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Electromagnetic Forces, Force


Densitie and Stress Tensors
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3.1


Prob. 3.3.1 With inertia included but H=0, Eqs. 3 become


- ,_ 0 41+_ (1)


M_ |rL 
With an imposed = RE eiqip t , the response to these linear 

equations takes the form + =" 4t _e eP . Substitution into Eqs. 1 

gives 

t E (2) 

"n+(-Qr -'-) £ 
Thus, for the effect of inertia to be ignorable


(3) 5
+»÷> cJ 

In terms of the mobility b+= /Mnt. , Eq. 3 requires that I 

it/ 64 t=n >I'> T ,j 

5
For copper, evaluation gives 


(i.7eXIo")(2 rr)(3x Io ) = 1.34-x 1o I, > (5) 

At this frequency the wavelength of an electromagnetic wave is


= c/4 =3xio/9.14 x)I' , which is approaching the optical range(3Z,/2 1). 

Prob. 3.5.1 (a) The cross-derivative of Eq. 9 gives the reciprocity I


condition 
 g


from which it follows that C12 = C21


3
(b) The coenergy found in Prob. 2.13.1 can be used 


with Eq. 3.5.9 to find the two forces.


I
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3.2


Prob. 3.5.1 (cont.)


TI IL _C)1, (2) 

IýCl · ) _1 C (3) 

5 The specific dependences of these capacitances on the displacements are


determined in Prob. 2.11.1. Thus, Eqs. 2 and 3 become


(b - ,) 	 2 2 

Prob. 3.5.2 	 (a) The system is electrically linear, so w' = ] Cv2 , where 

C is the charge per unit voltage on the positive electrode. Note that


throughout the 	region between the electrodes, E=v/d. Hence,


I 
W'---W 	 Cc +P 

(b) The force due to polarization tending to pull the


slab into the region between the electrodes is then


W£ 2. 	 (2) 

The quantity multiplying the cross-sectional area of the slab, wd, can


alternatively be thought'of as a pressure associated with the Kelvin


force density 	on dipoles induced in the fringing field acting over the


5 cross-section (Sec. 3.6) or as the result of the Korteweg-Helmholtz


force density (Sec. 3.7). The latter is confined to a surface force


I 	 density acting over the cross-section dw, at the dielectric-free space


interface. Either viewpoint gives the same net force.


Prob. 3.5.3 From Eq. 9 and the coenergy determined in Prob. 2.13.2,


I




3.3


Prob. 3.5.4 (a) Using the coenergy function found in Prob. 2.14.1,


the radial surface force density follows as


_W' = C, 9?. (1) 

(b) A similar calculation using the X's as the


independent variables first requires that w(X1, X2, r ) be found, and this


requires the inversion of the inductance matrix terminal relations, as


illustrated in Prob. 2.14.1. Then, because the Tdependence of w is i

more complicated than of w', the resulting expression is more cumbersome I


to evaluate.


; 0 a z !L3 (2) 

However, if it is one of the X's that is contrained, this approach


is perhaps worthwhile.


(c) Evaluation of Eq. 2 with X2 = 0 gives the surface


force density if the inner ring completely excludes the flux.


z z Z (3) 

Note that according to either Eq. 1 or 3, the inner coil is compressed, i 
as would be expected by simply evaluating Jf x po H. To see this from


Eq. 1, note that if X2=0, then il=-i 2.


Prob. 3.6.1 Force equilibrium for each element of the static fluid 
 j 
is


where the force density due to gravity could be included, but would not 

contribute to the discussion. Integration of Eq. (1) from the outside I 

interface (a) to the lower edge of the slab (b)(which is presumed well 

within the electrodes)can be carried out without regard for the details


I 



3.4


Prob. 3.6.1 (cont.)


of the field by using Eq. 2.6.1.


I = JVt.-(E-.-E~4 	 (2) 

Thus, the pressure acting upward on the lower extremity of the slab is


L 	 (3) 

i 	 which gives a force in agreement with the result of Prob. 3.5.2, found


using the lumped parameter energy method.


3= w dpb d ( -. ) t 	 (4) 

3 Prob. 3.6.2 With the charges comprising the dipole respectively at r+ and r_, 

the torque is 

Expanding about the position of the negative charge, r


* -- _ a) Ali t 	 I- i Iif(Z)rI--V (2) 

To first order in d this becomes the desired expression. 

