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Mode superposition:

» The modes of vibration change due to
the nonlinearities, however we can
employ the modes at a particular time
as basis vectors (generalized
displacements) to express the
response.

» This method is effective when, in
nonlinear analysis,

— the response lies in only a few
vibration modes (displacement
patterns)

—the system has only local
nonlinearities

\

\

M t+AtU(k) + TK AU(k) —

The governing equations in implicit time
integration are (assuming no damping
matrix)

trAtp _ tHAtpk—1)

Let now T = 0, hence the method of
solution corresponds to the initial stress
method.
Using
S
t+Atg — 2 gz +At

OKQi = =|2M91
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The modal transformation gives
t+AtX(k) + QZ Ax(k) — (DT (t+AtR _ t+AtF(k—1))
equations cannot be solved

individually over the time
span

~

\—

\

where Coupling!
2
2 _ | W,
0= %
Q - [Qr Qs]
t+Ath — [t+Atxr ves t+Atxs]
Typical problem:
|
7 D

7 A
Pipe whip: Elastic-plastic pipe
Elastic-plastic stop

* Nonlinearities in pipe and stop. But
the displacements are reasonably well
contained in a few modes of the
linear (initial) system.

_/
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Substructuring

* Procedure is used with implicit time
integration. All linear degrees of
freedom can be condensed out prior
to the incremental solution.

» Used for local nonlinearities:
Contact problems
Nonlinear support problems

\—

N
J

Example: @ -“masteér” node
e — Substructure
internal node
@
®
Substructure
model
/7
Ten story
building Finite element

model
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/entries from substructures

T i _m-aster dof
substructure
internal dof

\ ‘master dof
substructure
\ internal dof
// master dof
e / il |
v
K nonlinear
elements

\—

N

Here

tK = (K + K4t_2 M) + tKnonlinear

total mass || nonlinear stiffness
matrix effects

all linear o
element contributions

— W t
- K + 5 nonlinear

/
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After condensing out all substructure
internal degrees of freedom, we obtain
a smaller system of equations:

entries from condensed

/ésubstructures

master dof

N

Major steps in solution:

* Prior to step-by-step solution,
establish K for all mass and constant
stiffness contributions. Statically
condense out internal substructure
degrees of freedom to obtain K.

We note that

1> _ t
Kc - Kc + Knonlinear
= 7
condensed é all nonlinear effects

. 4
fomK=K+-5M

all linear—" \total mass matrix

element contributions

VAN
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[

* For each time step solution (and each
equilibrium iteration):

— Update condensed matrix, Kc, for
nonlinearities.

— Establish complete load vector for all
degrees of freedom and condense out

substructure internal degrees of freedom.
— Solve for master dof displacements,

velocities, accelerations and calculate all

substructure dof disp., vel., acc.

The substructure internal nodal disp., vel.,
acc. are needed to calculate the complete

load vector (corresponding to all dof).

\—

Solution procedure for each time step(and iteration):

S

[

[RUSE—— t+Atﬁ

substructure
degrees of
freedom
condensed
out

B e = t+Atﬁ -] t+AtUc —
L h_d

using
condensed
effective
stiffness
matrix 'K

Transparency
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Example: Wave propagation in a rod

Uniform, freely floating rod

S

_R .
R L=1.0m
A =0.01 m*
1000 N = 1000 kg/m®

E=20x10° Pa

time

Consider the compressive force at a
point at the center of the rod:
.5 5
R | I |
|
A

The exact solution for the force at
point A is shown below.

t* =time for stress wave
to travel through
1000 N the rod

Compressive
force

time

Vo t* tt %Lt 2t

O\
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We now use a finite element mesh of
ten 2-node truss elements to obtain
the compressive force at point A.

All elements uniformly spaced

R

—_——— 00— —— 00— O—0———0—

G)Bm/pressive force at point A

is measured using this element.

N

\

Central difference method:

» The critical time step for this problem is
_ _ 1

Mer =L Jfo =t (number of eIements)
At > At will produce an unstable
solution

« We need to use the inital conditions
as follows:

AN
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* Using a time step equal to At., we obtain

the correct result:

* For this special
case the exact
solution is obtained

1500, Finite elements
1000. q
Compressive exact
force (N) 500.
(1) NN ¢ 00000
t* 2t* time
—500

\

* Using a time step equal to } At., the
solution is stable, but highly

inaccurate.
1500

1000
Compressive

force (N) 500.

