Topic 15

Use of Elastic
Constitutive
Relations in Total
Lagrangian
Formulation

Contents:

B Basic considerations in modeling material response
B Linear and nonlinear elasticity

B Isotropic and orthotropic materials

B One-dimensional example, large strain conditions

B The case of large displacement/small strain analysis,
discussion of effectiveness using the total Lagrangian
formulation

B Hyperelastic material model (Mooney-Rivlin) for analysis
of rubber-type materials

B Example analysis: Solution of a rubber tensile test
specimen

B Example analysis: Solution of a rubber sheet with a hole

Textbook:
Reference:

6.4, 6.4.1
The solution of the rubber sheet with a hole is given in

Bathe, K. J., E. Ramm, and E. L. Wilson, “Finite Element Formulations
for Large Deformation Dynamic Analysis,” International Journal for
Numerical Methods in Engineering, 9, 353-386, 1975.
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USE OF CONSTITUTIVE
RELATIONS

« We developed quite general kinematic
relations and finite element
discretizations, applicable to small or
large deformations.

* To use these finite element
formulations, appropriate constitutive
relations must be employed.

» Schematically
K=[8"cBav, E=[B'Tav
Vv \ \Y}

- , /
constitutive relations enter here

N\

For analysis, it is convenient to use the
classifications regarding the magnitude
of deformations introduced earlier:

* Infinitesimally small displacements

« Large displacements / large rotations,
but small strains

« Large displacements / large rotations,
and large strains

The applicability of material descriptions
generally falls also into these
categories.

J
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Recall:

* Materially-nonlinear-only (M.N.O.)
analysis assumes (models only)
infinitesimally small displacements.

» The total Lagrangian (T.L.) and
updated Lagrangian (U.L.)
formulations can be employed for
analysis of infinitesimally small
displacements, of large displacements
and of large strains (considering the
analysis of 2-D and 3-D solids).

— All kinematic nonlinearities are
fully included.

\_

N\

We may use various material descriptions:

Material Model

Examples

Elastic

Hyperelastic
Hypoelastic
Elastic-plastic

Creep
Viscoplastic

Almost all materials, for small
enough stresses

Rubber
Concrete

Metals, soils, rocks under high
stresses

Metals at high temperatures
Polymers, metals
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ELASTIC MATERIAL BEHAVIOR:

In linear, infinitesimal displacement,
small strain analysis, we are used to
employing
stress Line_ar elgstic stress-strain
d‘ relationship
a
o |t ‘c =E'e
do = Ede
E
' strain
©

\-

For 1-D nonlinear analysis we can use

AN

e
stress  slope C Nonlinear elastic

stress-strain
relationship

slope 'C v = C'le
not constant

¢) strain
do = Cde

stress

In practice, a

piecewise linear

description is

used

strain
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We can generalize the elastic material
behavior using:

(t)Sl} = 6C|}rs éers

doSj; = oCirs do€rs
This material description is frequently
employed with

« the usual constant material moduli
used in infinitesimal displacement
analysis

* rubber-type materials

~

Use of constant material moduli, for an
isotropic material:

oCijrs = oCiys = N 8 8rs + W(Bir 8js + dis By)

Lamé constants:

Ev _ E
A+vd—-2v) ' * " 20 +v)

A=

Kronecker delta:

={0; i # }

AN




Topic Fifteen 15-7

Examples:
2-D plane stress analysis:
1 v 0
. E v 1 0
R 1—v
0O O 5

corresponds t0 ¢S12 = p (0€12 + 0€21)

-

\

2-D axisymmetric analysis:

0 1-v
v
0 1—-v
1—2v
2(1 —v) 0
0 1
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For an orthotropic material, we also
use the usual constant material moduli:

Example: 2-D plane stress analysis

—

1 Vab

E. Eb ©
local coordinate 1 1

system a-b___ oC¢ = E 0

- b
Xo 1
L a sym. G

ab
Ea # Eb

X1

Sample analysis: One-dimensional
problem:
Material constants E, v

b1

E(1—v)
1+ v)(1 — 2v)

a oL }

——

Constitutive relation: ¢Sy = E d€41
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Sample analysis: One-dimensional
problem:
Material constants E, v
_In tension:

(1 +v)(1 —2v)

o - 4

——

Constitutive relation: ¢Sy = E d€14

Y,

~

Sample analysis: One-dimensional
problem:
Material constants E, v
_In tension:
4 In compression: A

z

N E( - v)

A T A - 20)
_ - 4

Constitutive relation: ¢S11 = E §€11

~
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We establish the force-displacement
relationship:

0€11 = (;(U1,1 + % (otU1,1)2
W -°L
oL
1[/'L)\2
=3[ (er) 1]
0

t _ Po, tr O
0511 = 1 tX1,1 T11 tX1,1

p
tL OL '(P OL OLtP
=°I<T>K<T>=TK

Using 'L = °L +'A, 4¢S11 = Ed€1y, we
find
'P

_OL CI)L
This is not a realistic material
description for large strains.

VAN
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» The usual isotropic and orthotropic
material relationships (constant E, v,
Ea, etc.) are mostly employed in
large displacement/large rotation, but
small strain analysis.

» Recall that the components of the
2nd Piola-Kirchhoff stress tensor and
of the Green-Lagrange strain tensor
are invariant under a rigid body
motion (rotation) of the material.

