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Preface

This course on the nonlinear analysis of solids and structures can
be thought of as a continuation of the course on the linear analysis of
solids and structures (see Finite Element Procedures for Solids and
Structures-Linear Analysis) or as a stand-alone course.

The objective in this course is to summarize modern and effective
finite element procedures for the nonlinear analysis of static and
dynamic problems. The modeling of geometric and material nonlinear
problems is discussed. The basic finite element formulations employed
are presented, efficient numerical procedures are discussed, and rec­
ommendations on the actual use of the methods in engineering practice
are given. The course is intended for practicing engineers and scientists
who want to solve problems using modern and efficient finite element
methods.

In this study guide, brief descriptions of the lectures are presented.
The markerboard presentations and viewgraphs used in the lectures
are also given. Below the brief description of each lecture, reference is
made to the accompanying textbook of the course: Finite Element Pro­
cedures in Engineering Analysis, by K. J. Bathe, Prentice-Hall, Engle­
wood Cliffs, N.J., 1982. Reference is also sometimes made to one or
more journal papers.

The textbook sections and examples, listed below the brief descrip­
tion of each lecture, provide important reading and study material for
the course.
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Topic 1

Introduction to
Nonlinear Analysis

• Introduction to the course

• The importance of nonlinear analysis

• Four illustrative films depicting actual and potential
nonlinear analysis applications

• General recommendations for nonlinear analysis

• Modeling of problems

• Classification of nonlinear analyses

• Example analysis of a bracket, small and large
deformations, elasto-plastic response

• Two computer-plotted animations
-elasto-plastic large deformation response of a plate
with a hole
-large displacement response of a diamond-shaped
frame

• The basic approach of an incremental solution

• Time as a variable in static and dynamic solutions

• The basic incremental/iterative equations

• A demonstrative static and dynamic nonlinear analysis
of a shell

Section 6.1

6.1,6.2,6.3,6.4

The shell analysis is reported in

Ishizaki, T., and K. J. Bathe, "On Finite Element Large Displacement
and Elastic-Plastic Dynamic Analysis of Shell Structures," Computers
& Structures, 12, 309-318, 1980.



FIELD OF NONLINEAR

ANAL'fS1S

• (ONTINLAVl.tJ'\ MECHANICS

• FIN liE Ell:: t-"\ENT D15­

CR~.,..'"2A-TION S

• NLAt-'\ERIc.AL

AL5o"R 11\-\ MS

• SOfTWA'QE

(ONS' 't>E:'RAT\ DN~

Nt::- CONCENTRATE

ON ~-
• M&Tl-\o1:»TI-\Po-T A'e&

5ENE'RA LL'I A?PLI c.AELE

• !'"10t>E'RtJ 'E"(\..HJ I QlA.E S

• "PRACTICAL ?ROCEblA~E:S

~I
HE1Hc>'t>s IItA-\ Al'f OR

ARE NOw ~E(OMIN b AN

INTE G1</\ l 'flPt'RI 0 r­
CAl:> leAf SO~TWAKE

Topic One 1-3

'R~IEF OVERVI£~

Ol= CouRSE

• 6fOMElRIC A Nt>

,""A/ER.AL NONLlNE.AR

ANAL%IS

• S"1AT,c: AN~ :b'fAlAM1C­

SOL IAllONS.

• EASIC r~ll'I/c..rt>LE:,,;)

ANb TIi~IR l.A<;E

WILL EE OF INIERES,T

IN MAN 'I E;K AN( ~ E So OF

ENSINl:.£~IN(; 11-\"i:ol..lb t\­

0lAi TIi'E WO'RL\::>

Markerboard
1-1

IN ,HIS LE:CTUR~

WE "bl'>[\)\><; $ol'\E

IN TRO"t:>l,\CTDR..., Vlf\V­

G'l:.A'PItS AN!) S HoW

<; C' nE <; It 01':., t-1 0\1 \ES

WE TH-EN CLASS\f'l

NON.LINE~'R AI\}AL'-/'SES

WE ~1.sCW;C::; THE

\SAS IC A??'KOACI-\ I:JF

AN INCKEMENTA L

$OLlAi\ON

W( bl\lE EXAtWLES

Markerboard
1-2



1-4 Introduction to Nonlinear Analysis
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FINITE ELEMENT
NONLINEAR ANALVSIS

• Nonlinear analysis in engineering
mechanics can be an art.

• Nonlinear analysis can be
a frustration.

• It always is a great challenge.

Some important engineering
phenomena can only be assessed on
the basis of a nonlinear analysis:

• Collapse or buckling of structures
due to sudden overloads

• Progressive damage behavior due to
long lasting severe loads

• For certain structures (e.g. cables),
nonlinear phenomena need be
included in the analysis even for
service load calculations.



The need for nonlinear analysis has
increased in recent years due to the
need for

- use of optimized structures

- use of new materials

- addressing safety-related issues of
structures more rigorously

The corresponding benefits can be
most important.

Problems to be addressed by a non­
linear finite element analysis are found
in almost all branches of engineering,
most notably in,

Nuclear Engineering
Earthquake Engineering
Automobile Industries
Defense Industries
Aeronautical Engineering
Mining Industries
Offshore Engineering

and so on

Topic One 1-5
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Film Insert
Armored
Fighting
Vehicle
Courtesy of General
Electric
CAE International Inc.
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Film Insert
Automobile
Crash
Test
Courtesy of
Ford Occupant
Protection Systems



1-8 Introduction to Nonlinear Analysis

Film Insert
Earthquake
Analysis
Courtesy of
ASEA Research
and Innovation­
Transformers
Division
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Bridge
Collapse
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For effective nonlinear analysis,
a good physical and theoretical
understanding is most important.

PHYSICAL MATHEMATICAL
INSIGHT FORMULATION

4

(
INTERACTION AND )

MUTUAL ENRICHMENT

BEST APPROACH

• Use reliable and generally applicable
finite elements.

• With such methods, we can establish
models that we understand.

• Start with simple models (of nature)
and refine these as need arises.

4

A "PHILOSOPHY" FOR PERFORMING
A NONLINEAR ANALYSIS



TO PERFORM A NONLINEAR
ANALYSIS

• Stay with relatively small and reliable models.

• Perform a linear analysis first.

• Refine the model by introducing nonlinearities
as desired.

• Important:

- Use reliable and well-understood models.

- Obtain accurate solutions of the models.
\"", u ",/

NECESSARY FOR THE INTERPRETATION
OF RESULTS

Thpic One 1-11

Transparency
1-7

PROBLEM IN NATURE

MODELING

MODEL:
We model kinematic conditions

constitutive relations
boundary conditions
loads

SOLVE

INTERPRETATION OF
RESULTS

Transparency
1-8
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A TYPICAL NONLINEAR
PROBLEM

Material: Mild Steel

POSSIBLE
QUESTIONS:

Yield Load?

Limit Load?

Plastic Zones?

Residual Stresses?

Yielding where
Loads are Applied?

Creep Response?

Permanent Deflections?

POSSIBLE ANALYSES

Plastic Plastic
analysis analysis

(Small deformations) (Large deformations)

Linear elastic
analysis

Transparency
1-10

Determine:
Total Stiffness;
Yield Load

Determine:
Sizes and Shapes
of Plastic Zones

Determine:
Ultimate Load

Capacity
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CLASSIFICATION OF
NONLINEAR ANALYSES

Transparency
1-11

1) Materially-Nonlinear-Only (M.N.O.)
analysis:

• Displacements are infinitesimal.

• Strains are infinitesimal.

• The stress-strain relationship is
nonlinear.

Example:

/J::----.........,.... - P/2

Transparency
1-12

Material is elasto-plastic..1
L

~
L < 0.04

• As long as the yield point has not
been reached, we have a linear analysis.
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2) Large displacements / large rotations
but small strains:

• Displacements and rotations are
large.

• Strains are small.

• Stress-strain relations are linear
or nonlinear.

Transparency
1-14

Example:

y

y'

x.1
LI·

a'T < 0.04

• As long as the displacements are
very small, we have an M.N.O.
analysis.



3) Large displacements, large rotations,
large strains:

• Displacements are large.

• Rotations are large.

• Strains are large.

• The stress-strain relation is
probably nonlinear.

Topic One 1-15
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y

Example:

D
Transparency
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x

• This is the most general formulation
of a problem, considering no
nonlinearities in the boundary
conditions.
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4) Nonlinearities in boundary conditions

Contact problems:

'1)e--------A~~

--I l-
Gap d

• Contact problems can arise with large
displacements, large rotations,
materially nonlinear conditions, ...

Example: Bracket analysis

All dimensions in inches Elasto-plastic material
model:

1.5

o

3

thickness = 1 in.

26000
psi

Isotropic hardening

e



Finite element model: 36 element mesh

• All elements are a-node
isoparametric elements

Line of?+--+---+--+--+
symmetry

R

Three kinematic formulations are used:

• Materially-nonlinear-only analysis
(small displacements/small
rotations and small strains)

• Total Lagrangian formulation
(large displacements/large
rotations and large strains)

• Updated Lagrangian formulation
(large displacements/large
rotations and large strains)

Thpic One 1-17
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However, different stress-strain laws
are used with the total and updated
Lagrangian formulations. In this case,

• The material law used in conjunc­
tion with the total Lagrangian
formulation is actually not
applicable to large strain situations
(but only to large displ., rotation/
small strain conditions).

• The material law used in conjunc­
tion with the updated Lagrangian
formulation is applicable to large
strain situations.

We present force-deflection curves
computed using each of the three
kinematic formulations and associated
material laws:

15000
T.L.

Force
(Ibs) u.L.J.

10000
M.N.O.

5000

O+----+----+--
o 1 2

Total deflection between points of
load application (in)



The deformed mesh corresponding to
a load level of 12000 Ibs is shown
below (the U.L.J. formulation is used).

undeformed A...s-....-r-,,--..,.......,

mesh~ .= = -1

,...-.,...--r---r-«''''' I J
I I I I \ "Jr':,I/T"io--.-4.L'.I- _ -+- _ -+- _ -+_'r
I I I I
I---+---+--
I I I
I---+---+-
I I I

_~s-deformed mesh

Topic One 1-19
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Computer
Animation
Plate with hole

TIME:· 8
LOAD· 8.8 MPA

TIME: • 41
LOAD· 512.5 MPA

TIME: • 52
LOAD· eS8.S MPA
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Computer
Animation
Diamond shaped
frame
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THE BASIC APPROACH OF AN
INCREMENTAL SOLUTION

• We consider a body (a structure or
solid) subjected to force and
displacement boundary conditions that
are changing.

• We describe the externally applied
forces and the displacement boundary
conditions as functions of time.

time time



Since we anticipate nonlinearities,
we use an incremental approach,
measured in load steps or time steps

Topic One 1-23

Transparency
1-26

time

When the applied forces and
displacements vary

- slowly, meaning that the frequencies
of the loads are much smaller than
the natural frequencies of the
structure, we have a static analysis;

- fast, meaning that the frequencies
of the loads are in the range of the
natural frequencies of the structure,
we have a dynamic analysis.

