space averaging the product of Fourier series, Eq.

2.15.17),
r

i

R(awﬂ&)("“e,) rd ( \-\ 4
= amh AE‘-— Hﬂm ~:: '

~ o = -w NA iy
Because Bem is known, it is \.\ that is required where Hrm =-5MAM//",R° .

(14)

Subtract Eq. 13 from Eq. 12b and use the result to evaluate Eq. ll. Then,

in view of Eq. 9 the first of the following two relations follow.

qm(R: Ro) £ (R R)-5.. (o,\'&)T -KJ 1 A

(15)

;M<R“- ,Re) R (= %) At A OR*':]

3 J o o

The second relation comes from Eqs. 12a and 10. From these two equations in
two unknoyns the required amplitude follows

.- Mom 3m (Re,R:) =ato¥s, 1S (R, R -5, (0, R)]

- ~ (16)
m

? 3 (R; B03u (Ro R -5, (m, RIS, (R, R) - .. (6,RD)]

where D)
™
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Prob. 4.4.1(cont.)
~d

Evaluation of the torque, Eq. 14, follows by substitution of H,m as determined

[a g .
by Eq. 16 and BG\M as given by Eg. 10.

+< 'm ( ~ ~§
q;_-_—_ .l'ﬂﬂ:A {- iﬁj:.__o"‘"ﬂﬁM,mK“ an

”m s -C0 m

-2y Yo Bl 15, R - £ 0,30}
° Q.

The second term involves products of the stator excitation amplitudes and it
must therefore be expected that this term vanishes. To see that this is so,

& ~% I 4 1 .
observe that V\%h Kiv is positive and real and that fm and g, are even in m.
Because of the m appearing in the series it then follows that the m term cancels
with the -m term in the series. The first term is evaluated by using the

~ ~ 3B

eXpressions for Moo- and Hi"- given by Egs. 10 and 11. Because there are only

two Fourier amplitudes for the magnetization, the torque reduces to simply

.=~ & pR A M 0n 6, K s CIECY | (18)

where

[& - %‘ (ﬂo ,v‘i)/{gl(ﬂ‘, ;ﬂ °)3|(ﬁ° .Ri) - $|'<?’£ .R Jl;l <1‘°;R«') - S:l (o,ﬂﬁ]‘&

C s . 2
From the definitions of I and fm, it can be shown that K=Ri/RO, so that the

final answer is simply
3 . . .
/T;-: **/“oﬂLJ_MOM”QoMeYN L(") (19)
Note that this is what is obtained if a dipole moment is defined as the product

of the uniform volume magnetization multiplied over the rotor volume and
directed at the angle 9,. .

\wmi= Wﬂfé M, (20)
in a uniform magnetic field associated with the m=1 and m=-1 modes,

H| = ﬁl\i‘c'(f)ﬂ,; 6, (21)

with the torque evaluated as simply ".r .-./u,,in XT-\, (Eq. 2, Prob. 3.6.2)
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Prob. 4.4.1(cont.)
The flux linked by turns at the position B having the span Rode is

= [NR o[ K(6)- A (g4m]d @

Thus, the total flux is +6L 400

"
1'-69 7 -an mg
2= (° QAG-géNﬂZA (1- ”e_ 46 (23),

? .._é% | ”nsz-C0
The exponentlal is 1ntegrated‘to give
+ 00 ‘M‘T
. T . 24
2= 4dNR, E A -3-2 A T)MMQ, (24)

”m 2 =-00
where the required amplitude, }\i‘, is given by Eq. 16. Substitution shows

that

> =Lk} + A,/“° M, cn 6, (25)
where 40 . 2

L= ENuRdY (22 [S.(0,n)-5. &, ®)]
and Coddy [§m (R:,Ra)/R:]

A, = anR d e,
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Prob. 4.6.1 With locations as indicated by the sketch,

the boundary conditions are written in terms of complex

amplitudes as

Because of the axial symmetry, the analysis is simplified by recognizing that
~Q

3'=% , B --B7 (2)
This makes it possible to write the required force as
a_a ¢ ¢ ava . YiS (3)
4% = A <Ei O« 'E‘D,Z = A @_q (—-aﬁi D‘>:Aa&éa&vopx)
The transfer relations for the béam are given by Eq. 4.5.18, which becomes

a‘ - ('.oﬂ'\ &L — o) )

sinh Bb | [Y ~ (-l]':
=L +E _/‘oz—, %)
NJ 50% 60(17‘--\'?:) \

~d
-] .
T sm MBS

These also apply to the air-gap, but instead use the inverse form from Table 2.16.1.

