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Mode superposition:

• The modes of vibration change due to
the nonlinearities, however we can
employ the modes at a particular time
as basis vectors (generalized
displacements) to express the
response.

• This method is effective when, in
nonlinear analysis,

- the response lies in only a few
vibration modes (displacement
patterns)

- the system has only local
nonlinearities
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The governing equations in implicit time
integration are (assuming no damping
matrix)
M HLltO(k) + TK ~U(k) = HLltR _ HLltF(k-1)
- - -

Let now T = 0, hence the method of
solution corresponds to the initial stress
method.

Using



The modal transformation gives

H.:1tX(k) + 0 2 ax(k) = <I>T (H.:1tR _ H.:1tF(k-1»)
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where

n2 = [W~"W~]
<I> = ~r ... ~s]

.
equations cannot be solved
individually over the time
span
Coupling!

Typical problem:

~~========:::::::D!I
~

Pipe whip: Elastic-plastic pipe
Elastic-plastic stop

• Nonlinearities in pipe and stop. But
the displacements are reasonably well
contained in a few modes of the
linear (initial) system.
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Substructuring

• Procedure is used with implicit time
integration. All linear degrees of
freedom can be condensed out prior
to the incremental solution.

• Used for local nonlinearities:
Contact problems
Nonlinear support problems

p
-0

_0

o
Slip
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Example:

Ten story
building Finite element

model

• -"master" node

• - substructure
internal node

Substructure
model



/
t A

K

master dot

substructure
internal dot

master dot

substructure
internal dot

master dot
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Here

t
A

( 4) tK = K + Llt2 M + Knonlinear

~ toil mass~1I nonlinear stiffness
I matrix effects
all linear
element contributions

A t
K + K nonlinear- -

Transparency
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After condensing out all substructure
internal degrees of freedom, we obtain
a smaller system of equations:

~entries from condensed

1_.........7rUbstruclures

master dof

Major steps in solution:

• Prior to step-by-step solution,
establish Bfor all mass and constant
stiffness contributions. Statically
condense out internal substructure
degrees of freedom to obtain Be.
We note that

t A A t
.!Sc = .!SC + .!Snonlinear

condensed i. all nonlinear effects
7 A 4

from K= K+ .lt2 M

alllinearJ "-total mass matrix
element contributions



• For each time step solution (and each
equilibrium iteration):

- Update condensed matrix, Ke, for
nonlinearities.

- Establish complete load vector for all
degrees of freedom and condense out
substructure internal degrees of freedom.

- Solve for master dof displacements,
velocities, accelerations and calculate all
substructure dof disp., veL, ace.

The substructure internal nodal disp., veL,
ace. are needed to calculate the complete
load vector (corresponding to all dof).

Solution procedure for each time step(and iteration):

tu t+4tU-, -,
tU' t+4t(j
-, • t+4tRA _ t+4tRA _ t+41U _ -,
.. _ _c _c t+4tU"tu
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substructure
degrees of
freedom
condensed
out

using
condensed
effective
stiffness
matrix tKe
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Example: Wave propagation in a rod
Transparency

14-13

R

Uniform, freely floating rod

/

R

1000 N+------

L = 1.0 m
A = 0.01 m'Z.
p = 1000 kg/m3

E = 2.0 x 109 Pa

time

Transparency
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Consider the compressive force at a
point at the center of the rod:

-.B-
1
' .5 'I' .5 'I

t* = time for stress wave
to travel through
the rod1000 N

Compressive
force

I
A

The exact solution for the force at
point A is shown below.

1....-_--+-__\--_-+-_--+__ time
1/2 t* t* % t* 2 t*



We now use a finite element mesh of
ten 2-node truss elements to obtain
the compressive force at point A.

All elements uniformly spaced
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R • •

Central difference method:

• The critical time step for this problem is

Llt = L Ic = t* ( 1 )
cr e number of elements

Llt > Lltcr will produce an unstable
solution

• We need to use the inital conditions
as follows:

a
MOO~=OR

~
0·· _ °HUj -­

mjj

Transparency
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exact

/

1500

• Using a time step equal to atcr• we obtain
the correct result: • For this special

case the exact
solution is obtained

Finite elements

~100Q
Compressive
force (N) 500

Transparency
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t*

-500

Transparency
14-18

• Using a time step equal to ! atcr , the
solution is stable, but highly
inaccurate.