The torque on a magnetic dipole could be found by using an energy argument 

5 for a discrete system, as in Sec. 3.5. Forces and displacements would be 

replaced by torques and angles. However, because of the complete analogy 

13 summarized by Eqs. 8-10, " S-E and I• "b/doM This means that 84-s/Uo 

and so the desired expression follows directly from Eq. 2. 

Prob. 3.7.1 Demonstrate that for a constitutive law implying no inter­

action the Korteweg-Helmholtz force density 

IF= +vp.v~ 4w ~. (1)+c ( O -E ) 

becomes the Kelvin force density. That is, ( )=0.Let )C = 

Q = and evaluate ( ) 

W It _D 	 (2) 

Thus,


-- ~ C 	 CO (3) 

Z'Xe S"I 	 a 



Prob. 3.7.1 (cont.)


so that


-_ý_w-w 
ýp14 w 

and 

+·+ E, _EB + YCEo Ez·D z 

L- E ~c EZ-

Prob. 3.9.1 In the expression for the torque, Eq. 3.9.16, 

i= %L" 

so that it becomes 

-- = i (IF,-' F,) -t ;c(vs-xi) L 5-(C F)IJV( 2) 

Because

F= aT / xi 

ZýTz) 
XSj 

1,,-7-i 

+rThý-,t )V3T= -3 _ __. 71,•
V T32 ­


±5 (~T,
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3.6


Prob. 3.9.1 (cont.)


Because -- =-Ts (symmetry) 

x7i7J'+ (cui-aT;)jV (t4)( 
V 

From the tensor form of Gauss' theorem, Eq. 3.8.4, this volume integral


becomes the surface integral


- S / - 1 1 

Prob. 3.10.1 Using the product rule, 

I61 6 t-t) (1) 

5 The first term takes the form VlTwhile the second agrees with Eq. 3.7.22 if


In index notation, 

I L (2) 

i where Eis a spatially varying function. 

F (3) 

Because V tO, 

- E (4)-~ -e 

Because p E--•o ,the last term is absent. The first term takes the 

required form / x . 

Prob. 3.10.2 From Eqs. 2.13.11 and 3.7.19, 

Thus,3 theW-DI i~· +clEi~)SE -~ E4·; T (1) 

Thus, the force density is (iEb/~xi =r-e/Xz3 ari~/~g -o )

£ _ ,6'ýW -ta- ŽŽ !D- = (2) 

The Kelvin stress tensor, Eq. 3.6.5, differs from Eq. lb only by the term in Si


so the force densities can only differ by the gradient of a pressure.




I 
3.7


Prob. 3.10.3


(a) 	The magnetic field is "trapped" in the region between tubes. For an


infinitely long pair of coaxial conductors, the field in the annulus is


2
 I 
uniform. Hence, because the total flux fa B o must be constant over the 

length of the system, in the lower region 

a2B

o

B
z 2 2 (1) 3' 

a -b


(b) 	The distribution of surface current is as sketched below. It is
 II 
determined by the condition that the magnetic flux at the extremities be


as found in (a) and by the condition that the normal flux density on any
 I` 
of the perfectly conducting surfaces vanish. 	 /


I(c) Using the surface force density K x <B>, it is //


reasonable to expect the net magnetic force in the
 I 
z direction to be downward. 	 /


I


(d) One way to find the net force is to enclose the I 
"blob" by the control volume shown in the figure and 

integrate the stress tensor over the enclosing surface. -1 I 
f T .n.da 	 ( Iz 	 3 zi 3i 1


s


I

Contributions to this integration over surfaces (4) and , .

g	 ·1'I


(2) (the walls of the inner and outer tubes which are . I L 
1 

perfectly conducting) vanish because there is no shear
 I 
stress on a perfectly conducting surface. Surface (5) cuts under the "b]ob"


and hence sustains no magnetic stress. Hence, only surfaces (1) and (3) make 

contributions, and on them the magnetic flux density is given and uniforn I 
Hence, the net force is


(2)