Transparency
1-27
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Meaning of time variable

• Time is a pseudo-variable, only
denoting the load level
in
Nonlinear static analysis with time­
independent material properties

Run 1

at = 2.0

2.0 4.0 time

1.02.0

at = 1.0
~-I-----+-----

time

R
200.014----4
100.0

Example:
Transparency

1-29

Identically the same
results are obtained in
Run 1 and Run 2



Time is an actual variable

- in dynamic analysis

- in nonlinear static analysis with
time-dependent material properties
(creep)

Now dt must be chosen carefully with
respect to the physics of the problem,
the numerical technique used and the
costs involved.

At the end of each load (or time)
step, we need to satisfy the three
basic requirements of mechanics:

• Equilibrium

• Compatibility

• The stress-strain law

This is achieved - in an approximate
manner using finite elements-by the
application of the principle of virtual
work.

Topic One 1-25
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Transparency
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We idealize the body as an
assemblage of finite elements and
apply the principle of virtual work to the
unknown state at time t+.!1t.

H.1tR =

~
vector of
externally applied
nodal point forces
(these include the
inertia forces in
dynamic analysis)

H.1tF

~
vector of
nodal point forces
equivalent to the
internal element
stresses

Transparency
1-33

• Now assume that the solution at time
t is known. Hence ~iJ-t tv, ... are
known.

• We want to obtain the solution
corresponding to time t+.!1t (Le., for
the loads applied at time t+.!1t).

• For this purpose, we solve in static
analysis

tK .!1U = H.1tR - tF
- - -
H.1tU . tu + .!1U



More generally, we solve

using

Topic One 1-27
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Slide
1-1

Slide
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R ~ 100in.

h ~ 1 in.

E =1.0x10' Ib/in2

II =113

O'y~4.1 xlO'lb/in2

E1 =2.0x10slb/in2

f = 9.8 xlO-2 lb/in3

Initial imperfection : Wj (¢) =ShPll C05¢

Analysis of spherical shell under uniform
pressure loading p

I

I

I

I

L
Twenty 8-node aXlsymmetnc els.

p deformation dependent

Finite element model
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0·80·60·40·2

EI~slic T.l
(E, Tl )

o

'·0

0·2

06

0.4

0·8

PRES~

RADIAL DlSPlAC~NT AT ~.O - ,ncheS

Static response ofperfect (5 =0) shell

0·80·60·40·2o

0·8

/E'P Slide

0·6
1-4

\ E. T.l.

0·4
PRES~

PIPer

0·2

RADIAL DlSPlACEf'lENT AT ~·O - ,ncheS

Static response of imperfect (5 =0.1) shell
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PRESSlRE

PIPer

o 0·2 0·4 0·6

RADIAL DISPLACEMENT AT ~ =0
inches

Elastic-plastic static buckling behavior of the
shell with various levels of initial imperfection
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0
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TIME T

Dynamic response of perfect (~ = 0)
shell under step external pressure.
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TIME T

Dynamic response of imperfect (15 = 0.1)
shell under step external pressure.

Slide
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10x16'
Slide

5" 0.1 1·8
8

6
IoIEAN

DISPLACEr-£NT ..

4

2

0 2 4 6 8 10
TIME T

Elastic-plastic dynamic response of imperfect (0 =0. J) shell
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0·8

.. Static unstable

• Dynamic unstable

o Dynamic stable

0·4

0·2

o 0.1 0·2 0·3 0·4

A~L1TUDE OF IMPERFECTION '6

Effect of initial imperfections on the elastic-plastic
buckling load of the shell
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Topic 2

Basic
Considerations in
Nonlinear Analysis

• The principle of virtual work in general nonlinear
analysis, including all material and geometric
nonlinearities

• A simple instructive example

• Introduction to the finite element incremental solution,
statement and physical explanation of governing finite
element equations

• Requirements of equilibrium, compatibility, and the
stress-strain law

• Nodal point equilibrium versus local equilibrium

• Assessment of accuracy of a solution

• Example analysis: Stress concentration factor
calculation for a plate with a hole in tension

• Example analysis: Fracture mechanics stress intensity
factor calculation for a plate with an eccentric crack in
tension

• Discussion of mesh evaluation by studying stress jumps
along element boundaries and pressure band plots

Section 6.1

6.1,6.2,6.3, 6.4

The evaluation of finite element solutions is studied in

Sussman, T., and K. J. Bathe, "Studies of Finite Element Procedures­
On Mesh Selection," Computers & Structures, 21, 257-264, 1985.

Sussman, T., and K. J. Bathe, "Studies of Finite Element Procedures­
Stress Band Plots and the Evaluation of Finite Element Meshes," Engi·
neering Computations, to appear.



IN THIS LECTURE

• WE DISCUSS THE

'PRINCIPLE OF VIRTUAL

WORK. USED 'FOR.

GENERAL ~ONLll'\EAR

ANAL)'S\S

• ~E EMPI-\ASIZE

THE BAS Ie ~EQUIR.E­

ME~T.s Of MECHANICS

• WE GIVE; EXA"-iPLE

ANALYSE5

- PLATE WITH HOLE.

- PLATE WITH C~CK
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2-4 Basic Considerations in Nonlinear Analysis
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THE PRINCIPLE
OF VIRTUAL WORK

Transparency
2-2

J,\/Tij-8teij- tdV = tm
where

tm = r~~ 8Ui tdV + r tfF 8uF tdSJtv Jts
tTij- = forces per unit area at time t

(Cauchy stresses)

8 .. - ! (a8Ui + a8U})
tet - 2 atXj, atxi

and

8Ui, 8tei} = virtual displacements and
corresponding virtual
strains

tv, t8 = volume and surface area
at time t

~r, tfF = externally applied forces
per unit current volume
and unit current area



particles

time = 0

Topic 1\vo 2-5
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two material

time = 0
time = t
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time = 0
time = t
a variation

time = 0
time = t

another variation



Note: Integrating the principle of virtual
work by parts gives

• Governing differential equations of
motion

• Plus force (natural) boundary
conditions

just like in infinitesimal displacement
analysis.

Example: Truss stretching under its
own weight

'Ibpic Two 2-7
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x

Assume:

• Plane cross-sections
remain plane

• Constant uniaxial stress
on each cross-section

We then have a one­
dimensional analysis.
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Transparency
2-9

Using these assumptions,

Ivt.rt 8tei} tdV = Lt.r 8te tA tdx ,

tffi = ( tpg 8u tA tdx
JIL

Hence the principle of virtual work is now

( t-r tA 8te tdx = ( tpg tA 8u tdx
JIL JIL

where

Transparency
2-10

We now recover the differential equation of
equilibrium using integration by parts:

Since the variations 8u are arbitrary (except at
x = 0), we obtain

THE GOVERNING
DIFFERENTIAL EQUATION

THE FORCE (NATURAL)
BOUNDARY CONDITION



FINITE ELEMENT APPLICATION OF
THE PRINCIPLE OF VIRTUAL WORK

BY THE FINITE ELEMENT
METHOD

~
BUT tF = BUT tR

- - --

• Now assume that the solution at time
t is known. Hence tTy, tv, . . . are
known.

• We want to obtain the solution
corresponding to time t + At (Le., for
the loads applied at time t + At).

• The principle of virtual work gives for
time t+At

'lbpic 1\\'0 2-9
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Transparency
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To solve for the unknown state at time
t+at, we assume

t+AtF = tF + tK au
- -

Hence we solve

Transparency
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and obtain

More generally, we solve

tK au(i) = t+AtR _ t+ AtF(i-1)
- - -

t+Atu(i) = t+ AtU(i-1) + au(i)
- - -

using



• Nodal point equilibrium is satisfied
when the equation

t+LltR _ t+LltF(i-1) = ..Q.

is satisfied.

• Compatibility is satisfied provided a
compatible element layout is used.

• The stress-strain law enters in the
calculation of tK and t+LltF(i-1).

- -

Most important is the appropriate
calculation of t+LltF(i-1) from t+LltU(i-1).

- -

The general procedure is:

H.1tU(i-1) give~ strains gr~ stresses gives. H.1t.E(i-1)

(
CONSTITUTIVE RELATIONS)

ENTER

Note:

I
t+~te(i-l)

H.1tQ:(i-1) = tQ: + - C d~

t~

Thpic'l\vo 2-11
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Transparency
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Here we assumed that the nodal point
loads are independent of the structural
deformations. The loads are given as
functions of time only.

Example:

y

R

Transparency
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x

time

WE SATISFY THE BASIC
REQUIREMENTS OF MECHANICS:

Stress-strain law
Need to evaluate the stresses
correctly from the strains.

Compatibility
Need to use compatible element
meshes and satisfy displacement
boundary conditions.



Equilibrium

• Corresponding to the finite element
nodal point degrees of freedom
(global equilibrium)

• Locally if a fine enough finite element
discretization is used

Check:
- Whether the stress boundary

conditions are satisfied
- Whether there are no unduly

large stress jumps between
elements

Example: Plate with hole in tension
100 MPa

E = 207000 MPa
v = 0.3

cry = 740 MPa
ET = 2070 MPa

Topic 1\vo 2·13
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L-

W

+--- --
R = 0.()1 m
L = W = 0.1 m
thickness = 0.01 m

100 MPa,1
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Transparency
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Purpose of analysis:

To accurately determine the stresses in
the plate, assuming that the load is
small enough so that a linear elastic
analysis may be performed.

Transparency
2-22

Using symmetry, we only need to model
one quarter of the plate:

100 MPa
f t t



Accuracy considerations:

Recall, in a displacement-based finite
element solution,

• Compatibility is satisfied.
• The material law is satisfied.
• Equilibrium (locally) is only

approximately satisfied.

We can observe the equilibrium error
by plotting stress discontinuities.

Two element mesh: All elements are two­
dimensional a-node isoparametric elements.

Topic 1\\'0 2-15
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Undeformed mesh:

Zt
;-------~

~z = 0
y

Deformed mesh
(displacements amplified):

Uz = .0285 mm

\..(froax = 281 MPa
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Plot stresses (evaluated at the nodal
points) along the line z=O:

Tzz
(MPa)

400

300

200

100

f
nodal point
stress

f
a smooth
curve connecting
nodal point
stresses f100 MPa

0+---+-----+-----+--
o 10 30 50

distance (mm)

150

200
Stress discontinuity
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Plot stresses along the line y = z:

~Y~ZO_y
0"1 = maximum principal stress

100
0"1

(MPa)
50

5010 Y(mm) 30
O+---r-----r--------,r----
o
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\
(J'max = 345 MPa

Deformed mesh
(displacements amplified):

Uz = .0296 mm
(

Undeformed mesh:

zt

Sixty-four element mesh: All elements are
two- dimensional 8- node isoparametric
elements.

Plot stresses along the line z =0:

400

Transparency
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,. 300zz
(MPa)

200

100

stress discontinuity

100 MPa

7

5030
Y (mm)

10
O+-----r-------,----...,------
o
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0"1 = maximum principal stress

Transparency
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Plot stresses along the line y = z:

The stress discontinuities are negligible
for y > 20 mm.

200

150

0"1

(MPa) 100
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50

O,-\----.------::r::--------=r:----
o 10 Y (mm) 30 50

288 element mesh: All elements are
two-dimensional 8- node elements.

Undeformed mesh:

zl

•
y

Deformed mesh
(displacements amplified):

(UZ = .0296 mm

\.O"max = 337 MPa
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Plot stresses along the line z 0:
Transparency
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400

'Tzz 300
(MPa)

200

100

nominal stress

(100 MPa)\

5030
Y(mm)

10
0+---,-----...,..--------,,----
o

150

100
0"1

(MPa)
50

Plot stresses along the line y = z:

• There are no visible stress discontinuities
between elements on opposite sides of
the line y = z.