Finite elements
1500

1000
Compressive
force (N) 500..

-500.

time



1500

1000
Compressive
force (N) 500

Now consider the use of the
trapezoidal rule:

• A stable solution is obtained with
any choice of at.

• Either a consistent or lumped
mass matrix may be used. We
employ a lumped mass matrix in
this analysis.

Trapezoidal rule, dt = dterlcDM' .i.nitial
conditions computed using MOU = OR.

- The solution is inaccurate.
Finite element solution,

/"10 element mesh
AA/

AA exact solution

A A/
A

Topic Fourteen 14-13
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-500

t* 2t* time
AA
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1500

1000
Compressive
force (N)

500

Transparency
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Trapezoidal rule, dt = dtcrlcDM' zero
initial conditions.

- Almost same solution is obtained.
Finite element solution,

/ 10 element mesh

(!) (!) (!) exact solution
(!) '" ~ f

(!)(!)
(!

(!)(!)
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t*

-500

Trapezoidal rule, dt = 2dtcrlcDM
- The solution is stable, although
inaccurate.

(!)2t* time
(!)

1500
Finite element solution,
/10 element mesh

.t> at = 2atcrlcDM
1000

Compressive
force (N)

500

o ....t>

-500

t*

.t>
exact solution
~

I!:>

2t* time
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Trapezoidal rule, at = ! atcrlCDM
Transparency
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~

~

~<b.

t* ~~ 2t* time
~

Finite element solution,
er10 element mesh

~ / exact solution
~~ Ao.~~ ~
~ ~ ~ ~ ~~

~ ~ ~

<
~

Ol~",¢ll-~L~-L_--+-__--I._~....... _

1500

1000
Compressive
force (N) 500

-500

The same phenomena are observed when
a mesh of one hundred 2-node truss
elements is employed.
- Here ~tcr = t*/100 exact solution; finite

Finite element element solution,
solution, .::It = ! .::lte., .::It = .::ltc., central

1500 central diffefrJrwenMCMeWtMfWrM-.d~iff/erence methodmethod

1000

Compressive
force (N) 500

Transparency
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O+-----J.:L---+---..JH-lMIlIAAi'\r---
t*

-50
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Trapezoidal rule, at = atcrlCDM

Finite element solution, 100 element mesh

1500 /

O,+-----"'-L-----t------'"t-++t-tt1Ht----
time

-50

Now consider a two-dimensional model
of the rod: tz

1 0 element 5 L- y
. m./>/ .

For this mesh, atcr =P t*/(10 elements)
because the element width is less than
the element length.



If At = t*/(10 elements) is used, the solution
diverges

-In element 5,

IT 1>- (1000 N)
zz 0.01 m2

at t = 1.9 t*

Example: Dynamic response of three
degree-of-freedom system
using central difference method

Topic Fourteen 14-17
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kL = 1 Ibf/ft
m = 1 slug

°X1 = °X2 = °X3 = 0

°*1 = 0.555 ft/sec
°*2 = 1.000 ft/sec
°*3 = 1.247 ft/sec

FomeL{:
0.95

Displacement Ix2 - x3 1

(~tcrit)linear = 1.11 sec
(~terit)nonlinear = 0.14 sec
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Results: Response of right mass

3

D
' 2
ISp.

(ft) 1

X1 0 HJ--:-':.-----i~:---___='::n--:--~-

t(sec)
-1

-2

-3
.: .:1t = 0.05 sec
0: .:1t = 0.15 sec

Response of center mass:
Transparency
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.:1 =0.05 sec.

.:1 = 0.15 sec.
.:
O'

2
Disp.
(ft) 1

X2 0 1--If....L-- ~-----J~--....I...--

t(sec)
-1

-2



Response of left mass:

Disp.
(ft)

X3
20'

~\,
\:>,

.... 0--

t(sec)
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.: d=0.05 sec.
0: d=0.15 sec.

Force (Ibf) in center truss:

TIME dt=0.05 dt=0.15
9.0 -0.666 -0.700

12.0 -0.804 -0.877
15.0 0.504 0.503
18.0 0.648 -0.100
21.0 -0.132 -0.059
24.0 -0.922 0.550

Transparency
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Transparency
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Example: 10 story tapered tower

3.2 m
--1~

Pressure
induced
by
blast

Applied load (blast):

32 m

Girder properties:
E=2.07x 1011 Pa
v=0.3
A=0.01 m2

As =0.009 m2

1=8.33x 10-5 m4

p = 7800 kg/m3

Transparency
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Force
per
unit
length
(N/m)

1000

o+---+-----+---+--~---
o 50 100 150 200

time (milliseconds)



Purpose of analysis:

• Determine displacements,
velocities at top of tower.