—500

Finite elements

00 b exact
© o o5 O p
<o ®
o
o ®
\g . o &
t* o J2t* time
®
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Now consider the use of the
trapezoidal rule:

« A stable solution is obtained with
any choice of At.

 Either a consistent or lumped
mass matrix may be used. We
employ a lumped mass matrix in
this analysis.

~

Trapezoidal rule, At = Atercom, initial

conditions computed using M°U = °R

— The solution is inaccurate.
Finite element solution,

1500, 10 element mesh
AA/ t soluti
1000, R AA  exact solution
Compressive WA s
force (N) 500. X %AA
A
O.ALA.AA , A,
t* 2t* time
AA

U\
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Trapezoidal rule, At = Atecom, Z€r0
initial conditions.

— Almost same solution is obtained.

Finite element solution,
10 element mesh

15001
o ©xact solution

1000L o—w
Compressive U
force (N) Q

500L O
]
0\ O ful Y { %
t* 02t* time
-500]. ©

~

Trapezoidal rule, At = 2Atcr|cou
— The solution is stable, although

inaccurate.
Finite element solution,
1500{- 10 element mesh
A At = 2Atcr,c0M
1000L 2
Compressive
force (N) a |4 N
5001 exact _solution
—S
04_a 2 } yoy
t* 2t* time
-5004)

U\
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Trapezoidal rule, At = % Ater|com
Transparency
Finite element solution, 1423
10 element mesh
1500}
o exact solution
o
1000} =
Compressive A
force (N
( )500..
<
o
0, i —
® time
-500}
The same phenomena are observed when
a mesh of one hundred 2-node truss
elements is employed. Transparency
— Here At = t*/100 exact solution; finite 14-24

element solution,
At = At.,, central
difference method

Finite element
solution, At = 3 Ater,
15°°-P central difference

method

1 000+

Compressive
force (N) 500,

—5004




14-16 Nonlinear Dynamic Response — Part 11

Transparency
14-25

Transparency
14-26

-

Trapezoidal rule, At = Ater|com
Finite element solution, 100 element mesh

1500L
exact solution

10004
Compressive
force (N)

500

0 ) , A han,
t* V ViV time

~500)

\

Now consider a two-dimensional model

of the rod: z
10m element5 | y

| o) |
0.1m
R/2_.| / ) l__'_
feaasssssss s ESYT

I
thickness = 0.2 m | Central difference
E=2x10° Pa !method is
v=20 iemployed
p = 1000 kg/m®

For this mesh, At # t*/(10 elements)
because the element width is less than
the element length.
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If At=t*/(10 elements) is used, the solution
diverges

—In element 5,

1000 N
Tzz| > <0.01 m2)

att=1.9t"

\

N\ (

Example: Dynamic response of three
degree-of-freedom system
using central difference method

ke m kNL m k. m
3 -|—~x3 +-x, X,

k. = 1 Ibf/ft 100
m = 1slug Force 1
OX; = %X, = X3 = 0 . 095
°X, = 0.555 ft/sec Displacement |X, — X5|

0):(2 = 1.000 ft/sec (Atcrit)linear = 1.11 sec
°X3 = 1.247 ft/sec (Atcrit)nonlinear = 0.14 sec

_J
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Results: Response of right mass

o . At = 0.05 sec
0. At = 0.15sec

~

Response of center mass:

. 2
Disp.
M 1r
X L
2 05
_1 -
oL
A=0.05 sec.
A=0.15 sec.

AN
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Response of left mass:

Disp. Y
(ft) 1r
X3 0 I%L I i
[’ ::/ 15 20‘;\\*25. t(sec)
—1 AN
\O\
o

e: A=0.05 sec.

A=0.15 sec.

