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Preface

This course on the nonlinear analysis of solids and structures can
be thought of as a continuation of the course on the linear analysis of
solids and structures (see Finite Element Procedures for Solids and
Structures—Linear Analysis) or as a stand-alone course.

The objective in this course is to summarize modern and effective
finite element procedures for the nonlinear analysis of static and
dynamic problems. The modeling of geometric and material nonlinear
problems is discussed. The basic finite element formulations employed
are presented, efficient numerical procedures are discussed, and rec-
ommendations on the actual use of the methods in engineering practice
are given. The course is intended for practicing engineers and scientists
who want to solve problems using modern and efficient finite element
methods.

In this study guide, brief descriptions of the lectures are presented.
The markerboard presentations and viewgraphs used in the lectures
are also given. Below the brief description of each lecture, reference is
made to the accompanying textbook of the course: Finite Element Pro-
cedures in Engineering Analysis, by K. J. Bathe, Prentice-Hall, Engle-
wood Cliffs, N.J., 1982. Reference is also sometimes made to one or
more journal papers.

The textbook sections and examples, listed below the brief descrip-
tion of each lecture, provide important reading and study material for
the course.
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Topic 1

Introduction to
Nonlinear Analysis

Contents:

B Introduction to the course
B The importance of nonlinear analysis

B Four illustrative films depicting actual and potential
nonlinear analysis applications

B General recommendations for nonlinear analysis
B Modeling of problems
B Classification of nonlinear analyses

B Example analysis of a bracket, small and large
deformations, elasto-plastic response

B Two computer-plotted animations
—elasto-plastic large deformation response of a plate
with a hole
—large displacement response of a diamond-shaped
frame

B The basic approach of an incremental solution
B Time as a variable in static and dynamic solutions
B The basic incremental /iterative equations

B A demonstrative static and dynamic nonlinear analysis
of a shell

Textbook:
Examples:

Reference:

Section 6.1
6.1, 6.2, 6.3, 6.4
The shell analysis is reported in

Ishizaki, T., and K. J. Bathe, “On Finite Element Large Displacement
and Elastic-Plastic Dynamic Analysis of Shell Structures,” Computers
& Structures, 12, 309-318, 1980.
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FIELD OF NONLINEAR
ANALYSIS

o CONTINUUM  MECHANICS

¢« FINITE ELEMENT Dis-
CRETIV2ATIONS

e NUMERICAL
ALBORITHMS

» SOFTWARE
CONSIDERATIONS

WE CONCENTRATE
ON @

e METHODS THAT APE
EENERA LLY APPLICARLE

* MODERN TECHNIQUES

s PRACTICAL PROCEDURES

\

METHODS THAT ARE o
ARE NOW BECOMING AN
INTEGRAL PrRT OF

CAD [CAE SOFTWARE

BRIEF OVERVIEYW
O0F COURSE
-]

e BEOMETRIC AND
MATERIAL AONLINEAR
ANALYCIS

e STATIC AND DYAIAMC

SOLUTIONS

e BASIC PRiNCiPLES
AND THEIR USE

* EXAMPLE SOLUTIDN S

WILL BE OF INTERe<r
IN MANY BRANCHES OF
ENG/NEERING THRoUGH -
OUT THE WoRLD

Markerboard
1-1
IN THIS LECTURE
WE DISCWES Sovg - WE DISCUSS THE
IN TRODUCTORY  VIEW -~ RASIC APPROACKH OF
CRAPHS AND SHOW AN INCREMENTA L
Scrme SHoRT MOVIES SOLUTION
* WE THEN CLASSI\FY - WE BWE EXAMPLES
NONLINERAR ANALNSES
Markerboard

1-2
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Transparency
1-1

Transparency
1-2

~

FINITE ELEMENT
NONLINEAR ANALYSIS

« Nonlinear analysis in engineering
mechanics can be an art.

- Nonlinear analysis can be
a frustration.

- It always is a great challenge.

N\

Some important engineering
phenomena can only be assessed on
the basis of a nonlinear analysis:

- Collapse or buckling of structures
due to sudden overloads

« Progressive damage behavior due to
long lasting severe loads

 For certain structures (e.g. cables),
nonlinear phenomena need be
included in the analysis even for
service load calculations.

AN
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The need for nonlinear analysis has
increased in recent years due to the
need for

— use of optimized structures
— use of new materials

— addressing safety-related issues of
structures more rigorously

The corresponding benefits can be
most important.

\—

N

Problems to be addressed by a non-
linear finite element analysis are found
in almost all branches of engineering,
most notably in,

Nuclear Engineering
Earthquake Engineering
Automobile Industries
Defense Industries
Aeronautical Engineering
Mining Industries
Offshore Engineering
and so on

Transparency
1-3

Transparency
14
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Film Insert
Automobile
Crash

Test
Courtesy of

Ford Occupant
Protection Systems
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Film Insert

Earthquake
Analysis

Courtesy of

ASEA Research

and Innovation-
Transformers
Division
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Film Insert
Tacoma
Narrows
Bridge
Collapse
Courtesy of
Barney D.
Elliot
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a )

Transparency
1-5
For effective nonlinear analysis,
a good physical and theoretical
understanding is most important.
PHYSICAL MATHEMATICAL
INSIGHT FORMULATION
( INTERACTION AND )
MUTUAL ENRICHMENT
Transparency BEST APPROACH

* Use reliable and generally applicable
finite elements.

* With such methods, we can establish
models that we understand.

» Start with simple models (of nature)
and refine these as need arises.
\*/

A “PHILOSOPHY” FOR PERFORMING
A NONLINEAR ANALYSIS
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TO PERFORM A NONLINEAR
ANALYSIS

Stay with relatively small and reliable models.
Perform a linear analysis first.

Refine the model by introducing nonlinearities
as desired.

Important:

— Use reliable and well-understood models.
— Obtain accmirate solutions j)f the models.

NECESSARY FOR THE INTERPRETATION
OF RESULTS

\—

\

PROBLEM IN NATURE

MODELING

MODEL.:

We model kinematic conditions

constitutive relations

REF'NE boundary conditions

loads

SOLVE

INTERPRETATION OF
RESULTS

J

Transparency
1-7

Transparency
18
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Transparency
1-9

Transparency
1-10

~

A TYPICAL NONLINEAR

PROBLEM

POSSIBLE

g
7=

Material: Mild Steel

NN

L
{

QUESTIONS:

Yield Load?

Limit Load?

Plastic Zones?
Residual Stresses?

Yielding where
Loads are Applied?

Creep Response?
Permanent Deflections?

N\

POSSIBLE ANALYSES

)

Plastic <
Zone

Linear elastic
analysis

Determine:

Total Stiffness;
Yield Load

Plastic
analysis
(Small deformations)

Determine:

Sizes and Shapes
of Plastic Zones

Plastic
analysis
(Large deformations)

Determine:

Ultimate Load
Capacity




Topic One 1-13

Transparency

CLASSIFICATION OF spa
NONLINEAR ANALYSES

1) Materially-Nonlinear-Only (M.N.O.)
analysis:

» Displacements are infinitesimal.

« Strains are infinitesimal.

* The stress-strain relationship is
nonlinear.

A\

Example:

Transparency

A
_1~ s 1-12

‘—‘——’IL Material is elasto-plastic.
A
L 0.04

* As long as the yield point has not
been reached, we have a linear analysis.
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~

Transparency
1-13

2) Large displacements / large rotations
but small strains:

» Displacements and rotations are
large.

« Strains are small.

» Stress-strain relations are linear
or nonlinear.

\_

~

Example:

Transparency
1-14

* As long as the displacements are
very small, we have an M.N.O.
analysis.
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3) Large displacements, large rotations,
large strains:

» Displacements are large.
 Rotations are large.
« Strains are large.

* The stress-strain relation is
probably nonlinear.

~

Transparency
1-15

~

Example:

X

» This is the most general formulation
of a problem, considering no
nonlinearities in the boundary
conditions.

AN

Transparency
1-16
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-

\

T 4) Nonlinearities in boundary conditions
ransparency
117 Contact problems:
_P,
P /;; ‘
- -
Gap A
» Contact problems can arise with large
displacements, large rotations,
materially nonlinear conditions, . ..
Example: Bracket analysis
Transparency -
1-18

All dimensions in inches | Elasto-plastic material

_ model:
1 [+ a .
30x10% p5|:
15 26000 1
’ psi
i 30 x 10° psi
1
I | °
,g,l Isotropic hardening

thickness=1 in.
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Finite element model: 36 element mesh

» All elements are 8-node
isoparametric elements

Line of —>

symmetry

\—

N

Three kinematic formulations are used:

« Materially-nonlinear-only analysis
(small displacements/small
rotations and small strains)

- Total Lagrangian formulation
(large displacements/large
rotations and large strains)

« Updated Lagrangian formulation
(large displacements/large
rotations and large strains)

_J

Transparency
1-19

Transparency
1-20
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Transparency
1-21

Transparency
1-22

-~

However, different stress-strain laws
are used with the total and updated
Lagrangian formulations. In this case,

- The material law used in conjunc-
tion with the total Lagrangian
formulation is actually not
applicable to large strain situations
(but only to large displ., rotation/
small strain conditions).

« The material law used in conjunc-
tion with the updated Lagrangian
formulation is applicable to large
strain situations.

N

We present force-deflection curves
computed using each of the three
kinematic formulations and associated
material laws:

150001

about 10% strain at A TL.

Force

Ib:
(lbs) 100001

5000+

Total deflection between points of
load application (in)

AN
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-~

The deformed mesh corresponding to
a load level of 12000 Ibs is shown
below (the U.L.J. formulation is used).

Transparency
1-23
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Computer
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TIME .

LOAD : . MPA
Computer
Animation
Diamond shaped
frame

TIME : 1380

LOAD ¢ 32500 MPA

\

_J

TIME : 300
LOAD : 75000 MPA
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4 )

Transparenicy THE BASIC APPROACH OF AN
INCREMENTAL SOLUTION

» We consider a body (a structure or
solid) subjected to force and
displacement boundary conditions that
are changing.

« We describe the externally applied
forces and the displacement boundary
conditions as functions of time.

~
/

Transparency
1-25

Ri U}

<N time tﬁlA[? \ time

t At
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Since we anticipate nonlinearities,
we use an incremental approach,
measured in load steps or time steps

Ri .
tRi_ o
At
5 NrAt time

-

~

\—

When the applied forces and
displacements vary

— slowly, meaning that the frequencies
of the loads are much smaller than
the natural frequencies of the
structure, we have a static analysis;

— fast, meaning that the frequencies
of the loads are in the range of the
natural frequencies of the structure,
we have a dynamic analysis.

Transparency
1-26

Transparency
1-27
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Transparency
1-28

Transparency
1-29

~

Meaning of time variable

» Time is a pseudo-variable, only
denoting the load level

in
Nonlinear static analysis with time-
independent material properties

\—

N\ (

Example:
© 2002 Run 1
o 100.0 At = 1.0
/ 1.02.0 time
7
R Run 2
200.0
100.0 At=20
20 40 time

Identically the same
results are obtained in
Run 1 and Run 2
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Time is an actual variable Transparency
1-30

— in dynamic analysis

— in nonlinear static analysis with
time-dependent material properties
(creep)

Now At must be chosen carefully with
respect to the physics of the problem,
the numerical technique used and the
costs involved.

\

N

At the end of each load (or time)
step, we need to satisfy the three Transpaxency
basic requirements of mechanics:

» Equilibrium
» Compatibility
e The stress-strain law

This is achieved —in an approximate
manner using finite elements —by the
application of the principle of virtual
work.
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Transparency
1-32

Transparency
1-33

~

We idealize the body as an
assemblage of finite elements and
apply the principle of virtual work to the
unknown state at time t+At.

t+AtR = t+AtF

vector of vector of
externally applied nodal point forces
nodal point forces equivalent to the
(these include the internal element
inertia forces in stresses

dynamic analysis)

\

N

* Now assume that the solution at time
t is known. Hence Ty, 'V, ... are
known.

+ We want to obtain the solution
corresponding to time t+At (i.e., for
the loads applied at time t+At).

» For this purpose, we solve in static
analysis
tK AU — t+AtR _ tF
—t+Atg = t_u :A_u_
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More generally, we solve
tK Ag(l) — t+AtB _ t+AtE(i—1)
t+AtQ(i) _ t+Atg(i—1) + Ag(i)

using

t+AtF(0) — tF t+Atu(0) — tU

Transparency
1-34
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s

h
Slide O

1-1 R=100in.
h=1in,

£ =1.0x10" /in®
v=1/3

0Oy =4.1x10% b/in
Et=2.0x10%Ib/in?
$:9.8x10°Ib/in’

Initial imperfection : W (@)= 3hP,, cos¢

Analysis of spherical shell under uniform
pressure loading p

N\

Slide
1-2

Twenty B8-node axisymmetric els.
p deformation dependent

Finite element model
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N[

1.0 x .
520 T osaRg
0.8 :/ Elastic smail disp, (E)
Elastic T.L ‘_;1" —— — —
{E,T.L)
06 Elastic-Plastic smail disp. (E-P)
PRESSURE
p/Per

0.4

\Elaslic-Plashc TL.

(E-P,T.L)
0.2
i 1 Il
0 0.2 0.4 0.6 o8
RADIAL DISPLACEMENT AT =0 —inches
Static response of perfect (8 = 0) shell
08y
501 . A~ £-p

' ) 4 ——

0.6
ol \E,T.L.
\ E-P,T.L.
04}l
PRESSURE
P/Per
0.2
. A J
o} 0.2 0.4 0.6 0.8

RADIAL DISPLACEMENT AT =0 —inches

Static response of imperfect (8 = 0.1) shell

Slide
1-3

Slide
1-4
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-

Slid.e 0.6} 3-0
156 300
0.4} 3:0.2
PRESSURE b0
P/ Per
0.2}
[0] 0.2 0t4 OI-G
RADIAL DISPLACEMENT AT ¢:=0
inches
Elastic-plastic static buckling behavior of the
shell with various levels of initial imperfection
10x 107 .
Slide 50 ’
1-6 8F at:005 0 50—
o %
MEAN 6F E-P,T.L.
DISPLACEMENT & _E-P
41+ o = Caad /590,
FoE sy s 8
° -] ° o Q
2+ - ).‘,E.T.L. _.o'. -"(,_ o B
1 ::Q,w:ﬁ? 1 .q'c.,_, -'-’-‘)n J
0 2 4 6 8 10
TIME T
Dynamic response of perfect (6 =0)
shell under step external pressure.




Topic One 1-31

1Ox10-3r
$:0.1
sl P=0-5P
E-P.T.L.
6
MEAN _ —
DISPLACEMENT & g N o
- . ~_..’7 ’\\_/ A
4 \ - / ™~ £p ./' ’\
2b \ / Y. '
\ / \ e
1 ) 1 \\./l J
0 2 4 6 8 10
TIME T

Dynamic response of imperfect (6 =0.1)
shell under step external pressure.

~

10x10
3=01
8t 0-5P
6
MEAN
DISPLACEMENT a

L 0.4P,

2+
0-35P,
I 1 1 — —J
o} 2 4 6 8 10
TIME T

Elastic~plastic dynamic

response of imperfect (8 =0.1) shell

Slide

Slide
1-8
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Slide
1-9

~

0.8
4 Static unstable
. ® Dynamic unstable
0.6 /s'.m O Dynamic stable
BUCKLING

LOAD

prper 04T

0-2

0 041 0.2 0.3 0.4
AMPLITUDE OF IMPERFECTION 3%

Effect of initial imperfections on the elastic-plastic
buckling load of the shell
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Basic _
Considerations in
Nonlinear Analysis

Contents:

B The principle of virtual work in general nonlinear
analysis, including all material and geometric
nonlinearities '

B A simple instructive example

B Introduction to the finite element incremental solution,
statement and physical explanation of governing finite
element equations

B Requirements of equilibrium, compatibility, and the
stress-strain law

B Nodal point equilibrium versus local equilibrium
B Assessment of accuracy of a solution

B Example analysis: Stress concentration factor
calculation for a plate with a hole in tension

B Example analysis: Fracture mechanics stress intensity
factor calculation for a plate with an eccentric crack in
tension

B Discussion of mesh evaluation by studying stress jumps
along element boundaries and pressure band plots

Textbook:
Examples:
References:

Section 6.1
6.1,6.2,6.3,6.4
The evaluation of finite element solutions is studied in

Sussman, T., and K. J. Bathe, “Studies of Finite Element Procedures—
On Mesh Selection,” Computers & Structures, 21, 257-264, 1985.

Sussman, T., and K. J. Bathe, ““Studies of Finite Element Procedures—
Stress Band Plots and the Evaluation of Finite Element Meshes," Engi
neering Computations, to appear.
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IN THIS LECTURE

WE DISCUSS THE
PRINCIPLE OF VIRTUAL
WORK USED FOR
GENERAL NONLINEAR
ANALYSIS

WE EMPHASIZE
THE BASIC REQUIRE-
MENTS OF MECHANICS

WE GIVE EXAMPLE
ANALYSES

- PLATE WITH HOLE
- PLATE WITH CRACK

Markerboard
2-1
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~

Transparency THE PRINCIPLE
z1 OF VIRTUAL WORK

ot
ftv‘Ti}Stei}‘dV = QR

where

(Cauchy stresses)

S — 1 (a&ui aSu;)
SHT o\ W%

9 = f Y8 5u; 'dV + f %S sud 'ds
ty s

"Ti} = forces per unit area at time t

\-

N\

and
Transparency

2-2 du;, dey = virtual displacements and
corresponding virtual

strains

at time t

W, 'S = volume and surface area

', ¥ = externally applied forces
per unit current volume
and unit current area
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two material particles
Transparency
2-3
X2
time =0
X4
X3
two material particles
Transparency
24

X4

X3
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Transparency
2-5

Transparency
2-6

~

X2

tme =0
time =t
a variation

X4

X3

N\

X2

time =t

another variation

X1

X3

L
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Note:

Integrating the principle of virtual
work by parts gives

» Governing differential equations of
motion

* Plus force (natural) boundary
conditions

just like in infinitesimal displacement
analysis.

\—

N(

Example: Truss stretching under its

own weight

L

* Plane cross-sections
oL remain plane

* Constant uniaxial stress
A on each cross-section

i» We then have a one-
dimensional analysis.