200 0"1 = maximum principal stress
only visible

discontinuity

~
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5010 Y (mm) 30
0+-----.-------...,..--------,,----
o
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• To be confident that the stress
discontinuities are small everywhere,
we should plot stress jumps along each
line in the mesh.

• An alternative way of presenting
stress discontinuities is by means of
a pressure band plot:
- Plot bands of constant pressure

where

-(7 + 7 + 7 )pressure = xx xx zz
3

Two element mesh: Pressure band plot

H
5 MPa 5 MPa



Sixty-four element mesh: Pressure band
plot

H~
5 MPa 5 MPa

288 element mesh: Pressure band plot

-~-- •.....

l-~-I
5 MPa 5 MPa

Topic Two 2-21
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We see that stress discontinuities are
represented by breaks in the pressure
bands. As the mesh is refined, the
pressure bands become smoother.

- The stress state everywhere in
the mesh is represented by one
picture.

- The pressure band plot may be
drawn by a computer program.

- However, actual magnitudes
of pressures are not directly
displayed.

Transparency
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Summary of results for plate with hole
meshes:

Number of Degrees of Relative
Displacement Stress

at top concentration
elements freedom cost (mm) factor

2 20 0.08 .0285 2.81

64 416 1.0 .0296 3.45

288 1792 7.2 .0296 3.37



• Two element mesh cannot be used
for stress predictions.

• Sixty-four element mesh gives
reasonably accurate stresses. How­
ever, further refinement at the hole
is probably desirable.

• 288 element mesh is overrefined
for linear elastic stress analysis.
However, this refinement may be
necessary for other types of
analyses.

Now consider the effect of using 9-
node isoparametric elements. Consider
the 64 element mesh discussed earlier,
where each element is a 9-node element:

Will the solution improve significantly?

Topic '!\vo 2·23
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No, the answers do not improve
significantly:

Sixty-four S·node elements Sixty-four 9-node elements

Number of
degrees of 416 544
freedom

Displacement
at top .029576 .029577
(mm)

Stress
concentration 3.452 3.451
factor

The stress jump and pressure band plots
do not change significantly.

Example: Plate with eccentric crack in
tension

=! 100=:l MPa

2m2m

I '!f'crack

.25r:!!J.. -¥I25m
1m 6 1

I I
I

100 !=
MPa t=

Transparency
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thickness=0.01 m
plane stress

E= 207000 MPa
v =0.3
Kc=110 MPaYm

• Will the crack propagate?



Background:

Assuming that the theory of linear
elastic fracture mechanics is
applicable, we have

KI = stress intensity factor for a
mode I crack

KI determines the "strength" of the
Vvr stress singularity at the crack tip.

K1>Ke - crack will propagate
(Ke is a property of the material)

Computation of KI : From energy
considerations, we have for plane stress
situations

KI = \lEG , G = _ an
aA

where n = total potential energy
A = area of the crack surface

G is known as the "energy release
rate" for the crack.

Thpic 1\\10 2·25
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In this finite element analysis, each crack
tip is represented by a node. Hence the
change in the area of the crack may be
written in terms of the motion of the node
at the crack tip.

}hickness t_---o--
old
crack
tip
location

In this finite element analysis, each crack
tip is represented by a node. Hence the
change in the area of the crack may be
written in terms of the motion of the node
at the crack tip.

- - motion of crack tip node

Ithickness t
:d--~-

new crack tip location

change in crack area



The quantities ~~ may be efficiently

computed using equations based on
the chain differentiation of the total
potential with respect to the nodal
coordinates describing the crack tip.
This computation is performed at the
end of (but as part of) the finite
element analysis.

See T. Sussman and K. J. Bathe, "The
Gradient of the Finite Element Variational
Indicator with Respect to Nodal Point
Coordinates . . . ", Int. J. Num. Meth. Engng.
Vol. 21, 763-774 (1985).

Finite element analyses: Consider the
17 element mesh shown:

fZ
~----+----~-_-+--+--~Ly

• The mid-side nodes nearest the ~~e
crack tip are located at the quarter- symmetry
points.

Topic Two 2-27
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Results: Plot of stresses on line of
symmetry for 17 element mesh.

400

no stress calculated

Tip B \ crac~ Tip A

z (meters)
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200
'Tyy
(MPa)

o+---------+--+------'''''"-----+---+-
0.5 0.625 0~875 1.0

-200

Pressure band plot (detail):
• The pressure jumps are larger than

5 MPa.

~B

~
5 MPaY ~5 MPa



Based on the pressure band plot, we
conclude that the mesh is too coarse
for accurate stress prediction.

However, good results are obtained
for the stress intensity factors (when
they are calculated as described
earlier):

KA = 72.6 MPaYm(analytical
solution = 72.7 MPavrTij

Ks = 64.5 MPaYm (analytical
solution = 68.9 MPavrTij

Topic 'lWo 2-29
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Now consider the 128 element mesh
shown:

--~ --
--------------- --~ --

/

V
All elements are either
6- or 8-node isoparametric
elements.

~B

L
I

y

Line of
symmetry
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Detail of 128 element mesh:

~A
t----t-+-t-+-t-+-t-+-~

Close-up of crack tip A:

mid-side nodes nearest
the crack tip are
located at the "quarter-points"
so that the 1/'Vr stress
singularity is properly modeled.

~

These elements are 6-node
quadratic isoparametric
elements (degenerated).
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t',
"<. ".

Results: Stress plot on line of symmetry
for 128 element mesh. Transparency

2-55

400

no stress calculated

Tip B~ crack\np A

~

200

0.5 ~z (meters)

Tyy
(MPa) Ill.. .m

0+------+-----t" J't------ir---

(! 1.0

-200

Pressure band plot (detail) for 128
element mesh:
• The pressure jumps are smaller than 5

MPa for all elements far from the crack
tips.

A
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I-----I--l
5 MPa 5 MPa
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A close-up shows that the stress jumps
are larger than 5 MPa in the first and
second rings of elements surrounding
crack tip A.

A
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Based on the pressure band plot, we
conclude that the mesh is fine enough
for accurate stress calculation (except
for the elements near the crack tip
nodes).

We also obtain good results for the
stress intensity factors:

KA = 72.5 MPa \/ill (analytical
solution = 72.7 MPa Vil1J

Ks=68.8 MPa \/ill (analytical
solution = 68.9 MPa ViTij



We see that the degree of refinement
needed for a mesh in linear elastic
analysis is dependent upon the type
of result desired.

• Displacements - coarse mesh
• Stress intensity factors - coarse

mesh
• Lowest natural frequencies and

associated mode shapes - coarse
mesh

• Stresses - fine mesh
General nonlinear analysis - usually
fine mesh

Topic 1\vo 2-33
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Topic 3

Lagrangian
Continuum
Mechanics
Variables for
General Nonlinear
Analysis

• The principle of virtual work in terms of the 2nd Piola-
Kirchhoff stress and Green-Lagrange strain tensors

• Deformation gradient tensor

• Physical interpretation of the deformation gradient

• Change of mass density

• Polar decomposition of deformation gradient

• Green-Lagrange strain tensor

• Second Piola-Kirchhoff stress tensor

• Important properties of the Green-Lagrange strain and
2nd Piola-Kirchhoff stress tensors

• Physical explanations of continuum mechanics variables

• Examples demonstrating the properties of the continuum
mechanics variables

Sections 6.2.1, 6.2.2

6.5,6.6,6.7,6.8,6.10,6.11,6.12,6.13,6.14



CONTINUUM MECHANICS
FORMULATION

For
Large displacements
Large rotations
Large strains

Hence we consider a body subjected to
arbitrary large motions,

We use a Lagrangian description.

Topic Three 3-3
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Configuration
at time 0

PC+~'X1, t+~'X2, '+~'X3)

PCX1, 'X2, 'X3)

Confi~uration Configuration
at time t at time t + ~t

Transparency
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'Xi = °Xi + lUi I X1

t+~'x· = ox· + t+~'u· i = 1 2 3
I I I "

U· - t+~'u· - 'u·1- I I



3-4 Lagrangian Continuum Mechanics Variables
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Regarding the notation we need to
keep firmly in mind that

- the Cartesian axes are stationary.

- the unit distances along the Xi-axes
are the same for °Xi, tXi , t+ ~tXi.

Example:
particle at time 0

0X1 /U1 /particle at time t
1----'---·.· ...

1 2 3 4 5

Transparency
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PRINCIPLE OF VIRTUAL
WORK

Corresponding to time t+dt:

I t+~tlT'.. ~ e·· t+~tdV - t+~t(flllit Ut+~t It -;n
t+.ltv

where

t+~tffi = r t+~tfF OUi t+~tdV
)t+.ltv

+ r t+~tfr OUr t+~tdS
)t+.lts



t+Atl'T"..
I 'I'

and

Cauchy stresses (forces/unit
area at time t +Llt)

1 ( aOUi aou} )
ot+Atei} = 2 at+Atx} + at+Atxi

variation in the small strains
referred to the configuration
at time t +Llt

We need to rewrite the principle of
virtual work, using new stress and
strain measures:

• We cannot integrate over an
unknown volume.

• We cannot directly work with
increments in the Cauchy stresses.

We introduce:

cis = 2nd Piola-Kirchhoff stress tensor

6E = Green-Lagrange strain tensor

Topic Three 3-5
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3-6 Lagrangian Continuum Mechanics Variables
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The 2nd Piola-Kirchhoff stress tensor:

a
t8 POt aa i} = -t tXi,m Tmn tX},n

P

The Green-Lagrange strain tensor:

t 1 (t t t t )
OE" = - aU·" + au.. + aUk" aUk"yo 2 I,t ~I ,I ,t

where

Transparency
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Note: We are using the indicial notation
with the summation convention.

For example,

a
t Pro t a
0811 = -t tX1,1 Tn tX1,1

P
a t a+ tX1 ,1 T 12 tX1 ,2

+ ...
+ ~X1,3 tT33 ~X1,3]



Using the 2nd Piola-Kirchhoff stress
and Green-Lagrange strain tensors,
we have

This relation holds for all times

at, 2at, ... , t, t+at, ...

To develop the incremental finite
element equations we will use

~vt+~JSt 8t+~JEt °dV = t+~~

• We now integrate over a known
volume, °V.

• We can incrementally decompose t+~JSt
d t+~t .

an oEt, I.e.

t+~ts ts So ~=o iJ-+O iJ-
t+~t t

OEiJ- = oE~ + oE~

Topic Three 3·7
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3-8 Lagrangian Continuum Mechanics Variables
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Before developing the incremental con­
tinuum mechanics and finite element
equations, we want to discuss

• some important kinematic
relationships used in geometric
nonlinear analysis

• some properties of the 2nd
Piola-Kirchhoff stress and Green­
Lagrange strain tensors

To explain some important properties of
the 2nd Piola-Kirchhoff stress tensor
and the Green-Lagrange strain tensor,
we consider the

Deformation Gradient Tensor

• This tensor captures the straining and the
rigid body rotations of the material fibers.

• It is a very fundamental quantity used in
continuum mechanics.