Force (Ibf) in center truss:

TIME |At=0.05|At=0.15
9.0 | -0.666 | —0.700
12.0 | —0.804 | —-0.877
15.0 | 0.504 | 0.503
18.0 | 0.648 | -0.100
21.0 | -0.132 | -0.059
24.0 | -0.922 | 0.550

_/
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Example: 10 story tapered tower

Girder properties:

32 m Efg.g?xwﬁ Pa
~ - A=0.01 m?
A,=0.009 m?
I 1=8.33x107% m*
Pressure 32 m p=7800 kg/m®
induced |
by
blast — |
S A S
6.4~

m

N\ (

Applied load (blast):

2000

Force
per
unit
length
(N/m)
1000+

0 }

0 50 100 150 200
time (milliseconds)

AN
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Purpose of analysis:

» Determine displacements,
velocities at top of tower.

* Determine moments at base of
tower.

We use the trapezoidal rule and a
lumped mass matrix in the following
analysis.

We must make two decisions:

» Choose mesh (specifically the
number of elements employed).

« Choose time step At.
These two choices are closely related:

The mesh and time step to be used
depend on the loading applied.

L

Transparency
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Some observations:

» The choice of mesh determines
the highest natural frequency (and
corresponding mode shape) that is
accurately represented in the finite
element analysis.

» The choice of time step deter-
mines the highest frequency of
the finite element mesh in which
the response is accurately inte-
grated during the time integration.

\

~

» Hence, it is most effective to
choose the mesh and time step
such that the highest frequency
accurately “integrated” is equal to
the highest frequency accurately
represented by the mesh.

» The applied loading can be rep-
resented as a Fourier series which
displays the important frequencies
to be accurately represented by
the mesh.

_J
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Consider the Fourier representation of
the load function:

)= 3 +3(acos(2ntyt) +bsin(2mf,1)
n=1

Including terms up to
case 1. f,=17 Hz
case 2: f,=30 Hz

The loading function is represented as
shown next.

\—

N

Fourier approximation including terms

up to 17 Hz:
/Applied load
/Fourier approximation

2000+

Force per
unit length

(N/m)
1000+

0 100 200
time (milliseconds)

Transparency
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Fourier approximation including terms

up to 30 Hz: Applied load

20001

Force per
unit length
(N/m)

/ Fourier approximation

1000

0 100 200
time (milliseconds)

N(

» We choose a 30 element mesh,
a 60 element mesh and a 120
element mesh. All elements are
2-node Hermitian beam elements.

30 elements 60 elements | 120 elements

[T

PTILITT

AN
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Determine “accurate” natural frequen-

cies represented by 30 element mesh: Transparency
14-43

From eigenvalue solutions of the 30
and 60 element meshes, we find

mode natural frequencies (Hz)
number [30 element mesh | 60 element mesh
1 1.914 1.914
2 4.815 4.828
3 8.416 8.480 accurate
4 12.38 12.58 ‘
5 16.79 17.27
6 21.45 20 47
7 26.18 28.08 t
8 30.56 29.80 inaccurate

\

_/

\_
-

Calculate time step:

1 Transparency
Teo= sz =.059 sec 14-44
= 1 7 _
At= 50 Teo=.003 sec

» A smaller time step would accurately
“integrate”’ frequencies, which are not
accurately represented by the mesh.

« A larger time time step would not
accurately “integrate” all frequencies
which are accurately represented by
the mesh.




14-26 Nonlinear Dynamic Response — Part 11

Transparency
14-45

Transparency
14-46

(

Determine “accurate” natural frequen-
cies represented by 60 element mesh:

From eigenvalue solutions of the 60
and 120 element meshes, we find

mode natural frequencies (Hz)
number{ 60 element mesh [120 element mesh
5 17.27 17.28
6 22.47 22.49 accurate
7 28.08 28.14
8 29.80 29.75
9 32.73 33.85
10 33.73 35.06
11 36.30 38.96 inaccurate

N\

Calculate time step:

Teo= 510—Hz =.033 sec

At= T ,=.0017 sec

» The meshes chosen correspond to

the Fourier approximations discussed

earlier:

30 element mesh
including terms up
to 17 Hz.

60 element mesh
including terms up
to 30 Hz.

