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Electrodynamic Laws, 
Approximations and Relations 
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2.1


Prob. 2.3.1 a) In the free space region between the plates, J =P=M=0 and


Maxwell's equations, normalized in accordance with Eqs. 2.3.4b are


(3) 
v'[ =o


For fields of the form given, these reduce to just two equations.


t 
Here, the characteristic time is taken as 1/c, so that time dependences


exp jc•t take the form ' 

=' UZ Qz) 
For the time-rate expansion, the dependent variables are expanded in A/=c•0A f II 

so that Eqs. 5 and 6 become


Equating like powers of A results in a hierarchy of expressions


SI (12) 3

Boundary conditions on the upper and lower plates are satisfied identically.


(No tangential E and no normal B at the surface of a perfect conductor.) At


z=0 where there is also a perfectly conducting plate, Ex=0. At z=-? , Ampere's


law requires that i/w=H (boundary condition, 2.10.21). (Because w))s, the


magnetic field intensity outside the region between the plates is negligible


compared to that inside.) With the characteristic magnetic field taken as Io
0/w, 

where i(t) = i(t) I , it follows that the normalized boundary conditions are 
( o( 

o (;r1 (_3)._. 

3




2.2


3 Prob. 2.3.1 (cont)


The zero order Eq. 12 requires that


and reflects the nature of the magnetic field distribution in the static limit


/S --0 0. The boundary condition on H , Eq. 13, evaluates the integration 

I constant. 

y - (14) 

The electric field induced through Faraday's law follows by using this result


in the zero order statement of Eq. 11. Because what is on the right is independent


of z, it can be integrated to give


3% (15)


Here, the integration constant is zero because of the boundary condition on


3 Ex , Eq. 13. These zero order fields are now used to find the first order fields


The n=l version of Eq. 12 with the right hand side evaluated using Eq. 15 can


be integrated. Because the zero order fields already satisfy the boundary


conditions, it is clear that all higher order terms must vanish at the appropriate


boundary, Exn at z=0 and Hyn at z=l. Thus, the integration constant is evaluated


t and 

This expression is inserted into Eq. 11 with n=l, integrated and the constant


evaluated to give


AE 3 

If the process is repeated, it follows that


6 = 1)(18) 

*L :a S*- + ;Z (19) 

I so that, with the coefficients defined by Eqs. 15-19, solutions to order are 

IxO E, EXL 



2.3


Prob. 2.3.1(cont.)


Note that the surface charge on the lower electrode, as well as the surface


current density there, are related to the fields between the electrodes by


=EA (Q1) 
The respective quantities on the upper electrode are the negatives of these


quantities. (Gauss'law and Ampere's law). With Eqs. 7 used to recover the time


dependence, what have been found to second order in 4 are the normalized fields 3

E 'I,-(-3i L ~44: 1 3 (• 2) 

| _ -1 n]k(23) = I 
The dimensioned forms follow by identifying 

E = CA0,I. (24) I 
e) Now, consider the exact solutions. Eqs. 7 substituted into Eas. 5 and 6 

give iw& 

U(25) 

Solutions that satisfy these expressions as well as Eqs. 13 are


These can be expanded to second order in 3 as follows. 

•-7{ 4 X I•.... 

I - + -• X: + of 
b UI 
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2.4


Prob. 2 .3.1(cont.)


* 41 
II(I Z d + E.-""


These expressions thus prove to be the same expansions as found from the


time-rate expansion.


I 
I 
I
I 
I
I
I
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I
I
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Prob. 2.3.2 Assume


S= c ,tr


and Me st)
and Maxwell's eauation5s rer1,wp 1 

a aM l r 

;~LL- S E0E,( 

In normalized form (Eqs. 2.3.5a-2.3.10a) these are


3E,x ; _•_H, =

7L -13 1)t


Let


EX = ,. + '6 +t2 E, + 

Then, Eqs. 2 become


aX

1-16 t J 

z/1a + t j =O 

+F1, ýM:,,
t 

Z~l~.,E~~a [ I4~ + (3x3t 

Zero order terms in 6 require


= -­°- o0 •f
EoO = txo( t) g 

Wboa aE,, I -A Ht]o­

at aE C11


-)=O/.Boundary conditions have been introduced to insure E (-9 1 and, because 

(0,d) =OK(o,t.) = osH f 
Now consider first order terms.