The deformation gradient is defined as

atx1
aOx1

atx2

aOX1

atXa
aOX1

atx1
aOX2

atX2
aOX2

atXa
aOX2

atx1
aOXa

atx2
aOXa

atXa
aOXa

in a Cartesian
coordinate
system

Topic Three 3-9
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Using indicial notation,

Another way to write the deformation
gradient:

Jx = (oVJt~T)T

where

Transparency
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oV =

the/
gradient
operator



3-10 Lagrangian Continuum Mechanics Variables
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The deformation gradient describes the
deformations (rotations and stretches)
of material fibers:

The vectors dOx and
dt~ represent the
orientation and length
of a material fiber at
times 0 and t. They
are related by
dtx JX dOx

Transparency
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Example: One-dimensional deformation

time 0 time t

X1/ /'
11
H

...I....-------al.....--._.. 1
1.0 0.5



Consider a material particle initially at
X1 = 0.8:

f------X1

°X1 = 0.800
1<1 = 1.120

Consider an adjacent material particle:

Topic Three 3-11
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I•I

Compute Jx11 :

d tx1 1.211 - 1.120
d OX1 = .850 - .800 = 1.82 ~ Estimate

JX11 lo = 1.80
x1=O.8



3-12 Lagrangian Continuum Mechanics Variables

Exam~: Two-dimensional deformation
Transparency

3-19

Transparency
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(0 0) (t t ). tx [ .481
X1, X2 ~ X1. X2 ·0_ = -.385

Considering dO~,

X2

time t

f

.667]

.667

X1

dt~ = hx dO~

[ .75] = [ .481 .667][.866]o - .385 .667 .5



Considering cf!.
X2

dtx = tx cfx_ 0_ _

[1] [.481 .667][ 0]
1 = -.385 .667 1.5

The mass densittes 0p and tp may be
related using the deformation gradient:

infinitesimal volumes

time 0 time t

//:
::;;:;Ls- tdV

~
~dt!l

Three material fibers describe each volume.

'Ibpic Three 3-13
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3-14 Lagrangian Continuum Mechanics Variables
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For an infinitesimal volume, we note
that mass is conserved:

tp tdV = 0p 0dV
volume at .----:--- ~~volume at
time t~ - ~time 0

However, we can show that

Hence

Proof that tdV = det Jx °dV:

dO~1 =[g}S1 ; dO~ =[!}S2

dO~=[~}S3
° -Hence dV = dS1 dS2 ds3 •



and tdV = (dt~1 X dt~2) . dt~3

= det Jx dS1 dS2 dS3

= det Jx °dV

Example: One-dimensional stretching

/
1 ~timeO

,/, x:r ~time t

/ uniform stretching
// plane strain conditions

1.0 .25

Deformation field: 'x, = ox, + O.250x,

Deformation [1.25 0 01
gradient: J~ = 0 1 0 -+ det J~ = 1.25

o 0 1

Hence 0p = 1.25tp (tp < 0p makes physical sense)

'""""""-----------------",

Topic Three 3-15
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3-16 Lagrangian Continuum Mechanics Variables
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We also use the inverse deformation
gradient:

o . 0 t
;;{d ~ = tXd~~

MATERIAL FIBER MATERIAL FIBER
AT TIME 0 AT TIME t

Mathematically, ~X = (JX)-1

Proof: dO~ = ~ (Jx dO~)

= (~X JX) dO~
= I dOx

An important point is:

Polar decomposition of JX:

JR = orthogonal (rotation) matrix

Ju = symmetric (stretch) matrix

We can always decompose JX in the
above form.



Example: Uniform stretch and rotation
timet
~

I: 3.0 I I
4.0 X1

~ = dR dU

[1.154 -0.750] .. [0.866 -0.500] [1.333 0]
0.887 1.299 0.500 0.888 ° 1.500

Using the deformation gradient, we can
describe the (right) Cauchy-Green
deformation tensor

tc - txT tx0_ - 0_ 0_

This tensor depends only on the stretch
tensor riU:

tc = (tuT tAT) (tA tU)0_ 0_ 0_ 0_0_

= (riU)2 (since riA is orthogonal)

Hence ric is invariant under a rigid
body rotation.

Topic Three 3-17
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3·18 Lagrangian Continuum Mechanics Variables
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Example: Two-dimensional motion

X2 0 ~ timel+::;U

time'O D rigid body motion,
~ rotation of 90°

time t

X1

Jx = [1.5 .~] HatX = [ -.5 -1 ]
- .5 0_ 1.5 .2

Jc = [2.5 .8 ] HatC _ [2.5 .8 ]
- .8 1.04 0_ - .8 1.04

The Green-Lagrange strain ·tensor
measures the stretching deformations. It
can be written in several equivalent
forms:

1) JE = ~ (ric - I)

From this,

• JE is symmetric.

• For a rigid body motion between
times t and t+ ~t, H~E = JE .

• For a rigid body motion between
times 0 and t, JE = Q.



• ~~ is symmetric because ~C is
symmetric

~~ = ~ (~C -1)

• For a rigid body motion from t to
t+~t, we have

t+~tx = R tv
0- - 0 0

t+~tc = to j.. t+4t E t
0_ 0 ." 0- =o~

• For a rigid body motion

~C = 1 =* ~~ = 0

t _ 1 (t t t t )
2) aEi} - 2 ,aUi,}:- aU}.~ +, aUk,i ,aUk,} .

UNEAR IN NONUNEAR IN
DISPLACEMENTS DISPLACEMENTS

Topic Three 3-19
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where

Important point: This strain tensor is exact and
holds for any amount of
stretching.



3·20 Lagrangian Continuum Mechanics Variables
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Example: Uniaxial stJlain

tA 1 (tA)2
J£11 = 0[ + 2 0[

1
engi:~ring 87
1.o+----+-+-

t~

-~1-.0--~~--1+-.0°L

Example: Biaxial straining and rotation

X2 rigid body motion,

O
rotation of 45°

~ I>------l~
time 0;7' time t? time t+~t~

+---------X1

IX = [1.5 0]
0_ 0.5

ric = [2.25 0 ]
- 0 .25

riE = [.625 0 ]
- 0 -.375

l+Jllx = [1.06
0_ 1.06

IHric = [2.25
- 0

IHriE = [.625
- 0

-.354]
.354

.~5]

-.3~5]



Example: Simple shear

t~ 1.0
I' 'I" "

X1

For small displacements, dE is
approximately equal to the small strain
tensor.

The 2nd Piola-Kirchhoff stress tensor
and the Green-Lagrange strain tensor
are energetically conjugate:

t'Ti.j- ~hei.j- = Virtual work at time t per unit
current volume

Js~ ()JE~ = Virtual work at time t per unit
original volume

where dSij is the 2nd Piola-Kirchhoff
stress tensor.

Topic Three 3-21
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3-22 Lagrangian Continuum Mechanics Variables

0tX t'T °tXT
- MATRIX NOTATION

o t 0
tXi,m 'Tmn tX!-n - INDICIAL NOTATION

Transparency
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The 2nd Piola-Kirchhoff stress tensor:

t 0p
OSi~ =-t

P
o

ts = ---.e0_ tp

Solving for the Cauchy stresses gives
t

t _ P t ts t
'Ti~ - op OXi,m 0 mn oXj.n - INDICIAL NOTATION

t
t P tx ts txT'T = op 0_ 0_ 0_ - MATRIX NOTATION

Properties of the 2nd Piola-Kirchhoff stress
tensor:

• cis is symmetric.

• cis is invariant under a rigid-body
motion (translation and/or rotation).

Hence cis changes only when the
material is deformed.

• cis has no direct physical
interpretation.
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Example: Two-dimensional motion
Transparency

3-41

Cauchy stresses
at time t

Xi lim\Or~... '__--.. ~
..... rigid body

motion, rotation
of 60°

Cauchy stresses
at time t+ dt

At time t +Llt, Transparency
At time t, 3-42

tx = [1 .2] t+~tx = [.5 -1.20 ]
0_ 0 1.5 0_ .866 .923

t [0 1000] t+ ~t'T = [ 634 -1370]
1: = 1000 2000 - -1370 1370

ts _ [ -346 733 ] t+~ts = [ -346 733]
0_ - 733 1330 0_ 733 1330
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Total Lagrangian
Formulation for
Incremental
General Nonlinear
Analysis

• Review of basic principle of virtual work equation,
objective in incremental solution

• Incremental stress and strain decompositions in the total
Lagrangian form of the principle of virtual work

• Linear and nonlinear strain increments

• Initial displacement effect

• Considerations for finite element discretization with
continuum elements (isoparametric solids with
translational degrees of freedom only) and structural
elements (with translational and rotational degrees of
freedom)

• Consistent linearization of terms in the principle of
virtual work for the incremental solution

• The "out-of-balance" virtual work term

• Derivation of iterative equations

• The modified Newton-Raphson iteration, flow chart of
complete solution

Sections 6.2.3,8.6,8.6.1



TOTAL LAGRANGIAN
FORMULATION

We have so far established that

{ H.:ltS" -.::H.:lt c .. 0dV _ H.:ltr17l
JOv 0 I./' U OVIJ- - ;'lL

is totally equivalent to

J t+.:lt,.,.. .. -.:: e.. H.:ltdV - H.:ltr17l
t+/ltv I I./' UH.:lt IJ- -;'lL

Recall :

J t+.:lt,.,.. .. -.:: e.. t+.:ltdV - H.:ltr17l
IlL Ut+.:lt IL -;'lL

t+/ltv • •

is an expression of

• Equilibrium

• Compatibility

• The stress-strain law

all at time t +dt.

Topic Four 4-3
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4-4 Total Lagrangian Formulation

Transparency
4-3

Transparency
4-4

~ We employ an incremental solution
procedure:

Given the solution at time t, we seek
the displacement increments Ui to
obtain the displacements at time t +~t

We can then evaluate, from the total
displacements, the Cauchy stresses at
time t+ ~t. These stresses will satisfy
the principle of virtual work at time
t+~t.

~ Our goal is, for the finite element
solution, to linearize the equation of the
principle of virtual work, so as to finally
obtain

tK ~U(1) = t+ l1tR - tF
~~" -,/ ~

tangent~ pOint! externan: applied ~vector of
stiffness displacement loads at nodal point forces
matrix increments time Hl1t corresponding to

the element
internal stresses

at time t

The vector ~u(1) now gives an
approximation to the displacement
increment U = Hl1tU - tU.



The equation
tK dU(1)

[ ] []
nxn nx1

[]
n x 1

[]
n x 1

Topic Four 4-5

Transparency
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is valid

• for a single finite element
(n = number of element degrees of

freedom)

• for an assemblage of elements
(n = total number of degrees of

freedom)

~ We cannot "simply" linearize the prin­
ciple of virtual work when it is written
in the form

• We cannot integrate over an unknown
volume.

• We cannot directly increment the
Cauchy stresses.

Transparency
4-6



4-6 Total Lagrangian Formulation

Transparency
4-7

Transparency
4-8

~ To linearize, we choose a known
reference configuration and use 2nd
Piola-Kirchhoff stresses and Green­
Lagrange strains as described below.