QO -—

Transparency
2.7

Transparency
2-8
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%

Using these assumptions,
Transparency

29
f t’T.‘, Stei}‘dv =f T e 'A 'dx ,
v L

‘P =f 'pg du 'A 'dx
L
Hence the principle of virtual work is now
j 'T'Ade'dx = f L‘pg 'A 3u ‘dx
lL 1

where

adu
b€ = T

(

\

\

T We now recover the differential equation of
ransparency L . . .
2.10 equilibrium using integration by parts:

f [% (T 'A) + pg ‘A] ou 'dx— [(*T 'A)8u]|tL =0
y La'x 0

Since the variations 8u are arbitrary (except at
x = 0), we obtain

0
5 (T'A) +g'A=0, (T'A), =0
dax '

THE GOVERNING THE FORCE (NATURAL)
DIFFERENTIAL EQUATION BOUNDARY CONDITION

_/
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FINITE ELEMENT APPLICATION OF
THE PRINCIPLE OF VIRTUAL WORK

| 'mydey'av = [ 1 su'av + | 5 suP as
\" \" s

'

BY THE FINITE ELEMENT
METHOD

'

SQT tE — SQT tB

~

* Now assume that the solution at time
t is known. Hence 'y, 'V, ... are
known.

 We want to obtain the solution
corresponding to time t+ At (i.e., for
the loads applied at time t+ At).

» The principle of virtual work gives for
time t+ At

t+AtF — t+AtR

J

Transparency
2-11

Transparency
2-12
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Transparency
2-13

Transparency
2-14

-

To solve for the unknown state at time
t+At, we assume

YAE = F + 'KAU
Hence we solve

tK AU — t+AtR _ tF
and obtain

AU = 'U + AU

N[

More generally, we solve
'K Ag(i) = trAtR _ tratp(-1)
t+Atg(i) _ t+Atg(i—1) + Ag(i)
using

tHAtEO) _ tp

L

t+Atu(O) — tU

VAN
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* Nodal point equilibrium is satisfied
when the equation
t+AtR _ t+AtF(i—1) — 0

is satisfied.

» Compatibility is satisfied provided a
compatible element layout is used.

» The stress-strain law enters in the
calculation of 'K and **'F¢~",

N[

Most important is the appropriate
calculation of "' F/~" from Ay,

The general procedure is:

t+AtU(| 1) glves strains 2ves gives stresses gives t+AtF(| 1)

CONSTITUTIVE RELATIONS
ENTER

Note:

t+atg(i-1)
At (-1) g +f Cde
[

e - ¥

)

Transparency
2-16

Transparency
2-16
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Transparency
2-17

Transparency
2-18

s

-

y

Here we assumed that the nodal point
loads are independent of the structural
deformations. The loads are given as

functions of time only.

Example:

— ]
\lﬂ R

| time

~

WE SATISFY THE BASIC
REQUIREMENTS OF MECHANICS:

Stress-strain law

Need to evaluate the stresses
correctly from the strains.

Compatibility
Need to use compatible element
meshes and satisfy displacement
boundary conditions.

AN
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g

Equilibrium

» Corresponding to the finite element
nodal point degrees of freedom
(global equilibrium)

* Locally if a fine enough finite element
discretization is used

Check:
— Whether the stress boundary
conditions are satisfied

— Whether there are no unduly
large stress jumps between
elements

~

-

Example: Plate with hole in tension

100 MPa

| | } E = 207000 MPa
v=03

oy = 740 MPa

Er = 2070 MPa

Ll— |- ) _
R—fj R=0.01m

L=W=01m

L L

100 MPa |
A

! thickness = 0.01 m

_

Transparency
2-19

Transparency
2-20
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Transparency
2-21

Transparency
2-22

r A

Purpose of analysis:

To accurately determine the stresses in
the plate, assuming that the load is
small enough so that a linear elastic
analysis may be performed.

N [
AN

Using symmetry, we only need to model
one quarter of the plate:

100 MPa
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Accuracy considerations:

Recall, in a displacement-based finite
element solution,
« Compatibility is satisfied.
» The material law is satisfied.
» Equilibrium (locally) is only
approximately satisfied.

We can observe the equilibrium error
by plotting stress discontinuities.

\

N (

Two element mesh: All elements are two-
dimensional 8-node isoparametric elements.

Undeformed mesh: Deformed mesh
(displacements amplified):
2 /y =2 U; = .0285 mm
"l Y \ = 281- MP
z=0 O max a

Transparency
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~

Transparency Plot stresses (evaluated at the nodal
2-25 points) along the line z=0:
400+ nodal point
% stress
a smooth
Tsz 3001 / curve connecting
(MPa) nodal point
200+ stresses / 100 MPa
100+ e ——
0 —— f t
0 10 30 50

distance (mm)

~

\_

Plot stresses along the line y = z:
Transparency ¥4

2-26 (
200 1T Y7
7| Stress discontinuity *
-y
150 o1 = maximum principal stress
1004
o1
(MPa)
50,
0 T y T
0 10 y (mm) 30 50




Topic Two 2-17

Sixty-four element mesh: All elements are
two-dimensional 8-node isoparametric

elements.

Undeformed mesh:

z1

Deformed mesh

(displacements ampilified):
u; = .0296 mm
/
[ [ 7
/
9% vd
8 pE
//
gl g
Y N Gmax = 345 MPa

\

N

Plot stresses along the line z=0:

stress discontinuity

100 MPa

400
Tzz 300
(MPa)
200-
1001
0
0

J

Transparency
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Transparency
2-29

Transparency
2-30

-

Plot stresses along the line y = z:

The stress discontinuities are negligible
for y > 20 mm.

200

1 oy = maximum principal stress
150
01
(MPa) 100
50
0 T \ T
d 10 y(mm) 30 50

N

288 element mesh: All elements are
two-dimensional 8-node elements.

Undeformed mesh: Deformed mesh

~ Uz = .0296 mm

4 J I 77 77
77 I 7 7 7
{4 J [ [ 7 /7
I,l' l’fllll7 4
I S A 4 /’/
1
L 1
/////
1 1
280%s
g
1L 11
1L )
11
.-r—"' -
y \omax = 337 MPa

(displacements amplified):

AN
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Plot stresses along the line z = 0:

400+

T,, 3001

(MPa)

200+

nominal stress
(100 MPa)

100~ -'.“.'3'."-'3‘.".'2222-_--.-:-_-:==:,==

\

Plot stresses along the line y = z:

* There are no visible stress discontinuities
between elements on opposite sides of
the liney = z

200

150

o1 = maximum principal stress
only visible
discontinuity

10 y(mm) 30 50

J

Transparency
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Transparency
2-33

Transparency
2.34

(

+ To be confident that the stress
discontinuities are small everywhere,
we should plot stress jumps along each
line inthe mesh.

« An alternative way of presenting
stress discontinuities is by means of
a pressure band plot:

— Plot bands of constant pressure
where

_(Txx + Tyy + Tzz)

ressure =
press 3

\—

Two element mesh: Pressure band plot

—

5 MPa 5 MPa

J
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Sixty-four element mesh: Pressure band
plot

5 MPa 5 MPa

\—

N

288 element mesh: Pressure band plot

5 MPa 5 MPa

Transparency
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I

Tmng‘_’;;ency We see that stress discontinuities are

represented by breaks in the pressure
bands. As the mesh is refined, the
pressure bands become smoother.

— The stress state everywhere in
the mesh is represented by one
picture.

— The pressure band plot may be
drawn by a computer program.

— However, actual magnitudes
of pressures are not directly
displayed.

N\

Transparenc Summary of results for plate with hole
21-’38 y meshes:

VNG

Number of | Degrees of | Relative Dis;i?ct:gg'n ent congttaﬁf:tion
elements freedom cost (mm) factor
2 20 0.08 .0285 2.81
64 416 1.0 .0296 3.45
288 1792 72 .0296 3.37
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-~

« Two element mesh cannot be used
for stress predictions.

« Sixty-four element mesh gives
reasonably accurate stresses. How-
ever, further refinement at the hole
is probably desirable.

« 288 element mesh is overrefined
for linear elastic stress analysis.
However, this refinement may be
necessary for other types of
analyses.

~

Transparency
2-39

\

Now consider the effect of using 9-

node isoparametric elements. Consider
the 64 element mesh discussed earlier,
where each element is a 9-node element:

W SOV
T 77

%
: : .)/
T

Will the solution improve significantly?

U\

Transparency
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Transparency
2-41

Transparency
2-42

~

No, the answers do not improve
significantly:

Sixty-four 8-node elements | Sixty-four 9-node elements

Number of
degrees of
freedom

416

544

Displacement
at top
{(mm)

.029576

.029577

Stress
concentration
factor

3.452

3.451

The stress jump and pressure band plots
do not change significantly.

N\

Example: Plate with eccentric crack in

tension
{crack
100 25ml A Tem 100
MPa im B, MPa
[ |
! 2m 2m !

E=207000 MPa

v =0.3
K.=110

thickness=0.01 m

plane stress

MPaVm

» Will the crack propagate?

L
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-~

Background:

Assuming that the theory of linear
elastic fracture mechanics is
applicable, we have

K: =stress intensity factor for a
mode I crack

K: determines the “strength” of the
A/ stress singularity at the crack tip.

Ki>K¢ —crack will propagate
(K¢ is a property of the material)

\

\'

Computation of K;: From energy
considerations, we have for plane stress
situations

- VEG = _an
Ki=VEG , G= A

where 11 = total potential energy
A = area of the crack surface

G is known as the “energy release
rate” for the crack.

Transparency
243

Transparency
2-44
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f

at the crack tip.

location

In this finite element analysis, each crack

Tfm;lz;ency tip is represented by a node. Hence the
change in the area of the crack may be

written in terms of the motion of the node

thickness t

N\

at the crack tip.

location

In this finite element analysis, each crack

Transparency tip is represented by a node. Hence the
2-46 change in the area of the crack may be

written in terms of the motion of the node

—| ]— motion of crack tip node

Ithickness t

new crack tip location
change in crack area

AN
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(

The quantities % may be efficiently
computed using equations based on
the chain differentiation of the total
potential with respect to the nodal
coordinates describing the crack tip.
This computation is performed at the
end of (but as part of) the finite

element analysis.

See T. Sussman and K. J. Bathe, “The
Gradient of the Finite Element Variational
Indicator with Respect to Nodal Point
Coordinates . . . ”, Int. J. Num. Meth. Engng.
Vol. 21, 763-774 (1985).

~

\

\

\_

Finite element analyses: Consider the

17 element mesh shown:
A
r—o-n
B
[ Z
y
ey line
* The ml_d-SIde nodes nearest the of
crack tip are located at the quarter- symmetry

points.

J

Transparency
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Transparency
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Transparency
2-49

Transparency
2-50

-~

Results: Plot of stresses on line of
symmetry for 17 element mesh.

no stress calculated

W s

4001 Tip B Tip A
A
A
200 |
TW S U &&A
(MPa)
0 + ySE— "
z(metersy 02 0625 0875 10
~200 +

N

Pressure band plot (detail):
« The pressure jumps are larger than
5 MPa.

5 MPa/H-_\—I\S MPa

AN
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-

Based on the pressure band plot, we
conclude that the mesh is too coarse
for accurate stress prediction.

However, good results are obtained
for the stress intensity factors (when
they are calculated as described
earlier):

Ka=72.6 MPaVm (analytical
solution=72.7 MPa'Vm)

Kg=64.5 MPaVm (analytical
solution=68.9 MPaVm)

\—

Now consider the 128 element mesh
shown:

s A
g
z
All elements are either Line of
6- or 8-node isoparametric symmetry
elements.

Transparency
2-51

Transparency
2-52



2-30 Basic Considerations in Nonlinear Analysis

Transparency
2-53

Transparency
2-54

4 )

Detail of 128 element mesh:

\
4

VAN

Close-up of crack tip A:

mid-side nodes nearest

the crack tip are

located at the “quarter-points”
so that the 1/Vr stress
singularity is properly modeled.

These elements are 6-node
quadratic isoparametric
elements (degenerated).
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Results: Stress plot on line of symmetry
for 128 element mesh.

no stress calculated

Tip B{_crack Tip A
400
d ol
200
Ty M N
(MPa)
0 4 Comremeemed® -
z (meters) 0.5 q 1.0
—200

~

\—

avYa

Pressure band plot (detail) for 128

element mesh:

» The pressure jumps are smaller than 5
MPa for all elements far from the crack
tips.

A

5 MPa 5 MPa

Transparency
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Transparency
2-57

Transparency
2-58

A close-up shows that the stress jumps
are larger than 5 MPa in the first and
second rings of elements surrounding
crack tip A.

~

\_

N

Based on the pressure band plot, we
conclude that the mesh is fine enough
for accurate stress calculation (except
for the elements near the crack tip
nodes).

We also obtain good results for the
stress intensity factors:

Ka=72.5 MPaVm (analytical
solution=72.7 MPa Vm)
Kg=68.8 MPaVm (analytical
solution=68.9 MPa VVm)
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We see that the degree of refinement
needed for a mesh in linear elastic
analysis is dependent upon the type
of result desired.

» Displacements — coarse mesh

» Stress intensity factors — coarse
mesh

* Lowest natural frequencies and
associated mode shapes — coarse
mesh

+ Stresses — fine mesh

General nonlinear analysis — usually
fine mesh

Transparency
2-59



Topic 3

Lagrangian
Continuum
Mechanics
Variables for
General Nonlinear
Analysis

Contents: B The principle of virtual work in terms of the 2nd Piola-
Kirchhoff stress and Green-Lagrange strain tensors

Deformation gradient tensor

Physical interpretation of the deformation gradient
Change of mass density

Polar decomposition of deformation gradient
Green-Lagrange strain tensor

Second Piola-Kirchhoff stress tensor

Important properties of the Green-Lagrange strain and
2nd Piola-Kirchhoff stress tensors

Physical explanations of continuum mechanics variables

Examples demonstrating the properties of the continuum
mechanics variables

Textbook: Sections 6.2.1, 6.2.2
Examples: 6.5, 6.6, 6.7, 6.8, 6.10, 6.11, 6.12, 6.13, 6.14
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CONTINUUM MECHANICS
FORMULATION

For
Large displacements

Large rotations
Large strains

Hence we consider a body subjected to
arbitrary large motions,

We use a Lagrangian description.

~

t+ At t+At t+ At
P(™"xy, X2, X3)

X2 0 o o P(tx1’ tX21 tx3)
P("x1, X2, "Xa)

Configuration

attime 0 configuration

at time t Configuration

at time t+ At

t X1

Xi = OXi + ‘ui

X3 .
H—Atxi — oXi + t+Atui P = 1, 2’ 3

— t+aAt t

Ui Ui — U

Transparency
3-1

Transparency
3-2
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-

Transparency Regarding the notation we need to
3-3 keep firmly in mind that

— the Cartesian axes are stationary.
— the unit distances along the xj-axes

are the same for %, 'x;, "%
Example:
X2 particle at time O
particle at time t
0X1 tU1 =f

5 X4

—_
N+ e
w4

N

\—

N[

Transparency PRINCIPLE OF VIRTUAL
3-4 WORK

Corresponding to time t+At:
f t+AtTij, 8t+Ateij,t+Ath — t+At%
t+AtV

where

t+ At t+ AtgB t+ At
R = fi 8Ui dVv
t+At
vV

+ f t+AtfiS SUIS t+AtdS
t+AtS

_J
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and

""41; = Cauchy stresses (forces/unit

area at time t+At)

1 / 00U a0u;
Sto miBi = — ¢
t+AtCij = 5 at+Atx} ot By,

= variation in the small strains
referred to the configuration
at time t+ At

N[

We need to rewrite the principle of
virtual work, using new stress and
strain measures:

« We cannot integrate over an
unknown volume.

« We cannot directly work with
increments in the Cauchy stresses.

We introduce:

¢S = 2nd Piola-Kirchhoff stress tensor
0€ = Green-Lagrange strain tensor

J
~

Transparency
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Transparency
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Transparency
3-7

Transparency
3-8

f

The 2nd Piola-Kirchhoff stress tensor:

0

0
t 0
T txi,m Tmn txj,,n

&Si} = tg

The Green-Lagrange strain tensor:

1

5&} =5 (tUi,; + (;Uj,,i + ok, c§Uk,;)
0 t
0 0" Xi t d Ui
where Xim=—_ , oli} =
tAi,m atxm oui} 50;(;

~

N\ (

Note: We are using the indicial notation
with the summation convention.

For example,

0
t O, tm O
0S11 = %[tx1,1 T11 tX1,1

0, tm O
+ X110 T12 1,2
+ ...

0L te O
+ 1,3 T33 tX1,3]

AN
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~

Using the 2nd Piola-Kirchhoff stress T

. ransparency
and Green-Lagrange strain tensors, 3.9
we have

J;VtTi} Stei}‘dv =LV (;Si} Séeifdv
This relation holds for all times

At, 2At, ..., 1, t+AL, ...

L

To develop the incremental finite
element equations we will use Transparency

3-10
j t+A&Si}8t+A(;8ij,odv — t+Atgt
oy

« We now integrate over a known
volume, °V.
- We can incrementally decompose '*6S;;
and "oy, i.e.
t+A(;Sij, = (;S'J' + oS.*

;= d€j + oy
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~

Transparency
311 Before developing the incremental con-

tinuum mechanics and finite element

equations, we want to discuss

- some important kinematic
relationships used in geometric
nonlinear analysis

- some properties of the 2nd
Piola-Kirchhoff stress and Green-
Lagrange strain tensors

\

N[

Transparency To explain some important properties of

3-12 the 2nd Piola-Kirchhoff stress tensor
and the Green-Lagrange strain tensor,
we consider the

Deformation Gradient Tensor

* This tensor captures the straining and the
rigid body rotations of the material fibers.

* |t is a very fundamental quantity used in
continuum mechanics.
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The deformation gradient is defined as

_atX1 6‘X1 0 X4
x= | B Bl glgre
- 0X1 0X2 09Xz system

9%s 0'Xa X3

Using indicial notation,

3%
t —_ I —_— t ..
oXj = % X, = oXijj

~

N

Another way to write the deformation
gradient:

X = (0¥ X")T

where
T
Oy — gox_ , tKT — [tX1 tx2 tX3]
;
the_/ 5
gradient
operator aﬁX2
d
|07 X3

\

Transparency
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Transparency
3-15

Transparency
3-16

-~

The deformation gradient describes the
deformations (rotations and stretches)
of material fibers:

% The vectors d% and
- dx represent the
d°x orientation and length

of a material fiber at
times 0 and t. They

x; are related by
/ g\ dx = X d%
X3

N\

Example: One-dimensional deformation
time 0 timet
-, //
K [ | |
I+

— ———

ANDNAN

2 | - Al
-t —| -y

1.0 0.5

/

Deformation field: ' = %%; + 0.5(%)?

t
t d X4 0
X11=pg— =1+ "X
okt = 2o 1

J
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Consider a material particle initially at
X1 = 0.8:

/] X4

/1 %, = 0.800
% = 1.120

N\

Consider an adjacent material particle:

|
[ ] [ ]
| N

%; = 0.850
%y = 1.211

Compute ¢X11:
A%y 1.211 - 1.120
A%, .850 — .800
8X11|Ox1= = 180

0.8

= 1.82 « Estimate

Transparency
3-17

Transparency
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Transparency
3-19

Transparency
3-20

~

Example: Two-dimensional deformation

X2

/ /

X4

time t

N

481 .667
(°%1, %%2) = (%1, X2): 0X = [—.385 .667]
Considering d°x,
X2
dOX/ dtl
o
X4
dx = X dX

[.75] :[ 481 .667][.866]
0 —.385 .667]|.5

AN
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/

Considering d°%,

X2

|

d'X/

d'g = oX d’%

[]- [ e

The mass densities %p and 'p may be
related using the deformation gradient:

infinitesimal volumes
time 0 time t

X3

”

Xy \Y\dt&

Three material fibers describe each volume.