C, Ed~Att =Z 
3t F~-6 7- 1(' 

= t 
2 *1 (.? 

t~ALda J3 L 



2.6


5Prob. 2.3.2 (cont.)


The integration functions in these last two functions are determined


by the boundary conditions which, because the first terms satisfy the boundary


conditions, must satisfy homogeneous boundary conditions; •E i=O)YjH (O)=0. 

In normalized form, we have


I exact solution. Note that what is being expanded is

I S(9) Thequasi-staticequationsareEqs.5and6in unnormalizedform


I


I (
S- -- -60)+ 

Compare these series to the exact solutions, which by inspection are


Thus, the formal expansion gives the same result as a series expansion of the


exact solution. Note that what is being expanded is


The quasi-static equations are Eqs. 5 and 6 in unnormalized form, which


respectively represent the one-dimensional forms of VX.= O and conservation




2.7


Prob. 2.3.2 (cont.) 

of charge ( H•8-- a in lower electrode), give the zero order solutions. 

Conservation of charge on electrode gives linearly increasing K which is the 

same as Hy. 

I 

I 

5 

I 
I 
I 
I 
I8I 
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Prob. 2.3.3 In the volume of the Ohmic conductor, Eqs. 2.2.1-2.2.5, with -= 

3 M=O--) become 

- "•__E 	 (1) 

V : * = o (4) 

I Fields are now assumed that are transverse to their spatial dependence, z, that 

satisfy the boundary conditions on the electrodes at x=0 and x=a (no tangential


I E or normal H-) and that have the same temporal dependence as the excitation.


RA AJC=j'4t1 (6) 

It follows that =0 and that all components of Eqs. 1 and 2 are id-nticallv 

satisfied except the y component of Eq. 1 and the x component of Eq. 2, which 

require that 

= _• . o 	 (7) 

d- -"(..4 "(8) 

I 	 Transverse fields are solenoidal, so Eqs. 3 and 4 are identically satisfied


with A =0. (See Sec. 5.10 for a discussion of why t =0 in the volume of a


conductor. Note that the arguments given there can be applied to a


conductor at rest without requiring that the system be EOS.)


Suniform 


I 	 Elimination of E between Eas. 8 and 7 shows that


I A 
and in terms 	of H , E follows from Eq. 8. 

y x 

a 1. 3 	 (10) 

b) Solutions to Eq. 9 take the form


I 	 (11) 

I 
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Prob. 2 .3.3(cont.)


In terms of these same coefficients, H+ and H , it follows from Eq. 10 that


E~..... 1 )4e ;2-R e~' I(12) 

Because the electrodes are very long in the y direction compared to the spacing


a, and because fringing fields are ignored at z=0, the magnetic field outside


the region between the perfectly conducting electrodes is essentially zero. It


follows from the boundary condition required by Ampere's law at the respective


ends (Eq. 21 of Table 2.10.1) that


H(Ot~ ~ (13) 

u4L~&9,t);a d i "pA 3 ~4 ) =(14) 

Thus, the two coefficients in Eq. 11 are evaluated and the expressions of Eqs.


11 and 12 become those given in the problem statement.


c) Note that


=d~b !' A(15) 
so, (i provided that L Y&,. <\ and W . To obtain the limiting 

form of Ex , the exponentials are expanded to first order in k9 In itself,


the approximationi does not imply an ordering of the characteristic times.


However, if the frequency dependence of E expressed by the limiting form is to


have any significance, then it is clear that the ordering must be ~ , •e 

as illustrated by Fig. 2.3.1 for the EQS approximation.


With the voltage and current defined as 1• = E (-Jt)A " = 

KA , it follows from the limiting form 

of E that 

V0 (16) 

Thisis of the same form as the relation 
This is of the same form as the relation


4 ± 6i~Et e~ 
S l (17)


found for the circuit shown. Thus, as expected, C= ojdC/o. and R= M /a . 

x 



Prob. 2 .3 .3 (cont.) 	 2.10


In the MQS approximation, where .31 is arbitrary, it is helpful to


write Eq. 15 in the form


3e (18) 

The second terms is negligible (the displacement current is small compared 

to the conduction current) if 'Je i , in which case 

F 3(19) 

Then, the magnetic field distribution assumes the limiting form 

Ae___ __e) -1(20) 

__ K _____A_- i T..i ) 2 0j 
That is, Eddy currents induced in the conductor tend to shield out the magnetic


field, which tends to be confined to the neighborhood of the current source.