Fourier approximation

Fourier approximation

_/
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Pictorially, at time 200 milliseconds,
we have (note that the displacements

are amplified for visibility):

30 elements

60 elements

~

Pictorially, at time 400 milliseconds,
we have (note that the displacements

are amplified for visibility):

30 elements

60 elements

AN
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~ A

Consider the moment reaction at the

Transparency base of the tower:
14-49 a0l
20+ M
M
(KN-m)
0 —t }
250 500
time (milliseconds)

— 20—+

~——: 30 elements

AN 60 elements
—~ 40+

~
J

Consider the horizontal displacement
Transparency at the top of the tower:
14-50 u
06! 460 elements r
04+
u
™ g2
30 elements
0 t .
250 500
— .02+ time (milliseconds)
~.041
- 06}
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Consider the horizontal velocity at the
top of the tower:

1

60 elements

N

.6 4 —Vv
\ |
(m/s) 2
0 30 elements . _ .
' 500
_ol time
’ (milliseconds)
-.44
—-.61
Comments:

« The high-frequency oscillation
observed in the moment reaction
from the 60 element mesh is
probably inaccurate. We note that
the frequency of the oscillation is
about 110 Hz (this can be seen
directly from the graph).

» The obtained solutions for the
horizontal displacement at the top
of the tower are virtually identical.

J L

Transparency
14-51

Transparency
14-52



14-30 Nonlinear Dynamic Response — Part 11
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Example: Simple pendulum undergoing
large displacements

EA = 10" X-G"
sec?

_ 2
g = 980 cm/sec e length = 304.43 cm

P tip

. ” ‘y mass = 10 kg
Initial conditions:

% = 90°

% =0

One truss element with tip concentrated
mass is employed.

Transparency
14-53
Transparency
14-54

Calculation of dynamic response:

- The trapezoidal rule is used to
integrate the time response.

« Full Newton iterations are used to
reestablish equilibrium during every
time step.

« Convergence tolerance:
ETOL=10""
(a tight tolerance)

/
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Choose At=0.1 sec. The following
response is obtained:

last obtained solution

Solution procedure
failed during next

90 time step.
45
o /
(degrees)
0 k t }
‘ 4 6 time (sec)
—45 expectec%
solution
_90_

\

N (

The strain in the truss is plotted:
« An instability is observed.

10x107°+
o
5 X 1 0 -5 T oo
strain . o
0 I ) |
2 6 time
~ %Oo (sec)
-5x107°+ ©
o
~10x 1075~

Transparency
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-

Transparency

14-57 » The instability is unchanged when
we tighten our convergence toler-
ances.

« The instability is also observed
when the BFGS algorithm is
employed.

- Recall that the trapezoidal rule is
unconditionally stable only in linear
analysis.

-

Choose At = 0.025 sec, using the
T original tolerance and the full Newton
by 7\ algorithm (without line searches).

* The analysis runs to completion.

90! Finite element solution

5
0 45]
(degrees)
0 , . 4
4 8

12 time
—-45] (sec)

—90T

AN
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The strain in the truss is stable:

finite element solution,

strain At=.025 sec
3x10764 é
2x107°+
1x1075+
0 .

4 é 12 time (sec)

~

\—

\

It is important that equilibrium be accurately
satisfied at the end of each time step:

90+

0 457

(degrees)
0 -

_._45_

_90..

Finite element solution, At = .025 sec.,
equilibrium iterations used as
described above.

time (sec)

12V\
Finite element solution,
At = 025 sec., no

equilibrium iterations
used.

_/

Transparency
14-59

Transparency
14-60



14-34 Nonlinear Dynamic Response — Part 11

Transparency
14-61

Transparency
14-62

-

Although the solution obtained without
equilibrium iterations is highly
inaccurate, the solution is stable:

Finite element solution, At=0.025 sec.,
5 No equilibrium iterations used.

10X 107«

% Finite element solution, At=0.025 sec.,
equilibrium iterations used as
described above.

strain

5x107%

4 8 12 time (sec)

\

Example: Pipe whip analysis:

y 360 P=6.57 X 1|05 b o775
|
O
pipe gap 3 in, 21 i];?/diameter
not drawn  ostraint  ©-7°

to scale

all dimensions in inches

» Determine the transient response
when a step load P is suddenly
applied.

L
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Finite element model:

;L Six Hermitian beam elements
g - - ° S - 'S truss

Vlf/element

« The truss element incorporates a
3 inch gap.

N

N\

Material properties:
Pipe: E=2.698 x 107 psi

v=0.3

0,=2.914 x10* psi

ES%zmms slug_ 7 1gx 10—+ Iof-sec?
’ in3 ' in4

Restraint: E=2.99 x 107 psi
0,=3.80 x 10* psi
ETIO

Transparency
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Tranlsgzgency The analysis is performed using
— Mode superposition (2 modes)

— Direct time integration

We use, for each analysis,
— Trapezoidal rule
— Consistent mass matrix

A convergence tolerance of
ETOL=10"" is employed.