~ Q. - c°+l\ '&J ———‘—-

O, sinh Rd s‘

N I ulls (5)
|>) =t

. sinh Rd "‘°*_|'

From the given distribution of it follows that only one Fourier mode is required
g

(because of the boundary conditions chosen for the modes).

TY. :{ l c=0 = (3(.' -"{(g" ¢=o

. VY, =0 (6)
¢t o c £ 0 [») c#0

With the boundary and symmetry conditions incorporated, Eqs. 4 and 5 become

| ~
6‘ - coth Rd sinh B4 V
% °
¢ (7)
S I T | P
® sin hid N §



Prob. 4.6.1 (cont) \ )
§° ~cothb sinh 8b |[D,

'y o~
=i£ L + ®
€ -~ -
§L = cotheh ) € 0 (8)
-~ Ao
These represent four equations in the three unknowns Y}:} t)‘_' Ei . They

are redundent because of the implied symmetry. The first three equations

can be written in the matrix form E?)
[ - O GD& ] Fﬁ@: reogtﬂ.“iﬁé Vo _
-sinh fd ®
~b % Y
Q =1 eog co'“\ Rd D,‘ = €9 d
Sinh ﬁA
\ éb ~
L. - —eo
i v ‘609‘- co+\f\p¢\>+ s‘mh&b) | J I 5,?@1 J

In using Cramer's rule for finding 6: (required to evaluate Eq. 3) note that
~

terms proportional to V, will make no contribu. on when inserted into Eq. 3

(all coefficients in Eq. 9 are real), so there is no need to write these terms

out. Thus,

~

A A R G

and Eq. 3 becomes

~3
= ACG{-3Vs 3, |
** d {0 (11)
b) In the particular cas? where 3 (wt +Q g}

~ Ut ~

Vo= NV, e® j fo=-pe o
the force given by Eq. 11 reduces to

§,=-AGY,e s BY  a

The sketch of the wall potential and the beam

charge when t=0 suggests that indeed the force

should be zero if S and be nzgv\*‘.it.ﬁ if OCRSCT™




4,12
4\x
=y T - xs2d+b
Prob. 4.6.1 (cont.)
:Jfl
¢) With the entire region represented by the relations N
P M « [
of Eq. 4, the charge distribution to be represented by x=d
B> (£)
L p i N S

the modes is that of the sketch. With A= b +2{

and -“4'. =Cos {_-'T;[x , Eq. 4.5.17 gives the mode amplitudes.

de b

) | n (14)
/o': == g F cos cﬂx X = _ﬁ-[sm (-“(A.‘,L) 5‘“,_“41 =P \
¢ .
d 4#0 t=o
So, with the transfer relations of Eq. 4.5.18 applied to the entire region,
) F-ceﬂ\ gb ! 6“
V° sinh Ra

‘ = =] - (-l)
~|Fen + 2_&1__1 (15)
v, ° _?':l'ﬁa cothRa 6;' (= oe"[(%q te 1 |

[ ss

fd
Symmetry requires that D, =-D, , which is consistent with both of Egs.
15 reducing to the same thing. That is, the modal amplitudes are zero for i odd.
From either equation it follows that

w ~
V. = d coth Ra - S P: (16)
'"\‘G'b £ e [ (R +R7]

The terms multiplying Vo are not written out because they make no contribution to

the force. €0
( Bvo -‘- €,% S;h\ﬂ gb lfy‘: (17)
(coshka +1) g {em\* g2
c=0 (°3 1
(J.VJ-\)

Thus, the force is evaluated using as surfaces of integration surfaces at

(a) and (f).