I 	 The skin depth, 1,, serves notice that the phenomena accounting for the 

superimposed decaying waves represented by Eq. 20 is magnetic diffusion. With 

the exclusion of the displacement current, the dynamics no longer have the attributes 

3 of an electromagnetic wave.


It is easy to see that this MQS approximation is valid only if ('L
441, 

I but how does this imply that W• 4t1'? Here, the implicite relation between 

II'C and r comes into play. What is considered negligible in Eq. 18 by making

Iw4_(is neglected in the same expression written in terms of ' and I 

I 	 as Eq. 15 by making •C ~ f. Thus, the ordering of characteristic times 

is T( •e < 7 , as summarized by the MQS sketch of Fig. 2.3.1. 

SdThe electroquasistatic equations, Eqs. 2 .3.23a-2.3.25a require that 

a S0 	 (21) 

so that E is 	independent of z (uniform) and

x 

a --	 (22)


It follows that this last expression can be integrated on z with the constant of


integration taken as zero because of boundary condition, Ea. 13. That H also


satisfy Eq. 14 then results in


I 
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Prob. 2.3.3(cont.)


which is the same as the EQS limit of the exact solution, Eq. 16.


e) In the MQS limit, where Eqs. 2.3.23a-2.3.25a apply, equations combine to


show that H satisfies the diffusion equation.


Formal solution of this expression is the same as carried out in general, and


results in Eq. 20. 
 3

Why is it that in the EQS limit the electric field is uniform, but that in


the MQS limit the magnetic field is not? In the EQS limit, the fundamental 
 I

field source is 0 while for the magnetic field it is Jf. For this particular 

problem, where the volume is filled by a uniformly conducting material, there is 

no accumulation of free charge density, and hence no shielding of E from the 5

volume. By contrast, the volume currents can shield the magnetic field from the


volume by "skin effect"....the result of having a continuum of inductances and I

resistances. To have a case study exemplifying how the accumulation of I
3 

(at an interface) can shield out an electric field, consider this same configuration


but with the region 0 (x a half filled with conductor ( 0•x <b) and half free 3

space ( b(x(a).


Prob. 2.3.4 The conduction constitutive law can be used to eliminate I


E in the law of induction. Then, Eqs. 23b-26b determine H, M and hence


Jf. That the curl of E is then specified is clear from the law of induc­


tion, Eq. 25b, because all quantities on the right are known from the MQS 
 3

solution. The divergence of E follows by solving the constitutive law for


Sand taking its divergence. i 
(i)
(1


All quantities on the right in this expression have also been found by


solving the MQS equations. Thus, both the curl and divergence of E are 
 3

known and E is uniquely specified. Given a constitutive law for P, Gauss


Law, Eq. 27b, can be used to evaluate Pf.




I 
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Prob. 2.4.1 For the given displacement vector in Lagrangian coordinates, the


velocity follows from Eq. 2.6.1 as


= = -.n e+••÷l(re +.n•- ( t -	 (1)

I 	 In turn, the acceleration follows from Eq. 2.6.2.


-t --	 oL ( nsit nfl t4t4A (2) 

But, in view 	of Eq. 1, this can also be written in the more familiar form


I Prob. 2.4.2 From Eq. 2.4.4, it follows that in Eulerian coordinates the


acceleration is


X a63 	 - (4) 

j 	 Using coordinates defined in the problem, this is converted to cylindrical form. 

3= 	 Z a -,)+14.:. V(A.: a --+C..,p -, )1 (5) 
Because co 	 9 . s;, =1 , it follows that 

V- ­ (6)


which is equivalent to Eq. 3 of Prob. 2.4.1.


I Prob. 2.5.1 By definition, the convective derivative is 'the time rate of


change for an observer moving with the velocity v, which in this case is Ui


SHence, Of _ I 

and evaluation gives 	 A


I*(C3 - 9 L1 i C-.) I
I 	 Because the amplitudes 

) 
are known to be equal at the same position and time 

it follows that '-kU =Q'. Here, 0 is the doppler shifted frequency. The 

special case where the frequency in the moving frame is zero makes evident 

why the shift in frequency. In that casel.= 0 and the moving observer sees 

a static distribution of ý that varies sinusoidally with position. The fixed 

5 	 observer sees this distribution moving by with the velocity U =0/k and hence


observes the 	frequency kU.