Note that, as expected, this force is negative.
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Prob. 3.10.4 The electric field is sketched in the
 'p---- - - - - ­
figure. The force on the cap should be upward. To


find this force use the surface S shown to enclose \S
I I I

the cap. On S1 the field is zero. On S2 and S3 the


electric shear stress is zero because it is an equi­


potential and hence can support no tangential E. On


S the field is zero. Finally, on S5 the field is


that of infinite coaxial conductors. I k't t! I
I I


V0 _ 

I..J l·_,I II
I I I
I I 4 I I

I I I I


Thus, the normal electric stress is


the forforcetotalreduces to
the
andintegral 


- i I • -I • 

and the integral for the total force reduces to + -I;=L: 4
4

)Z 
hi V='60Z* E.( 3 )2-dWCA -V.6 

f,=~T~ I·zh. ' 

Prob. 3.10.5 S 

Because a• . Ž the last term becomes 

Thus


IF 1 e a E z,'F- GOELS i


where the quantity in brackets is T... Because T.. is the same as any

13 -3


of the T..'s in Table 3.10.1 when evaluated in free space, use of a surface


S surrounding the object to evaluate Eq. 3.9.4 will give a total force in


agreement with that predicted by the correct force densities.
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3.9


Prob. 3.10.6


Showing that the identity holds is a matter of simply writing out I

the components in cartesian coordinates. The i'th component of the force


density is then written using the identity to write JxB where J = VxH.


In the first term, B. is moved inside the derivative and the condition 

/ X• ='&'.' O exploited. The third term is replaced by the 

magnetic analogue of Eq. 3.7.26. 

-ý -<J (2) 

The second and third terms cancel, so that this expression can be rewritten


Fi(W +• la=" . -- .- -W (3) 

and the stress tensor identified as the quantity in brackets. 9 

Problem 3.10.7 The i'th component of the force density is written 

using the identity of Prob. 2.10.5 to express Jf x poH = (VxH) x VoH I 

= o0 (1) 

This expression becomes 

where the first two terms result from the first term in F., the third


term results from taking the H. inside the derivative and the last two


terms are an expansion of the last term in F.. The second and last term


combine to give V/•t. ( 9 * )-V. = O Thus, with B =••(A+A) , the 

expression takes the proper form for identifying the stress tensor. I 

~Fi -Fr I, (~j~C Id)U; 



3.10


Prob. 3.10.8 The integration of the force density over the volume of


I 	 the dielectric is broken into two parts, one over the part that is well 

i 	 between the plates and therefore subject to a uniform field v/b, and the 

other enclosing what remains to the left. Observe that throughout this 

latter volume, the force density acting in the V direction is zero. That 

is, the force density is confined to the interfaces, where it is singular 

and constitutes a surface force density acting normal to the interfaces. 

i The only region where the force density acts in the T direction is on the 

interface at the right. This is covered by the first integral, and the 

5 volume integration can be replaced by an integration of the stress over 

the enclosing surface. Thus, 

.I 	 CL (1) 

CI in agreement with the result of Prob. 2.13.2 found using the energy 

method. 

Prob. 3.11.1 With the substitution V =- 'h (suppress the subscript 

E), Eq. 1 becomes 

where the first two terms on the right come from expanding V.4AY"T'7I- Thus,


the first two terms in the integrand of Eq. 4 are accounted for. To see that


the last term in the integrand on the right in Eq. 1 accounts for remaining


term in Eq. (4) of the problem, this term is written out in Cartesian


coordinates.


KIMI'In + 

S(2) 

Ii 	 ­



3.11


Prob. 3.11.1 (cont.)


Further expansion gives


+L , S 1 x (3) 

+ 
 a.. h46 

+ I' 
Note that n2 + n2 + = 1. Thus, the first third and fifth terms become x y z


The second term can be written as


The fourth and sixth terms are similarly zero. Thus, these three terms 

vanish and Eq. 3 is simply 6 . Thus, Eq. 1 becomes 

+(5)


With the given alternative ways to write these terms, it follows that


Eq. 5 is consistent with the last two terms of Eq. 3.11.8.


Prob. 3.11.2 Use can be made of Eq. 4 from Prob. 3.11.1 to convert the integral


over the surface to one over a contour C enclosing the surface.


If the surface, S, is closed,then the contourC,must vanish and it is clear


that the net contribution of the integration is zero. The double-layer can


not produce a net force on a closed surface.