LAG(RETE LR ETEN - ARA(IE) T s

= _ARE, sinh Ba &Z
Cosh & + 1| E{("")&Pl

.RV.&V\
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Prob. 4.6.1 (cont)

In terms of the z-~t dependence given by Eq. 12, this force is

2
f,=-AR€EsinhRe) b za[s.nmcan,) sin (1]
coshRa+)\ Jeh® ecn[(%r) +&'~

V/ sinRY (19)

=2
AVaNn

Prob. 4.8.1 a)The relations of Egq. 9 are applicable in the case of the
planar layer provided the coefficients Fm and Gm are identified by comparing
Eq. 8 to Eq. (b) of Table 2.19.1.

ol @)z p--whhe ¢ (0. -C.(ad)~ gigaa
Thus, the transfer relations are as given in.the problem.

b) The given forms of Ap and Jz are substituted into Eg. 4.8.3a to show that

A' :
V‘-_ -W =0 (2)

(4

where ~

1

A -—Pc : (3) I
.

Solutions to Eq. that have zero derivatives on the boundaries (and hence

make Hyp=0 on the d and A surfaces) are

-‘Téz MV‘-_X',V‘-_=$%T)C‘=O,1,Q,... (4)

From Eq. 3 it then follows that
AT, = s e
(R + (45

Substitution into the general transfer relation found in part (a) then gives

(5)

the required transfer relation from part (b).

In view of the Fourier modes selected to represent the x dependence, Eg. 4,
the Fourier coefficients are
. . A oy ~ \ s, 4
t ‘ -\
3, = SJ (x) cse -EX)AX ¢ 36 = Angz(x) X (6)

) [
c#0 [}



-
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Prob. 4.9.1 Because of the step function dependence of the current density on
y., it is generally neceesary to use a Fourier series representation (rather
than complex amplitudes). The positions just below the stator current sheet
and just above the infinitely permeable "rotor"™ material are designated by (a)
and (b) respectively. Then, in terms of the Fourier amplitudes, the force

per unit y-z area is

+0 "’s* ~a
T,=Ey =Y A=) GRCRE =

ms=-0o m=-
The stator exc1tatlon 1s represented as a Fourier series by writing it as

E |'1 a.,,‘i
K= \4 9, \’\ & 21 LR 4R ) @

m=-00
The "rotor" current density is written so as to be consistent with the adaptation

of the transfer relatlons of Prob. 4.8.1 to the Fourier representation.

3= 2 iIS,P()uo?xe 384 3)

m:'wp [V .
Here, the expansion on p accounting for the x dependence reduces to just the

p=0 term, so Eq. 3 becomes

J= Z-Y Le she (4)

mz -co Y
The coefficients Jﬂo are determined by %’
‘ Vt-§ —
the y dependence, sketched in the figqure.
T n ¢(#)
First, expand in terms of the series
o, _-g ' y=o pni@
I ? "“a —-—— |
j: ™o (5) §Jq/ __-& ﬂ 1
me -0 L 9 ‘i Z

where y'=y-(Ut- $). This gives the coeff1c1ents

j‘:, _ an(t) (M'ﬂ' (6) .

Thus, the coefficients in the y dependent Fourier series, Eq.4, become
~ L g (UL“'S)
- arcle . m
3“" - a (&) mT 61 (7)

T z ~b
Boundary conditions at the (a) and (b) surfaces reaquire that H%” =0 and

~,S
H'é"' = "'Km . Thus, the first equation in the transfer relation found

in Problem 4.8.1 becomes

asV¥



4.15

Prob. 4.9.1(cont.) "
Na
ﬂ o wehRod W+ MoSme : (8)
k..
Thus, Eq.,1 can be evaluated Note that the "self" terms drop out because

the coefficient of KM \(... is 0odd in m (the m'th term is cancelled by the

-m'th term) Q (U‘t S)
z 11& S + K3 ]AM.( )c (9)
mm &, :
mz= -0
This expression reduces to ‘25 & (Uf S) \ j%‘((){-s)
T -2 o"‘"(‘)“ ¢ - ( ¢ ] (10)
y = 23
If the stator current is the pure traveling wave ’
3 ~ A Lot
IK? = K, e (wt - g,g) > 1K°= K, e? (11)
and Eq. (10) reduces to
(12)