I 



2.13


Prob. 2.5.2 To take the derivative with respect to primed variables, say t;


observe in A(x,y,z,t), that each variable can in general depend on that variable


(say t').


x 

Alii 

Thus


ý)Az -')Az'r +AL-. i ~ +A,"A
yt-7 ' YaTt1ý -TTP 

From Eq. 1, 

X = +"+ U t 
'.t' 

~,t'
S= :' + U~t' DCA U_ 

t =-t' Z, 
Uj 

Here, if X is a vector then A. is one of its cartesian components. If A:-w , 

the scalar form is obtained. 

Prob. 2.6.1 For use in Eq. 2.6.4, take


as A the given one dimensional function


with the surface of integration that
 -- 7 
shown in the figure. The edges at x=a


and x=b have the velocities in the x S
/ 

direction indicated. Thus, Eq. 2.6.4 

becomes b(ot) ()


x+ f-IAcx e Od 
L J ) (1) 

The second term on the right is zero because A has no divergence. Thus, Ay can


be divided out to obtain the given one-dimensional form of Leibnitz' rule.




2.14


I 
SProb. 2.6.2 a) By Gauss' theorem,


where on S1 in , on S2, i =- and on the sides i has the direction of 

-'A M . Also, inda integrated between S1 and S2 is approximated by 

-3 .I Thus, it follows that if all integrals are taken at the same


Sinstant in time,


b) At any location, S5 S C 

Thus, the integral over S2 when it actually has that location gives


C•a(i.•-c~ , "t (4)3(t. - t. +" 

Because S2 differs from SL by terms of higher order than at , the second 

integral can be evaluated to first order in &t on S . 

A Wgc . + (5) 

c) For the elemental volume pictured, the height is t fjs3- while the area of 

I the base is AOL , so to first order in &t, the volume integral reduces to 

-I-ACV V,.;A&t9-, A-, (6) 

d) What is desired is


Substitution from Eq. 5 into this expression gives

Substitution from Eq. 5 into this expression gives


The first and last terms o the 
The first and last terms on the replaced using Eq. 2

U 

I

I
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Prob. 2.6.2(cont.)


- 6t-o ItIV + •,(9) 

Finally, given that . ~bX - . , Eq. 6 is substituted into this 

expression to obtain 

d b -o(10) 

With &t divided out, this is the desired Leibnitz rule generalized to three


dimensions.


Prob. 2.6.3 Given the geometry of contours


C and C if A is evaluated at one t-ima 
1 2 

t, Stoke's theorem applies


I

Sthesurface swept out by the 

Here, S is the surface swept out by the


open contour during the interval At and C c- I 

is composed of Cl, C2 and the side segments 3

represented to first order in At by 1s('), t)6L and •s•( )I. Note 

that for ~t small, R = Xlý9 t with . evaluated at time t. Thus, to 

linear terms in At , Eq. 1 becomes 
;a I
(t) 

: 
. c,,t C',t J G(•),r (2) 3 

I
Note that, again to linear terms in At, 

S.3(3)
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Prob. 2.6.3 (cont.)


The first term on the right in this expression is substituted for the third one


on the right in Eq. 2, which then becomes


I 	 r4.7t 

I ~.(t)	 MbA), (4)


- (teat) 	 -(-+bt) 

The first and third terms on the right comprise what is required to evaluate


the derivative. Note that because the integrand of the fourth term is already


first order 	in At , the end points can be evaluated when t=t.


I 	 t)(t) 

A-41= 

Wt & W 	 (5 ) 

+ A-iis;,&t A.tI &t + 
r&W 

The sign of the last term has been reversed because the order of the cross 

product is reversed. The At cancels out on the right-hand side and the 

3 expression is the desired generalized Leibnitz rule for a time-varying


contour integration.


I 	 Prob. 2.8.1 a)In the steady state and in the absence of a conduction current, if,


Ampere's law requires that


so one solution follows by setting the arguments equal. 

= =-U • T € (2)(2


Because the boundary conditions, Hz( x=.a)=O are also satisfied, this is the


required solution. For different boundary conditions, a "homogeneous" solution


would have to be added.