)

Transparency
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Transparency
3-23

Transparency
3-24

(

For an infinitesimal volume, we note
that mass is conserved:

' 'a¥ = % %V
volume at volume at
time t/ \\time 0
However, we can show that

'dV = det X °dV

Hence
% ="p det X

N

Proof that 'dV = det ¢X °dV:

[ 1] 0
d°51 =10 |dsy ; do_)$2= 1 |ds2
| 0] 0
0
d053= 0 |dss
1

Hence °dV = ds; ds. dss.

AN
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-

But d'xi = X d% ;i=1, 2, 3

and 'dV = (d'xs x d'xz) - d'Xa
= det ¢X ds1 ds> dss
= det ¢X °dV

\—

\

Example: One-dimensional stretching

time 0

X4 .
4tlme t

uniform stretching
plane strain conditions

1.0 .25

|
Deformation field: x, = %; + 0.25%

gradient: X =| 0 1 O
0 0 1

Deformation 125 0 O
— detoX = 1.25

Hence % = 1.25% (‘p < % makes physical sense)

~N

Transparency
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~

Transparency We also use the inverse deformation
radient:
d’ = X d'x

Mathematically, %X = (¢X)~*

=1d%

MATERIAL FIBER MATERIAL FIBER
AT TIME 0 AT TIME t

Proof: d° = 9X (¢X d°)
= (WX ¢X) d%

~

Transparency An important point is:
3-28

oX = oR oU

above form.

Polar decomposition of ¢X:

¢R = orthogonal (rotation) matrix
dU = symmetric (stretch) matrix

We can always decompose oX in the
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s

Example: Uniform stretch and rotation

time t

time O

X o0
2
5 o0
!
a0 ',

oX = R .
1.164 -O.750]=[0.866 —0.500] [1.333 0 ]
0667 1.209 0.500 0.868 0 1500

\—

\

Using the deformation gradient, we can
describe the (right) Cauchy-Green
deformation tensor ‘

oC = oX oX

This tensor depends only on the stretch
tensor oU:

oC = (U 6R") (6R oV)
= (gU)? (since oR is orthogonal)

Hence ¢C is invariant under a rigid
body rotation.

_/

Transparency
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Transparency
3-31

Transparency
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~

Example: Two-dimensional motion

time t+ At
X2 /
time\Ko rigid body motion,
ol rotation of 90°
time t
- X1
ty — |19 .2 t+Aty _ 5 —1
°X_[ 5 1] °5‘[15 2]
t~_ 2.5 8 t+at~ _ | 2.5 8
=25 10 ic- %3 164)

N\ (

The Green-Lagrange strain tensor
measures the stretching deformations. It
can be written in several equivalent
forms:

1
1) 6§=‘2—(5Q_D

From this,
* € is symmetric.

« For a rigid body motion between
times t and t+At, *4e = ¢&.

» For a rigid body motion between
times 0 and t, o€ = 0.

AN
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* !g is symmetric because \C is
symmetric
o€ = %( C =)
e For arigid body motion from t to
t+ At, we have
f+A;x = B ;x
"oC = oL W o =8
¢ For a rigid body motion
C=1c8=0

N

1
2) o€ = 5 (Ui + dUsi + JUk,i oUky)

LINEAR IN NONLINEAR IN
DISPLACEMENTS  DISPLACEMENTS

where Jui _ou
O™k BOX",

Important point: This strain tensor is exact and
holds for any amount of
stretching.

VAN

Transparency
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Transparency
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Transparency
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Example: Uniaxial strain

'L

‘A1 ('A)2
e =g + 5 (o)

engineering strain

g

1.0°L

N\ (

Example: Biaxial straining and rotation

rigid body motion,
rotation of 45°

N

X2
—
time 0; timet/
w _[15 o]
oX = | 0 5
i~ [2.25 0]
oC = L0 .25
e _[625 O ]
=1 0 -.375

X4

time t+At—

aty _ [1.06 —.354]
71106 354

ot~ | 2.25 o]
oC = . 0 .25

tatg _ [.625 0 ]
=" o -.375

ANE
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Example: Simple shear

X2

| ‘A 10 |
| |
| w _ |10 ‘A]
1.0 °5_[ 0 1.0
‘C=[1'° ‘A ]
T A 1.0+ ()2
h——J te _ 0 tA/Z]
1.0 0§ - [tA/z (tA)2/2

X4
For small displacements, J€ is
approximately equal to the small strain
tensor.

N

The 2nd Piola-Kirchhoff stress tensor
and the Green-Lagrange strain tensor
are energetically conjugate:

tTi} 8tei} = Virtual work at time t per unit
current volume

0S;;80€y, = Virtual work at time t per unit
original volume

where ¢S; is the 2nd Piola-Kirchhoff
stress tensor.

AN
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Transparency
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Transparency
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The 2nd Piola-Kirchhoff stress tensor:

0
'S, = P

Oy, tm O
Xim Tmn tXjn — INDICIAL NOTATION

oS =

e OnT
X '7 X" — maTRIX NOTATION

'0"1130

Solving for the Cauchy stresses gives
'p
tTij, = o—‘; 0Xi.m 0Smn (}Xj,n — INDICIAL NOTATION

~-

T = 0% X &S ¢XT — maTRIX NOTATION

N\

Properties of the 2nd Piola-Kirchhoff stress
tensor:

« &S is symmetric.

« ¢S is invariant under a rigid-body
motion (translation and/or rotation).

Hence ¢S changes only when the
material is deformed.

« ¢S has no direct physical
interpretation.

y
~
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~

Example: Two-dimensional motion

J

N

time t time t+At
X2 timeO
_
Y
rigid body
motion, rotation
Cauchy stresses of 60 Cauchy stresses
attime t at time t+ At
X4
At time t, At time t+ At,
tv |1 2 traty _ | D —1.20
OX"[O 15] OX'_‘;866 .923]
o [ 0 1000] trat _ [ 634 ~137o]
T~ 1000 2000 I=1-1370 1370

g — [—346 733
0271 733 1330

|

tralg _ [—346 733]
733 1330

~
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Total Lagrangian

Formulation for
Incremental
General Nonlinear
Analysis

Contents: B Review of basic principle of virtual work equation,
objective in incremental solution

B Incremental stress and strain decompositions in the total
Lagrangian form of the principle of virtual work

B Linear and nonlinear strain increments
B Initial displacement effect

B Considerations for finite element discretization with
continuum elements (isoparametric solids with
translational degrees of freedom only) and structural
elements (with translational and rotational degrees of
freedom)

B Consistent linearization of terms in the principle of
virtual work for the incremental solution

B The ‘“‘out-of-balance” virtual work term
Derivation of iterative equations

B The modified Newton-Raphson iteration, flow chart of
complete solution

Textbook: Sections 6.2.3, 8.6, 8.6.1
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\

TOTAL LAGRANGIAN Transparency
FORMULATION
We have so far established that
A 0 _
J(;Vt+ 68'} 8t+A('§8ij, dV — t+At%
is totally equivalent to
ﬁ+AtVt+AtTi} 8t+Atei}.t+Ath — t+At%
Recall :
Transparency
4-2

> f t+AtTij, 8t+Atei}t+Ath — t+At%
t+AtV

is an expression of

 Equilibrium
« Compatibility
+ The stress-strain law

all at time t+ At.
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Transparency
4-3

Transparency
44

~

» We employ an incremental solution
procedure:

Given the solution at time t, we seek
the displacement increments u; to
obtain the displacements at time t+ At

tHAL =ty 4 U,

We can then evaluate, from the total
displacements, the Cauchy stresses at
time t+ At. These stresses will satisfy
the principle of virtual work at time

t+ At.

N\ [

» Our goal is, for the finite element
solution, to linearize the equation of the
principle of virtual work, so as to finally
obtain

tK Au(ﬂ — t+AtB _ tF

\—a——/\q-_/_

"
tangent/s@ point% externally applied \\

vector of

stiffness displacement loads at nodal point forces
matrix increments time t+At corresponding to
the element
internal stresses
at time t

The vector AU now gives an
approximation to the displacement
increment U = ""*'U - 'U.

AN
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The equation
tK Au(1) — t+AtR _ tF

I NUER

nxn nxi nxi nxi
is valid

» for a single finite element
(n = number of element degrees of
freedom)

« for an assemblage of elements
(n = total number of degrees of
freedom)

\

N

»We cannot “simply” linearize the prin-
ciple of virtual work when it is written
in the form

J’ H-AtTij, 8t+Ateij,t+Ath — t+Atgt
H—MV

« We cannot integrate over an unknown
volume.

* We cannot directly increment the
Cauchy stresses.

Transparency
4-5

Transparency
4-6
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Transparency
4-7

Transparency
4-8

~

» To linearize, we choose a known
reference configuration and use 2nd
Piola-Kirchhoff stresses and Green-
Lagrange strains as described below.

Two practical choices for the reference
configuration:
« time = 0 — total Lagrangian
formulation
» time =t — updated Lagrangian
formulation

N[

TOTAL LAGRANGIAN
FORMULATION

Because '*'6S; and "‘Ge; are energetically
conjugate,

the principle of virtual work
f t+AtTij, 8t+Ateij.t+Ath — t+At%
t+AtV

can be written as

J t+A(§Si} 8t+A(§8ij,odV — t+At%
Y

_J
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Transparency
We already know the solution at time t 4-9
(0Si, ouij, etc.). Therefore we
decompose the unknown stresses and
strains as
t+ At t
M oSi}Z S'} + OSiJ'.
known unknown increments
HA&&}: o0€j + o€
In terms of displacements, using
Transparency
1 4-10
0€j = 2 (0Uij + oUyi + Uk, oUk,)
and
1
HAc;sij, _ 5 (t+A(§Ui,} + t+A(t)uJ’i + HA&Uk,i t+A(§uk,j)
we find

1
08§ = 5 (oUij + oUji + ok, ol + ol olik,)

v

v

1 linear in u;
+ 2 oUk,i oUk,j
— initial displacement
nonlinear’in u; effect
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Transparency
4-11

Transparency
4-12

-

We note 3’6y, = do€j

* Makes sense physically, because each
variation is taken on the displacements
at time t+ At, with 'u; fixed.

X2

\tli\me 0 time té étime t+ At

X

variation

\—

\

We define

-1
0€jj = > (oUi,j, + oUj,i + OUki oUkj t+ olk,i éUk,')

Vv

1 LINEAR STRAIN INCREMENT
onij = D) oUk,i oUk,j

NONLINEAR STRAIN INCREMENT

Hence

0€j = o€ + omy, Oo€y = doey + domjj

/
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An interesting observation:

* We have identified above, from continuum
mechanics considerations, incremental strain

terms

o€ — linear in the displacement increments y,
oMy — nonlinear (second =order) in the
displacement increments u;

* In finite element analysis, the displacements
are interpolated in terms of nodal point
variables.

N[

* In isoparametric finite element
analysis of solids, the finite element
internal displacements depend linearly
on the nodal point displacements.

N
tui — k§1 hktuki

Hence, the exact linear strain increment
and nonlinear strain increment are
given by oei}and oM -

J L

Transparency
4-13

Transparency
4-14
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Transparency
4-15

Transparency
4-16

~

» However, in the formulation of
degenerate isoparametric beam and
shell elements, the finite element
internal displacements are expressed
in terms of nodal point displacements
and rotations.

'y, = f (linear in nodal point
displacements but nonlinear in
nodal point rotations)

\_

N

* For isoparametric beam and shell
elements

— the exact linear strain increment is
given by ,e;, linear in the
incremental nodal point variables

— only an approximation to the
second-order nonlinear strain
increment is given by V25U, ; oUkj
second-order in the incremental
nodal point displacements and
rotations

_J
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The equation of the principle of virtual
work becomes

J;Vosij, 808i}0dV +J;V otSiJ', 80T]i}odV
= g — f 0Sj; doey °dV
oy

Given a variation du;, the right-hand-
side is known. The left-hand-side
contains unknown displacement
increments.

Important: So far, no approximations
have been made.

N

force

t+AtR_ ________ __/

'F

'u 4y displacement

All we have done so far is to write the

principle of virtual work in terms of 'u;
and u;.

J

Transparency
4-17

Transparency
4-18
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/

Transparency * The gqu_ation of the princip_le of virtual

419 work is in general a complicated
nonlinear function in the unknown
displacement increment.

+ We obtain an approximate equation
by neglecting all higher-order terms in
ui (so that only linear terms in u;
remain). This leads to

3K AU = "R — §F

The process of neglecting higher-order
terms is called linearization.

N

Transparency Now we b_egln to linearize t_he terms
4-20 that contain the unknown displacement
increments.

1) The term JOV 0S dom; °dV

is linear in u;:

* 0Sj; does not contain u;.

1
* SoMj = 7 oUk,i Dol + % OoUk,i oUk,j

is linear in u;.

VAN
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2) The term J; VoSi} d0€j°dV contains
linear and higher-order terms in u;:

* oSy is a nonlinear function (in
general) of o€;.

* 8o€; = do€y + domy Is a linear
function of ui.

We need to neglect all higher-order
terms in u;.

\

N[

Linearization of oSjjd0€ij:

Our objective is to express (by
approximation) oS as a linear
function of ui (noting that oSy equals
zero if u; equals zero).

We also recognize that do€j contains
only constant and linear terms in u;.
We will see that only the constant
term doej should be included.

Transparency
4-21

Transparency
4-22
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(

oS can be written as a Taylor series in o€

d .
0Sj = oSy o€rs + higher-order terms
aO rs t\—'_/
linear and
known quadratic in u;
- eSy
= (Oers + 0'7]rs) = OCurs 0€rs
a08I'S t — ‘/|
linear quadratic linearized term
in y in u;

\

Transparency
4-23
Transparency
4-24

Example: A one-dimensional stress- strain law

oS!  ecomputed solution

AN
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At time't,

slope is oC

0S

o€

\

N (

Hence we obtain

OSij, 80&} = OCiJ',rs 0€rs (806‘@ + SOT]i})
‘T S T

+
= oCi}rs 0€rs Boei} + OCij,rs 0€rs BOT]i}

does not linear in u;
contain u;
linear in u; quadratic in u;

= oCijrs 0€rs O0€ij

linearized result

Transparency
4-25

Transparency
4-26
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4 )

Transparency The final linearized equation is
4-27

0 0
l J; voCij.-s 0€rs 8°ei} dVv + L V(}Si}, aoT]ij, dV'

d3U' oK AU

= t+Atgl —J; (;S% Soei} odV
A )

when

8UT (t+AtR _ (;F)/discretized
using the
finite element
method

N
AN

« An important point is that
Transparency
4-28

0 —
LVJS;} Boei} dVv = LV&SU,S(;Ei}OdV

the virtual work due to
because the element internal
stresses at time t

Soei} = 568@
» We interpret
tratgy — f &Si}soeifdv
Oy

as an “out-of-balance” virtual work term.
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~

Mathematical explanation that 8ce; = 3¢€j;

We had 8t+A(§8ij,= Soei}'l‘ ao‘T]ij,.

If ui =0, then the configuration at time
t+ At is identical to the configuration at
time t. Hence 8‘*%&}]“ = 30€j.

It follows that BOei} 0

8t+A(;8ij,

ui=0

B 80el}|ui=0 * 80T|I"ua=0 B 808’*

W4

U\

This result makes physical sense
because equilibrium was assumed to
be satisfied at time t. Hence we can
write

J;VoCi}rs 0Crs Soei; 0dV + J;Vési} So'f]ij, 0dV

— t+atgy _ tgp

Check: Suppose that '"4'% = 'R and
that the material is elastic. Then
A% must equal 'ui, hence
ui = 0. This is satisfied by the
above equation.

Transparency
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Transparency
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-

Transparency
4-31 We may rewrite the linearized governing
equation as follows:
L oCijrs Aoeld) doey, °dV + L 0S;; 8Aom§ °dV
A" Vv
= t+At% _J; t+A(§Si(j.0) 8t+A(;8i§,o) Odv
V\ -~ . = 7
tS St
004 o€jj
Transparency When the linearized governing equation

is discretized, we obtain
3& AQU) _ t+AtB _ t+A&E(0)
N’
oF
We then use

t+AtU(1) - t+AtU(O) + AU(1)

_/
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Having obtained an approximate
solution ***'U™", we can compute an
improved solution:

L OCiJ‘rs Aoeg) 8Oei}odv +J; (;SIJrSAOnler) OdV
v v
— 1+At9R _f t+A(;Si(}1) 8t+A(§8i(}1) OdV
Oy

which, when discretized, gives
(;K Ag(2) — t+AtB _ t+A(§E(1)

We then use
t+At—u(2) — t+AtQ(1) + AQ(2)

\

~

In general,

f oCys Boers’ Bogy °dV + f 68 dAom °dV
OV OV
— t+At% _j t+A(§Si(},k_1) 6t+A(;8i(}k71) odv
Ov

which, when discretized, gives

(;K Ag(k) — t+AtB _ t+A0tE(k~1)

[ )

N omeyied
from " *tuk
(fork=1,28, .) '

Kk
Note that ""2'U™ = U + 3 AUW.
p=1

~

Transparency
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Transparency
4-34
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Transparency
4-35

-

Given 'U, ""*'R:

Compute ¢K, oF

|

1+ A(;E(O)

t+Atu(0) — tU

_t
_O__F_i
K =

1

E“E otK Ag(k) —

using "

Compute " GF®

t+AtU(k)

= trayyk=1) 4 Atk

t+AtB _ t+A(;E(k_1)

AtU(k)_

l
|CHECK FOR CONVERGENCE]

Equilibrium
not satisfied

Equilibrium
is satisfied
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Updated
Lagrangian
Formulation for
Incremental
General Nonlinear
Analysis

Contents:

B Principle of virtual work in terms of 2nd Piola-Kirchhoff
stresses and Green-Lagrange strains referred to the
configuration at time ¢

B Incremental stress and strain decompositions in the
updated Lagrangian form of the principle of virtual work

M Linear and nonlinear strain increments

B Consistent linearization of terms in the principle of
virtual work

B The “ount-of-balance” virtual work term

B Iterative equations for modified Newton-Raphson
solution

B Flow chart of complete solution
B Comparison to total Lagrangian formulation
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* THE FE. DISCRETIZA-
TION BIWES

t ()
0 \S Au

&_:\,1,3,...

tint

+aat (FE)
-

R-

—
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THE TLF tant et °
J
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Transparency
5-1

Transparency
5-2

-~

UPDATED LAGRANGIAN
FORMULATION

Because ""4{S; and '"%i€; are energetically
conjugate,

the principle of virtual work
J t+AtTi} 8t+Atei}t+Ath — t+At%
t+AtV

can be written as

'[t t+A{Si}, 8t+A'{8i}th — H—Atgi
Vv

~

We already know the solution at time t
(iS, tuiy, etc.). Therefore we
decompose the unknown stresses and
strains as

A8 = 1S+ 1S = Ty + Sy

known unknown increments

—— ———

HA}&; = :E\K‘*' t€ip = 1€y

0

AN
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In terms of displacements, using

t+A 1 [t+at t+At t+At . t+At
et §<+ Ui+ T G tuk,}.)

we find

1 1
€, = 5 (Ui + ) + 5 tUk,i Uk

linear in u; nonlinear in u;

(No initial displacement effect)

N

We define
_1 . .
€ = 5 (tUij + i)  linear strain increment
_ 1 . -
Mj = 5 tUki W nonlinear strain increment
Hence

t€j = € T mijj
8185} = Btei} + Smi}

ANG

Transparency
5-3

Transparency
5-4
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~

The equation of the principle of virtual
Transparency work becomes
5-5

f tSi} StSi} tdv +f tTij. Smi} tqv
ty tv
_ tratgy f T, 8, 'dV
tv

Given a variation du;, the right-hand-side
is known. The left-hand-side contains
unknown displacement increments.