• Determine moments at base of
tower.

We use the trapezoidal rule and a
lumped mass matrix in the following
analysis.

We must make two decisions:

• Choose mesh (specifically the
number of elements employed).

• Choose time step ~t.

These two choices are closely related:

The mesh and time step to be used
depend on the loading applied.

Topic Fourteen 14·21
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Transparency
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Some observations:

• The choice of mesh determines
the highest natural frequency (and
corresponding mode shape) that is
accurately represented in the finite
element analysis.

• The choice of time step deter­
mines the highest frequency of
the finite element mesh in which
the response is accurately inte­
grated during the time integration.

• Hence, it is most effective to
choose the mesh and time step
such that the highest frequency
accurately "integrated" is equal to
the highest frequency accurately
represented by the mesh.

• The applied loading can be rep­
resented as a Fourier series which
displays the important frequencies
to be accurately represented by
the mesh.



Force per
unit length
(N/m)

Consider the Fourier representation of
the load function:

f(t) = ~o +I (ancos(2'ITfnt) +bnsin(2'ITfnt»
n=1

Including terms up to

case 1: fn= 17 Hz

case 2: fn= 30 Hz

The loading function is represented as
shown next.

Fourier approximation including terms
up to 17 Hz:

/APPlied load

/FOUrier approximation

o 100 200
time (milliseconds)

Thpic Fourteen 14-23
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Fourier approximation including terms
up to 30 Hz:

2000
Force per
unit length
(N/m)

1000

100 200
time (milliseconds)

• We choose a 30 element mesh,
a 60 element mesh and a 120
element mesh. All elements are
2-node Hermitian beam elements.

30 elements 60 elements 120 elements
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Determine "accurate" natural frequen- .
cies represented by 30 element mesh:

From eigenvalue solutions of the 30
and 60 element meshes, we find

Transparency
14-43

rate

curate

mode natural frequencies (Hz)
number 30 element mesh 60 element mesh

1 1.914 1.914
2 4.815 4.828 accu
3 8.416 8.480

14 12.38 12.58
5 16.79 17.27
6 21.45 22.47

1
7 26.18 28.08
8 30.56 29.80

inac

Calculate time step:

Tco = 117 Hz = .059 sec

~t= 21 Tco = .003 sec

• A smaller time step would accurately
"integrate" frequencies, which are not
accurately represented by the mesh.

• A larger time time step would not
accurately "integrate" all frequencies
which are accurately represented by
the mesh.

Transparency
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Determine "accurate" natural frequen­
cies represented by 60 element mesh:

From eigenvalue solutions of the 60
and 120 element meshes, we find

rate

ate

mode natural frequencies (Hz)
number 60 element mesh 120 element mesh

5 17.27 17.28
6 22.47 22.49 accur

7 28.08 28.14
8 29.80 29.75
9 32.73 33.85

10 33.73 35.06
11 36.30 38.96 inaccu

Calculate time step:
Transparency

14-46 Teo = 31 Hz= .033 sec

Llt == 2~ Teo = .0017 sec

• The meshes chosen correspond to
the Fourier approximations discussed
earlier:

30 element mesh _.---" Fourier approximation
including terms up
to 17 Hz.

60 element mesh _.-_a Fourier approximation
including terms up
to 30 Hz.



Pictorially, at time 200 milliseconds,
we have (note that the displacements
are amplified for visibility):

Topic Fourteen 14-27
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30 elements 60 elements

Pictorially, at time 400 milliseconds,
we have (note that the displacements
are amplified for visibility):

Transparency
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30 elements 60 elements
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Consider the moment reaction at the
base of the tower:

40

20

M
(KN-m)

500250

time (milliseconds)

Ol-+----------if---+-------+--

- : 30 elements
/VVV: 60 elements

-20

-40

Transparency
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Consider the horizontal displacement
at the top of the tower:

~6IJ .lements
r u

.06 11.04
u

30 .i.1s(m)
.02

0
250 500

-.02 time (milliseconds)

-.04

-.06



Consider the horizontal velocity at the
top of the tower:

'Ibpic Fourteen 14·29
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.6

V
(m/s)

-.2

-.4

-.6

Comments:

IV

11

• The high-frequency oscillation
observed in the moment reaction
from the 60 element mesh is
probably inaccurate. We note that
the frequency of the oscillation is
about 110Hz (this can be seen
directly from the graph).