I 
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Prob. 2.8.2 (cont.)


b) The polarization current density follows by direct evaluation.


sp A Tj C64 (7xrXA)gC (3)vX 
Thus, Ampere's law reads


where it has been assumed that -( )/') and )( )/Ti:0. Integration then 

gives the same result as in Eq. 2.


c) The polarization charge is


S-v - p it = C.t .. TA/ (5)) 

and it can be seen that in this case, JB=Ur C . This is a special case 

because in general the polarization current is 

In this example, the first and last terms vanish because the motion is rigid body, 

while (because there is no y variation), the next to last term .V3-zVP /b= . 

The remaining term is simplyfpV. 

Prob. 2.9.1 a) With M the only source of H, it is reasonable to presume that


H only depends on x and it follows from Gauss' law for H that


b) A solution to Faraday's law that also satisfies the boundary conditions


follows by simply setting the arguments of the curls equal.


EM/IM - T (2) 

c) The current is zero because E'=O. To see this, use the results of Eqs. 1


and 2 to evaluate


I


I


I
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Prob. 2.11.1 With regions to the left, above and below the movable electrode 

denoted by (a), (b) and (c) respectively, the electric fields there (with up 

defined as positive) are 

On the upper electrode, the total charge is the area d(a- 1) times the charge 

3 
per unit area on the left section of the electrode, - ,oEa , plus the area dTI 

times the charge per unit area on the right section, - CoEb. The charge on the 

lower electrode follows similarly so that the capacitance matrix is 

I a 

(2) 
•b . "l•C -o s'1 

.CL -T Ib b eb 

Prob. 2.12.1 Define regions (a) and (b) as between the two coils and inside 

the inner one respectively and it follows that the magnetic fields are uniform 

in each region and given by 
I I f 

These fields are defined as positive into the paper. Note that they satisfy 

I Ampere's law and the divergence condition in the volume and the jump and boundary 

conditions at the boundaries. For the contours as defined, the normal to the 

I surface defining |Iis into the paper. The fields are uniform, so the surface 

integral is carried out by multiplying the flux density, AoH, by the 

appropriate area. For example, hi is found as 

CLT4t L 

Thus, the flux linkages are 

3 Kd 
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Prob. 2.13.1 It is a line integration in the state-space (v1 ,V2,' 2) that
21' 


is called for. The system has already been assembled mechanically, so the 

displacements ( •1', 2 ) are fixed. The remaining path of integration in the 

space (vl to its final value with v2=0 and1V 2 ) is carried out by raising v1 

then raising v 2 with v1 fixed (so that Jv 1=O)at its final value. Thus, 

and with the introduction of the capacitance matrix, a 

W C +CS, 't (2)|1 
Note that C2 1=C 1 2:


Prob. 2.13.2 Even with the nonlinear dielectric, the electric field between


the electrodes is simply v/b. Thus, the surface charge on the lower electrode, I

where there is free space, is D= C E= (v/b, while that adjacent to the


dielectric is !


>= 9 .4+ z-/6 . (1) 

It follows that the net charge is


I= do.ov + -5 (2) 

so that b oI, z, 

W (3) 

Prob. 2.14.1 a)To find the energy, it is first necessary to invert the


terminal relations found in Prob. 2.14.1. Cramer's rule yields
1 (--d 

Integration of Eq. 2.14.11 in (s-'2) space can be carried out along any path.


But, in particular, integrate on ', with a=0. Then, with ý# at its final


value, integrate on - with Ji=0.


I 



I 
3 
5 

I 
3 


U 
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Prob. 2.14.1 (cont.)


r•.- }(, , ,


b) The coenergy is found from Eq. 2.14.12 where the flux linkages as given in


the solution to Prob. 2.12.1 can be used directly. Now, the integration is


in (ili 2) space, and is carried out as in part (a), but with the i's playing


the role of the 's.


o 0 

I 
Prob. 2.15.1 Following the outlined procedure,


Each term in the series is integrated to give


Thus, for m A. n, all terms vanish. The term m=n is evaluated by either taking 

the limit m- n of Eq. 2 or returning to Eq. 1 to see that the right hand side 

is simply . Thus, solution for gives Eq. 8. 