Important: So far, no approximations
have been made.

('

\

Transparency Just as in the total Lagrangian formulation,

5-6

» The equation of the principle of virtual
work is in general a complicated
nonlinear function in the unknown
displacement increment.

* Therefore we linearize this equation
to obtain the approximate equation

KAU=""R-F

J
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We begin to linearize the terms
containing the unknown displacement
increments.

1) The termf"ri} Smi}‘dv
tv

is linear in u;.

- 'Ty does not contain ui.
1 1
« Oy = 5 tUki Ot} + 5 Otk tUkj

is linear in u;.

\

~

2)

The term [ 1S 8:€j'dV contains
v

linear and higher-order terms in u.

* +Sy is a nonlinear function (in general)

of tei}.

« &€= de + Oy is a linear function
of u.

We need to neglect all higher-order
terms in ui.

Transparency
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Transparency
5-8
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Transparency
59

Transparency
5-10

~

tS; can be written as a Taylor series in (&

S = Sy t€rs + higher-order terms
¢ atefs t \*\
linear and
known quadratic in u;
. 0tSj .
- att_st (ters + t'ﬂrs) - tCij.rs t€rs
rs — haerout

t
linear quadratic linearized term
in Ui in Uj

~

\_

~

Hence we obtain

tSi} 0:€j = 1Gijrstrs (018 + Btnij,)
Y ¥

= tCij,rs t€rs Btei} + tCi}rs t€rs Bt”f]i}
N—g—

N
does not linear in u;
contain u;

linear in u; quadratic in u;

= tCi}rs t€rs Btei}

linearized resuit
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The final linearized equation is

J’ tCi}rs t€rs Ot} ‘dv +f tTi} oM 'dv
ty ty

— |
U K AU
— t+A'(g{ _j tTi} Bte.*td\V\
. 'v ,
T A when
dSU" ("R — IF)— discretized

using the
finite element
method

~

Y

~

An important point is that
J:vtTi} Btei} th

is the virtual work due to element
internal stresses at time t. We interpret

tratgy — L‘fr.} gy 'dV

as an “out-of-balance” virtual work term.

~\

Transparency
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-

Solution using updated Lagrangian

Tran;pﬁ;rency formulation

Displacement iteration:

t+Atui(k) — t+Atui(k—1) + AUi(k), t+Atui(0) — ‘Ui

Modified Newton iteration:

J:V tCi)'rs Aters(k) Bteij, th +J:vtT'ljr8At1]§}k) tdv

— t+At9R _ t+AtT€j',(_1) 8!+Ate§,k_1) t+Ath
+aty(k=1)
k=1,2,..
Transparency
5-14 which, when discretized, gives
:_K Ag(k) = t+AtB _ {Iﬁ:E(k—ﬂ
S0
oomPuted
ffork = 1, 2,3, ..) from "4tufc

k
Note that 2™ ='u + 3 AUYP.
=

VAN
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Given 'U, ""*'R;

Compute K, {F
i

ngtE(O) _ §E’ t+AtQ(O) -ty

k=1

l k=k+1 l

{5 Ag(k) _ t+AtB _ {iﬁ}E(k—ﬂ
t+Aaty (k) _ t+At (k—1) (k)
Compute {TaF® = 2 + AU
using t+Aty_(k)
[CHECK FOR CONVERGENCE]
Equilibrium
Equilibrium is satisfied

not satisfied

~

N

Comparison of T.L. and U.L.

formulations

» In the T.L. formulation, all derivatives
are with respect to the initial coordi-
nates whereas in the U.L. formula-
tion, all derivatives are with respect
to the current coordinates.

+ In the U.L. formulation we work
with the actual physical stresses
(Cauchy stress).

AN
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-

Transparency
5-17

The same assumptions are made in
the linearization and indeed the same
finite element stiffness and force vec-
tors are calculated (when certain
transformation rules are followed).
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B Summary of principle of virtual work equations in total
and updated Lagrangian formulations

B Deformation-independent and deformation-dependent
loading

B Materially-nonlinear-only analysis
B Dynamic analysis, implicit and explicit time integration

B Derivations of finite element matrices for total and
updated Lagrangian formulations, materially-nonlinear-
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B Stress matrices
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correct element rigid body behavior
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« WE HAVE DEVELOPED * THE F.E MATRICES

THE BENERAL INCRE- ARE FORMULATED
MENTAL CONTINUUM AND WE DS Cuss
MECHANICS EBUATIONS THEIR EVALUATION

IN THE PREVIOUS LEC - BY NUMERICAL INTE-
TURES ERATION

* Tun THIS LECTURE

o WE DISCusS THE
FE MATRICES USED
[N STATIC AND PYNA-
Mic ANALYSIS | IN
GENERAL MATRIX
TERMS

Markerboard
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Transparency
6-1

Transparency
6-2

-

DERIVATION OF ELEMENT
MATRICES

The governing continuum mechanics
equation for the total Lagrangian (T.L.)
formulation is

0 t 0
fOVoC@rsoers Soei}, dVv +J0Vosi} 80’!];} dVv

= t+At% —f &S'J' Boei}OdV
Ov

The governing continuum mechanics
equation for the updated Lagrangian
(U.L.) formulation is

t
ﬁv tCi}rs t€rs Btei} dVv +ﬁvt’7i} Smi} av

= tratgp _JtVtTiJ" 8tei}‘dv

AN
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For the T.L. formulation, the modified
Newton iteration procedure is

(fork=1,23,..)

f oCiys Aoels Soey °dV + f ¢Sy SAom{? °dV
oy Oy

= t+Al% _f t+A('§Si(j',(_1) 8t+At8(k 1) Odv
Oy
where we use
t+Atui(k) _ t+Atui(k—1) + Aui(k)
with initial conditions
t+AtuI(0) _ tui, t+AtS(O) - tslp t+A(§8(O) _ 08.,

Transparency
6-3

N

For the U. L. formulation, the modified

Newton iteration procedure is
(ffork=1,2 3, ..)

ﬁ tCurs Aters ateu, th +f tTu, SA{T](k)t

— t+Atg{ _ t+AtTi(}k_1) 8t+Atei(jl.(_1) t+AldV

t+Atys(k—1)
where we use
trat ) trat k1) AUi(k)

with initial conditions

t+at 0) . t+AtT§0) =7, t+Atei(,°) = &

VAN
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Transparency
6-5

Transparency
6-6

-

Assuming that the loading is
deformation-independent,

HA‘Q{ =f t+A(;fiB 8Ui Odv +I t+A(;fiS 8u|S OdS
0

Y 0g

For a dynamic analysis, the inertia
force loading term is

f t+Atp t+Atui SUi t+AldV =J' 0p t+Atl-:|i aui Odv
l+AtV OV

ma'y be evaluated at time 0

\

If the external loads are deformation-
dependent,

J. t+AtfiB BU| t+Ath e t+AtfiB(k—1) SUi t+AldV
(+A(V H'A!V(k—”

and

I t+AlfiS SUIS l+AtdS = t+AtfiS(k—1) auls t+AtdS
t+atg 1+atgk-1)

NS
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Materially-nonlinear-only analysis:

fCIFS Aers ael} dV — t+Al% It+At (k—1) ael} dV

This equation is obtained from the
governing T.L. and U.L. equations by
realizing that, neglecting geometric
nonlinearities,

t+At — t+At — t+At
physical stress

\

N\

Dynamic analysis:

Implicit time integration:

t+At t+ At 0 _ t+At.
R = QRexternal J U| 8U|
loads

Explicit time integration:

T.L. J‘;V (;Sw 868.*°dV ='q
U.L. | Jt VtTij. Stei} 'qv = '@

M.N.O. f '3 de3dV = 'R
v

Transparency
6-7

Transparency
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The finite element equations corresponding
Transg;rency to the continuum mechanics equations are

Materially-nonlinear-only analysis:

Static analysis:
tK A!(i) - t+AtB _ t+AtE(i—1) (6.55)

Dynamic analysis, implicit time integration:
M t+AtU(i) + tK Au(l) — t+AtR _ t+AtF(i—1) (6.56)

Dynamic analysis, explicit time integration:
M'U="R-'F (6.57)

\—

N

Total Lagrangian formulation:

Transparency
-10 . .
61 Static analysis:

(KL + aKni) AUD = tratg _ t+atpi=1)

Dynamic analysis, implicit time integration:

M t+AtQ(i) + (5KL + &KNL) AU_(D
= THAIR _ t+AtEi-1)

Dynamic analysis, explicit time integration:
MU ="R~-dF

_J
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Updated Lagrangian formulation:

Static analysis:
(KL + K AU = AR — At

Dynamic analysis, implicit time integration:

M09 4+ (KL + K AUY

_ t+At t+At=(i—1
- B — t+A F )

Dynamic analysis, explicit time integration:

M'U="R-F

\_

The above expressions are valid for

« a single finite element
(U contains the element nodal
point displacements)

« an assemblage of elements
(U contains all nodal point
displacements)

In practice, element matrices are
calculated and then assembled into the
global matrices using the direct
stiffness method.

Transparency
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Transparency
6-13

Transparency
6-14

Considering an assemblage of
elements, we will see that different
formulations may be used in the same
analysis:

THE FORMULATION
USED FOR EACH
ELEMENT IS
GIVEN BY

ITS ABBREVIATION

N

We now concentrate on a single element.

The vector & contains the element incremental
nodal point displacements

] lc I===| 1
R el i

'ﬂ::lcdnc

VAN
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We may write the displacements at any point in the

element in terms of the element nodal displacements:

Example:
X2

\

N

Finite element discretization of governing
continuum mechanics equations:

For all analysis types:

f °p t+mui Su; °dV—> SQT (opJ; ﬂT H °dv)t+AtQ
v vV

M

where we used U4
uz| =H

Us

=

displacements at a point within the element

Transparency
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Transparency
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612 Formulation of Finite Element Matrices

Transparency
6-17

Transparency
6-18

~

and

traigy = f v 24P Su; °dv + f A4S SuP °dS
oy 0
}
da" < f HT ™48 %V + f HST*44S °dS)
\Jov - - 0g - |

t+AtR
where Uy
Uz ||= H% 0
Us
on S

N\ (

Materially-nonlinear-only analysis:

Considering an incremental displacement u;,

f Ciyrs €rs dedV — 30" ( LEI CB. dV) ]
\Y

'K
where : ,
A Example: Two-dimensional
e =B plane stress element:

N’

a vector containing €11
components of e} | g = [ ezz:l
2

€12

J
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and
f ‘o dedV — 80" ( f BLS dv)
\") \'
'

where 'S is a vector containing
components of ‘o

Example: Two-dimensional plane stress
element:

t

o t0’11

Z= 22
t
g12

~

N\

Total Lagrangian formulation:
Considering an incremental displacement u;,

Lv OCijrs 0€rs Soeij, OdV - S_QT ( J; (}B__I OQ (;QL odv) _Q
Vv

oKL
where

o€ =¢BL 0

a vector containing
components of oej

ANG

Transparency
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6-14 Formulation of Finite Element Matrices

-~

\—

Transparency
6-21 [, d5480my°av > 8" (| dh. 45 8B, °av) @
A" v
oKnL
where
JS is a matrix ¢Bnw O contains
containing components components of
of (;Si} ) oUij
Transparency
6-22 and

J , oSk 3oy °dV — 30" ( L oBl ¢S °dV>
0 ) \V]

’

oF
where ¢S is a vector containing
components of ¢S

_/
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Updated Lagrangian formulation:

Considering an incremental displacement u;,

j {Cijrs t€rs Stei}tdv — 30" ( J' y 1Bl «C 1BL th) a
ty t

o
Ke

where

e = }EL a

a vector containing
components of e;

~

N\

[ myomyiav— 80" ([ 18T 'T B 'av) 0
tV tv

Knw
where
'T is a matrix 'BnL 0 contains
containing components | components of
of t'Tij, tUij

~
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6-16 Formulation of Finite Element Matrices

Transparency
6-25

Transparency
6-26

(

and

J:vtTi} Stei} v — BQTU:V }EE ti th)

F

where 'T is a vector containing
components of tTi}

« The finite element stiffness and mass
matrices and force vectors are
evaluated using numerical integration
(as in linear analysis).

* In isoparametric finite element
analysis we have, schematically, in
2-D analysis

+1 (+1
5=f_1 L B' CBdetJdrds

\\G
K —"-Z % oy G B

J
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s

And similarly

+1 +1
F f BTTdetJdrds

\\G
EiEﬁE_aa;gi} -

+1
f [ PHTHdetJdrds

M = 2 % ai}gi} \\G

ﬁ

Frequently used is Gauss integration:

Example: 2-D analysis

r, s values:
+(.7745...
0.0

All integration points are in the interior
of the element.

J L

Transparency
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6-18 Formulation of Finite Element Matrices

~

Transparency Also used is Newton-Cotes integration:
6-29

Example: shell element

5-point Newton-Cotes
integration in s-direction

Integration points are on the boundary
and the interior of the element.

Gauss versus Newton-Cotes Integration:
Transparency

6-30 « Use of n Gauss points integrates
a polynomial of order 2n-1 exactly,
whereas use of n Newton-Cotes
points integrates only a polynomial
of n-1 exactly.

Hence, for analysis of solids we
generally use Gauss integration.

» Newton-Cotes integration involves
points on the boundaries.
Hence, Newton-Cotes integration may
be effective for structural elements.

_J
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In principle, the integration schemes
are employed as in linear analysis:

¢ The integration order must be high enough
not to have spurious zero energy modes in
the elements.

¢ The appropriate integration order may, in
nonlinear analysis, be higher than in linear
analysis (for example, to model more
accurately the spread of plasticity). On the
other hand, too high an order of integration is
also not effective; instead, more elements
should be used.

~

Example: Test of effect of integration order

Finite element model considered:

Thickness = 0.1 cm

E =6 x 10° N/cm?
Er=0.0

v=0.0
b o) ¢ o, =6 x 10° Nem?

10.cm M = 10P N-cm

10 cm ‘

J
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6-20 Formulation of Finite Element Matrices

Transparency
6-33

Transparency
6-34

4 R

Calculated response:
M
My
20}
2x2
- ./_ 4x4
Limitload ———————— e ——
1.5 ;i —
3x 3/ 7
1.0 Gauss integration
—_— 2x2
—_————.—3X3
—————— 4x4
05F —  — Beam theory
My, ¢y are moment and rotation at
first yield, respectively
0.0 L I 1 1 |
0 1 2 3 4 5 ¢
by

~
/

Problem: Design numerical experiments
. which test the ability of a
finite element to correctly
model large rigid body
translations and large rigid
body rotations.

— Consider a single two-
dimensional square 4-
node finite element:

__s— plane stress
or plane strain
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Numerical experiment to test whether a
4-node element can model a large rigid
body translation:

f kb P

two equy 7
M.N.O. >

trusses

I

This result will be obtained if any of
the finite element formulations
discussed (T.L., U.L., M.N.O. or linear)
is used.

~

\

Numerical experiment to test whether a
4-node element can model a large rigid
body rotation:

1

1

R

? M.N.O. truss

VAN
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6-22 Formulation of Finite Element Matrices

_ When the load is applied, the element
Tmnzp;;e“cy should rotate as a rigid body. The

) load should be transmitted entirely
through the truss.

element is stress-free

\ applied load

[ force in spring

Note that, because the spring is
modeled using an M.N.O. truss
element, the force transmitted by
the truss is always vertical.

/

\

After the load is applied, the element

T should look as shown in the following
ransparency .

6-38 picture. _
applied load

original

element S— [ —-| __s—element

remains

stress-free [ ——s—force resisted

by spring

_

This result will be obtained if the T.L.
or U.L. formulations are used to model
the 2-D element.

J L
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Two- and Three-
Dimensional Solid
Elements; Plane
Stress, Plane
Strain, and
Axisymmetric

Conditions

Contents:

B Isoparametric interpolations of coordinates and
displacements

B Consistency between coordinate and displacement
interpolations

B Meaning of these interpolations in large displacement
analysis, motion of a material particle

B Evaluation of required derivatives
B The Jacobian transformations

B Details of strain-displacement matrices for total and
updated Lagrangian formulations

B Example of 4-node two-dimensional element, details of
matrices used

Textbook:

Example:

Sections 6.3.2, 6.3.3
6.17
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* FIMTE ELEMENTS € AN

IN GENERAL RE CATE-
GORIZED AS

- CONTINUUM ELEMENTS
(soLip)

- STRUCTURAL ELEMENTS

IN THIS LECTURE

*WE COoNSIDER THE
2-D CONTINKWUM
)S 0 PARAMETRIC
ELEMENTS

*THESE ELEMENTS
ARE USED VERY
WIDELY

- THE ELEMENTS ARE

- WE ALSo POINT ouT

VERY CENERAL ELE-
MENTS FoR Gecop-
METRIC AND MATERIAL

NONLINEAR CONDITIONS

How GENERAL
3-D ELEHENTS ARE
CALCULATED USING
THE SAME PRoOCE-
DURES

Markerboard
7-1



7-4 Two- and Three-Dimensional Solid Elements

Transparency
7-1

Transparency
7-2

(

TWO- AND THREE-DIMENSIONAL
SOLID ELEMENTS

» Two-dimensional elements comprise
— plane stress and plane strain elements
— axisymmetric elements

* The derivations used for the two-
dimensional elements can be easily
extended to the derivation of three-
dimensional elements.