T. = ni@) M8 K oo (aTy
4 — °M‘</Q)
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Prob. 4.10.1 The distributions of surface current on the stator (field) and

K#
rotor (armature) are shown in +
the sketches. These are represented ,.,.n{ "{U,(&):
>
Fouri ies having th - 2
as Fourier series having e AKQ l/ "h_[‘{, u, (G-X)
standard form +o0 R 2 ¢
K K..\ c (1) ,
1 Maca
with coefflclents glven by A 2 P
& T
KL 5 e
It follows that the Fourler amplitudes are
e
~ .c ! 6
— L
Ke = N (1 - ) 3)
- 8
and
. . T
~ A . A 3“
.. '-"a_{_\/f__&(l—f- ) (4)

Boundary conditions at the stator (£) and rotor (a) surfaces are (\.\ -Vq’)

H& = \‘(f > (/m )‘< /1 (5)
H _—K > ‘Ww "'K"‘/l (6)

Fields in the alr-gap are represented by the flux-potential transfer

relations (Table 2.16.1)

8. (=) R

- o) T ||
= My T A 3
~ o x . ~a (7)

B - | b
L 3. mT o
L . w5 C,JJ( ) . %

- /Aﬁnﬂ (-ﬂ ) } J L e
The force is found by evaluating the Maxwell stress over a surface that encloses
the rotor with the air-gap part of the surface adjacent to the rotor (where fields
are denoted by (a)).

{’% = add <B \-\ > —-3,Q<:(<B K >—-;],(ZB <\‘( ys)

nz-00
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In view of the transfer relations, Eqs. 7, this expression becomes

§,=-28d po i_ (ju. )\4 (9)
S ()

In turn, the surface currents are glven in terms of the terminal currents by

Prob. 4.10.1(cont.)

Egs. 3 and 4. Note that the self-field term makes no contribution because the

sum is over terms that are odd in m. That is, for the self-field contribution,

the m'th term in the series is cancelled by the -m'th term.

f,= 4 4N ‘a”mz (l‘m :_(ﬂlg:r: ) (10)

e @
This expression reduces to the standard form

Qi =~ G.‘. 5«"5 (11)

where L) |
G :./“oClA/“”fZ "?f' m,q,;.ﬂ(::lf_f) (12)
m'edd A

To find the armature terminal relation, Faraday's integral law is written
for a contour that is fixed in space and passes through the brushes and

instantaneously contiguous conductors.

<§(E xmha) 4Y = - S-S:E"“(“ (13)

In the conductors, M=0 and Ohm's law requlres that

_ 3 _ -
= = o . : (14)
E = — VXM
The armature winding is wound as in Fig. 4.10.3a *
with the axes and position of the origin as
sketched to the right. Thus, Eg. 13 becomes X G $
3.43 (42 _d ’ : (15)
2.3 - (U B (- dA_ d
- ¥ S"' Wy Sh =5 B da
wirh iR
S

Each of the solid conductors in Fig. 4.10.3 carries half of the current. Thus,

the second term in Eqg. 15 becomes

Lh-ASLL Ll inainek
A0 2 CAa a9 Aa

wirtl
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Prob. 4.10.1(cont.)

The third "speed-voltage™ term in Eg. 15 becomes

- - A -3
SUB,‘C‘;-AR = d SUB‘NQJ - d UKK/\/“Jz (17)

wwl o
and this becomes

gUBxdb-JI = dun, &.ed - | Z B e
wirg 0 ~%
X2 é"\
= —43'JUNuL_ —E’iﬁ (18)
?::L)

From the bulk transfer relations, Eq. 7b, this becomes

(19)

ﬂ'
gUB L') Ag = qéJUNz}’oMW _5—{(‘ (M‘I’L>N “ o im )1

mz - /(5.5 '%,‘ 3 T
wirs (’A&) /“‘"R( 1 )‘b "

The second term makes no contribution because it is odd in m. Thus, the speed-

voltage term reduces to

I‘UB‘LT.,-Q =G, U&:‘ (20)
wivs

where Gm is the same as defined by Eq. 12.