Prob. 2.15.2 One period of the distribution is sketched as a function of z 

as shown. Note that the function starts just before z=-2/4 

and terminates just before z= 3/4. 

The coefficients follow directly 

from Eq. 8. Especially for 

ramp functions, it is often convenient 

to make uuse of the fact that 

- 4 -;a ) (1( 
C 

I 
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Prob. 2.15.2 (cont.)


and find the coefficients of the derivative of (l•), as shown in the


sketch. Thus,


SI (2) 

and it follows that the coefficients are as given. Note that m=0 must give = 

because there is no space average to the potential. That the other even components 

vanish is implicite to Eq. 2.


Prob. 2.15.3 The dependence on z ofI and its


spatial derivative are as sketched. Because the 

transform of / I- -& , the integration 

over the two impulse functions gives simply_~_•+ .•̀B .,t• 

Solution of this expression for • results in the given transform. More direct,


but less convenient,is the direct evaluation of Eq. 2.15.10.


Prob. 2.15.4 Evaluation of the required space average is carried out by fixing 
 3

attention on one value of n in the infinite series on n and considering the


terms of the infinite series on m. Thus,

+CD 4 t a+1 

Thus, all terms are zero except the one having n=-m. That term is best evaluated


using the original expression to carry out the integration. Thus, I

4.0co


<A ran (2) 

Because the Fourier series is required to be real, 8, O- and hence the 

given expression of Eq. 2.15.17 follows. I 

3I

I 
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Prob. 2.16.1 To be formal about deriving transfer relations of Table 2.16.1, 

start with Eq. 2.16.14 

54"k v4, + 1, C,056 YX (1) 

and require that ((x =(X=O) . Thus, 

i 1 1] (2)


L. 

Inversion gives (by Cramer's rule)


Because , =- .. " a/ , it follows for Eq. 1 that 

Evaluation at the respective boundaries gives


(5) 

D0

LL J L 

Finally, substitution of Eq. 3 for the column matrix on the right in Eq. 5 

gives 

c.os Y6hLD= ­

10 L 

(6) 
S*,hh66 

whichis (a)
Eq.of
Table 2.16.1.


'v~ 

which is Eq. (a) of Table 2.16.1.
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Prob. 	2.16.1 (cont.)


The second form, Eq. (b), is obtained by applying Cramer's rule to


the inversion of Eq. 8. Note that-the determinant of the coefficients is


Det = -So 4- . & 	 - I (7) 

so


Nd ox 
(8)


^is 
-_ 0 t _ 

s~h Eb-I i- k D,' Ii 

Prob. 2.16.2 For the limit m=0,k=0, solutions are combined to satisfy the


potential constraints by Eq. 2.16.20, and it follows that the electric dis- I


placement is (


This is evaluated at the respective boundaries to give Eq. (a) of Table 2.16.2


with fm and gm as defined for k=0,m=0.


For k=0,m$ 0, the correct combination of potentials is given by Eq. 2.16.21. 
 3

It follows that


I f t 	 at (2) I 
rn=~ 

I 

Evaluation of this expression at the respective boundaries gives Eas. (a) of 

Table 2.16.2 with entries fm and qm as defined for the case k=0,m=0. 

For k O.m#m 0, the potential is given by Eq. 2.16.25. Thus, the electric 

displacement is 

r) -	 3(3) 


and evaluation at the respective boundaries gives Eqs. (a) of the table with 
 3

f and gm as defined in terms of H and J . To obtain gm in the form aiven, 
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Prob. 2.16.2 (cont.)


use the identity in the footnote to the table. These entries can be written


in terms of the modified functions, K and I by using Eqs. 2.16.22.
3 m m 
In taking the limit where the inside boundary goes to zero, it is necessary


Sto evaluate


D C 0 1-dL + ý,.} (4) 

Because K and H approach infinity as their arguments go to zero, gm(o,0)-•O. 

Also, in the expression for f3min terms of the functions Hm and Jm , the first 

term in the numerator dominates the second while the second term in the


Sdenominator dominates the first. Thus, f becomes

m 

I- 3 
and with the use of Eqs. 2.16.22, this expression becomes the one given in


I the table.


