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(

MODELING OF INELASTIC

Transpaxency RESPONSE:

ELASTO-PLASTICITY, CREEP
AND VISCOPLASTICITY

» The total stress is not uniquely
related to the current total strain.
Hence, to calculate the response
history, stress increments must be
evaluated for each time (load) step
and added to the previous total
stress.

\—

» The differential stress increment is
Transparency

17.2 obtained as —assuming infinitesimally
small displacement conditions -

do; = Cips (ders — ders
where

Cis = components of the elasticity
tensor

des = total differential strain increment

dell = inelastic differential strain
increment
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The inelastic response may occur

rapidly or slowly in time, depending on

the problem of nature considered.

Modeling:

* In Blasticity, the model assumes that
dels occurs instantaneously with the

load application.

* In creep, the model assumes that
delY occurs as a function of time.

« The actual response in nature can be
modeled using plasticity and creep
together, or alternatively using a
viscoplastic material model.

~

N

— In the following discussion we
assume small strain conditions,
hence

« we have either a materially-
nonlinear-only analysis

- or a large displacement/large
rotation but small strain
analysis

A\
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f

« As pointed out earlier, for the large
displacement solution we would use
the total Lagrangian formulation and
in the evaluation of the stress-strain
laws simply use

— Green-Lagrange strain component
for the engineering strain compo-
nents

and

— 2nd Piola-Kirchhoff stress compo-
nents for the engineering stress
components

~

Consider a brief summary of some
observations regarding material
response measured in the laboratory

* We only consider schematically what
approximate response is observed; no details
are given.

* Note that, regarding the notation, no time, t,
superscript is used on the stress and strain
variables describing the material behavior.

AN
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MATERIAL BEHAVIOR,
“INSTANTANEOUS”
RESPONSE

Tensile Test: Assume
 small strain conditions

* behavior in compression
is the same as in tension

~

Cros. —_— Hence
sectional
area Ao "2 fo £ € — €0
_ ©= 77
=L 1 0
g=2F1
Ao
engineering
stress, @
fracture
* ultimate
strain
assumed
7 =
, v engineering
// test strain, e
X /’/
RS -’ Constant temperature

J
~
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Effect of strain rate:
g

de increasin
at 9

\-
-

Effect of temperature

ag

temperature is increasing

J
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MATERIAL BEHAVIOR, TIME-
DEPENDENT RESPONSE

* Now, at constant stress, inelastic
strains develop.

 Important effect for materials when
temperatures are high

\

Typical creep curve

Engineering strain, e

fracture
o = constant ¢
temperature = constant /

Instantaneous __/
strain
(elastic and Primary Secondary Tertiary
elasto-plastic) | | range range range

time
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(

Effect of stress level on creep strain

temperature = constant
X
e
; : X ———s—=
o increasing fracture

X

_
— ~

time

\-

\

Effect of temperature on creep strain

o fracture o = constant

X

temperature increasing

N\

time




Topic Seventeen 17-11

MODELING OF RESPONSE

Consider a one-dimensional situation:

4

.

|
I

&
Lﬁ
>

.6’
-

» We assume that the load is increased
monotonically to its final value, P*.

« We assume that the time is “long” so
that inertia effects are negligible
(static analysis).

~

Transparency
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N\

Load plasticity ‘creep effects
effects %
ps predominate

;

time-dependent inelastic strains
are accumulated — modeled as
creep strains

s time
time interval b (small)

without time-dependent
inelastic strains

AN
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Plasticity, uniaxial, bilinear o
material model  stess et
tb______________
Oy—-j-- - — 1.0 Et/
E AE
1.0 y/ 1.0 ,
1.0 ; ' strain
E ) teP ' t'oE
t'e
1.0 g E teE
Er tglN _ tgP
Creep, power law material model:
e’ = ap o' t*
C_ _____________ \/
te - to_ — E teE
tolN = 1oC 4 tgP
* t time
(small)

« The elastic strain is the same as in
the plastic analysis (this follows from

equilibrium).