To evaluate the right hand side of Eq. 15, observe that the flux linked by
turns in the range z +dz' to 2' is
(A g v, Ai—)/\/ da’ (21)

so that altogether the flux 11nked is

IB da = [{J By Aa]/\/ dz’ (22)

Expressed 1n terms of the Fourler serles, this becomes

SB do = - 4./\/ 0k 2. (23)

A
G Ta)
The normal flux at the armature is expressed in terms of the terminal currents

by using Egs. 15b and 3 and 4

SB da=-44, ‘(}Zgz

S

X h‘ UJ(“L)N ba
——(- é")
M(";") a@‘“ (24)

(o4d)
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Prob. 4.10.1l(cont.)

The first term in this expression is odd in m and makes no contribution.

Thus, it reduces to simply
( R, da = L.t (25)
where 3 2 2 4 mTh
- /(.N.,_Jﬂ,a.z wotd (=)

L - .3 (26)
o WA
> (o d&)
So, the armature terminal relation is in the classic form
Y, =T, e + L..‘%i_? - G.U ¢ (27)

where Ra'La and Gm are defined by Egs. 16, 26 and 12.

The use of Faraday's law for the field winding is similar but easier because
it is not in motion. Equation 13 written for a path through the field winding

becomes

ev's +R¥

(28)

( = —C( SBiJo;

The term on the right is written in terms of the Fourier series and the integral

carried out to obtain Q ) - ,B 2
JE da = JV\’rJ B de =dny gé & o5 (29)

6
[
Substitution of Egs. 3 and 4 gives

-' -n ‘- _ -a'rn!' .
KB da=dn ,(02 e iy (i-e )u*h(..mh) Nata (i - 2“ (30)
. iR, 2L 27T (R s.nh (=
The last term vanishes because it is Odd:lﬁ m. Thus,

SB da = L,‘ g5 Ly® Z‘_-’__LA" Z C"""'““"m (31)

and the field terminal relatlon, Eq. 28 becomes

‘U:R(:"-LA“I (32)
¢ $ %4 -f-—g'f'
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Prob. 4.12.1 The divergence and curl relations for E require that

?‘.—%}(T‘E,) +%__E% =0 (1)
OB, |, OE, _
53 + S5¥ =0 (2)

Because Er=0 on the z axis, the first term in Eq. 2, the condition that the

curl be zero, is small in the neighborhood of the z axis. Thus,

OE; .

and Eq. 1 requires that
) _ -dE (4)
viR(vE)= - oo

dz

Integration of this expression on r can be carried out because the right-
hand side is only a function of z. Because Er=0 at r=0, it follows that

E,= -+¥ 4E/da (s)
Now, if it is recognized that Ez = —Aﬁ/di without approximation, it follows

that Eq. 5 is the required expression for Er'
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Prob. 4.13.1 Using the same definitions of surface variables and potential

A " A -ﬂs
s . ro
difference as used in the text, <§ = ?o’? = %a ea )

A ek A A . ut-ﬂﬂ
V= GLAA e% ; is = (ﬂi?s¢3iﬂt%;€;::CRg€{ Gp(z

(1)

At each of the electrode surfaces, the constant potential boundary condition

requires that Ef?
nxE=o » B, = —Exjg (2)
For example, at the rotor surface,
€, e s v’ LD (¥
S0 =—E — E = ——-—< ?5 (3)
Eu(x=o) + S X ,S; el 33\ Cx
where the irrotational nature of E is exploited to write the second equation.

Thus, the conditions at the perturbed electrode surfaces are related to those

in fictitious planes x=0 and x=d for the rotor and stator respectively as

v * *

Bl =-2(Elf) » B =-EY C
s < < A étd

B, =-33(E7) » 2= -E¥wbhVoes O

First, find the net force on a section of the rotor having length £ in the y
direction and Zﬂﬂg in the z direétion at some arbitrary instant in time.
g{=e,£% {ExEL), (6)
The periodicity condition, together with the fact that there is no material
in the air-gap, and hence no force density there, require that Eq. 6 can be
integrated in any x plane and the same answer will be obtained. Although
not physically meaningful, the integration is mathematically correct if
carried out in the plane x=0 (the rotor plane). For convenience, that is what

will be done here.