Two practical choices for the reference
configuration:

• time = 0~ total Lagrangian
formulation

• time = t ~ updated Lagrangian
formulation

TOTAL LAGRANGIAN
FORMULATION

Because HdJSij- and HdJEy. are energetically
conjugate,

the principle of virtual work

1 HatT__ ~ e-- HdtdV - t+dtTh
It UHdt t - '(}t

l+.1tv

can be written as



We already know the solution at time t
(JSij, JUi,j' etc.). Therefore we
decompose the unknown stresses and
strains as

Topic Four 4-7
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t+~ts tso i}= 0 i} +
'---'

known unknown increments

In terms of displacements, using

, 1 (' , ")
Oc" = - oU" + ou" + OUk' OUk'It 2 1,1' ~.I ,I '/

and

we find

Transparency
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1+ - OUk' OUk'2 ,I .J

nonlinear'in Uj

initial displacement
effect



4-8 Total Lagrangian Formulation

LINEAR STRAIN INCREMENT

Transparency
4-11

Transparency
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We note 8t
+

dJEij. = 8oEij-

• Makes sense physically, because each
variation is taken on the displacements
at time t+ ~t, with tUi fixed.

0time t+L\t
variation

1
oTJij- = 2: OUk,i OUk,}

, NONLINEAR STRAIN INCREMENT

Hence



An interesting observation:

• We have identified above, from continuum
mechanics considerations, incremental strain
terms

oet - linear in the displacement increments Uj

oTlt - nonlinear (second = order) in the
displacement increments uj

• In finite element analysis, the displacements
are interpolated in terms of nodal point
variables.

• In isoparametric finite element
analysis of solids, the finite element
internal displacements depend linearly
on the nodal point displacements.

Hence, the exact linear strain increment
and nonlinear strain increment are
given by oet and 0 'Tli~·

Topic Four 4-9
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4·10 Thtal Lagrangian Formulation

Transparency
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• However, in the formulation of
degenerate isoparametric beam and
shell elements, the finite element
internal displacements are expressed
in terms of nodal point displacements
and rotations.,.,....... ..

tUi = f (linear in nodal point
displacements but nonlinear in
nodal point rotations)

• For isoparametric beam and shell
elements

- the exact linear strain increment is
given by oe~, linear in the
incremental nodal point variables

- only an approximation to the
second-order nonlinear strain
increment is given by V2oUk,i oUk,j'
second-order in the incremental
nodal point displacements and
rotations
.... "'t.wJ: W""



The equation of the principle of virtual
work becomes

J,yOSi} DOCi} °dV +J,y JSi} DOTlij- °dV

= t+~t01 - r JSij- Doeij- °dVJoy
Given a variation DUi, the right-hand­
side is known. The left-hand-side
contains unknown displacement
increments.

Important: So far, no approximations
have been made.

force

tu t+atu displacement

All we have done so far is to write the
principle of virtual work in terms of tUi
and Uj.

Topic Four 4-11
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4-12 Total Lagrangian Formulation
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• The equation of the principle of virtual
work is in general a complicated
nonlinear function in the unknown
displacement increment.

• We obtain an approximate equation
by neglecting all higher-order terms in
Ui (so that only linear terms in Ui

remain). This leads to

JK LlU = t+/ltR - JF

The process of neglecting higher-order
terms is called linearization.

Now we begin to linearize the terms
that contain the unknown displacement
increments.

1) The term J,v JSij- OOTJi} °dV

is linear in Ui:

• JSi} does not contain Ui.

1 1
• OoTJi} = 2 OUk,i OOUk,} + 2 OOUk,i OUk,}

is linear in Ui.



2) The term f,voSi}8oEi} °dV contains

linear and higher-order terms in Ui:

• oSi} is a nonlinear function (in
general) of oEi}.

• 8oEi} = 80ei} + 80'TIi} is a linear
function of Uj.

We need to neglect all higher-order
terms in Uj.

Linearization of oSi}8oE~:

Our objective is to express (by
approximation) oS~ as a linear
function of Ui (noting that oSi} equals
zero if Ui equals zero).

We also recognize that 8oEi} contains
only constant and linear terms in Uj.
We will see that only the constant
term 80ei} should be included.

Topic Four 4-13
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4-14 Total Lagrangian Formulation
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OSi} can be written as a Taylor series in oEt :

oSt = aa?ESi~ ~ + higher-order terms
o rs t ~

~~1- linear and
known quadratic in Uj

(oers + o'Tlrs) • oCijrs oers
t """-""" """-""". ,

I, ~ d~ t' I' ~d tInear qua ra IC Ineanze erm
in Uj in Uj

Transparency
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Example: A one-dimensional stress- strain law

Js • computed solution

3 4

/
/

//t-lit
-.f----------------Je



At time t,

-+----------0£

Hence we obtain

OSi} OOEi} • oCi}rs oers (oOei} + OOTli})
~ \ J

+ +
= oCij-rs oers oOei} + oCi}rs oers OOTli}

'--""" '--"""
does not linear in Uj

contain Uj

Topic Four 4-15
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linear in Uj

linearized result

quadratic in Uj



4-16 Thtal Lagrangian Formulation
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The tinal linearized equation is

r oCijrS oers Boeij- °dV + r JSij- BO'Tlij- °dVjev jev
I I

BUT JK dU

= H"m - ~ JS~ &oe~Od>-
I jov V, \1\

when
BUT (H.:ltR - JF)~ discretized

using the
finite element
method

• An important point is that

r JSij-Boeij- 0dV = r JSij-BJEij- °dVjev Jev'"-'--=-----.-.---'
the virtual work due to

because the element internal
stresses at time t

BOeij- = BJEij-

• We interpret

H.:ltg't - r JSij- Boeij- 0dV
jev

as an "out-at-balance" virtual work term.



Mathematical explanation that 8oey. = 8JE~:

If Ui = 0, then the configuration at time
t+ L1t is identical to the configuration at
time t. Hence 8HaJEi~Ui=O = 8JEy..

It follows that 8oey. 0

Hat I /1 /1 t8 oE~ = 80eii + 8o'TJii = 8oEii.
w=O ·w=O ·w=O •

This result makes physical sense
because equilibrium was assumed to
be satisfied at time t. Hence we can
write

( oC~s oers 8oey. °dV + ( dsy. 8o'TJy. °dVJov Jov

= Ha~ _ ~

Check: Suppose that Hatffi = tffi and
that the material is elastic. Then
Hatui must equal tUi, hence
Ui = O. This is satisfied by the
above equation.

Topic Four 4-17
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4-18 Total Lagrangian Formulation

Transparency
4-31

Transparency
4-32

We may rewrite the linearized governing
equation as follows:

= l+l>~ _ t:"J.S~; ~t+l>~E~~ °dV
JSy. 8JEy.

When the linearized governing equation
is discretized, we obtain

JK AU(1) = H.1tR - H.1JF(O)
- - - ,. u-.J

JF

We then use

H.1tU(1) = H.1tU(O) + ~U(1)
- \. .. ,/

tu



(for k = 1, 2, 3, ",)

Having obtained an approximate
solution t+

6tU(1), we can compute an
improved solution:

( oCijrS ~oe~;) OOei} °dV + { JSi} O~oll~2) °dV
Jov Jov

= l+d1m _ ( IHJS~) OI+~£i~1) °dV
Jov

which, when discretized, gives

J.!:S ~U(2) = l+dlR - t+dJE(1)

We then use

In general,

( oCi}rs ~oe~~) oOei} °dV + { JSi} O~Olli}k) °dV
Jov Jov

= l+d1m _ ( l+dJS~k-1) OI+dJ£~k-1) 0dV
Jov

which, when discretized, gives

J.!:S ~U(k) = l+dlR - t+dJE(k-1)

,...... computed
"" 'from t+.llufk-1)

k

Note that t+dIU(k) = IU + L ~U(}).
- - }=1 -

Topic Four 4-19
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Equilibrium
not satisfied

T

Equilibrium
is satisfied

4-20 Total Lagrangian Formulation
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I
I k=k+1 I

l
Compute t+~dE(k)

using t+~tU(k)

t

[Compute d!S, dEl
~

t+~dE(O) = dE, t+~tu(O) = tu

k = 1

1

d!S LlU(k) = t+~tR - tHdE(k 1)

t+~tU(k) = t+~tU(k~1) + Ll1!(k)

I
CHECK FOR CONVERGENCE I

t
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5-4 Updated Lagrangian Formulation
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UPDATED LAGRANGIAN
FORMULATION

Because t+A~SiJ- and t+A~EiJ- are energetically
conjugate,

the principle of virtual work

J t+At,.,... s:: e·· t+AtdV - t+At(i7)
III Ut+At IL -;-:It

t+t.tv I

can be written as

We already know the solution at time t
(~Sij-, ~uif' etc.). Therefore we
decompose the unknown stresses and
strains as

known unknown increments



In terms of displacements, using

t+~tC' -.1 (t+~tU .. + t+~tU.. + t+~tu . t+~tu )
tC,i} - 2 \ t I,,,, t ~,I t k,1 t k,}

we find

1 1
tEi} = "2 (tUi,} + tU';"i) + "2 tUk,i tUk,f

linear in Uj nonlinear in Uj

(No initial displacement effect)

We define

Topic Five 5-5

Transparency
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Transparency
5-4

linear strain increment

nonlinear strain increment

Hence
tEi} = tei} + tT\i}

3 tEi} = 3 te i} + 3t'Tli}



5-6 Updated Lagrangian Formulation
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The equation of the principle of virtual
work becomes

r tSt 8tEt tdV +J. t'Tt 8t'Ylt tdV
~v tv

= t+ ~t?R, - r t'Tt 8tet tdV
ltv

Given a variation 8uj, the right-hand-side
is known. The left-hand-side contains
unknown displacement increments.

Important: So far, no approximations
have been made.

Just as in the total Lagrangian formulation,

• The equation of the principle of virtual
work is in general a complicated
nonlinear function in the unknown
displacement increment.

• Therefore we linearize this equation
to obtain the approximate equation



We begin to linearize the terms
containing the unknown displacement
increments.

1) The term J t'Tij. Bt'TJij. tdV
tv

is linear in Ui.

• t'Tij. does not contain Ui.

1 1
• Bt'Tly. = 2 tUk,i BtUk,j. + 2 BtUk,i tUk,j.

is linear in Uj.

2) The term J tSy. BtE y. tdV contains
tv

linear and higher-order terms in Ui.

• tSij. is a nonlinear function (in general)
of tEy..

• BtE iJ- = Bteij. + Bt'TJy. is a linear function
of Uj.

We need to neglect all higher-order
terms in Ui.

Topic Five 5-7
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5-8 Updated Lagrangian Formulation
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tSi} can be written as a Taylor series in tCi}:

atSi' .
tSij- = ~aco tCrs + higher-order terms

te.-rs '-"'

1 t ~Iinear and
known quadratic in Uj

. atSi} ( ) • C= aC ~ + tTJrs = t i}rS ters ,
t rs t ~ ~ ~

linear quadratic linearized term
in Ui in Ui

Hence we obtain

tSi} StCi} • tCi}rs ters (Stei} + StTJi})
"-"', I

t t

= tCi}rs ters Stei} + tCi}rs ters StTJi}
'---' '---'
does not linear in Uj

contain Uj

linear in Uj

linearized result

quadratic in Uj



The tinal linearized equation is

{ tCij-rs ters Oteij- tdV + { t'Ti} OtTJij- tdVJtv Jtv
I I

OUT ~K LlU

= ,'H."!Jt - I.v'T~ l;,e~t~
when

OUT (t+~tR - ~F)~discretized

using the
finite element
method

An important point is that

is the virtual work due to element
internal stresses at time t. We interpret

as an "out-ot-balance" virtual work term.