» The inelastic strain is time-dependent
and time is now an actual variable.

\—
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Viscoplasticity:

» Time-dependent response is modeled
using a fluidity parameter -y:

s = O o _
e—E+'y<0'y 1>

| G ——

avP

where

_ _ 0 ,o=o0y
(0- 0'y>“‘{0._0.y,0.>0.y

N

Typical solutions (1-D specimen):

steady-state depends on
solution ; :
total total '“C'easfe '"t.
strain . . strain Oy as fungtion
increasing -y of e \/\
\
increasing y
elastic elastic
strain strain
time time
non-hardening material hardening material

VAN
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[

PLASTICITY

« So far we considered only loading
conditions.

+ Before we discuss more general
multiaxial plasticity relations, consider
unloading and cyclic loading
assuming uniaxial stress conditions.

-

-

« Consider that the load increases in
tension, causes plastic deformation,
reverses elastically, and again causes
plastic deformation in compression.

load

' elastic plastic

N

elastic

elastic

—

time

-—

plastic

A\
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~

Bilinear material assumption, isotropic
hardening

g Er
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1.0

1.0

W e

plastic strain|g!
p y
i €1
—

__I plastic strain

eb

\

-
4

Bilinear material assumption, kinematic
hardening

o Er
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(1]

plastic
strain €1

|
plastic strain eE
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MULTIAXIAL PLASTICITY

To describe the plastic behavior in
multiaxial stress conditions, we use

* A yield condition
* A flow rule
» A hardening rule

In the following, we consider isothermal
(constant temperature) conditions.

\

These conditions are expressed using a
stress function 'F.

Two widely used stress functions are the
von Mises function

Drucker-Prager function
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von Mises
tF = lts g — 'k
2 b}
t = to-ﬂ 'K =lt0'2
v 3 3’

Drucker-Prager

'F = 3a'c, + 'G-k

t

=9

1 's 's
o i i

g = ;t(—)'=

3
©

N

We use both matrix notation and index
notation:

de'1:1 do1
degz doz2
des doas

P — 33 do_ —
dg de'fg + de§1 T doq2
degs + degz doos
del1j3 + de§1_ Ld0'31

]
matrix notation
note that both def,

and deb; are added

/
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defy def. defs
def = | de2 del. debs
def; deb. defs

index
notation

doy1 doi2 dois
do i} = d0'21 d0'22 d0'23
dos1 dosx doss

N\

The basic equations are then (von Mises 'F):
1) Yield condition

'F (oy, 'k) = 0
current stresses function of
plastic strains
'F is zero throughout the plastic response

iy - S - B
1-D equivalent: 3(0 %\0

(uniaxial stress) _
current stresses  function of
plastic strains.
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-

2) Flow rule (associated rule):
tF Tranls,;)gxl'ency
a -
dei'; = t)\ I
a()'i},
where \ is a positive scalar.
* 1-D equivalent:
P _ 21t
deis = 3 Ao
del = — 1\ 'o
22 3
de%s = — 1\ o
33 3
Transparency
17-32

3) Stress-strain relationship:
do = CF (de — de”)
* 1-D equivalent:

do = E (de1s — defy)
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~

Our goal is to determine CF" such that
do = C* de
|

instantaneous elastic-plastic stress-strain matrix

N

General derivation of CEF:

Define
tgy = o'F
= At
9 Tij 'e%; fixed
tos = o'F
= 7 LioP
9 €ij 'uij, fixed

_J
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Using matrix notation,

results from our
definition of the plastic

strain and stress
increment vectors

t. T _ gt [ ot vt T 1

g =1[q11{ g2z | Q33 (@012 @23 (@)qa1]

tETz [p11 | 'p2z | 'Pas | ‘P12 | 'pas | 'Pa]

\

We now determine '\ in terms of de:

Using 'F = 0 during plastic deformations,
_dF o'F

th %—%do.* + %’: def;
— thdg _ IET @EP
0 'A‘g

Transparency
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(

Transparency Also
17-37

'q" do ='q" (CF (de - de"))
o ‘ ¥ '
The flow rule assumption may be

written as

th d_g — th (QE (dg _ t)\ tg))= tx tET tg |

from d'F = 0

N

Solving the boxed equation for '\ gives

t., T ~nE

P''q+'9 C°'q

Transparency
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Hence we can determine the plastic
strain increment from the total strain

Increment: total strain increment

e
d P—( thgEd'e' )t
P e = tETtg+thgEtg q

plastic strain
increment

_/
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We can now solve for CEF:

r——functlon of de
do = Q (de — de” )  from above

Et Et (T

C C
O o o L)

pPg+qCq

Transparency
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\

Example: Von Mises yield condition,
isotropic hardening

Two equivalent equations:

V2
O'y—T —0'2 0'2—0'3 03—0'1
principal stresses
e _ 1t R R . LK
e .
deviatoric stresses: s,* ‘,— = 3

J
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~

Transparency Yield surface End view of
for plane stress yield surface
radius t(:"3 radius
‘o2 oy ; ‘oy
/ /7)
L_// v -
3] to,2
Transparency We now compute the derivatives of the
17-42 yield function.

First consider ‘py;

y E cr.* fixed E 2 I* a 3 !
24 a(ry (‘oy fixed implies 's;; is fixed)
—3 %5 d'ey, ¢ ¥

_J
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What is the relationship between ‘oy
and the plastic strains?

We answer this question using the
concept of “plastic work”.

» The plastic work (per unit volume) is
the amount of energy that is
unrecoverable when the material is
unioaded.

» This energy has been used in
creating the plastic deformations
within the material.

\—

-

* Pictorially: 1-D example

stress slope Et

time t
\s’l\ope E

Shaded area equals
plastic work ‘We:

1oP
'We = L "o de®

strain
tePy
* In general, 'Wp = f "oy dej,

0

Transparency
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Consider 1-D test results: the current
yield stress may be written in terms of
the plastic work.

stress \t'l\me t
oy~ Er
O'y/
TE-dea-e
strain

We can now evaluate ‘py — which
corresponds to a generalization of the
1-D test results to multiaxial conditions.

tp“ - ?_ t(]' (dto'y ath> atO'y
Y3 Y \dWe def/ S e

\ J

-5 ((FE) )

_12 EET)t )
- 3(E—ET- T

AN
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Alternatively, we could have used that
d'We = 'g d'&”
where
te 3, . ' (effective stress)

g = § Si} Si}
effective

d'&” = /2 def del
377+ Tt |¢ plastic strain)

and then the same result is obtained
using

(increment in

tpi' — g tO' (dtO'y atép>
P73 Y \de" el

\

Next consider 'gy:

o'F o (1 1
t t. t t_2
q'l'=t_ =t—__(— Ske Ske——O'y)
d Oij e}, fixed 0 T 2 3
o's 9 'o
= 'Sk 3 < = sy (tG K~ 8k€)
O'ij. d O'i}', 3
Sii Oe
= tSke <8ik 8}6 - I*3 )

='s; (note that 'ske Ske = s = 0)

VAN
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We can now evaluate C*:

_ deqs dezz 2des2
1-v 2l o Q-T
1=ay PUs)) g0 ~Bisise [l - B'si'siz |
___________________ [ e B
| —
e I 11 2v B('s22) :":—3'822(812:"‘
=3 = = [ [ Y
C* =555 ! - Blsw's
e -
symmetric :%—B(‘sm) e
-
laee
|
31 1
where B = -
B =2z 4,2 EEr 1+v
3E-Er E

N

Evaluation of the stresses at time t+ At:

t+At t trat
g=0a +j da
t

(+A!§
='g + j C=" de

e

S

The stress integration

must be performed at
each Gauss integration
point.