In the opposite extreme, where the outside boundary goes to infinity, the


I desired relation is


Here note that I and J (and hence I' and J') go to infinity as their


I 
m m m m 

arguments become large. Thus, gm( ',0)-9O and in the expressions for fm, the 

second term in the numerator and first term in the denominator dominate to aive 

3 To invert these results and determine relations in the form of Eqs. (b) of the


table, note that the first case, k=O,m=0O involves solutions that are not


I independent. This reflects the physical fact that it is only the potential


difference that matters in this limit and that ( , are not really 

independent variables. Mathematically, the inversion process leads to an


infinite determinant. 

In general, Cramer's rule gives the inversion of Eqs. (a) as


I 
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Prob. 2.16.2 (cont.)


Gm(03,-1) (E-(I3o)De)te- (d,4) 

where t> a EI , - (,4) , J,() 

Prob. 2.16.3 The outline for solving this problem is the same as for Prob. 

2.16.2. The starting point is Eq. 2.16.36 rather than the three potential


distributions representing limiting cases and the general case in Prob. 2.16.2.


Prob. 2.16.4 a) With the z-t dependence exp j(cot-kz), Maxwell's equations 

become 

V E=oC)' __ = (1)
3x 

v.A :o 9 •-•? : iC ^ (2) 

(3)


`a) 
(4)


(5) 

(6) 

(7)


(8) 

The components , ,E erms o f 
A 
E 

z 
and H 

z 
as follows 

Equations 3 and 7 combine to (y, - /Cr 
A 

(9) 

and Eqs. 4 and 6 give A 

(10)


As a result, Eqs. 6 and 3 give


(11) 

(12) 

Combining Ampere's and Faraday's laws gives


(13)
Thusi stfo 


Thus, it follows that


(14)


a c:.
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Prob. 2.16.4(cont.)


b) Solutions to Eqs. 14 satisfying the boundary conditions are


(15)


(16)


c) Use 

e-'Et____ (17) 

A Ad (8 

Also, from Eqs. 3 and 6,


(19)


A S= , W_~ A (20) 

Evaluation of these expressions at the respective boundaries gives the 

transfer relations summarized in the problem. 

d) In the quasistatic limit, times of interest, 1/C3 , are much longer than 

the propagation time of an electromagnetic wave in the system. For propagation 

across the guide, this time is A/•-= A~o . Thus, 

6 t:- Q & (21) 

Note that i must be larger than J but too large a value of kA means 

no interaction between the two boundaries. Now, with 11 -. ,Eia J 

and -R v . , the relations break into the quasi-static transfer relations. 

(22)


il E E X 

A6 L 

a(23)

L•,(3 •..'H•v4LA H E 
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Prob. 2.16.4(cont)


e) Transverse electric(TE) and transverse magnetic(TM) modes between


perfectly conducting plates satisfy the boundary conditions


(TM) Et=(24)


AO

(TE) (Eo'O) 0 (25) 

where the latter condition is expressed in terms of Hz by using Eqs. 12 and 7. 

Because the modes separate, it is possible to examine them separately. The I 

electric relations are already in the appropriate form for considering the 

TM modes. The magnetic ones are inverted to obtain 

'•R'. ±1 (26) 

With the boundary conditions of Eq. 24 in the electric relations and with those I

of Eq. 25 in these last relations, it is evident that there can be no response


unless the determinant of the coefficients vanishes. In each case this


requires that


(27)

-. , 

This has two solutions. ( 

In either case,


(29) 

It follows from the definition of $ that each mode designated by n must 

satisfy the dispersion equation 

ft = (30) 

For propagation of waves through this parallel plate waveguide, k must be real. I 

i
Thus, all waves attenuate below the cutoff frequency 


bc C (31) 

because then all have an imagineary wavenumber,k.


1. 
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Prob. 2.16.5 Gauss' law and E=-.V requires that if th.ere is no free charge


SEV i + •= o (1) 

For the given exponential dependence of the permittivity, the x dependence of


j the coefficients in this expression factors out and it again reduces to a 

constant coefficient expression

I-- I ~ O• (2) 

In terms of the complex amplitude forms from Table 2.16.1, Eq. 2 requires that 

I 42 2 A?2 - j 0 (3) 

Thus, solutions have the form exp px where p=--7_ - - L+• 

The linear combination of these that satisfies the conditions that be 

and A on the upper and lower surfaces respectively is as given in the


I problem. The displacement vector is then evaluated as


6- -Y, + •] (4) 

Evaluation of this expression at the respective surfaces then gives the


transfer relations summarized in the problem.