By way of finding the quantities required to evaluate Eqs. 4 and 5, it

follows from Egqs. 1 that

A 'wt A* . t A ‘& - s .E
s ] —at A k7 2
B¢ M +V T)E 43 e @

£ (V) 1+]V,% +(V,)e

T\‘Z i&%meé(wt-ﬁ*) a «sgéé(uf-ﬂe) a ad (uteRe), as¥ futehe)

1

|

i
i
i
1
1
i
)
i
I
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Prob. 4.13.1 (cont.)
and that A AT (3“t Ez)‘ "‘g - (3ut -R
b
Ere= {[V §e A 1 "

+[(V*§rﬁc (at + (\?, \«) _a(wt Qa\l}

Thus, these last two equations can be written in the complex amplitude form

k
S P VATCA S “36 +(vo “Ve de"‘1 ®
By =5y & (v,§" e (Q*%"c'“f L

The transfer relationS, Eqs. a of Table 2.16.1, relate variables in this

form evaluated in the fictitious stator and rotor planes.

~3 | Ve
E“ ~coth &4 ST R4 é
~ve & oy (11)
Ex Y eoth BY ||®

It follows that

E:': &i%‘_ 'SU -'_g-——-———'[\/ ? . wt il?se.dut] C-Oﬂl

&d
24d sinfk (12)
A \g K2 AR A N*13 -6
+Lzé:eirb_91‘[\/? G ]e
Also, from Eq. 4, .ﬁ’.;
A AY 3. AN Aap 'awt -3
E:.-.&'-?sa[v ea +Vo? :(C (13)
Thus, the space average called for with Eq. 6 becomes
~ r -~ »
fo = S22 L QIR (ETTY )

which, with the use of Eqs. 12 and 13, is

= €W - ’P;. A A Eag F u’(‘ Adag. Y -4
&2 a‘{z%:ﬁhﬁi( +% b3 S }

N AQASATE AR A

+V, Vo §% +V, Va?? e_-z m](ls)
_Agjuua&[zv,? 0§ +(‘¥ )z(".,z e L 6-15“)]

AL
¥ A
The self terms (in ?‘f ) either are imaginary or have no time average. The
. av An

terms in ? '? also time-average to zero, except for the term that is
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Prob. 4.13.1 (cont.)

independent of time. That term makes the only contribution to the time-
As A " -~ 'G‘
average expression- (? = ?, ,i = ?, Ca )

A 2 A Al —‘33
£ = c.on VA .25 ¢ 9 (16)
YA & dtsinhBd G 4325
In the long-wave limit kd ¢ ¢ |, this result becomes
A 2 2z
IR N LA APV )

which is in agreement with Eq. 4.13.12.
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Prob. 4.13.2 For purposes of making a formal quasi-one-dimensional expansion,

field variables are normalized such that

= = (1)
MWl xed s fed g

) > 'Y‘/lo(é)“
=“°(%'). Ha 222 2 y @ = HOJ ¢ , ?

)

The MQS conditions that the field intensity be irrotational and solenoidal in

the air gap then require that
SHy 3\4;

D%

D\'\x (J)D 2=0
]
If all fleld quant:.t:.es are expanded as series in X'—:—. (“-‘ /)\),
W,y S WY

- . _ 4
H" ‘;2,:, e ’ Hi -Z H"’-i\‘ -

i=o

n

=0

jw

then, the equations become

M DMac My _ My,

5
d - o~ =
d2 ER Py 2
The lowest order field follows from the first two equations
PR -
DM _ dHuo I
a R
It follows that o2
H*= H“ = ‘F(i,-t) 8
He = Hao = *55 +9(2,2) -
Boundary conditions at the stator and rotor surfaces respectively are
Hy = \‘(%(E,t) = W, e (we -Ra) ' (10)
- = (11)
AxN(x=5)=0
In terms of the magnetic potential, these conditions are
2 \_I .
= = (Z)z7 e Lam(z-2)] 12

¥(x=1)=0 =

where variables are normalized such that Ho=K ) t=-7T ; (‘T ] zrr/g),
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Prob. 4.13.2(cont.)