AN
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We can approximate the evaluation of
this integral using the Euler forward
method.

* Without subincrementation:

t+ At t

I+Ate _
Jt B QEP dg = _QEP ég/ € e
t

e

Transparency
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N

 With n subincrements:

t+Ate A
= . e
f QEP dg - QEP K%
te ¢ n
i
- n At
t+AT e —
n
+ .o
t+(n—1)Ar

VAN
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Transparency

Pictorially:

+ + t+At
tCl' t+A-ro, t 2A1'g t 3A-ro_ o

t+AT t+2AT t+3AT
. — —~ t+ At

subincrements

N (

Transparency

Summary of the procedure used to
calculate the total stresses at time
t+ At.
Given:
STRAIN = Total strains at time t+At
SIG = Total stresses at time t
EPS = Total strains at time t

(a) Calculate the strain increment
DELEPS:
DELEPS = STRAIN — EPS

J L
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(b) Calculate the stress increment

DELSIG, assuming elastic behavior:

DELSIG = CE « DELEPS

(c) Calculate TAU, assuming elastic

behavior:
TAU = SIG + DELSIG

(d) With TAU as the state of stress,

calculate the value of the yield
function F.

(e) If F(TAU) = 0, the strain increment

is elastic. In this case, TAU is
correct; we return.

N\

If the previous state of stress was
plastic, set RATIO to zero and go
to (g). Otherwise, there is a
transition from elastic to plastic and
RATIO (the portion of incremental
strain taken elastically) has to be
determined. RATIO is determined
from

F (SIG + RATIO = DELSIG) = 0

since F = 0 signals the initiation of
yielding.

L
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(9) Redefine TAU as the stress at start
of yield
TAU = SIG + RATIO = DELSIG
and calculate the elastic-plastic
strain increment
DEPS = (1 — RATIO) * DELEPS
(h) Divide DEPS into subincrements
DDEPS and calculate
TAU < TAU + CF* « DDEPS

for all elastic-plastic strain
subincrements.




Topic Seventeen 17-33

N/

AT T T
LI X XX AP
LB

KL

Ve

PLASTIC ZONE

Plane strain punch problem

N

f}_x
)T,

Finite element model of punch problem
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s

STRESS, O (pal)

100 1

[}

Solution

. .
¢ = 0.697 in.

Tn

L] Ty

a Tye
—== THEORETICAL

=~
S~

10 20 30
DISTANCE FROM CENTERLINE, b (in)

of Boussinesq problem—2 pt. integration

~

ZNW
STRESS, O (psi)

-

P3200t.
a=0 723 in.

¢

® oy
L
A T
- - = THEORETICAL

e

) 2.0 30
DISTANCE FROM CENTERLINE, b (in)

Solution of Boussinesq.problem—3 pt. Integration

VAN




Topic Seventeen 17-35

APPLIED
LOAD,
P/2rb

010 o.13
DISPLACEMENT, w/b

Load-displacement curves for punch problem

Slide
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Limit load calculations:

 Plate is elasto-plastic.

\_
~

Elasto-plastic analysis:

Material properties (steel)
g

740 —1—

(MPa) E, = 2070 MPa, isotropic hardening

~—E = 207000 MPa, v=0.3

e
This is an idealization, probably
inaccurate for large strain conditions
(e > 2%).

VAN
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TIME
LOAD = 8.8 MPA

]
o

17 7 7 7 7
17 7 7 77
77 7 7 77 A
l,l'I[I///
A
//
A
|
L1 | LA
//
sipn=
-1
»
L
41T
TIME = 44
LOAD = 512.5 MPA
I 7 77 7
11 1 7 7 77
17 7 777
77 7 //
17 777 %
% 5
I
vdp®
A | A
1
A1 LA
11
//
L]
11
/”
|
LA

\_

~

TIME =~ 52
LOAD = 850.2 MPA

_J

Computer

Animation
Plate with hole
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