• The obtained solutions for the
horizontal displacement at the top
of the tower are virtually identical.

Transparency
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Example: Simple pendulum undergoing
large displacements

~ length = 304.43 cm

tip
/"mass = 10 kg

g = 980 cm/sec2

1
Initial conditions:

°0 = 900

°0 = 0

One truss element with tip concentrated
mass is employed.

Transparency
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Calculation of dynamic response:

• The trapezoidal rule is used to
integrate the time response.

• Full Newton iterations are used to
reestablish equilibrium during every
time step.

• Convergence tolerance:
ETOL= 10- 7

(a tight tolerance)
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Choose Llt = 0.1 sec. The following
response is obtained: Transparency

14-55

6 time (sec)

last obtained solution
Solution procedure
failed during next

'i~ep
90

-90

-45

e 45

(degrees)
o+---!'r--+---P--+----.:::I---+---

The strain in the truss is plotted:

• An instability is observed.
Transparency
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time
(sec)

2

5x10~5

strain

-10x10- 5
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• The instability is unchanged when
we tighten our convergence toler­
ances.

• The instability is also observed
when the BFGS algorithm is
employed.

• Recall that the trapezoidal rule is
unconditionally stable only in linear
analysis.

Choose at = 0.025 sec, using the
original tolerance and the full Newton
algorithm (without line searches).

• The analysis runs to completion.

pFinite element solution

6 4
(degrees)

0
time

-45 (sec)

-9
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The strain in the truss is stable: Transparency
14-59

strain

3x10- 6

2x 10-6

finite element solution,
At=.025 sec

1

4
o+----!IL..-----+l~---lL-_fL_-><--___t_>''----

8 12 time (sec)

1 X 10-6

It is important that equilibrium be accurately
satisfied at the end of each time step: Transparency

14·60
Finite element solution, at = .025 sec.,
equilibrium iterations used as
described above.

f90

-45

-90

6 45
(degrees) time (sec)

O-l---lf--~"'I=-b-==+-~+=-+=I=:---12"\
Finite element solution,
at = .025 sec., no
equilibrium iterations
used.
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5x10- 5
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Although the solution obtained without
equilibrium iterations is highly
inaccurate, the solution is stable:

Finite element solution, At=O.025 sec.,

10 x 10- 5 no equilibrium iterations used.

strain f Finite element solution, 8t=O.025 sec.,
equilibrium iterations used as
described above.

4 8 12 time (sec)

Transparency
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Example: Pipe whip analysis:

360 P=6.57x 105 Ib

~ 2775

=~OxJ30
~~-z-diameter

not drawn restraint 5.75
to scale

all dimensions in inches

• Determine the transient response
when a step load P is suddenly
applied.



Finite element model:

Six Hermitian beam elements

~>---".--••-----<._--4.l---".-~ ~~~ent

• The truss element incorporates a
3 inch gap.

Material properties:
Pipe: E = 2.698 x 107 psi

v=0.3
CTy=2.914x 104 psi

~~8~2 x 10- 3 S.IU
3
9 = 7.18 x 10- 4 Ibf~S~C2

In In

Restraint: E = 2.99 x 107 psi
CTy= 3 .80 x 104 psi
ET=O

Topic Fourteen 14-35
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The analysis is performed using

Mode superposition (2 modes)

Direct time integration

We use, for each analysis,

Trapezoidal rule

- Consistent mass matrix

A convergence tolerance of
ETOL = 10-7 is employed.

Eigenvalue solution:

Mode 1, natural frequency = 8.5 Hz

Mode 2, natural frequency = 53 Hz



Choice of time step:

We want to accurately integrate the
first two modes:

at == 2~ Tco = 2~ ((freqUency ~f mode 2))

=.001 sec

Note: This estimate is based solely on a linear
analysis (Le, before the pipe hits the
restraint and while the pipe is still elastic).

Determine the tip displacement:

'Ibpic Fourteen 14-37
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time Transparency
(milliseconds) 14-68

0 2 4 6 8 10
0

~
~

tip -2
(!)
~

disp. (!) Gap
(in) (!)

-4 ~
(!)
~

~
~ (!)

C!l - mode superposition ~

-6 ~ - direct integration
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Determine the moment at the built-in
end of the beam:

time
(milliseconds)

0 2 4 6 8 10
Moment 0
(Ib-in) (!) ~

(!)