— Hence only the actual straining
increases the components of the
Green-Lagrange strain tensor and,
through the material relationship, the
components of the 2nd Piola-
Kirchhoff stress tensor.

— The effect of rotating the material is
included in the T.L. formulation,

IF = j 4BT 48 °dV

Voy
includes invariant under a
rotation rigid body rotation

W,
N
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Transparency Pictorially:
15-19
X2
1. X2
0€22
4 1
T 0€22
L <
1 1o
0€3] \’ i, aal
X
(1)812 ~ ~_6811 ! 6812 X1

1

Deformation to state 1 Rigid rotation from
(small strain situation) state 1 to state 2

\

\

For small strains,

Transparency 1 1 1 1

15-20 0€11, 0€22, 0€12 = 0€21 << 1,

88')’ - g)Ci}rs g)ers,

a function of E, v

8Si}i 1Ti}
Also, since state 2 is reached by a
rigid body rotation,

gei} = S)Sij, ; SSi}: (1)Sij,,

“T=R'TR'
rotation matrix

/
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Applications:

« Large displacement/large rotation but
small strain analysis of beams, plates
and shells. These can frequently be
modeled using 2-D or 3-D elements.
Actual beam and shell elements will
be discussed later.

+ Linearized buckling analysis of

\—

~

structures.
Frame analysis: 4 2D
y 0{ < < plane stress
toe elements
[ N ]
;» : § : 0:</R
/
Axisymmetric l R oD
shell: axisymmetric
elements
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General shell:
Transparency
15-23
3-D /
continuum
elements
Hyperelastic material model:
Transparency formulation of rubber-type materials
15-24
g = oW
0 i 368“’,

s (§Ci}rs o€rs

dOSI} = OCi}rs d08rs
—S— oW
0€; 90Ers
where
¢W = strain energy density function (per
unit original volume)

AN
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Rubber is assumed to be an isotropic
material, hence
oW = function of (I, Iz, L)

where the I’s are the invariants of the
Cauchy-Green deformation tensor (with
components ¢C;):

I = 6Ci
= % (15 — oC;; 6Cy)
Is = det (6C)

\—

-
(-

Example: Mooney-Rivlin material law
(;W=C1 (I1 —3)+Cz(12—3)

material constants

with
Is = 1—s—incompressibility constraint

Note, in general, the displacement-
based finite element formulations
presented above should be extended to
include the incompressibility constraint
effectively. A special case, however, is
the analysis of plane stress problems.

)
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Special case of Mooney-Rivlin law:
plane stress analysis

time 0 time t

xa VXZ

X4

~

For this (two-dimensional) problem,

6C11 0C12 O
dC ={dC21 oC22 O
0 0 {Css

Since the rubber is assumed to be
incompressible, we set det (¢C) to 1 by
choosing

1
((;Cﬂ (;022 - (}012 (;021)

t
0Cas =

J
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We can now evaluate 14, I>:
1

I, = dCqq + &Cos +
Poom o2 T (1C11 8Ca2 — ¢C12 6C21)

0C11 + 0Ca22
(6C11 0C22 — ¢C12 6C21)

— 5 (8C12 — 3 (6C1)?

I = §C11 0C22 +

~

\

The 2nd Piola-Kirchhoff stresses are

tQ _ aéW aoW t rtimertnber
6
Ci (I — 3) + Co(lo — 3 ]
300.*[ 1 (I ) 2 (I2 )
aI1 312
= -+ 2C

_J
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Performing the indicated differentiations
gives

0S11 1 6Ca2
0S22| = 2 C4 1 |- (6Csa)?| &C1a
0S12 0 —0Cnz
1 oCoz
+2C21Cas| 1 +[1 - (5033)2 (6C11 + 5022)] oC11

0 '—3012

This is the stress-strain relationship.

\—

~

We can also evaluate the tangent
constitutive tensor oCiys using

9% oW
0€i, 0 rs

_40 4
! a(;Ci}a(;Crs 2

0oCijrs =

oL,

30C i 90Crs

etc. For the Mooney-Rivlin law
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Example: Analysis of a tensile test

specimen:
Mooney-Riviin constants:
Cy = .234 N/mm?
Cz =.117 N/mm?
12.7
9.53 thickness = 1 mm

:[9.37

All dimensions in millimeters

3.0

30.5

~

-

Finite element mesh: Fourteen 8-node
elements

7

t
Constrained
displacements
Gauge —
length
L.
AR
2'2

J
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Results: Force —deflection curves

Total
Gauge
4] response— response—_

10 20 30
Extension (mm)

N

Final deformed mesh (force=4 N):

=L+ [T T X
[ SR ST S S i T
‘L\T‘+-4
\\ | |
/ o
Undeformed Deformed
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. Slide
fe——— 20in ——— P=90 Ib/in? 15-1
2
_ -3 Ibsec
-~ p =125x10 Tt
20in b= 1in (THICKNESS)
—— —
Analysis of rubber sheet with hole
o - 150 1b
Slide
15-2
10in P 3001b
= 300 1b
|
!
| 3in Rodws
Hole
150 1b
!ﬁ 10 in J]
Finite element mesh
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Static load-deflection curve for rubber sheet with hole

N\ (

[n]
0 INITIAL
" CONFIGURATION

P =150 Ib

—>2p

— 2P

|~ P

o 2 4 6 ] 10 12 14 1 ] 20 22 (in]

Deformed configuration drawn to scale of
rubher sheet with hole (static analysis)

_/
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