Topic Five 5-9
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5·10 Updated Lagrangian Formulation

Transparency
5·13

Transparency
5-14

Solution using updated Lagrangian
formulation

Displacement iteration:

Modified Newton iteration:

k = 1,2, ...

which, when discretized, gives

(for k = 1, 2, 3, ...)

comouted
from t+6tulk-1)

k

Note that t+4tU(k) = tu + ~ ~U<j.).
}=1



-' - ICompute as, ~F I
1

t+~IF(O) - IF t+~IU(O) - IU
t+~I_ - 1_, _ -_

k=1
I

I 1
I k=k+1 I IK ~U(k) - t+~IR _ t+~IF(k-1)

t
1_ _ - _ I+~I_

t+~IU(k) = t+~IU(k-1) + ~U(k)

Compute ~~~tE(k)
- - -

1using t+~IU(k)
CHECK FOR CONVERGENCEI

t f Equilibrium
Equilibrium is satisfied

not satisfied

Comparison of T.L. and U.L.
formulations

• In the T.L. formulation, all derivatives
are with respect to the initial coordi­
nates whereas in the U.L. formula­
tion, all derivatives are with respect
to the· current coordinates.

• In the U.L. formulation we work
with the actual physical stresses
(Cauchy stress).

Topic Five 5-11
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5-12 Updated Lagrangian Formulation
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The same assumptions are made in
the linearization and indeed the same
finite element stiffness and force vec­
tors are calculated (when certain
transformation rules are followed).
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6-4 Formulation of Finite Element Matrices

Transparency
6-1

DERIVATION OF ELEMENT
MATRICES

Transparency
6-2

The governing continuum mechanics
equation for the total Lagrangian (T.L.)
formulation is

r oC~rs oers ooe~ °dV + r JSi} OOTJi} °dVJov Jov

= t+~t0l - r JSi} oOei} °dVJov

The governing continuum mechanics
equation for the updated Lagrangian
(U.L.) formulation is

Iv tCijrS ters Otei} tdV + Ivt'T i} Offl i} tdV

= t+~t0l_ Jvt'Ti}Otei}tdv



For the T.L. formulation, the modified
Newton iteration procedure is
(for k = 1,2,3, ... )

f oCijrS ~Oe~~) 80et °dV + f JSt 8~oTl~) °dVJoV Jov

= t+a~ _ f t+aJS~-1) 8t+aJE~k-1) 0dV
Jov

where we use

t+atufk) = t+atufk- 1) + ~Ufk)

with initial conditions

t+atu~o) - tu. t+ats~o) - tS.. t+atE(o) - tEI - II o~-o" ou.-ou.

For the U. L. formulation, the modified
Newton iteration procedure is
(for k = 1, 2, 3, ...)

lv tCijrS ~te~~) 8teu. tdV +lv t7 U. 8~tTl~k) tdV

= t+a~ _ f t+at7 fk- 1) 8t+atefk- 1) t+atdV
Jl+l1tV(k-l) t t

where we use

t+atufk) = t+atufk- 1) + dufk)

with initial conditions

t+atufo) = tUi, t+at7~o) = t7ij, t+ate~O) = teit

1bpic Six 6-5
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6-6 Formulation of Finite Element Matrices
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Assuming that the loading is
deformation-independent,

For a dynamic analysis, the inertia
force loading term is

r Hl1tp Hl1tOi 8Ui Hl1tdV = r0p Hl1tOi 8Ui °dV
JI+~IV Jov

''r.---...... ...J

may be evaluated at time 0

If the external loads are deformation­
dependent,

and



Materially-nonlinear-only analysis:

This equation is obtained from the
governing T.L. and U.L. equations by
realizing that, neglecting geometric
nonlinearities,

H.:1
0
tS.. = t+.:1tT .. = t+.:1t(J..

y.- y.-, It
•

physical stress

Dynamic analysis:

Implicit time integration:

H.:1trill - H.:1trill -f, 0p H.:1tU··· ~u· °dVO'l{' - O'l{,external I 0 I

loads °v

Explicit time integration:

T.L. f.v JSy. 8JEi} °dV = tr;A,

U.L. JvtT y. 8tei} tdV = tr;A,

M.N.O. Ivt
(Jy.8ei}dV = tffi

Topic Six 6-7
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6-8 Formulation of Finite Element Matrices
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The finite element equations corresponding
to the continuum mechanics equations are

Materially-nonlinear-only analysis:

Static analysis:
tK AU(i) = HatR - HatF(i-1) (6.55)

Dynamic analysis, implicit time integration:
M HatO(i) + tK AU(i) = HatR - HatF(i-1) (6.56)

Dynamic analysis, explicit time integration:

M to = tR - tF (6.57)

Total Lagrangian formulation:

Static analysis:

( tK + tK ) AU(i) - HatR HatF(i-1)O_L O_NL L.l_ - _ - 0_

Dynamic analysis, implicit time integration:
M HatO(i) + (dKL + dKNd AU(i)

= HatR _ HadF(i-1)

Dynamic analysis, explicit time integration:

M to = tR - dF



Updated Lagrangian formulation:

Static analysis:
aKL + ~KNd LlU(i) = t+atR - ~~~~F(i-1)

Dynamic analysis, implicit time integration:

M t+atQ(i) + (~KL + ~KNd LlU(i)

_ t+atR _ t+ atF(i -1)
- _ t+at_

Dynamic analysis, explicit time integration:

M to = tR - ~F

The above expressions are valid for

• a single finite element
(U contains the element nodal
point displacements)

• an assemblage of elements
(U contains all nodal point
displacements)

In practice, element matrices are
calculated and then assembled into the
global matrices using the direct
stiffness method.
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6-10 Formulation of Finite Element Matrices

Transparency
6-13

Transparency
6-14

Considering an assemblage of
elements, we will see that different
formulations may be used in the same
analysis:

THE FORMULATION
USED FOR EACH
ELEMENT IS
GIVEN BY
ITS ABBREVIATION

We now concentrate on a single element.
The vector ~ contains the element incremental
nodal point displacements

Example:

X2



We may write the displacements at any point in the
element in terms of the element nodal displacements:

Example:

X2

Finite element discretization of governing
continuum mechanics equations:

For all analysis types:

where we used

displacements at a point within the element

Topic Six 6-11
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6-12 Formulation of Finite Element Matrices

and
Transparency

6-17

where

on S

Transparency
6-18

Materially-nonlinear-only analysis:

Considering an incremental displacement Uj I

IvCiirs ers BetdV -+ B.QT(IvJ;![ Q J;!L dV) .Q

tK

where

~ = BdJ.
a vector containing
components of eii-

Example: Two-dimensional
plane stress element:



and

Ivt<Ti} 8e~ dV~ 8.Q.T (Iv~L t~ dV)

tF

where t± is a vector containing
components of tal

Example: Two-dimensional plane stress
element:

'i = ~~~l
~~1~

Total Lagrangian formulation:

Considering an incremental displacement Ui,

Lv oCijrs Oers 8oeij- °dV~ 8!!T (Lvdal oC dBl OdV) !!
. ,

where

ts ..oe = 0 LU
~ --

a vector containing
components of Oeij

Topic Six 6-13
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6·14 Formulation of Finite Element Matrices
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where

Transparency
6-22

Js is a matrix
containing components
of JSij- _

and

JBNL.Q contains
components of
OU· .1,1'

Lv JSiJ- 8oeiJ- °dV~ 8.0.T (Lv Jal Js °dV)
• y

where Js is a vector containing
components of JS~.



Updated Lagrangian formulation:

Considering an incremental displacement Uj,

Iv tC~rs ters 8te ij. tdV~ 8.Q.T (Iv l~I tC ~BL tdV) .Q.
• i '

~~L

where

ts Ate=t LU
~ --

a vector containing
components of tev-

lvt-r V- 8t'Tlij. tdV~ 8.Q.T (lv ~~~L ~ ~~NL tdV) .Q.

~~NL

where

Topic Six 6-15

Transparency
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Transparency
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tT is a matrix
containing components
of tTv-

~BNL.Q. contains
components of
tUi.J.



6-16 Formulation of Finite Element Matrices

Transparency
6-25 and

~F

where tf is a vector containing
components of t'T i}

Transparency
6-26

• The finite element stiffness and mass
matrices and force vectors are
evaluated using numerical integration
(as in linear analysis).

• In isoparametric finite element
analysis we have, schematically, in
2-D analysis

K = J_~1 J_~1 ~TQ ~ det J dr ds

~G



M ..:. "'" "'" (1" G..- ~ ~ 11'_11'
I I'

And similarly

f
+1 f+1

F = -1 -1 ,eT 1: det 4,dr ds
'~

G
F ..:. "'" "'" (1" G.. -- ~ ~ 11'_11'

I I'

f
+1 f+1

M = -1 -1 ,Pj:{ ti det 4/dr ds
•

~G

Frequently used is Gauss integration:

Example: 2-D analysis

r, s values:
±0.7745...

0.0

All integration points are in the interior
of the element.

Topic Six 6-17
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6-18 Formulation of Finite Element Matrices

Transparency
6-29

Transparency
6-30

Also used is Newton-Cotes integration:

Example: shell element

5-point Newton-Cotes
integration in s-direction

Integration points are on the boundary
and the interior of the element.

Gauss versus Newton-Cotes Integration:

• Use of n Gauss points integrates
a polynomial of order 2n-1 exactly,
whereas use of n Newton-Cotes
points integrates only a polynomial
of n-1 exactly.
Hence, for analysis of solids we
generally use Gauss integration.

• Newton-Cotes integration involves
points on the boundaries.
Hence, Newton-Cotes integration may
be effective for structural elements.



In principle, the integration schemes
are employed as in linear analysis:

• The integration order must be high enough
not to have spurious zero energy modes in
the elements.

• The appropriate integration order may, in
nonlinear analysis, be higher than in linear
analysis (for example, to model more
accurately the spread of plasticity). On the
other hand, too high an order of integration is
also not effective; instead, more elements
should be used.

Exam~le: Test of effect of integration order

Finite element model considered:

Topic Six 6-19
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10em

Thickness = 0.1 cm

\

10 em

P

P

E = 6 X 105 N/em2

ET = 0.0
v = 0.0
<Ty = 6 X 102 N/em2

M = 10P N-em



6-20 Formulation of Finite Element Matrices
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Calculated response:
M
My
2.0

4x4
Limit load ,----------- ----

1.5f----===~L--~~====----

My, <py are moment and rotation at
first yield, respectively

Gauss integration
_._--- 2 x 2
_ .. _ .. - 3x3
------4x4
--- Beam theory

1.0

0.5

2 3 4

Transparency
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Problem: Design numerical experiments
which test the ability of a
finite element to correctly
model large rigid body
translations and large rigid
body rotations.

Consider a single two­
dimensional square 4­
node finite element:

~ plane stress
or plane strain



Thpic Six 6-21

Numerical experiment to test whether a
4-node element can model a large rigid
body translation:

Transparency
6-35

stress­
free

R

R

two equ~
M.N.O.
trusses \

This result will be obtained if any of
the finite element formulations
discussed (T.L., U.L., M.N.O. or linear)
is used.