-1 X 107
(!) ~

~

-2X 107
(!) ~ (!)

~

-3x 107 (!) (!)
(!) (!)

~~

-4 X 107

(!) - mode superposition
~ - direct integration



r
~ii•• 12, 5,n2.1 I

r-- ....~
EI, constant
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l

l

l

L • 38 9 In

d • 0.1 in

-x

lit'
~H~

W
Analysis of CAD housing with lower support

TIME ISECONlS
TIP

DEFLECTION
(INCHES) 0,.--_~~__~=--_~O.o¥-,3!..-_~:!..-_~~_~~_~0.07

-0.02

-0.04

- PETERSON AND BATHE
-0.06

o DIRECT INTEGRATION

-0.08 '" MODE 5UPERPOS ITION
12 MODES)

-0.10

CRD housing tip deflection

Slide
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p

w
R = 22.27 in.
h = 0.41 in.
e= 26.67"

E = 1.05 X 107 Ib/in2

v = 0.3
cry = 2.4 X 104 Ib/in2

ET = 2.1 X 105 Ib/in2

p = 9.8 X 10-2 Ib/in3

Slide
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Ten a-node axisymmetric els.
Newmark inte (8 = 0.55, (X = 0.276)
2 x 2 Gauss integration ~L-
consistent mass 600Ib/in~

~t = 10f-Lsec, T.L. 0 TIME

Spherical cap nodes under uniform pressure loading

TIME - msec

o 0·2 0·4 0.6 0.8 1.0
~---r--.-------,---,------,

DEFLECTION
W.-Inches

0·02

0.04

0·06

0.08

Dynamic elastic-plastic response of a spherical cap.
p deformation independent



TIME - msec

o 0·2 0·4 0·6 0·8 1-0
~--.-------,--.-----.------,

Topic Fourteen 14-41

Slide
14-5

DEFLECTION
Wo- inches

0·02

0·04

0·06

Newmark integration
(1= D.5, llC- 0.25)

0·08

Response of the cap using consistent and lumped
mass idealization

TIME - msec

°..,....-_0.:,..::.2__0::.,..4_--=0.,...6::....---=.0...:8:...--.:.,1.0

DEFLECTION

We-IncheS

0·02

0·04

0·06

0·08

Nagarajan
& Popov "

Consistent mass
Newmark integration

r:5"=O~)

~
'.'\.....

Slide
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Effect of numbers of Gauss integration points on the
cap response predicted



14·42 Nonlinear Dynamic Response - Part II

Slide
14-7

BLIND FLANGEJ ~ULSE GUN 3-Inch FLEXIBLE NI 200 PIPE~ \

m P: r~~p,B ~

1._-----3---'nc-"~:I-GI~D-P-IP-E ~_"*,,.,J J
NICKEL 200

E= 30'10' PSI
ET= 73.7 110 4 PSI
• • 030
P = B.3I.10- 4 SLUG;FT
ITo = 12.B'103 PSI IN

WATER
K = 32 liO' PSI
P = 9.36 • 10-\~FT

Slide
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Analysis of fluid-structure interaction problem
(pipe test)
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Finite element model

Topic Fourteen 14-43

Slide
14-9

~ilDI~d

f.lI'lR'l,I(~Tdl

- ~Ol~d

[lP(RIIII(IO'Al
-ilD,,.A

OP(HllIlIIIAl

Slide
14-10

I.~ 1.0 2.5
llllflllSE(1

Pili II I I! IN f HOM NICOl l PIP~ IP 31

1.0 ,.5 l.~ lP :.~ 4.0 0l-,....,.-4,....,r-tt-~..,."....,._
"II[IIIIS[(1

PI T: AT . _~ ,.. '1010 IOI(_E l PIP!

'-dOIU
[lPfRIM(Nlo\l

o w w w w ~ w w W
IIf1l(llIIS(CI

PillAr ~IN INIONICKHPlP( !pel

-ADINA
[IPfHIIII[NTdl

o I.C U J.C 4.C b,() '.0 at
Hlf :t,l5[:

<; IHAI NAT <.5 'N ,ro fe N'('E ~ PI PI:



MIT OpenCourseWare 
http://ocw.mit.edu 

Resource: Finite Element Procedures for Solids and Structures 
Klaus-Jürgen Bathe 

The following may not correspond to a particular course on MIT OpenCourseWare, but has been 
provided by the author as an individual learning resource. 

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 

http://ocw.mit.edu
http://ocw.mit.edu/terms