I 

I 
I 

I 

I 



_____ 
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(1) 1Prob. 2.16.6 The fields are governed by


E=-o•


V-5=O (2) 5 
Substitution of Eq. 1 and the constitutive law into Eq. 2 gives a generalization 

of Laplace's equation for the potential. 

.. - =0 
(3) 

a•x.ax 
Substitution of


(4) 1 
results in


where (5) 1 
where


This constant coefficient equation has solutions exp p, where substitution 

shows that 

?T (6) 

Thus, solutions take the form 

+A,~ t and(eTA, 7 x e xV 

The coefficients A1 and A2 are determined by requiring that = and U 
at x= & and x=O respectively. Thus, in terms of the surface potentials, the 

potential distribution is given by 

I 
#i - ~&~c +ff -X) (8) 

The normal electric displacement follows from the x component of the constitutive
 I 
law,
 i 

Evaluation
using Eq. 8 then give(9


Evaluation using Eq. 8 then gives
 I 



I 
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Prob. 2.16.6(cont.)


I Ed i AiRA (10) 

+ [- e.•L , . x ­

The required transfer relations follow by evaluating this expression at the


respective boundaries.


I, 0a ifls~lil·~an~,?(t~B·~C*1 J~d (11) 

I 
-a'ADP

V xK -EdiK lij7- coý +C­I' '4 -AA ý% 14. Z 

Prob. 2.17.1 In cartesian coordinates, a = a3 , so that Eq. 2.17.1 requires 

that B12=B 21. Comparison of terms in the canonical and particular transfer


.I relations then shows that


8,,. e:• A I, •,,= - ,21 
I Prob. 2.17.2 Using iA,=(3 A z , Table 2.16.2 gives 

These can only be equal for arbitrary c1L(3 if


I 3r [cx(jra.)r•(lx) -(~r) "'~~ (2) 

Limit relations, Eqs. 2.16.22 and 2.16.23, are used to evaluate the constant.


3 
(3) 

Thus, as •-o it is clear that . = -22/T 
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I 

Prob. 2.17.3 With the assumption that w is a state function, it 

follows that I 
-)w ".WV ) 

~w~o~~ j~~w E .SW ~~ hi,F I 
Because the D's are independent variables, the coefficients must agree
 I 
with those of the expression for 6Win the problem statement. Thus, the
 Irelations for the V's follow. The reciprocity relations follow from taking


cross-derivatives of these energy relations
 I 
(1)..(•1) -_l (4) 

· 'r I 
AP (5) 1i
3C1D i. (2) -A 

-
3

CX = O -- a 
- ,D I 

(6)

CA,ý k (3) (1 -. _ 

C~t ,, I 
The transfer relation written so as to separate the real and imaginary I 
parts, is equivalent to 

m 

'vo

A ,%V - Atz, I 

Cd A%?.ý AIt IAzIV D1. 
-At\ ; 

-A%. I
kL 

A%. 
A-z%­ I- A, z 

-A ., v. Az 42zzr 
%.~ 

I
L. I 

The reciprocity relations (1) and (6) resoectivelv show that these transfer 

relations require that Alli=-A1 1 i 
and A22i=-A22i, so that the imaginary I 
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Prob. 2.17.3 (cont.)


=
parts of All and A22 are zero. The other relations show that a Al2r


aBA21 and a Al2i=-aA21i so, aoAl2=a A1 .

r2r12i 21i 12 21' Of course, A 12 and 

hence, A 2 1 are actually real. 

Prob. 2.17.4 From Problem 2.17.1, for
[ io Sat air 
it is so It
it is shown ta


a-- 8 

which requires that 

812 = B21 

For this system B12 = 21 = ) . 

Prob. 2.18.1 Observe that in cylindrical coordinates (Appendix A) with A=A, 'e 

(1) 

Thus, substitution of A 0 a. ( givesjI( )-I 

+LiaL
57A r -SY 4 

as in Table 2.18.1.


Prob. 2.18.2 In spherical coordinates with = AO 'o (Appendix A),


Thus, substitution of Af = R~ )(f Sik;' gives 

as in Table 2.18.1.


Prob. 2.19.1 The transfer relations are obtained by following the instructions


given with Eqs. 2.19.7 through 2.19.12.