N\

T Eigenvalue solution:
ransparency

14-66

U\

Mode 1, natural frequency=8.5 Hz

S

Mode 2, natural frequency =53 Hz

=~ =7
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Choice of time step:

We want to accurately integrate the
first two modes:

=1 _ 1 1
At= 20 Teo= 20 <(frequency of mode 2))

=.001 sec

Note: This estimate is based solely on a linear
analysis (i.e, before the pipe hits the
restraint and while the pipe is still elastic).

Transparency
14-67

N\ [

Determine the tip displacement:

time
(milliseconds)
0 2 4 6 8 10
0¢—o @ t t + + >
] 2
8 o}
tip —21 o
d?sp. 0 Gap
(in) M
-4 ¢ o
] 8 R o
o— mode superposition o

—6- o — direct integration

AN

Transparency
14-68




14-38 Nonlinear Dynamic Response — Part 11

~

Determine the moment at the built-in
Transparency

14-69 end of the beam:
time
(milliseconds)
0 2 4 6 8 10
Moment OT ——23% : } : -
(Ib-in) ) ® )
—1 x107" [0} ® o
-2%x107+ o o o
[
—3X107' © [ L] g o
S
—4x1074

o — mode superposition
o — direct integration
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H—o'x"= 129 Sin2«1 1t

L

El, constant

L= 389

M

d = 0J in

ma

J-j-v;ﬁ-ﬂ‘ ‘ﬂ'\'{’"{ T

K]

Analysis of CRD housing with lower support

~

TIP
DEFLECTION
(INCHES) 0 22 00z

TIME (SECONDS

0?3 0.04 0.05 006
T

CRD housing tip deflection

Slide
14-1

Slide
14-2
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Slide
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Slide
144

s

)

i -‘
R Wo I

R=2227 in. E = 1.05 x 107 Ib/in®
h = 0.41 in. v=03
o= 26.67° ay = 2.4 x 10* Ib/in?

Er = 2.1 x 10° Ib/in®
p = 9.8 x 1072 Ib/in®

Ten 8-node axisymmetric els.
Newmark inte (8 = 0.55, a = 0.276)

2 X 2 Gauss integration
consistent mass

600lb/in® |

At = 10usec, T.L. 0 TIME

Spherical cap nodes under uniform pressure loading

NN(

0.02

DEFLECTION
W,— inches

0.04

0.06

0.08

N
\ &aapopwarnlan ——— /’
\\ {no iteration) /]

ADINA
(with iteration)

Dynamic elastic-plastic response of a spherical cap,

p deformation independent

AN
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TIME — msec

02 04 06 08 10

0.02+

DEFLECTION
W,— inches

0.04t

0.06

0.08L

Response of the cap using consistent and lumped

T 1

Nagarajan
& Popov ~
,”
,;' . Newmark integration
3 (3= 05 «=025
F .
consistent F
\\‘— mass [2
I'.
7 3
2o ek
lumped \.4"'
mass

mass idealization

N

~

0.02

DEFLECTION
W, —inches

0.04

0.-06

0.08

Effect of numbers of Gauss integration points on the

TIME — msec

0.2 0.4 0.6 0.8 1.0
T T T L] 1
Nagarajan
& Popov g
- Consistent mass
) Newmark integration
\’2,(2 (8=0.5, =0.25)
"N .5
! A\~
ra N
N o
Ix3 .,
|

cap response predicted

J L
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~

BLIND FLANGE

PULSE GUN 3-inch FLEXIBLE Ni 200 PPE \ \
it S

3-inch (D RIGID PIPE
sz L_. —‘J

NICKEL 200 WATER
E= 30110% pSI x= 32104 pSI
Ey=7371104 PSI P =9361107° M’%”
yv= 03
P = 83)510 4 SLUCET
ao= 1281103 sy N

Analysis of fluid—structure interaction problem
(pipe test)

\_

Slide
14-7

Slide
14-8

T

2500

2000+

1500
PRESSURE
(PSI)

T

1000t

500

1
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