Hence we concentrate our discussion
now first on the two-dimensional
elements.

N\

X2

TWO-DIMENSIONAL
AXISYMMETRIC, PLANE
STRAIN AND PLANE STRESS
ELEMENTS
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\_

Because the elements
isoparametric,
0 N 0.k 0
X1 = 2 h°xf , %

and

are

where the h¢’s are the isoparametric

interpolation functions.

y

-

X2

time t

Example: A four-node element
S

r
4
where
_1
h1—4
_1
h2—4
_1
h3—4
_1
h4—4

4
t t k
Xi = 2 hi "Xi
K=1
o 2 0k
Xi:k2_:1 hk “X;

1+ +s)
(1-n(1+s)
(1-n(1 —-s)

(1+n(1 -5s)

\

Transparency
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7-6 Two- and Three-Dimensional Solid Elements

Transparency
7-5

Transparency
7-6

~

f

Example: Motion of a material particle

Consider the material

particle at r = 0.5, s = 0.5:

Important: The isoparametric coordinates of
a material particle never change

\%imet

S

x4

~

A major advantage of the isoparametric
finite element discretization is that we
may directly write
t A t k t t Kk
U1=2hku1 ,UZZEhkUZ
k=1 K
and

N
k k
U1=k§_:1 hk U7 ; U2:k2 hi uz

L
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This is easily shown: for example,
A k
= 2 hi 'x
k=1
N
= > he Ot
k=1

Subtracting the second equation from
the first equation gives

Xi — XI Ehk(x.—ox!‘)

“——ﬂ——‘b—ﬁ——‘

Ui Wk

\—

~

The element matrices require the following

derivatives:

)

Transparency
77

Transparency
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7-8 Two- and Three-Dimensional Solid Elements

Transparency
79

Transparency
7-10

-~

These derivatives are evaluated using a

Jacobian transformation (the chain rule):
dhe [ ah | 8% | ahe | 8%
o |30 |30

ar Jd Xq| or Jd X2 or

ahi |l | 8%, | ok | %%

=lo| =+ | o
s |[0Xq| OS dXz2| 08
B = 7
1 I
In matrix form, s
e
o | _ 8% %] | ahe
ar ar or | [8%:
a_hk %% 8%z ohk
9s s 8s | [
e
°J

\

The required derivatives are computed
using a matrix inversion:

ahy | B
)] Nk
X1 _ OJ_ ] oar
LU
a°x2 0s
L _— L —

The entries in °J are computed using

the interpolation functions. For example,

i ahko

0 Xq _
or K=1

AN
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-

The derivatives taken with respect to
the configuration at time t can also be

evaluated using a Jacobian transformation.

o
ar
o
Js

atX1
h
(")tX2

3%
ar
3%
0S

dxe | | dh
ar 0'X4
o | dhw
0S 0'X2

. ahi ¢k
ah | e
t -1

\_

We can now compute the required
element matrices for the total
Lagrangian formulation:

Element Matrix

Matrices Required

t

OKL

t
OKNL

of

oC , dBL
S , Ba
S , ¢BL

_/

Transparency
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710 Two- and Three-Dimensional Solid Elements

Transparency
7-13

Transparency
7-14

-

—

We define oC so that

0S11 0€11

0522 ~ C 0€22 analogous to
0S12 *~ 120812 0S5 = oCi}rs 0€rs
0333 0€33

For example, we may choose

(axisymmetric analysis), — 1 v 0 v ]
1-v 1-v
1% v
C = E(1 —v) 1—v 1 0 1-v
T -2 0 0o 1-2v
2(1 —v)
14 12
1-v 1-v 0 1 _J

\—

\

We note that, in two-dimensional
analysis,

t t
0€11 = oU1,1 T oU1,1 oUr1 + oU21 ol21

t t
0€22 = glU22 +|oU1,2 oU12 + oUz2 oz,

2 0€12 = (oU1,2 + oU2.1) +|(<§U1,1 oUiq 2

t t t
+ oUz2.1 oU2,2 + oU1,2 oU1,1 + oU2,2 oU2,1)

t
U Ui\ Uy
oo = g + (oot oo
X1 \"xq/ %%q

=

INITIAL DISPLACEMENT
EFFECT
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and

oM

\_

0oM11

- % ((ou1.1)* + (oU2.1)°)

—h

omz2 = 5 ((ou1.2)® + (oUz2.2)?)

_ 1
2= oM21 = 5 (oU1,1 oU1,2 + oUz,1 oU2,2)

3(8)
oMs3 5 0}:

e

)
N

X1

rivation of ¢€s33, omaa:
X2
| ¢ time0 _time t+At
axis of
revolution
N
We see that
t+atyg t+AtdS t+ At
0 = 70
ds X
\°ds 1
X2

X1

N

Transparency
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Transparency
7-17

Transparency
7-18

f

Hence t+Ac§$33 =

'uq 1 ('up \2
o, t 5 le
X1 2 X1 .
0€a3
t 2
us Uiy Uy 1 /uy
+ (o * (o) 3 + 3 (o)
% ' \%) %, " 2 \%,

0€33 oMa3

. J

o€a3

\

We construct ¢B. so that

0€11

022 .
2,812 | = 08 = (0Bio + dBu1) @
T o | \_|

0€33 .
oBL \‘\

contains initial
displacement effect

0€33 is only included
for axisymmetric analysis

VAN
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Entries in ¢Bro:

node k
Ul‘f | UE
_ I 1.7
ohk1 | 0 -
I oh uf 1

0 | k2 e -=3- node k
ohk2 | ok Uz |
hk/oX1 ! 0 :

included only for
axisymmetric analysis

This is similar in form to the B matrix used in
linear analysis.

~

\—

N

Entries in ¢By1:

node k
uf | us
i 5U1,1 ohk,1 I 3U2,1 ohk,1 ]
_ oU1,2 ohik.2 l oUz,2 ohi.2
oU110hk2 | oUz1 ohka2
+ oU1,2 ohi,1 l + duz,2 ohi,1
tU1 hi : 0
% %% |
The initial displacement effect for axsymmetic
analysis

is contained in the terms oui;, o -
1

Transparency
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7-14 Two- and Three-Dimensional Solid Elements

s

We construct ¢Ba. and ¢S so that

80" oBRL 0S 0BnL O = 0Sj domj

Transparency
7-21

Entries in ¢S:

_8811 0S12 0 0
0S21 0522 0 O
0 0 0S11 ¢Sz
0 0 ¢St 0S22
0 0 0 0 [0Ss| included only

for axisymmetric
analysis

o O o

o

-

~

Entries in oBn:

Transparency node k
7-22

ohks || {—=—1 node k

/ h'x41 0

included only for
axisymmetric
analysis

U\
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¢S is constructed so that
SQT C;EE (;_S_ = tS.* 8090‘,

Entries in ¢S:

t

0511

t

0922

t

cSi2 _

3833 _s—included only for
|| axisymmetric analysis

N\ (

Example: Calculation of ¢By, oBnL

0.1 , 0.2 |
‘ ‘ Plane strain
2 1 conditions
0.1
X2
t T2 1 [ ——timet
0.2 time 0
3 4
% 0.2 4
(0.1, 0.1) X

AN
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716 Two- and Three-Dimensional Solid Elements

Transparency
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r

Example: Calculation of oBy, oBn.

X2

l Plane strain

0.1
/2
0.1
T T2/ 1
/
0.2 /
/
V&I )

g5

1 conditions

 <—timet

time 0

(0.1, 0.1)

X4

\-
-

Example: Calculation of ¢B, ¢Bne

X2

0.1

0.2

‘ Plane strain

0.2

[2

1/ conditions

% 0.2

maternial fibers
have only transiated
rigidly

(0.1, 0.1)

X4

J




Topic Seven 7-17

s

~

Example: Calculation of ¢By, 0B

0.1 | 0.2 ,
‘ \ Plane strain
2 1 conditions
0.1
X2
T 2/ 1 [ <—time't
0.2 time O
3 4
% 0.2
(0.1, 0.1) X

-

Example: Calculation of ¢B., 0B

X2

01, 02 |

|

’ Plane strain

0.1

0.2

1 conditions

B 2// [ —time t

timeO
material fibers have

stretched and rotated

%L—(,TA

7(0.1,0.1) X1

Transparency
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Transparency
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Transparency
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-

Example: Calculation of ¢By, 0B

0.1 0.2 |
I Plane_ §train
2 1 conditions
0.1 s
X2
- .
2 1 [ <—timet

0.2 time 0
3 f
% 0.2

"(0.1,0.1) x1 At time O,

N

We can now perform a Jacobian
transformation between the ﬂ,
coordinate system and the ("x1,
coordinate system:

. . 6°X1_ d X2 _
By inspection, 7—0.1, or =0
60X1 ix_z__
Bs 0 g =0
0 _ 01 0 0 -
Henc g—[o 0_1] |°J] = 0.01
T B N
%y ar ’ 3s

J
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-~

Now we use the interpolation functions
to compute gu1,1, ou1.2:

node| e | ey e | 9he o
k %% %2 % %z
1| 25(1 +s)| 2501 +n{0.1] 0.25(1 + s)| 0.25(1 + r)
2 [-25(1 +s)| 2501 —n|0.1]-0.25(1 + s)| 0.25(1 — 1)
3 [-2.5(1 — s)|—2.5(1 — n|0.0 0 0
4 | 251 —s)|-25(1 + )] 0.0 0 0
Sum: 0.0 05
N N’
t t
oU1,1 oU1,2

~

\

~

For this simple problem, we can
compute the displacement derivatives
by inspection:

From the given dimensions,

Hence

t

oﬁ =
t
oU1,1
t
oU1,2
t
oUz2,1

t _
oUz2 =

[1 .0
0.0

0.5]
1.5

=(;X11 -1 =0
=3X12

1
= OX21

= 0.5
=0

(}Xzz - 1 = 05

Transparency
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[

We can now construct the columns in
oBL that correspond to node 3:

[ | —25(1—5)] 0 )
0 } _2_5(1 — r) (;QLO
|| 2801 -1 -25(1 -s)|

0 | 0 T
| =1.25(1 =) | =1.25(1 = 1) || 3By
—1.25(1 — ) | ~1.25(1 — g)

N\ (

Similarly, we construct the columns in
oBnwL that correspond to node 3:

 |-251-81 0 i
—251-1! 0
0 | -25(1-5)
] 0 1-2s1-9|

J
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\

Consider next the element matrices

required for the
formulation:

Element Matrix

updated Lagrangian

Matrices Required

t

KL

t
tKNL

F

C , B
‘T, Bam
ti ’ :QL

-

We define C so that

1511 €11
S22 _ €22
S12| € (2 €12
Saa t€33

analogous to
tS“. = tCij.rs ters

For example, we may choose

(axisymmetric analysis),

E{(1 —v)

C=marni-)

14 14
Vo= 0 7=
v v

=y | 0 3=
1-2v

0 0y O

v v 0 1
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r

We note that the incremental strain
components are, in two-dimensional
analysis,

e =00 _

€11 = T = tU1,1
atX1

€22 = U2,2

2 €12 = tUq,2 + 1U2;1
t
t€33 = U1/ X1

~

and

M1 = % ((u1,1)% + (u2,1)?)

M2z = % ((1,2)° + (22)%)

1
Mz2=M21 =3 (1,1 tU1,2 + tU2,1 tU2,2)

=1(ﬂ)2
tN33 2 tx1

L
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We construct B, so that

[ €11
t922 = te == :BL 0
212 - -
€33 only included for

axisymmetric analysis

N

Entries in {BL:

node k
uf L ub
_ | —- -

it | O

I uk T
0 | thk,2 __%_ node k
o | s uz |
h/' x4 | 0 :

} 4

only included for axisymmetric analysis

This is similar in form to the
B matrix used in linear analysis.

VAN
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~

We construct iBn. and ‘T so that
50" BAL T B O = tTij, O

Entries in 'T:

“Tii T2 00

Tor Tz O 0
0 0 T 'Ti2
0 0 "To1 T

0O 0 0 0

ths included only

for axisymmetric

N

analysis
Entries in {Bn.:
node k
uf ub
thk,1 } 0 :
thxe | O uk }
0 | h -——-| node k
| k1 ug |
0 I e
ho'xs | O

included only for
axisymmetric analysis

AN
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'T is constructed so that

50" 1Bl ti = tTij, Stei}

. . to .
Entries in 'T: T,
t
Ta2

t
T ,

t—1—2~ included only for
—33_| axisymmetric analysis

N\ (

Three-dimensional elements

X3
tk tok  tok
(x1, X2, Xa)
node k
X2 4
ok O k Ok
X1 ("x3, X2, Xa)

J
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(

Here we now use

N N
0Lk o oLk
oX1 = k21 he X1 , X2 = '241 hk “x3

0

X3 = hKOng

Mz

k=1

where the hy's are the isoparametric
interpolation functions of the three-
dimensional element.

.

N\

Also

Z

N
%= hXf , Xa= 3 he'X5
K= K=Y
N
'Xz = k21 hk txg

and then all the concepts and
derivations already discussed are
directly applicable to the derivation of
the three-dimensional element matrices.

_J
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The Two-Noded
Truss Element—
Updated
Lagrangian
Formulation

Contents:

B Derivation of updated Lagrangian truss element
displacement and strain-displacement matrices from
continuum mechanics equations

B Assumption of large displacements and rotations but
small strains

B Physical explanation of the matrices obtained directly by
application of the principle of virtual work

B Effect of geometric (nonlinear strain) stiffness matrix
B Example analysis: Prestressed cable

Textbook:
Examples:

Section 6.3.1
6.15, 6.16
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TRUSS ELEMENT DERIVATION

A truss element is a structural member
which incorporates the following
assumptions:

« Stresses are transmitted only in the
direction normal to the cross-section.

 The stress is constant over the cross-
section.

 The cross-sectional area remains
constant during deformations.

g

X2

We consider the large rotation—small
strain finite element formulation for a
straight truss element with constant
cross-sectional area.

_ 2
time t
Elastic material with
9 Young's modulus E
1 Cross-sectional area A
Element lies in the x; — x2
. plane and is initially aligned
time 0 with the x; axis.
S~ 2
N X1
I L ]

\
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Transparency
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Transparency
84

-

The deformations of the element are
specified by the displacements of its
nodes:

X2

~ time 0 i X1
Our goal is to determine the element
deformations at time t+ At.

N\

Updated Lagrangian formulation:

The derivation is simplified if we
consider a coordinate system aligned
with the truss element at time t.

L
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Written in the rotated coordinate system,
the equation of the principle of Transparency
virtual work is 8-5

J; t+A€~i}‘8t+A%§i}th — t+Atg~t
\

As we recall, this may be linearized to
obtain

A -t te o = t
J:V tCiJ'rs t€rs Stei} dVv +ﬁv Tij, 8{1];} dv

= oG — f 'T; 86y 'dV
tv

\

N\

Because the only non-zero stress Transparency
component is T+, the linearized 8-6
equation of motion simplifies to

Jtv Crn 811 3@ 'dV +Jtvt’i'11 defyn 'dV
= t+Atg~l _ﬁvt%ﬂ 8té11 th

Notice that we need only consider one
component of the strain tensor.
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Transparency
8-7

Transparency
8-8

r

We also notice that: -

tC1111 = E
t
w _ P
T11 - A
'WV=AL

The stress and strain
states are constant
along the truss.

Hence the equation of motion becomes
(EA) 11 0811 L + tP 8{f]11 L
= t+mg~t - tP 81é11 L

\

aYa

To proceed, we must express the strain
increments in terms of the (rotated)
displacement increments:
@1 =180,
dj11 = (34" 1BRL)(Bnw )

This form is analogous

where g7 to the form used in
. al the two-dimensional
=] _5 | element formulation.

hed G2

i
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. ~ - 1, . -
Since €11 =11 + 5 ((tU1,1)2 + (tU2,1)2),
we recognize

€11 = 1,1

- 1,, . -

M1 = 5 ((tU1,1)2 + (tU2,1)2)
and

OM11 = 8ill1,1 101,1 + B4lz,1 12,4

- - Q1,1
= [StU1,1 StU2,1] [t~ ]
tU2,1

J

v

matrix form

N\ (

We can now write the displacement
derivatives in terms of the
displacements (this is simple because
all quantities are constant along the
truss). For example,

3 oty Aa, @ - al
tU1,1 = =

T % A% L
Hence we obtain

[t01,1]=1[—1 0 1 o]_
1] LL O -1 0 1

[t B |
1

t
NN AN N =
| o

fant]

J

Transparency
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Transparency
8-11

Transparency
8-12

~

and

té11=(1t[—1 0 1 O])g

~ Q2T 1 0 —1 1 -1 0 1
defj11 = B0 (L 1 0 )(L[ 0-1 0
: \

—— [t01 1 ]
[0t01,1  Otliz 1] tlz,1

\

Using these expressions,
(EA) té11 8té11 L

\ .

10 -1 0
TEAl 0 0 0 of);
MWNATH1 o 1 of)Y

00 00

(setting successively each virtual nodal point

displacement equal to unity)

_J
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Font Tran;?f; ency
K
t 1 0 —1 0
GT(Pp O T 01 g
™ T|-1 0o 1 of]"
0 —1 0 1
and Transparency
8-14
P o611 L
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Transparency
8-15

Transparency
8-16

-~

We have now obtained the required
element matrices, expressed in the
coordinate system aligned with the

truss

at time t.

To determine the element matrices in

the stationary global coordinate system,
we must express the rotated
displacement increments U in terms of
the unrotated displacement increments

N

Q.
We can show that
[01] _ [ cos'6 sinte] [u1]
Qs —sin'® cos'9 | | us
Hence
al cos'0 sin® O 0 ||ul
al —sin'® cos'® 0 0 Uz
a2l | o 0 cos'® sin'g ||u?
03 0 0 —sin'® cos'o || u3
u T a

AN




Topic Eight 811

Using this transformation in the
equation of motion gives

BﬁT'{RLG—)SGT 'T}RL I a
el bl LD
K
L

0T K 00— 80" T K TG
N
iK
tANL

3T IE - 80" T
i — 80" TTIF

F

\—

N

Performing the indicated matrix
multiplications gives

. EA |(cos'6)?[(cos')(sin'0)f —(cos'8)® |—(cos'0)(sin'6)
L T (sin'0)® |—(cos'0)(sin'0)l —(sin'6)?
symmetric (cos'8)® | (cos'9)(sin'6)
(sin'9)?