Numerical experiment to test whether a
4-node element can model a large rigid
body rotation:

I"

Transparency
6-36

R

M.N.O. truss



6·22 Formulation of Finite Element Matrices
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When the load is applied, the element
should rotate as a rigid body. The
load should be transmitted entirely
through the truss.

element is stress-free

1force in spring

Note that, because the spring is
modeled using an M.N.O. truss
element, the force transmitted by
the truss is always vertical.

applied load

r originalI ~element

!~force resisted
by spring

After the load is applied, the element
should look as shown in the following
picture.

element-s--­
remains

stress-free

Transparency
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This result will be obtained if the T.L.
or U.L. formulations are used to model
the 2-D element.
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Two- and Three­
Dimensional Solid
Elements; Plane
Stress, Plane
Strain, and
Axisymmetric
Conditions

• Isoparametric interpolations of coordinates and
displacements

• Consistency between coordinate and displacement
interpolations

• Meaning of these interpolations in large displacement
analysis, motion of a material particle

• Evaluation of required derivatives

• The Jacobian transformations

• Details of strain-displacement matrices for total and
updated Lagrangian formulations

• Example of 4-node two-dimensional element, details of
matrices used
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7-4 Two- and Three-Dimensional Solid Elements

Transparency
7-1

Transparency
7-2

TWO- AND THREE-DIMENSIONAL
SOLID ELEMENTS

• Two-dimensional elements comprise
- plane stress and plane strain elements
- axisymmetric elements

• The derivations used for the two­
dimensional elements can be easily
extended to the derivation of three­
dimensional elements.

Hence we concentrate our discussion
now first on the two-dimensional
elements.

TWO-DIMENSIONAL
AXISYMMETRIC, PLANE

STRAIN AND PLANE STRESS
ELEMENTS

3

+----------X1



Topic Seven 7-5

Because the elements are
isoparametric, Transparency

7-3
N N

0 L hk °x~ ° L hk °x~X1 = , X2 =
k=1 k=1

and
N Nt L hk tx~ t L hk tx~X1 = , X2 =

k=1 k=1

where the hk's are the isoparametric
interpolation functions.

Transparency
7-4

4

tXi = L hk tx~
k=1

4

°Xi = 2: hk °x~
k=1

where
1

h1 = 4: (1 + r)(1 + s)

1
h2 = - (1 - r)(1 + s)

4
1

h3 = - (1 - r)(1 - s)
4
1

h4 = 4 (1 + r)(1 - s)

time 0

Example: A four-node element
s



7-6 1\vo- and Three-Dimensional Solid Elements

Transparency
7-5

r

tx; = t hkl tx~
k-1 r;0.5

5=0.5

x

Transparency A major advantage of the isoparametric
7-6 finite element discretization is that we

may directly write

N Nt
U1 ~ hk tu~ t

~ hk tu~U2 =
k=1 k=1

and
N N

U1 ~ hk u~ U2 = ~ hk u~
k=1 k=1



This is easily shown: for example,

N
t ~ h t k
Xi = £J k Xi

k=1

N
o ~ h 0 kXi = £J k Xi

k=1

Subtracting the second equation from
the first equation gives

N
t 0 ~ h (t k 0 k)Xi - Xi = £J k Xi - Xi

, . k=1 ' , .

The element matrices require the following
derivatives:

Topic Seven 7-7

Transparency
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Transparency
7-8



7-8 'I\vo- and Three-Dimensional Solid Elements

Transparency
7·9

Transparency
7-10

These derivatives are evaluated using a
Jacobian transformation (the chain rule):

ahk _ ahk aOx1 + ahk aOx2
ar - aOx1 ar aOx2 ar

ahk ahk aOx1 ahk aOx2
as - aOx1 as + aox;. as

~REaUIRED
In matrix form, ~ DERIVATIVES

r A ,

ahk ilxl aOx2 ahk
as as as aOX2

°4

The required derivatives are computed
using a matrix inversion:

ahk ahk
aOx1

-

= 0J-1
ar

ahk ahk
aOx2

-
as

The entries in oJ are computed using
the interpolation functions. For example,

° N ha X1 = L a k 0x~
ar k=1 ar



The derivatives taken with respect to
the configuration at time t can also be
evaluated using a Jacobian transformation.

ahk a1x1 alX2 ahk
- = - -

alX1ar ar ar

ahk a1x1 a1x2 ahk
- - -

a1x2as as as

IJ

f ahk IX~
ahk ahk k=1 as
a1x1

-
ar

ahk

= IJ-1
ahk

alX2
-

as

We can now compute the required
element matrices for the total
Lagrangian formulation:

Topic Seven 7-9

Transparency
7-11

Transparency
7-12

Element Matrix Matrices Required

oC , dBL

ds , dBNL
tAt
oS , oBL



7-10 Two- and Three-Dimensional Solid Elements

We define oC so that
Transparency

7-13 0811

0822

0812

0833

analogous to
OSij. = oC~,s oe,s

1

For example, we may choose
(axisymmetric analysis), v

1 - v o

Transparency
7-14

v 0
v

_ E(1 - v) 1 - v 1 - v
oQ - (1 + v)(1 - 2v)

0 0
1 - 2v

02(1 - v)

v v 0
1 - v 1 - v

We note that, in two-dimensional
analysis,

t t
Oe11 = OU1,1 +loU1,1 OU1,1 + OU2,1 OU2,1,

t t
Oe22 = OU2,2 + IOU 1,2 oU 1,2 + OU2,2 OU2,2,

2 Oe12 = (OU1,2 + OU2,1) + ,(JU 1,1 OU1,2

t t t )

~e:~: ;~2: +(~~~1)2O:~" +°fU2

,2 OU2,1 I
X1 X1 X1

I I

""-INITIAL DISPLACEMENT
EFFECT



and

1 (U1)2
01")33 = 2 Ox1

Derivation of 0833, o~:

X2 ./' time 0 /time t+dt

axis of r-\ CI
reVolut~ L-:=1 ~

'"---------- X1

We see that

Topic Seven 7-11

Transparency
7-15

Transparenc)
7-16



7-12 'I\vo- and Three-Dimensional Solid Elements

Transparency
7-17

Hence H.1t _1 [(H.1tdS)2 ]
oE33 - - ----0-:;-:- - 1

2 ds

Transparency
7-18

We construct riBl so that

~
oe11]Oe22 t t

2 Oe12 = o~ = (06l0 + 06L1) a
De.. I ~

J JBL

contains initial
Oe33 is only included displacement effect

for axisymmetric analysis



'Ibpic Seven 7-13

Entries in 6Sl0:
node k

..... . . . . -I
ohk,1 I 0

0 I ohk,2... ...
ohk,2

I
ohk,1I

hkfx1 I 0
I- -

u~

u~

t
node k

l

Transparency
7-19

included only for
axisymmetric analysis

This is similar in form to the B matrix used in
linear analysis.

Transparency
7-20u~

node k

- .. . -
6U1,1 ohk,1 I 6U2,1 ohk,1

I
6U1,20hk,2 I 6U2,20hk,2... I ...
6U1,1 Ohk,2 I 6U2,10hk,2

t h I + 6U2,2 ohk,1+ OU1,2 0 k,1 I
tU1 hk I

°X1 °X1
I 0
I

~ I -

Entries in 6Bl1:

I u~

Th ... I d' I t ff t included onlye Inltla ISP acemen e ec tu for axisym~etric

is contained in the terms 6Ui,~, OX:. analysIs



7-14 1\vo- and Three-Dimensional Solid Elements

Transparency
7-21

We construct dSNL and ds so that

s:: ~ T tST ts ts ~ ts s::u!! O_NL 0_ O_NL!! = ° i}Uolli}

Entries in ds:

r- -
dS11 dS12 0 0 0
dS21 dS22 0 0 0

0 0 dS11 dS12 0
0 0 dS21 dS22 0
0 0 0 0 dS33..... - included only

for axisymmetric
analysis

Transparency
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Entries in dSNL:

node k

u~ ,I u~

t
node k

1

u~---
u~

r- I -
ohk,1 I 0
ohk,2 I 0

I... 0 I Ohk1 ...
0 I ohk,2I

hk/OX1 I 0
L- I -f

included only for
axisymmetric
analysis



t A

oS is constructed so that

Entries in JS:

Topic Seven 7-15

Transparency
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JS11
J822

J812

J833
~ included only for

axisymmetric analysis



7-16 'I\vo- and Three-Dimensional Solid Elements

Exam~: Calculation of JBlI JBNl

Transparency
7-25

0.1 0.2

X2 0.1

0.2

Plane strain
conditions

t-+ -l-.L"'"--time 0

Exam~: Calculation of JBlI JBNl

Transparency
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0.1 0.2

Plane strain
conditions

·1

4

2

0.2

r-t:======:i.J-J-....~time 0
material fibers
have only translated
rigidly

.2

X2 0.1

(0.1,0.1 )



Example: Calculation of dBL • dBNL

Topic Seven 7-17

0.2

0.1

0.2
(0.1,0.1)

0.2

Plane strain
conditions

x,

Transparency
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Exam~: Calculation of dBLl dBNL

X2 0.1

0.2

0.1

0.2
(0.1,0.1)

0.2

·1

Plane strain
conditions

time 0
material fibers have
stretched and rotated

x,

Transparency
7-28



7-18 Two- and Three-Dimensional Solid Elements

Transparency
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Exam~: Calculation of JBL, JBNL

0.1 0.2

At time 0,

·1

1

Plane strain
2 condffionss

0.2

---1----t~~rtime 0

(0.1.0.1)

0.2

X2 0.1

By inspection,

Hence oJ = [0.1- °
and a a a a

:;CC-a = 1°-a ':;CC-a = 1°-aX1 r X2 s

We can now perform a Jacobian
transformation between the [, s)
coordinate system and the ( X1 ,OX2)

coordinate system:

° °a x1 = °1 a X2 = °ar ., ar

aOx1 = ° aOx2
as 'as = 0.1

0~1] , 1°41 = 0.01

Transparency
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Now we use the interpolation functions
to compute JU1,1 , JU1,2:

node ahk ahk tu~ ahk t k ahk t k
aOx1 aOx2 r U1 - U1

k X1 aOx2

1 2.5(1 + 5) 2.5(1 + r) 0.1 0.25(1 + 5) 0.25(1 + r)

2 -2.5(1 + 5) 2.5(1 - r) 0.1 -0.25(1 + 5) 0.25(1 - r\

3 -2.5(1 - 5) -2.5(1 - r) 0.0 0 0

4 2.5(1 - 5) -2.5(1 + r) 0.0 0 0

'Ibpic Seven 7-19

Transparency
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Sum: 0.0
" 4 ,/

t
OU1,1

0.5
" 4 j

t
OU1,2

For this simple problem, we can
compute the displacement derivatives
by inspection:

From the given dimensions,

Jx = [1.0 0.5]
- 0.0 1.5

Transparency
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Hence
JU1,1 = JX11 - 1
t txOU1,2 = 0 12

t txOU2,1 = 0 21

JU2,2 = JX22 - 1

=0

= 0.5

=0

= 0.5



7-20 Two- and Three-Dimensional Solid Elements

Transparency
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We can now construct the columns in
riBL that correspond to node 3:

['0
I

-2.5(1 - 5) I
o I

I
-2.5(1 - r) !