Integration of H=-VY between the rotor and stator surfaces shows that

a 0
Hd €% = [y W, ddx o

In view of Egq. 8, "+ ?

-~IHJx-'(I $)f 15

-1
and so the 1ntegrat10n function f(z,t) is determined.
§Ce,2) = -4// = 2 confaw(e-)) 16
- d 2m | -% B
From Egs. 8 and 9 it follows that
a a >4 ] :
Fad = — + = = - 17
H, = H“-[XM_ ‘;}“-o K, = amfan(z -2)] 17
so that
%.:: b(3 (18)

Actually, this result is not required to find the force, but it does complete

the job of finding the zero order fields as given by Egqs. 8 and 9.

To find the force at any instant, it is necessary to carry out an integration

of the magnetic shear stress over the lower surface of the stator.

\
<{-’->e = Son H, d= 19

Evaluation gives

(1

(fea@K e 20

o

jl'L con L2m(2-2))
{d M) - §, confam(ue-c2-n]

“ aimfam(t- 2)]}&1

!

(3_)‘_\_ f an Lan(z-2)] de = F(2,9)

d/ av
o | =%, e f4m(ut- @-0)]

The time average force (per unit area then follows as

l 2
(K802 = [Feen s =

In the small amplitude limit, this integration reduces to ( 3_ <<'1)
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Prob. 4.13.2(cont.)

(5, =

-
>
™~

s faw(e-2)][1+ %, con (ar(ve- ca -5)]d2 22

1]
]
o~ o‘—\
~ -

> o

)

o"”“" [am(e )] cocfan (U2 - (2- $)]dz

DF.
=
a.

z -4 %)t? jw [4Tr(t'-e)]m'-[4ni(u-l)t+&]}Ji
= -g'-(%)zs a-{(U-D2 +3]

Thus, the time average force is in general zero. However, for the synchronous
condition, where (/ = [U/?)I[-’”/UI =1,
it follows that the time average force per unit area is
2
85D = -1 (%) , 23
In dimensional form, this expression is

(24)

{5y, = 4l F‘i’ an(2RY)
4 (Rd)
and the same as the long wave limit of Eq. 4.3.27, which as kd"O,becomes
{85, = -2kl R pce 3RY —» — g, KRS, o aRy @
‘;ﬂMJZ ﬁA A (%45‘

In fact it is possible to carry out the integration called for with Eq. 20

provided interest is in the synchronous condition. In that case

and Eq. 20 reduces to ( G = <<l /7? 4 F)

a+aT ,
G = L g,w;“sm(ens)—msm‘-ﬂi e | 26

4t
| = %, 608

where o

S = 4w (£-2) $4%% | a =z 4v(¢tas) -4T

In turn, this expression becomes

a+4&vy at+av
G=wasu( s AS_M;,m,S cer S dS 21
T T, w3 am ) 1-%,und

The first integral vanishes, as can be seen from

atam atam q+4n
S_____.M"'g dg =~X_____‘l(""3) =+ i, m§] ln['] o (28
) 12T ens 1-€cnS %
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Prob. 4.13.2(cont.)

By use of integral tables, the remaining integral can be carried out.

C = - A—R‘c ( | - r—l—f:‘) (29)

In dimensional form, the force per unit area therefore becomes

Ko e 2B 5 o (30)
<¥a>*‘ /;(?%51-(5*)‘ Il SV (3 ]

Note that under synchronous conditions, the instantaneous force is independent

of time, so no time-average-is required. Also, in the limit i/u ((bthis

expression reduces to Eg. 25.
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Prob. 4.14.1 Ampere's law and the

condition that H is solenoidal take Ax
the quasi-one-dimensional forms § === - === 35
' |
.a_'-.l-’-‘- =0 (1) :’— c |
% ¢ ! 1y
SHa  DHx @ § = —--'>le‘§
_S—X- = 2 2 24
and it follows that
Mx = Hx(®) (3).
My = ")—;{" + £ (e (4)
The integral form of Ampere s law becomes
b R-AL= [HaGat)-Hlo]b=
5
~n L;-zN (x-0R) ; ocacd )
X'.S ndo =
h‘c{_ +2 Na (2 -38/2) Y Q<a <2l