Transparency
8-17

Transparency
8-18
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(

Transparency . —
819 1 0 —1 0
'P 1 0 -1
t -
tKNL - L 1 O
symmetric 1
and — —
[ —cos'd |
1
t ot —S|n 9
£ =P cos'0
B sin'f |
The vector {F makes physical sense:
'R
Transparency tR sin‘O
8-20 2
'R cos'®
P
t
P sin' For nodcta 2, t
P cos'd R | Rcoso
COS =" |'Rsin'g
X2 t t
e - [ cost)
~  ['Psin'd
‘0
Hence, at equilibrium,
] 'R-{F=0
X4

J
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-

We note that the {Kn. matrix is unchanged by
the coordinate transformation.

» The nonlinear strain increment is
related only to the vector magnitude
of the displacement increment.

\

Physically, {Kn. gives the required
change in the externally applied nodal
point forces when the truss is rotated.
Consider only U3 nonzero.

For small 03, this gives a rotation

about node 1. trag
Moment equilibrium: ~
(AR) (L) = (R) (03)
t
P.
or AR = I—_‘ U%

entry (4,4)

—

For small q,
}KNLQ — HAtB _ tB
internal AR

force 'P

Y

Transparency
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8-22



814 The Two-Noded Truss Element — U.L.F.

4 )

Example: Prestressed cable

Z-

Transparency

8-23 Applied load 2 'R

Initial tension = °P ‘%Length 2L

Young’s modulus E
Area A

Finite element model (using symmetry):

N
J L

Using the U.L. formulation, we obtain

Transsl_);:ency EA . t2 , P) 2 _ teat P sin'd
4 (sin®)* + 1) uz = "R — P sin'd

\-t¢/ T_/ tF

tEL tENL =

Of particular interest is the configuration
at time 0, when '0 = 0:

(o_LP_) u2 — AtR

The undeformed cable stiffness is given
SO|e|¥ by :ENL.
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The cable stiffens as load is applied:

w EA, . tn2 , P
tK——L—(SInO) +t

—_— S’
t t
KL tKNL

K. increases as '0 increases (the truss
provides axial stiffness as '0 increases).

As '9 — 90°, the stiffness approaches @,

but constant L and A means here that
only small values of ‘0 are permissible.

~

~

Using: L =120in , A =1in?
E =30 x 10°psi , °P = 1000 Ibs
we obtain
200. 4
Applied

force
(Ibs)

0.0 !
Deflection (inches) 25

AN

Transparency
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Transparency
8-27

4 )

We also show the stiffness matrix
components as functions of the applied
load:

Stiffness KL
(Ib/in)
K

0.0
Applied force (Ibs)

0.0 206.0
. _J
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The Two-Noded
Truss Element—
Total Lagrangian

Formulation

Contents:

B Derivation of total Lagrangian truss element
displacement and strain-displacement matrices from
continuum mechanics equations

B Mathematical and physical explanation that only one
component (3S,,) of the 2nd Piola-Kirchhoff stress tensor
is nonzero

B Physical explanation of the matrices obtained directly by
application of the principle of virtual work

B Discussion of initial displacement effect

B Comparison of updated and total Lagrangian
formulations

B Example analysis: Collapse of a truss structure
B Example analysis: Large displacements of a cable

Textbook:

Examples:

Section 6.3.1
6.15, 6.16
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TOTAL LAGRANGIAN
FORMULATION OF TRUSS
ELEMENT

We directly derive all required matrices
in the stationary global coordinate
system.

Recall that the linearized equation of
the principle of virtual work is

f oCis o€rs Soey;°dV + f 0Sj; domy °dV
OV OV

= t+At% —‘L &Si} Boei}°dv
A\

~

We will now show that the only non-
zero stress component is 9S11.

1) Mathematical explanation:
For simplicity, we assume constant

cross-sectional area.
(1+ €)

time t
X \®

~

Transparency
9-1

Transparency
9-2
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Transparency
93

Transparency
94

r

We may show that for the fibers of the
truss element

X = [(1 + €) cos'® —sinte]
(1 + €)sin'®  cos'd
Since the truss carries only axial stresses,
te _ P [(cos'®) (cos‘e)(sinte)]
= [(coste)(sm 8)  (sin'0)®

written in the statlonary coordinate frame

N

Hence usmg

_pOX
OS ! t_I = 1 for small €

P
we f|nd |: ) Y

VAN
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r

Physical explanation: we utilize an

time t* (conceptual):
Element is stretched

by 'P.

0 0

S = 'T —
time t. The element 0= -
is moved as a rigid .
bOdy (;§ — t‘I —
Xa‘

oS =

intermediate
configuration t*

rigid body motion)

°P/A O]
| 0 O
['P/A 0]
| 0 0]
[ 'P/A o}
| 0 O

(the components of the 2nd
Piola-Kirchhoff stress tensor
X1 do not change during a

~

Transparency
9-5

W,

N

The linearized equation of motion
simplifies to

j oC1111 011 do€11 °dV +J 0S11 OomM11 °dv
oy oy

=" “L 0S11 8011 °dV
Vv

Again, we need only consider one
component of the strain tensor.

N

Transparency
9-6
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Transparency
9-7

Transparency
9-8

~

Next we recognize:
t ‘P
0911 = A
oCin = E ’ 0V=A|—

The stress and strain states are
constant along the truss.

Hence the equation of motion becomes
(EA) 0€11 00€11 L + P 80’1]11 L
— t+Atgt _ tP 80911 L

N\

To proceed, we must express the strain

increments in terms of the displacement
increments:

011 = (;EL g )
Som11 = (30" oBNL) (6Bnw 0)

where U4

=
Il
N

VAN
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. t t
Since o0€11 = oU1,1 + oU1,1 oU1,1 + oU2,1 oU2,1
1 2 2
+ 5 ((out,1)° + (ouz,1)%)
we recognize
t t
0€11 = oU1,1 t oU1,1 o0U1,1 + oU21 oU2,1

OoM11 = OoU1,1 oU1,1 T doUz,1 oUz,1

= [80U1,1 80U2,1] [oum]

oU2, 1

N

X2

We notice the presence of ¢us: and
oUz.1 iN o€11. These can be evaluated
using kinematics:

t t
t . AU1 t _ A Uz
oUi1 = L , oU21 L
et =cos'9 -1 =sin'
A U4
L
te AtU2
_—time O
L | X1
e

J
~

Transparency
99

Transparency
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-

Transparency
9-11

truss). For example,
du4 _ AU1

u? — ul

Hence we obtain

-t -
oU2,1 L 0o -1

u1 = = =
oH1. ?X1 A0X1

1
0

L

0
1

|

We can now write the displacement
derivatives in terms of the
displacements (this is simple because
all quantities are constant along the

\

N\

Therefore
Transparency

9-12

I%[—1 0 1 0]

t
oBLo

4 [cos'®—1 sin'o] (% [‘1
L

t
0€11 = oU1,1 + [oU1,1 3U2,1] [

oU1,1
oUz2,1

|

0o 1
0 -1

0

)

0 1))

initial displacement effect ¢BL1

1S
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Transparency
9-13

=il 1 0 1 0140
L £
c§§Lo
+1[[—(coste — 1) | —sin'® { cos'® — 1§ sin'e] G
l |
oBL1
21[[ —-cos'®  —sin'®  cos'®  sin'9] O
L ]
oBL
Also (;QIIL C§§NL
(D O 9 9]
dom11 = 00 11 0 —1 (E[ 0 -1 0 1] a
Ll 1 0 . )
oU1,1
0 1 [0U2,1]
[Bous,1  BoUz,1]

L

Transparency
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-

Transparency Using these expressions,
9-15
(EA) 0€11 80611 L
(cos'0)®|(cos'8)(sin'0)] —(cos'0)® |-(cos'e)(sin'e)
30T [EA (sin®)°  |~(cos)(sin®) —(sin')?
L (cos'9)® | (cos'®)(sin'd)
symmetric (sin')?
oKL
Transparency tP S L
9.-16 0“11
1 0 -1 0
t
507 _'E_ o 1 o0 -1|}a
-1 0 1 0
o —1 0 1
oKnL
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and

N (

We notice that the element matrices
corresponding to the T.L. and U.L.
formulations are identical:

* The coordinate transformation used in
the U.L. formulation is contained in
the “initial displacement effect” matrix
used in the T.L. formulation.

« The same can also be shown in
detail analytically for a beam element,
see K. J. Bathe and S. Bolourchi,
Int. J. Num. Meth. in Eng., Vol. 14,
pp. 961-986, 1979.

J

Transparency
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(

Example: Collapse analysis of a truss

Transparenc
o9 structure
H=5
A=1
E = 200,000
ET =0
= 100

» Perform collapse analysis using U.L.
formulation.

» Test model response when using
M.N.O. formulation.

N\

For this structure, we may analytically

Tran;pza(;'ency calculate the elastic limit load and the
i ultimate limit load. We assume for now

that the deflections are infinitesimal.

— Elastic limit load
(side trusses just become plastic)
P=341.4
— Ultimate limit load
(center truss alsobecomes plastic)
P=441.4

AN
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Using automatic load step incrementa-
tion and the U.L. formulation, we
obtain the following results:

500} analytical ultimate limit load

-

i

analytical elastic limit load
o : 'v=0.005
— : 'v=0.0001

\

We now consider an M.N.O. analysis.

We still use the automatic load step
incrementation.

* If the stiffness matrix is not
reformed, almost identical results
are obtained (with reference to the
U.L. results).

J
N

Transparency
9-21

- Transparency
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Transparency
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Transparency
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r

« If the stiffness matrix is reformed
for a load level larger than the
elastic limit load, the structure is
found to be unstable (a zero
pivot is found in the stiffness
matrix).

Why?

\-
~

Explanation:

» In the M.N.O. analysis, once the side
trusses have become plastic, they no
longer contribute stiffness to the
structure. Therefore the structure is
unstable with respect to a rigid body
rotation.

wt?

AN
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-~

 In the U.L. analysis, once the side
trusses have become plastic, they still
contribute stiffness because they are
transmitting forces (this effect is
included in the {Kn. matrix).

Also, the internal force in the center
truss provides stability through the
:KNL matrix.

1P

100,/ [\.100

~

Example: Large displacements of a
uniform cable

i- S ‘—‘i prescribed

displacement

N

Eight 2-node truss elements

_— , Initial S = 80 m

initial tension A=10"*m2

of 500 N E = 2.07 x 10" Pa
p = 7750 kg/m®

» Determine the deformed shape
when S = 30 m.

~

Transparency
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Transparency
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Transparency
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This is a geometrically nonlinear
problem (large displacements/large
rotations but small strains).

The flexibility of the cable makes the
analysis difficult.

— Small perturbations in the nodal
coordinates lead to large
changes in the out-of-balance
loads.

— Use many load steps, with
equilibrium iterations, so that
the configuration of the cable
is never far from an equilibrium
configuration.

N

Solution procedure employed to solve
this problem:

* Full Newton iterations without line
searches are employed.

» Convergence criteria:

Au(i)T t+AtR _ '(+AtF(i—1)

AR — AFCY), < 0.01 N

L
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~

« The gravity loading and the prescribed
displacement are applied as follows:

Number of equilibrium
Time step Comment iterations required

per time step

1 The gravity loading 14
is applied.

The prescribed

) displacement is applied
2-1001 in 1000 equal =5
steps.

\

Pictorially, the results are

4
<
*

undeformed

S=55m

S=30m

A\

Transparency
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Solution of the
Nonlinear Finite
Element
Equations in
Static Analysis—
Part |

Contents:

B Short review of Newton-Raphson iteration for the root of
a single equation

B Newton-Raphson iteration for multiple degree of
freedom systems

B Derivation of governing equations by Taylor series
expansion

B Initial stress, modified Newton-Raphson and full Newton-
Raphson methods

B Demonstrative simple example

B Line searches

Bl The Broyden-Fletcher-Goldfarb-Shanno (BFGS) method

B Computations in the BFGS method as an effective scheme

B Flow charts of modified Newton-Raphson, BFGS, and full
Newton-Raphson methods

B Convergence criteria and tolerances

Textbook:
Examples:

Sections 6.1, 8.6, 8.6.1, 8.6.2, 8.6.3
6.4, 8.25, 8.26
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’ l\/E DERWED IN THE
PreVious LECTURES
THE FE. EQUATIONS

++at +iot

t]é A(Aﬁ) - R F@-\)

t+at Wy ot Wy

g - u?;—‘)* AL,L

A=4y23,.

- IN THis LECTURE We

CONSIDER VARIOUS

TECHNIQUES OF
TTERATION AND

CONVERBENCE
CRITERIA

Markerboard
10-1



10-4 Solution of Equations in Static Analysis — Part I

[

Tranil())alrency EQUAT'ONS
We want to solve
tratg At
externally applied nodal point forces
loads corresponding to internal

element siresses

* Loading is deformation-independent

—

SOLUTION OF NONLINEAR

t+At t+Atn T t+At& O t+ Aty T t+AtS t+At
o v = vapTeagogy [ LAl v ad sy
v Aty

—_—

—" ng

T.L. formulation U.L. formulation

~

Transparency

The procedures used are based on the
Newton-Raphson method (commonly

10-2 used to find the roots of an equation).

A historical note:

in 1669.

the method in 1690.

same numerical results.

» Raphson generalized and presented

Both mathematicians used the same
concept, and both algorithms gave the

* Newton gave a version of the method

L
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Consider a single Newton-Raphson
iteration. We seek a root of f(x), given
an estimate to the root, say xi—1, by

=y . — HXioq
Xi = Xi—1 m:%

Once x; is obtained, xi+1 may be
computed using

f(xi
Xi+1=Xi—f,—(()%

The process is repeated until the root
is obtained.

\

N\

The formula used for a Newton-
Raphson iteration may be derived using
a Taylor series expansion.

We can write, for any point x; and
neighboring point x_1,

f(Xi) = f(Xi—1) + f’(Xi—1)(Xi — Xi—1)
+ higher order terms

= f(Xi_1) + f’(Xi_1)(Xi - Xi—1)

Transparency
10-3

Transparency
10-4
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Transparency
10-5

Transparency
10-6

-

Since we want a root of f(x), we set
the Taylor series approximation of f(xi)
to zero, and solve for Xx;:

0 = f(xi—1) + f'(Xi—1)(Xi — Xi—1)

l

Xj = Xj—1 — ——ff,(();ll__11))

\

N\

Mathematical example, given merely to
demonstrate the Newton-Raphson
iteration algorithm:

Let f(x) =sin X , Xo =2

Using Newton-Raphson iterations, we

obtain

i Xi error = | ~ X

0l20 114

1 | 4.185039863 | 1.04

2 | 2.467893675 | .67

3|3ze6t86277| A2
4 |3.140943912 | 6.5 x 10

5 | 3.141592654 | < 10~° }?52‘{,2’35239

_/
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The approximations obtained using
Newton-Raphson iterations exhibit Transpatency
guadratic convergence, if the

approximations are “close” to the root.

Mathematically, if  |Ei—4|=10""
then |E|=10"2"

where E; is the error in the
approximation x;.

The convergence rate is seen to be
quite rapid, once quadratic convergence
is obtained.

~

/

However, if the first approximation xo is
“far” from the root, Newton-Raphson Transparency
iterations may not converge to the 10-8

desired value.

Example: f(x) = sin x , xo = 1.58
Xi

1.58
110.2292036
109.9487161
109.9557430
109.9557429 ] not the desired root

PAON=O|—
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Transparency
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~

Pictorially:

\-
-

Pictorially: lteration 1

<~ slope f'(xo0)

X1

VAN
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Pictorially: Iteration 1
Iteration 2

//7\ <~ slope f'(xo)

N

sin x
X1
L AN
XO X2
slope f'(x1)=—
Pictorially: Iteration 1
lteration 2
Iteration 3
f
ﬂ;\ < slope f'(xo)
sin x
slope f'(x2)
YN X3 X4
XO x2
slope f'(x4)=>"—
N

AN

Transparency
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s

\—

J

Pictorially: lteration 1
Iteration 2
Transparency lteration 3
10-13 Iteration 4
f
< slope t'(xo)
sin x
slope f'(x2)
lope f’(xxs)
BN > X3 ‘
4'
XO x2
slope f'(x1)=——
Pictorially:
Transparency
10-14
Bad choice for xo
f f(xo) = 0
<9
sin x
,_,\/\;
Xo Xo
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Newton-Raphson iterations for multiple

degrees of freedom

We would like to solve
f(U) — t+AtR _ t+AtF = 0

where now f is a vector (one row for
each degree of freedom). For
equilibrium, each row in f must equal
zero.

~

To derive the iteration formula, we
generalize our earlier derivation.

We write
f(t+AtU(i)) — f(t+Atu(i*1))

+ [_ai (Ao _ tratyl-1)

oU

t+Atu(i—1)

+ higher order terms

negiected to obtain a
Taylor series approximation

AN

Transparency
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Transparency
10-17

Transparency

10-18

-

-

Since we want a root of f(U), we set
the Taylor series approximation of
(" 2'UY) to zero.

\_

t+AtL_J(i) _ t+AtQ(i—1)
_ gtrAt i—1) a_f 0
0= (2 + | A] AU
t+Atg(iv-1)
or _ _
0| |f ofy L of AUY
N E I + | oU4 oUn :
0| | fn ; e AUY
ofn ... ofn
L6U1 aUn_
thay(-1) arﬁgtl:'ﬁ(re traty(-1
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(

We now use

I(t+AtQ(i—1)) _ t+AtB _ t+AtE(i—1)’

0 at+AtF(i——1)]

of
oy

[at+At

t+Aty(i-1) =

t+Aty(-1) [ t+Aty(-1)

because the loads are
deformation-independent

= _trati-1)

the tangent stiffness matrix

\

~

Important: *"*'K""" is symmetric because

« We used symmetric stress and strain
measures in our governing equation.

* We interpolated the real
displacements and the virtual
displacements with exactly the same
functions.

 We assumed that the loading was
deformation-independent.

Transparency
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Transparency
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Transparency
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(

Our final result is

t+AtK(i—1) Au(l) — t+AtR _ t+AtF(i—1)

This is a set of simultaneous linear
equations, which can be solved for
AU®. Then

t+AtU(i) — t+AtU(i—1) + AU(i)

\—

\

This iteration scheme is referred to
as the full Newton-Raphson method
(we update the stiffness matrix in
each iteration).

The full Newton-Raphson iteration
shows mathematically quadratic
convergence when solving for the

root of an algebraic equation. In finite
element analysis, a number of require-
ments must be fulfilled (for example,
the updating of stresses, rotations
need careful attention) to actually
achieve quadratic convergence.

_J
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(We can depict the iteration process in
two equivalent ways:

\

f = tratg _ tratpi-1) , |
t+F2t i load slope tratei-1)
r/" I[: t+AtR_ - -
t+AtR
i — ]t+AtF(i~1)
slope f\\ U displacement

This is like a force-
deflection curve. We use

this representation henceforth.

)

N

Modifications:

TK Ag(l) — t+AtB . t+AtE(i—1)

« T = 0: Initial stress method
+ T = t: Modified Newton method

« Or, more effectively, we update the
stiffness matrix at certain times only.

~N

Transparency
10-23

Transparency
10-24
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-

Transparency We note:
10-25

« The initial stress method and the
modified Newton method are much
less expensive than the full Newton
method per iteration.

« However, many more iterations are
necessary to achieve the same
accuracy.

* The initial stress method and the
modified Newton method “cannot”
exhibit quadratic convergence.

Example: One degree of freedom, two load
Transparency steps
10-26
force
S T —
|
I
1R_ N i |
| |
] [
| |
| |
7 | I displacement

AN
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~

Initial stress method: T =0

Example: One degree of freedom, two load
steps

force
All slopes °K

ROL

|
I
|
I
I =1 4, N\displacement
1u(1) 1U(2) 2U(1) 2U(2) 2U(3) 2U(4)

~

J

N

Line searches:

We solve
TK AU — t+AtR _ t+AtF(i—1)
and consider forming ""*'F? using
t+Atu(i) — t+Atu(i—1) + B AQ

where we choose 3 so as to make
AR _ AED gmall “in some sense”.

~

Transparency
10-27

Transparency
10-28



10-18 Solution of Equations in Static Analysis — Part I

Transparency
10-29

Transparency
10-30

-

-

Aside:

If, for all possible U, the number
UT (t+AtR _ t+AtF(i)) — 0
then t+AtR _ t+AtF(i) =0

) any row
Reason: consider of U
LJ_T — [0 00 -1 -0
This isolates one row of
tHatn _ tHAtE()

0]

During the line search, we choose
U = AU and seek B such that

AUT (t+AtR _ t+AtF(i)) — 0
a function of B
since t+AtU(i) = t+A(g(i—1) + B Ag

In practice, we use

ADT (t+AtR _ t+AtF(i))
AU? (t+AtR___ t+AtFF—1))

= STOL

tolerance

a convergence
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\

BFGS (Broyden-Fletcher-Goldfarb-
Shanno) method:

We define
S(i) = t+AtU(i) _ t+AtU(i—1)

Y

{() t+AtF(i) _ t+AtF(i—1)

and want a coefficient matrix such that
(t+At_|S(i)) §(i) — X(i)

\—

Pictorially, for one degree of freedom,

load

secant ' AK®

t+ AtF(i)

t+AtF(i—1)

0]

e

B(i)

t+Atu(i—1)

teat 0 displacement

_/

Transparency
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Transparency
10-33

Transparency
10-34

~

~

» The BFGS method is an iterative
algorithm which produces successive
approximations to an effective
stiffness matrix (actually, to its
inverse).

« A compromise between the full
Newton method and the modified
Newton method

N

Step 1: Calculate direction of
displacement increment

Ag(i) — (t+At5—1)(i—1) (t+A‘lB _ t+AtE(i—1))

(Note: We do not calculate the inverse
of the coefficient matrix; we use
the usual LD L" factorization)

J
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[

Step 2: Line search

t+Atu(i) — t+At_u(i—1) +B Ag(i)
a function
Sof g
AU(i)T (t+AtR _ t+AtF(i))

AU(i)T (t+AtR _ t+AtFF—1)) = STOL

Hence we can now calculate 3" and y®

\

N

Step 3: Calculation of the new “secant”
matrix

(t+AtK—1)(i) = AT (t+AtK—1)(i—1) A®D
where

A(i) =1+ \_,(i) ﬂ(i)T

v = vector, function of
50 l(i) t+Atye(—1)

w® = vector, function of 8, I(i)

See the textbook.

Transparency
10-35

Transparency
10-36
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Transparency
10-37

Transparency
10-38

-

Important:

« Only vector products are needed to
obtain v and w®.

* Only vector products are used to
calculate AUY.

\_

N

Reason:
AGO={ + WDy
(I + !v_(‘l) !(1)7) 75—1 (I + ¥(1) w(1)T)

.o (I + M(i_” w(i—1)T)}><

[t+AtR _ t+AtF(i—1)]

_J
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In summary

The following solution procedures are
most effective, depending on the
application.

1) Modified Newton-Raphson iteration
with line searches
tK AU(I) — t+AtR _ t+AtF(i—1)
t+AtU(i) — t+AtU(i—1) + B AU(i)

determined by the
line search

~

\—

~

2) BFGS method with line searches

3) Full Newton-Raphson iteration with
or without line searches
(full Newton-Raphson iteration with
line searches is most powerful)

But, these methods cannot directly be
used for post-buckling analyses.

)

Transparency
10-39

Transparency
10-40
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Transparency
10-41

Transparency
10-42

~

Modified Newton iteration with line

searches: BAYO) J iy MO
Calculate 'K
—
i=i+1

K AQD = tHAR — tHAtE(-1)

tHAY M — tHAyyi-1) B AJ®

to determine

Perform line searchL_

Is t+AtR _ !+AtF(i—1) =0
with AU small?

No Yes

N\ (

BFGS method:

t+Atu(O) = tU i+AiF(0) = tF =1

'
Calculate 'K

i=T+1]
I
Update inverse of
secant matrix

!

Perform line search

to evaluate ""2'U?
t+AiF(i)

¥
Calculate AU®
!

Is t+AlR _ t+A!F(i—1) =0
No |with AU® small?

| Yes

VAN
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\

A0 — ty  tAEO) T iy Tranlsg-z;ency

Full Newton iteration with line searches:

|
L

Calculate 2K

'
thaye (=) AQO = tHatg _ t+HAtEG-1)

t+AtU(i) — t+AtU(i—1) + B AU(i) |

1 l

Perform line search Is AR — AE(-D = g

to determine B NO | with AD® small?
lYes

\—

N\

Convergence criteria:

Transparency
10-44

« These measure how well the obtained
solution satisfies equilibrium.

 We use
1) Energy

2) Force (or moment)
3) Displacement
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-

Transparency
10-45
On energy:
AQOT (tHAtR _ tHAtE(-1)
_—AQ(U)T(t:AtB _ tE) ) = ETOL
(Note : applied prior to line searching)
On forces:
Transparency
10-46 t+ At t+At(i—1)
TR - ""F" 2
RNORM = RTOL
N’

reference force
(for moments, use RMNORM)

Typically, RTOL = 0.01
RNORM = max |'Rl:

considering only translational
degrees of freedom

Note: |all> = \/% (a)?

J L
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On displacements:

reference displacement
(for rotations, use DMNORM)

Transparency
10-47
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Solution of the
Nonlinear Finite
Element
Equations in
Static Analysis—
Part 1l

Contents:

B Automatic load step incrementation for collapse and
post-buckling analysis

B Constant arc-length and constant increment of work
constraints

B Geometrical interpretations

B An algorithm for automatic load incrementation

B Linearized buckling analysis, solution of eigenproblem
Bl Value of linearized buckling analysis

B Example analysis: Collapse of an arch—linearized
buckling analysis and automatic load step
incrementation, effect of initial geometric imperfections

Textbook:

Reference:

Sections 6.1, 6.5.2
The automatic load stepping scheme is presented in

Bathe, K. J., and E. Dvorkin, “On the Automatic Solution of Nonlinear
Finite Element Equations,” Computers & Structures, 17, 871-879,
1983.
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« WE DISCUSSED iny SCHEMATICALLY :
TUE PREVIOUS LECTURE Kood A
SuLuTIoN SCHEMES TO ]
SOLVE X " \
) p
t+ot R
{Obtk_ - L] E 'R
A, "R
WITH R PRESCRIBED )
FoR EACH LoA® LEVEL TR dispt. ~
ExANPLE - ¢« DIFFICULTIES ARE EN-
. COUNTERED TO CALCU-

K oy 42 R oo

LATE CoLLAPSE LoADS

taat, 1) . Leat M(L-ﬁ + Aw’w

Markerboard
11-1
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Transparency
11-1

Transparency
11-2

-~

AUTOMATIC LOAD STEP
INCREMENTATION

» To obtain more rapid convergence in
each load step

« To have the program select load
increments automatically

» To solve for post-buckling response

An effective solution procedure would
proceed with varying load step sizes:

smaller
load increments

load!| 'arge |4 load

load
nerements decreases

~L/

displacement

» Load increment for each step is to be
adjusted in magnitude for rapid
convergence.

J
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t+ At :
We compute " "R using Transparency
4R = "4\ R_ra constant vector 113

Hence we assume: Deformation-
independent
loading.

t+aty R All loads are
identically scaled.

—-—NR

N\

~

The basic approach:

very slow convergence If load were fixed Transparency
N

load 114

t+Ath ﬁ

AR \faster convergence

R

displacement

tU t+AtU
t+an () - t) 4 J.‘ﬂ) 3 A\
t+AtU(I)= tU + y—g)_f,z AU®
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Transparency
11-5

Transparency
11-6

-

The governing equations are now:

T () _ (t+Aty (i—1) (ng _ t+Ate(i—1)
KAU™ = "7\ + AAY)R F

t+a ()

with a constraint equation
f(AN®, AUD) = 0
The unknowns are AUY, A\Y.

T =t in the modified Newton-Raphson
iteration.

N\

We may rewrite the equilibrium
equations to obtain

"rK AU(I) — t+AtA(i—1) R _ t+AtF(i—1)

'K AU = R -only solve this once

I;—_——L:'_I"for each load step.
Hence, we can add these to obtain

A_Q(i) = AQ“’ + A\® AQ

J
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4 )

Constraint equations:
Transparency
(0] Spherical constant arc-length criterion 11-7
A2 + U U8 = (A¢)
where load] A€
AD = tHaty O _ ty
U® = t+atyo _ Yy
B = A normalizing factor displacement
applied to displacement
components (to make
all terms dimensioniess)
This equation may be solved for A\®
as follows: | Transparency

Using A = A7 + ANO

and  U® = Ut 4+ AU®
= U + AU + ANY AT

we obtain a quadratic equation in AN?
(AU? and AU are known vectors).
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Transparency
119

Transparency
11-10

-~

t+Ath R

loaq

Geometrical interpretation for single
degree of freedom system:

A

~

{;;‘K

\@R

"R

u®

U

/ displacement

t+Atu(1) t+Atu(2) t+Atu(3)

N

@ “Constant” increment of external

work criterion

First iteration: (‘)\ + %A)\“’) RT AU =W

where W is the (preselected)
increment in external work:

t+Ath(1 ) R\Ioad

~

K

"R—1|

_s— shaded areais W

‘U

s

NN displacement
t+AtU(1)




Topic Eleven 11-9

Successive iterations (i = 2, 3, ...)
(t+At)\(i—1) n %A)\(i)> R" AU =0

This has solutions:

BT Ag(i)>

« RTAU® =0 (A)\(i) = — =
- R" AU

taty () = _t+aty (i=1)

—

load reverses direction
(This solution is disregarded)

Transparency
11-11

\-
-

Our algorithm:

« Specify R and the displacement at
one degree of freedom corresponding
to “'\. Solve for *'U.

« Set A¢.
« Use 0] for the next load steps.

« Calculate W for each load step.
When W does not change
appreciably, or difficuities are
encountered with [, use @ for the
next load step.

J L

Transparency
11-12
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Transparency
11-13

Transparency
11-14

f

— Note that Af is adjusted for the next
load step based on the number of
iterations used in the last load step.

— Also, 'K is recalculated when
convergence is slow. Full Newton-
Raphson iterations are automatically
employed when deemed more
effective.

N\ (

Linearized buckling analysis:

The physical phenomena of buckling or
collapse are represented by the
mathematical criterion

det (K) = 0

where T denotes the load level
associated with buckling or collapse.

J
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~

The criterion det ("K) = 0 implies that -
the equation iy

'rK U* g

has a non-trivial solution for U* (and
a U* is a solution with a being any
constant). Hence we can select a
small load ¢ for which very large
displacements are obtained.

This means that the structure is
unstable.

~

J
N

Physically, the smallest load imbalance
will trigger the buckling (collapse) Tm“fﬂzency
displacements:

load
imbalance ]
1 ;_ E, I, L given

Pinned-pinned beam
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Transparency
11-17

Transparency
11-18

-~

We want to predict the load level and
mode shape associated with buckling
or collapse. Hence we perform a
linearized buckling analysis.

We assume
T_K — t_AtK + A (tK _ t_AtK)
TB = t—AtB + X (tB _ t—AtB)
\ is a scaling factor which we

determine below. We assume here that
the value N we require is greater than1i.

\_

\-
~

Pictorially, for one degree of freedom:

oad slope '"*'K
slope 'K
R / s estimated buckling load
'R
t—AtR

TR displacemer;t

)
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The problem of solving for A such that
det("’K) = 0 is equivalent to the
eigenproblem

t—Atng =\ (t—At}S _ tK) b

where ¢ is the associated eigenvector
(buckling mode shape).

In general, " *'K — 'K is indefinite,
hence the eigenproblem will have both
positive and negative solutions. We
want only the smallest positive \ value
(and perhaps the next few larger
values).

Transparency
11-19

Transparency
11-20
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Transparency
11-21

Transparency
11-22

-

Solution of problem

Ko =M (TR =K b

desired solution

NG N N
7N\ 7N\ 7N |

negative values

positive values

~

Example of model with

both positive

and negative eigenvalues:

buckling of this member
corresponds to a
negative eigenvalue

e

f 3 )
[y
o o
f WY
I

&—8
iv

Py
&

|

s eige

buckling of this member
corresponds to a positive

nvalue

U\
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We rewrite the eigenvalue problem as
follows:

Ko = (A1) ke
Y

Now we note that the critical buckling
mode of interest is the one for which v
is small and positive.

\—

~

Solution of problem

t t-Ae 4. . AN—1
Ké—'Y ngﬂy— \

\i values greater

than 1 ‘/’ % -----

|

|
A et Y
Vv |

desired

solution

\i values are negative

~

Transparency
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Transparency
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Transparency
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-

Value of linearized buckling analysis:

* Not expensive

 Gives insight into possible modes of
failure.

» For applicability, important that pre-
buckling displacements are small.

* Yields collapse modes that are
effectively used to impose
imperfections.

— To study sensitivity of a structure
to imperfections

\_

N (

But

— procedure must be employed with
great care because the results
may be quite misleading.

— procedure only predicts physically
realistic buckling or collapse
loads when structure buckles
“‘in the Euler column type”
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[

Example: Arch uniform pressure load 'p

ﬁ = F =10.0
R = 64.85 Cross-section:
a = 225° _
E=21x10° |h
v=0.3 ||
h=b=1.0 b

~

~

Finite element model:
» Ten 2-node isoparametric beam
elements
« Complete arch is modeled.

Purpose of analysis:

« To determine the collapse mechanism
and collapse load level.

« To compute the post-collapse
response.

_/

Transparency
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Transparency
11-29

Transparency
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~

Step 1: Determine collapse
mechanisms and collapse loads
using a linearized buckling
analysis (*'p = 10).

First mode: per = 95

Second mode: per = 150

N

Step 2: Compute the response of the arch using
automatic step incrementation.

Coliapse load
predicted using
120 4 buckling analysis  _ ¢ ted
J /\ h response,
o0 about 60 steps.
Pressure B
40 |
Load level used =%
. T T T T T T 1 N
for buckling 0 200 400 6.00 8.00

analysis ,
Displacement of center of arch

J
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~

We have computed the response of a
perfect (symmetric) arch. Because the
first collapse mode is antisymmetric,
that mode is not excited by the
pressure loading during the response
calculations.

However, a real structure will contain
imperfections, and hence will not be
symmetric. Therefore, the antisymmetric
collapse mode may be excited,
resulting in a lower collapse load.

~

J

\

Hence, we adjust the initial coordinates
of the arch to introduce a geometric
imperfection. This is done by adding a
multiple of the first buckling mode to
the geometry of the undeformed arch.

The collapse mode is scaled so that
the magnitude of the imperfection is
less than 0.01.

The resulting “imperfect” arch is no
longer symmetric.

~N

Transparency
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Transparency
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Transparency
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-

Step 3: Compute the response of the “imperfect”
arch using automatic step incrementation.

1204

80

Pressure
40

00 200 400 600 800
Displacement of center of arch

N

Comparison of post-collapse
displacements:

“Perfect” arch: (disp. at center of arch
= —4.4)

—

“Imperfect” arch: (disp. at center of
arch = —4.8)

—

AN
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Demonstrative
Example Solutions
in Static Analysis

Contents:

B Analysis of various problems to demonstrate, study, and
evaluate solution methods in statics

B Example analysis: Snap-through of an arch

B Example analysis: Collapse analysis of an elastic-plastic
cylinder

B Example analysis: Large displacement response of a shell

B Example analysis: Large displacements of a cantilever
subjected to deformation-independent and deformation-
dependent loading

B Example analysis: Large displacement response of a
diamond-shaped frame

B Computer-plotted animation: Diamond-shaped frame

B Example analysis: Failure and repair of a beam/cable
structure

Textbook:

Sections 6.1, 6.5.2, 8.6, 8.6.1, 8.6.2, 8.6.3
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IN Twis LECTMRE,wg
WANT To STUdY Some

EXAHPLE SOLUTION S

Ex. 1 SNAP-THRou BH
OF A TRUSS ARCH
EX.2 C OLLAPSE ANALMSIS

OF AN ELASTO-PLASTIC
CYLINDER

ExX.3 LARGE DISTLACE-
MENT SOLUTION OF A
SHPERICAL SHELL

Ex.4 CANTILEVER UNDER
PRESSURE LOADING

EX.S  ANALYSIS OF

DIAMOND - SHAPED FRAME

Ex.t FRILURE AnD

REPAIR OF A EEAH/CABLE
STRUCTURE

Markerboard

12-1
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Transparency
12-1

Transparency
12-2

r

Example: Snap-through of a truss arch

L=10.0
k=%’3=2.1 x 105

« Perform post-buckling analysis using
automatic load step incrementation.

» Perform linearized buckling analysis.

N\

Postbuckling analysis:

The analytical solution is

R= 2kL 1 . }(sm 15° — A)
A A 2 L
L

12(

) sin 15° +

AN
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The automatic load step incrementation
procedure previously described may be
employed.

Using 'A="U= —0.1, we obtain

analytical
30,000 solution—=Tg
finite element
R 20,0001 solution
10,000-

~

N\ (

Solution details for load step 7:

» The spherical constant arc-length
algorithm is employed.

* The initial stiffness matrix is employed
for all iterations, 'U = 8111, 'R = 13,580.

i t+ A () trat () g u® AR

.9220 16,690 |.1109 3,120
9602 15,220 |.1491 1,640
.9686 14,510 |.1575 936
9699 14,340 |.1588 763
9701 14,310 [.1590 734
9701 14,310 |.1590 731

O bhWN =

Transparency
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124
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Transparency
125

Transparency
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-

Pictorially, for load step 7,

17,000 i=1
16,0001
0 J =2
15,000 MR i =3
load

14,000+ step | AR

[

0 t t + t +—
0 . . . .

N[

Solution details for load step 8:

* The constant increment of external
work algorithm is employed.