Because the model represents one closed on itself,

it follows that Eqs. 5 become

Mk tads (3 -d) jocacd

n(a +Q) = -H(2) and

H(2)=/ =2 (6)
“ng o Data (z-3d 1Az <24

and it follows that b b o }

;\_\x {i-Nuc‘a/L 5 x,( 24,y =

X u (& 5)
At the rotor surface, ere x=0,

H; = t/\(u‘-u Y £< 'Z( (8)
and so Eq. 7 can be used to deduce that o L

v /K '
tNaC(5-1) 5 2€2% 22 (9

M, =

hscs—u(z—!)f) MNota(£-1)52= g

o

The force follows from an integration of the stress tensor over the surface

of a volume enclosing the rotor with depth d in the y direction and one

periodicity length, ZEin the z direction.

(3%
§=dlumn,de
o

(10)
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Prob. 4.14.1 (cont.)
This expression is evaluated. *
? =/‘°J{ J[M + Nqb‘uCE - 2)] “‘“(__ _‘)Ai.',f(‘h‘%“a(i» C{E (11)

]

[T el -o}ée - [z e (n-2]-4 ! lée}l

- o
= - Nn”.p ¢, ‘;ﬂo d%—
This detailed calculation is simplified if the surface of integration is

pushed to x=0, where the impulses do not contribute and the result is the

same as given by Eq. 11.

- o, d9
= ~Gn Gl b G Ep T MNaly (12)
Note that this agrees with the result from Prob. 4.10.1, where in the long-
wave limit (b/g {41) oo
C.— ,a.AR,N z}_ i (19
1Te e
because hel

| i
')Z'l : ¢ o
To determine the field terminal relation, use Faraday's integral law

-+ E.dQ = —9_\_7\ Vo dg B &S?V\&c\ (15) l
uSura ot S' ’ s' K9
Using the given fields, this expression becomes '

=" a6
q> 41, ,u,u,‘ae-c(g [ 264 4Doto e &ilude= g L=Adndf2)

This results compares to Eq. 31 of Prob. 4.10. l where in this limit

[-]-4
Ly dseddng ") o an
8b n=t (edd)
The field winding is fixed, so Ohm's law is simply j G'E and therefore Eq. 15
becomes
$.41 = -Lg 48
'1’* + S o ' - 'G ?é- (18)
WL
Because
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Prob. 4.14.1 (cont.)
- 1 2n.d
R, = = £9 (19)
s’ Aw!r&
the field equation is
Y = R + L gl (20)

For the armature the integration is again in the laboratory frame of reference.

The flux linked is

A
2= | @I o 2l
(-]
where 2+ h 1 212 .
= g/(oH da'= 5,4(0[1'5_‘.{ +M‘a(;-_)]‘lg+y %% féi.'ﬂ(z'—s__!)]h'(zz)
E b z
= Mod [-—h; 4(.2 -22) - Nato 2 (2-4)]
Thus, b
Ao = Lo..“u$ Loz 6 /u’JL No.. (23)
This compares to the risult from Prob. 4.10.1 oo 4
s GG . A2 T
Gb -00(ed ) oo odd G/
For the moving conductors, Ohm's law requires that
~) 25
By = g - Vi 4l (29
and so Faraday's law becomes
24
. (26)
e dNE e - (M de = -d L. e
or o ,Q aY

—v&+a/v«{”°°~ S WALT SV EYRN SR

~=u
Thus X'

‘g—ﬂzﬂoi_m} _N@CL (a—%)lc‘i]g-.- —Lq.c_(_c‘}_ (28)

and finally

‘lﬂk = (aRe — G\“ 7}2_ L‘& + La 4_‘_"& (29)
dt
where
.\7\“ = 24 dNa
AT