* Modified Newton iterations are
used,'U = 9701, 'R = 14,310.

i t+Atu(i) t+At)\(i) R U(i) K(i) R

11227 14,740 |.1526 440
2 | 11227 14500 [.1526 200

-t
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Pictorially, for load step 8,

i=1
load step 7 load step 8

15000 B_S_ _mica,
R ’—_f D solution
10,000+ Wprescribed= area 9f
quadrilateral
' ¢ ABCE

{ 1M W=area o

5,000 u=Uy quadrilateral
ABDE
A: } Li $
0.9 1.0 1.1 1.2
A

avYa

We now employ a linearized buckling
analysis to estimate the collapse load
for the truss arch.

Load

25,0007

20,000
15,000
10,000

5,000+

0

An = 1,000, "R = 25,600

AR = 10,000, 'R = 21,100
A'R = 14,000, 'R = 16,800

A'R = 14,500, "R = 15,000

Rer=14,504 ;s

R

0

05 10 15 20
displacement

J

Transparency
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Transparency
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Transparency
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~

There are cases for which linearized
buckling analysis gives buckling loads
for stable structures. Consider the
truss arch reinforced with a spring as
shown:

R Load
100,000

50,000
k= 16,000

c T T T T
0 2 4 6
displacement

This structure is always stable.

N (

We perform a linearized buckling
analysis. When the load level is close
to the inflection point, the computed
collapse load is also close to the
inflection point.

100,000 l0ad
80,000 /
60,000 / *R = 10,000, "R = 60,700
40,000 - *'R = 40,000, "R = 44,10C
20,0001 displacement
% 3 6

 \_
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Example: Elastic-plastic cylinder under

Very
long

N

internal pressure

E=8667
v=0.3
ET=O
o,=17.32
Inner radius =1
Outer radius=2

— Goal: Determine the limit load.

/

N (

Finite element mesh: Four 8-node

axisymmetric elements

1.0

z

q

-

1.0
l

We note that, due to the boundary
conditions and loading used, all
stresses are constant in the z direc-
tion. Hence, 6-node elements could
also have been used.

~

Transparency
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r

Since the displacements are small, we

Transpasency use the MN.O. formulation.
« We employ the following load
function:
15-- » .
(the elastic limit
10 load is
P sl P=7.42)
8l
51
0 = } :
01 5 10 15
time

N\

Now we compare the effectiveness of

Tranfgﬁency various solution procedures:
— Full Newton method with line
searches
— Full Newton method without line
searches

— BFGS method

— Modified Newton method with
line searches

— Modified Newton method without
line searches

— Initial stress method

L
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The following convergence tolerances are
employed:

Au(i)T [t+AtR _ t+AtF(i—1)]

Ag(‘l)T [t+AtB _ tE] il
ETOL

“t+AtR _ t+AtF(i—1)||2

70 = 0.01
—— RTOL
RNORM

When any of these procedures are used,
the following force-deflection curve is
obtained. For P=14, no converged
solution is found.

151 P=14 (no solution obtained)

P OT N

51

~S~pP=135

computed solution

T~="~a smooth curve fitting
the computed solutions.

0 2x10~* 4x10~* 6x10~*
displacement of inner surface

J
N

Transparency
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Transparency
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Transparency
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We now compare the solution times for
these procedures. For the comparison,
we end the analysis when the solution for
P=13.5 is obtained.

Normalized

Method time
Full Newton method with line searches 1.2
Full Newton method 1.0
BFGS method 0.9
Modified Newton method with line

searches 1.1
Modified Newton method 1.1
Initial stress method 2.2

\

N\ (

Now we employ automatic load step
incrementation.

* No longer need to specify a load
function

» Softening in force-deflection curve
is automatically taken into account.

Here we use
ETOL=10""°
RTOL=0.01
RNORM=1.0
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-

Result: Here we selected the displacement
of the inner surface for the first
load step to be 1074

15J- computed limit load

——P=13.8

1 1 [ l I ]

1 T T T 1 T
0 2x107%4x107*6x10748x107410x10"% 12x10~4
displacement of inner surface

~

\—

~

Example: Spherical Shell

thin
= axisymmetric
shell,
clamped edges

Concentrated
\ 4 /force P
.
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P,u 0.0859 in
x ﬁ
\/O‘L R=4.76in

h = 0.01576 in

0 =109
E =107 psi
v=03

~

P
2w

C=TX=-I=x1=

Finite element mesh: Ten 2-D
axisymmetric elements

Deformed configuration for P=100 Ib:

I:I=I:

/&g%

J
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f

Force-deflection curve obtained using
10 element mesh:

T.L.

1001 formulation
applied linear ‘
load analysis
(Ib)

50L
0 = i : +
0 0.05 0.10 0.15 0.20

displacement of apex (in)

\—

\

Comparison of solution procedures:
1) Apply full load (100 Ib) in 10

equal steps:
Solution procedure Normalized solution time
Full Newton with line searches 1.4
Full Newton without line searches 1.0
BFGS method did not converge
Modified Newton with line searches did not converge
Modified Newton without line searches | did not converge
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2) Apply full load in 50 equal steps:

Solution procedure

Normalized solution time

Full Newton with line search

Full Newton without line search
BFGS method

Modified Newton with line search
Modified Newton without line search

1.3
1.0
1.6
1.9
did not converge

N

Convergence criterion employed:

Au(i)T [t+AtR _ t+AtF(i—1)]
— = — <

Agﬂ )T[t+AtB _ tE]

= 0.001
ETOL

Maximum number of iterations permitted =99

AN
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We may also employ automatic load

step incrementation:

Here we use

ETOL=10"°
and
t+Atey _ t+Atp(i—1)
1.0 —
—— RTOL

RNORM
as convergence tolerances.

\

Results: Using different choices of initial

prescribed displacements,

we obtain
1001 o . 1U=0.01 in
—— : 'u=0.001 in
applied
load
(Ib) 50
0

displacement of apex (in)

VAN
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Example: Cantilever under pressure
loading

uniform pressure load p

v v b Y 02m

| T
-

r 10.m

E=207000 MPa
v=0.3
Plane strain, width=1.0 m

« Determine the deformed shape of
the cantilever for p=1 MPa.

\

— Since the cantilever undergoes
large displacements, the pressure
loading (primarily the direction of
loading) depends on the config-
uration of the cantilever:

ARAEEN I e CN

deformation-independent deformation-dependent

AN
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The purpose of this example is to
contrast the assumption of deforma-
tion-independent loading with the
assumption of deformation-dependent
loading.

N\

Finite element model: Twenty-five two-
dimensional 8-node elements
(1 layer, evenly spaced)

Solution details:

e Full Newton method without line
searches is used.

« Convergence tolerances are
— ETOL=10"3

— RTOL=10"%,
RNORM=1.0 MN

AN
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(
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Results: Force-deflection curve

» For small deflections, there are
negligible differences between
the two assumptions.

1.21  deformation-independent
1.04 loading S, .
0] &
p -8" 0o ¢ %
(MPa) 'GT ooo °
44 oo deformation-dependent
7 o = loading
21 °
0

00 200 400 600 800
vertical displacement of tip (m)

\_

N (

Transparency
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Pictorially, for p=1.0 MPa,

undeformed

deformation-independent
loading

deformation-dependent
loading

J
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Example: Diamond-shaped frame

t P
frictionless hinge
/ g

beam cross-section: 1 in X 1 in
/ E=30x10° psi
v=0.3

. Twenty
1510 3-node
isobeam elements

~

avye

Force-deflection curve, obtained using
the T.L formulation:

« A constant load increment of 250
Ibs is used.

80,000+

60,000 -

L

(o) 40,0001

20,000

T

0 } } i
0 10 20 30

displacement of top hinge (inches)

VAN
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Computer
Animation
Diamond shaped
frame

’f'f

.

“\

TIME « .
LOAD : . MPA
TIME : 138

LOAD : 32580 MPA

_/

~N

TIME : 300
LOAD : 75000 MPA
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Example: Failure and repair of a

beam/cable structure

cable: E=207000 MPa

N 5 A=10"%m

no pretension

5m g
} o
/ |
10 m '
beam: E=207000 MPa p=7800 kg/m3
3220'2%0 Mpa  Ccross-section:

E);:20700 MPa 01m x 01 m

~

\-

\

In this analysis, we simulate the
failure and repair of the cable.

Steps in analysis:

Load step Event

1 Beam sags under its weight, but
is supported by cable.

1to 2 Cable snaps, plastic flow occurs at
built-in end of beam.

2to4 A new cable is installed, and is
tensioned until the tip of the beam
returns to its location in load

step 1.

Transparency
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Finite element model:

Two truss elements: Load | Active
Truss #2 is tensioned step | truss
by imposing a fictitious ] y
thermal strain. 2 none
3 #2
4 #2

/]

Five 2-node Hermitian beam elements

5 Newton-Cotes integration points in r direction
3 Newton-Cotes integration points in s direction

~

Solution details: The U.L. formulation
is employed for the truss elements
and the beam elements.
Convergence tolerances:
ETOL=10"3
RTOL=10"2
RNORM=7.6x10"2 MN
RMNORM=3.8x10"2 MN-m

VAN
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Comparison of solution algorithms:

Method

Results

Full Newton with line searches

All load steps successful,
normalized CPU time=1.0.

Full Newton Stiffness matrix not positive definite
in load step 2.
BFGS All load steps successful,

normalized CPU time=2.5.

line searches

Modified Newton with or without

No convergence in load step 2.

N

Results:
Load Disp. Stress | Moment at
step of tip | in cable | built-in end
1 —.008 m| 64 MPa | 9.7 KN-m
2 —.63 m — 38 KN-m
3 -.31m | 37 MPa 22 KN-m
4 —.008 m| 72 MPa | 6.2 KN-m

Note: The elastic limit moment at the built-in
end of the beam is 33 KN-m.

NS
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Pictorially,
Load step 1: Load step 2:
(Displacements are magnified
by a factor of 10)
— e ———ﬁ_‘
Load step 3: Load step 4:

(Displacements are magnified
by a factor of 10)
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Solution of
Nonlinear
Dynamic
Response—Part |

Contents:

B Basic procedure of direct integration

B The explicit central difference method, basic equations,
details of computations performed, stability
considerations, time step selection, relation of critical
time step size to wave speed, modeling of problems

B Practical observations regarding use of the central
difference method

B The implicit trapezoidal rule, basic equations, details of
computations performed, time step selection,
convergence of iterations, modeling of problems

B Practical observations regarding use of trapezoidal rule
B Combination of explicit and implicit integrations

Textbook:
Examples:

Sections 9.1, 9.2.1, 9.2.4, 9.2.5,9.4.1,9.4.2,9.4.3,9.44,9.5.1, 9.5.2
9.1,94,95,9.12
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SOLUTION OF DYNAMIC
EQUILIBRIUM EQUATIONS

 Direct integration methods
Explicit
Implicit
* Mode superposition
 Substructuring

~

\

The governing equation is

Bt + Fo(t) + Fe(t) = R(l)

inertia Damping “Elastic” Externally
forces forces forces applied loads
nodal point

forces equivalent to
element stresses

This equation is to be satisfied at the
discrete times

| | | | --- | | [
[ { | | I | I
0 At 2At 3At t—At t  t+At

Y
N
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Transparency
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s

Issues to discuss:

« What are the basic procedures for
obtaining the solutions at the discrete
times?

* Which procedure should be used for
a given problem?

\—

J

Explicit time integration:
Central difference method
MU+C'U+F="R

tg — §1A_t (H-At_u _ t—Atg)

vy _ 1 aeat ot t—At
Q—(—AT)z( Uu-2U+""U)

* Used mainly for wave propagation
problems

* An explicit method because the
equilibrium equation is used at time t
to obtain the solution for time t+ At.
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Using these equations,

(A‘thM + _1__C> t+Atg — tB

N

2At—
where
B=R-F+ 2 MU-(pM- - )"A‘U
R o aeM man®) Y
+ The method is used when M and C
are diagonal:
t+At 1 A
Ui = 1 1 Ri
Ae™ T o %
and, most frequently, ci = 0.
Note:
« We need m; > 0 ! (assuming c; = 0)
- E=3E

m

where m denotes an element.

* To start the solution, we use

. 2 s
—Atgzo—u_ At0g+éét_0g

_J
N
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r

The central difference method is only
conditionally stable. The condition is

_s-smallest period in
At = At = - finite element
assemblage
In nonlinear analysis, T, changes
during the time history

— becomes smaller when the system
stiffens (for example, due to large
displacement effects),

— becomes larger when the system
softens (for example, due to material
nonlinearities).

\—

\

We can estimate T,:

(wn)? = max {(®™)?} over all elements m
frequency

Hence the largest frequency of all
individual elements, (w{™)max, is used:

In nonlinear analysis (®{™)max Will in
general change with the response.

J
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The time integration step, At, used can
be

At 2

- ((l)nm )max

=< Ater

We may call ;%my the critical time step of
n

element m.

Hence —(—2)— is the smallest of these

((!)nm )max
“element critical time steps.”

N (

Proof that (wn)? =< (w{™)2.x:

Using the Rayleigh quotient (see textbook),
we write

df S K™ ¢, (the summation is)

0 = taken over all

finite elements
Lot U™ = b7 K™ dn, 9™ = &f M™ by,

then
s o™

Tz g™

(‘J‘)n)2

J
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Consider the Rayleigh quotient for a
single element:

(m) _ QI K(m) Qn _ ou(m)
T O M™ g, T 9™

Using that p™ = (0{™)® where i is
the largest frequency (rad/sec) of
element m, we obtain

ou(m) < (wgm))Z y(m)

\—

N

Therefore (wn)? is also bounded:
S (0p™)? g™
s g

(08™)hax g)‘“"
E)W

(0n)? < (@5™)Zax

(n)? =<

IA

resulting in
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The largest frequencies of simple
elements can be calculated analytically
(or upper bounds can be estimated).

Example: E,A p
—\

13 e=e[T nle

(01)2=0, (02)® = (wn)* = 4

\

We note that hence the critical time
step for this element is

(2) - &

olrr

; L = length of element!

Note that % is the time required for a

wave front to travel through the
element.

J
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Modeling:
Let the applied wavelength be L,

distance

Lw

N

Then ty = e wave speed

tw number of time ste
— w ps used
Choose At n -~ to represent the wave

Le= c At
\\

related to
element length

J
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Notes:

E S—Young’s modulus
*In1-D, ¢ =+/—

p —s—density

* In nonlinear analysis, At must satisfy
the stability limit throughout the
analysis. Since ¢ changes, use the
largest value anticipated.

+ It may also be effective to change
the time step during the analysis.

\-

-

* Low-order elements:

Lo Usually
preferable

Le
same lengths, good

 Higher-order elements:

L I [ ] [ 4 v [ ]
&1 L*
—

_L conservative
different lengths, not good Le = g —

J L
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Some observations:

1) Linear elastic 1-D analysis

——

R

time

For this special case the exact solution
is obtained for any number of elements
provided Lo = c At.

Wave travels one element per time
step.

N

2)

3)

Uniform meshing is important, so
that with the time step selected, no
unduly small time step in any region
of the total mesh is used.

Different time steps for different
parts of the mesh could be used,
but then special coupling
considerations must be enforced.

A system with a very large
bandwidth may also be solved
efficiently using the central difference
method, although the problem may
not be a wave propagation problem.

AN
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4) Explicit time integration lends itself
to parallel processing.

Can consider a
certain number of
equations in parallel
(by element groups)

t'lAtQ (OB

-

\—

Implicit time integration:

Basic equation (assume modified
Newton-Raphson iteration):

Mt+AtQ(k) + _C_t+Atg(k) 4+ tK Ag(k) —
t+AtR _ t+AtF(k—1)

t+AtQ(k) — t+AtQ(k—1) 4+ Ag(k)

We use the equilibrium equation at

time t+ At to obtain the solution for
time t+At.
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~

Trapezoidal rule:
Transparency
13-23 Aty =ty + t(tg +t+Atg)
t+AL ) _ t° g ' tHAYT
U="'0+%(0+"0)
Hence
. 2 .
t+AtLJ_ — Kf (t+At-u _ t_u) _ t_u
t+AY" _ t+At tn it
U= W( Uu-1 U-'0
Transparency ) . .
13-24 In our incremental analysis, we write
tHAt - sz (trayk-n 4 Ay® — tu) - U
t+ALY(K) t+Aty ((k—1) k) _t
U =1 At) Az (U + AU U)

AtU ‘0

J
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and the governing equilibrium equation
IS

t 4 3) ®
(5+A—th+Atg AU

J

'K

= tratg _ t+Atek—1)

il 4 peay k-t _it'_t"]
M[Atz( ye -y - Ly -1

_~l2 pragk-n ¢ _t'J
g[m( uk 1) - g

\_

N\

Some observations:

1) As At gets smaller, entries in 'K
increase.

2) The convergence characteristics of
the equilibrium iterations are better
than in static analysis.

3) The trapezoidal rule is
unconditionally stable in linear
analysis. For nonlinear analysis,

— select At for accuracy

— select At for convergence
of iteration
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Convergence criteria:

Energy:

Au(i)T (t+AtB _ t+AtE(i—1) _ M t+AtQ(i—-1)__ g t+AtQ(i_1))
AU(1)T (t+AtR _ tE _ M H—AIQ(O) . g t+Alg(0))

< ETOL

\-
~

Forces:

”H-AtR _ t+AtF(i—1) -M '(+AtU(i—1)__ C t+AtU(i—1)”2

RNORM

< RTOL

(considering only translational degrees
of freedom, for rotational degrees of
freedom use RMNORM).

Note: |a]lz = % (ak)®

VAN
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. . T
Displacements: e

1AV
DNORM = DTOL

(considering only translational degrees
of freedom, for rotational degrees of
freedom, use DMNORM).

\

Modeling:
: , : T
* |dentify frequencies contained in the mnfg-gf)ency

loading.

e Choose a finite element mesh that
can accurately represent the static
response and all important
frequencies.

» Perform direct integration with

o 1
At = 55 Too

(Teo is the smallest period (secs) to
be integrated).
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— Method used for structural
vibration problems. Because a
structural dynamics
— Typically it is effective to use { problem is thought
higher-order elements. of as a “static
problem including
— It can also be effective to use | inertia forces”.
a consistent mass matrix. Y,

\

N\ (

Typical problem:

-—

—io load

—

o

—_—

—l g

T T T 7777777 L time
Analysis of tower under blast load

 We assume that only the structural
vibration is required.

* Perhaps about 100 steps are
sufficient to integrate the response.
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Combination of methods: explicit and

implicit integration

» Use central difference method first,
then switch to trapezoidal rule, for
problems which show initially wave

propagation, then structural vibration.

« Use central difference method for
certain parts of the structure, and
implicit method for other parts; for
problems with “stiff” and “flexible”
regions.

~
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