-2.5~1 - r) ..J
-2.5(1 - 5)

[

0 : 0
... -1.25(1 - r) : -1.25(1 - r)

-1.25(1-5)1- 1.25(1-5)
ooJ

Transparency
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Similarly, we construct the columns in
riBNL that correspond to node 3:

I
-2.5(1 - 5) I 0
-2.5(1 - r) , 0

Io I -2.5(1 - 5)
o I -2.5(1 - r)

I



Consider next the element matrices
required for the updated Lagrangian
formulation:

Thpic Seven 7-21

Transparency
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Element Matrix

We define tC so that

Matrices Required

tC , ~Bl

t'T , ~BNl
tAt
'T , tBl

tSl1

tS22
tS12 = te

tS33

tel1

te22

2 te12

te33

analogous to
tSt = tCtrs tars

Transparency
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For example, we may choose
(axisymmetric analysis), 1 v

1 - v o
v 1 0 v

C - E(1 - v) 1 - v 1 - V

t_ - (1 + v)(1 - 2v)
0 0

1 - 2v 02(1 - v)

v v 0 11 - v 1 - v



7-22 1\\'0- and Three-Dimensional Solid Elements
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We note that the incremental strain
components are, in two-dimensional
analysis,

aU1
te11 = -at = tU1,1

X1

te22 = tU2,2

2 te12 = tU1,2 + tU2,1

te33 = U1/X1

and

t'TI11 = ~ ((tU1,1)2 + (tU2,1)2)

1 (U1)2
tT)33 = 2 t

X1



We construct ~BL so that

Topic Seven 7-23
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- te11
te22

2 te12
te33

Entries in ~BL:

tB A= te = t L U

only included for
axisymmetric analysis

node k

- . . -I
thk,1 I 0

0 I thk,2... I ...
thk ,2 I thk ,1
hk/x1 I 0

..... -

u~

u~

t
node k

1

Transparency
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only included for axisymmetric analysis

This is similar in form to the
B matrix used in linear analysis.



7-24 Two- and Three-Dimensional Solid Elements
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We construct ~SNL and tT so that

~ A T tsT t,.,. ts A t,.,. ~
u~ t_NL...!.- t_NL ~ = • y.Ut'Tly.

Entries in t'T:
r-- -t trr12 0 0 0'T11
t t 0 0 0'T21 'T22

0 0 t t 0'T11 'T12
0 0 t t 0'T21 'T22
0 0 0 0 t

'T33

Entries . tsIn t NL:
Transparency

node k7-42

I' u~ !, u~ .I

included only
for axisymmetric
analysis

~
included only for
axisymmetric analysis

- I -
thk,1 I 0
thk,2 I 0

... 0 I thk,1
...

I
0 I thk,2

hk/X1 I 0
l-. -

u~

u~

t
node k

l
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t"'T is constructed so that
Transparency

7-43

Entries in tf:

included only for
axisymmetric analysis

Three-dimensional elements Transparency
7-44

X2 ~ node k

(ox~, 0xt °x~)



7-26 Two- and Tbree-Dimeusional Solid Elements
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Here we now use

N
o ~ h ° kX1 = £J k X1

k=1
N

0X3 = ~ hk O~,k=1

N
o ~ h ° k,X2=£J kX2

k=1

Transparency
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where the hk's are the isoparametric
interpolation functions of the three­
dimensional element.

Also

N N
1<1= ~ hk 1<~ , 1<2 = ~ hk 1<~

k=1 k=1
N

1cs = ~ hk tx~
k=1

and then all the concepts and
derivations already discussed are
directly applicable to the derivation of
the three-dimensional element matrices.
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Topic 8

The Two- oded
Truss Element­
Updated
Lagrangian
Formulation

• Derivation of updated Lagrangian truss element
displacement and strain-displacement matrices from
continuum mechanics equations

• Assumption of large displacements and rotations but
small strains

• Physical explanation of the matrices obtained directly by
application of the principle of virtual work

• Effect of geometric (nonlinear strain) stiffness matrix

• Example analysis: Prestressed cable

Section 6.3.1
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TRUSS ELEMENT DERIVATION

A truss element is a structural member
which incorporates the following
assumptions:

• Stresses are transmitted only in the
direction normal to the cross-section.

• The stress is constant over the cross­
section.

• The cross-sectional area remains
constant during deformations.

We consider the large rotation-small
strain finite element formulation for a
straight truss element with constant
cross-sectional area.

2

Topic Eight 8-3

Transparency
8-1

Transparency
8-2

1

1

L 'I

Elastic material with
Young's modulus E

Cross-sectional area A

Element lies in the Xl - X2

plane and is initially aligned
with the X1 axis.



8-4 The 'l\vo-Noded Truss Element - UL.F.

Transparency
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Transparency
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The deformations of the element are
specified by the displacements of its
nodes:

time 0 t Ul Xl

Our goal is to determine the element
deformations at time t+~t.

!!Pdated Lagrangian formulation:

The derivation is simplified if we
consider a coordinate system aligned
with the truss element at time t.



Written in the rotated coordinate system,
the equation of the principle of
virtual work is

JVt+Ll~s~ot+Ll~Ei} tdV = t+Lltm

As we recall, this may be linearized to
obtain

r tC~ijrS te rs Otei} tdV + r tfi}odli} tdV
Jtv Jtv

= t+ Lltm _ r tTi}Otei} tdV
Jtv

Topic Eight 8-5

Transparency
8-5

Because the only non-zero stress Transparency
component is tf11, the linearized 8-6

equation of motion simplifies to

r tC 1111 te11 Ote11 tdV + r tf11 OtTl11 tdV
Jtv Jtv

= t+Lltm - r tf11 Ote11 tdV
Jtv

Notice that we need only consider one
component of the strain tensor.



8-6 The Two-NocIecl Truss Element - V.L.F.

Transparency
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We also notice that:
tC 1111 = E
t- tp
T11 = A

tv = AL

Transparency
8-8

The stress and strain
states are constant
along the truss.

Hence the equation of motion becomes

(EA) t811 8 t811 L + tp 8dl11 L
HAtm. tp S::. L= '(Jt - Ute11

To proceed, we must express the strain
increments in terms of the (rotated)
displacement increments:

where
~

0=

This form is analogous
to the form used in
the two-dimensional
element formulation.



U•
1
1

U•
1
2

"
U•

2 -s-u-
1

U•
2
2

S· - • 1 ((. )2 (. )2)Ince tE 11 = tU1,1 + 2 tU1,1 + tU2,1 ,

we recognize

t«311 = tU1,1

d111 = ~ ((tU1,1)2 + (tU2,1)2)

and

8dl11 = 8tu1,1 tU 1,1 + 8tU2,1 tU2,1

= [8tU1,1 8tU2,1] [t~1'1]
t 2,1.

matrix form

We can now write the displacement
derivatives in terms of the
displacements (this is simple because
all quantities are constant along the
truss). For example,

• aU1 aU1 U~ - U~
tU1,1 = atx1 = a tX1 = L

Hence we obtain

[:~:: ~] = ~ [ - 6 -~ 6 ~]

Topic Eight 8-7
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8-8 The 'IWo-Noded 'lruss Element - D.L.F.
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Transparency
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and

t«311 = (i [-1 0 1 0]) ~
'-------v.:======~.s t -.s--,BL

t-
,...-,----"'-----" ,BNL

~~11 = &~T (tri -~)(H-6 ~~. 6
_______________' [,01,1 ]

[8tO1,1 8,02 ,1] ,02 ,1

Using these expressions,

(EA) te11 Bte11 L

\
BOT ~A ~ g
- L -1 0

o 0

-1 0
o 0
1 0
o 0

(setting successively each virtual nodal point
displacement equal to unity)



\
,

( ~
10-1 0])~T tp 0 1 0 -1 0

()!! L -1 0 1 0 -
o -1 0 1

and

Topic Eight 8-9

Transparency
8-13

Transparency
8-14



8-10 The 1\vo-Noded Truss Element - U.L.F.
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We have now obtained the required
element matrices, expressed in the
coordinate system aligned with the
truss at time t.

To determine the element matrices in
the stationary global coordinate system,
we must express the rotated
displacement increments uin terms of
the unrotated displacement increments
O.

We can show that

[~:] = [_~~~~e cS~~~:] [~:]

Transparency
Hence8-16

-1 coste sinte a a u~U1
-1 -sinte coste a a u1U2
-2 a a coste sinte u~U1

-2 0 0 -sinte coste u~U2

~ '~v

Q T 0- -



Using this transformation in the
equation of motion gives

BUT ~KL U~ BOT TT~KL T a
- - - - \,,- - -/-

~KL

- ,- 4 -/

~F

Performing the indicated matrix
multiplications gives

Topic Eight 8-11
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- -
(COSt8)2 (cost8)(sint8) -(COSt8)2 -(cost8)(sint8)

(sint8)2 -(cost8)(sint8) -(sint8)2

symmetric (COSt8)2 (cost8)(sint8)

I (sint8)2
'--- -
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and

~F = tp

1 0 --1
1 0

1
symmetric

-coste
-sinte
coste
sinte

o
-1

o
1

Transparency
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The vector :F makes physical sense:

Hence, at equilibrium,

tR - :F = Q



We note that the ~KNL matrix is unchanged by
the coordinate transformation.

• The nonlinear strain increment is
related only to the vector magnitude
of the displacement increment.

~+ (O~f~~(:,~J + (:I~~r)L
)(1

./'

Topic Eight 8-13

Transparency
8-21

internal L\R
force tp

~R

Physically, :~NL gives the required
change in the externally applied nodal
point forces when the truss is rotated.
Consider only O~ nonzero.
For small o~, this gives a rotation
about node 1.
Moment equilibrium:
(dA) (L) = CA) (Ci~)

or AA _ tp -2
L.1 - - U2

1-
entry (4,4)
of lKNL ,-.-::l

- ,-

X~,-//'-

For small Q,

:~NL Q= t+~tB - tA

Transparency
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Example: Prestressed cable

r Applied load 2 tR

Initial ten~ion = 0p i Length 2 L
Young's modulus E
Area A

Finite element model (using symmetry):

Of particular interest is the configuration
at time 0, when te = 0:

(O~) u~ = ~tR

The undeformed cable stiffness is given
solely by ~KNL.



The cable stiffens as load is applied:

~K = EA (sintO)2 + tp
,L . ~

~KL ~KNL

~KL increases as to increases (the truss
provides axial stiffness as to increases).

As to ~ 90°, the stiffness approaches Et,

but constant L and A means here that
only small values of to are permissible.

Using: L = 120 in , A = 1 in2
,

E = 30 x 106 psi , 0p = 1000 Ibs
we obtain

200.

Applied
force
(Ibs)

o.o........,=-- +_

Deflection (inches) 2.5

'Ibpic Eight 8-15

Transparency
8-25

Transparency
8-26



8-16 The Two-Noded Tmss Element - U.L.F.

Transparency
8-27

We also show the stiffness matrix
components as functions of the applied
load:

200.0

Stiffness
(Iblin)

o.o~-----------+--
0.0 Applied force (Ibs) 200.0
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TOTAL LAGRANGIAN
FORMULATION OF TRUSS

ELEMENT
We directly derive all required matrices
in the stationary global coordinate
system.

Recall that the linearized equation of
the principle of virtual work is

f oCifs oers 80eiJ- °dV + f JSii' 80 'TJiJ- °dVJov Jov

= t+~tm - f JSij. 80eiJ- °dV
Jov

We will now show that the only non­
zero stress component is JS11.

1) Mathematical explanation:
For simplicity, we assume constant
cross-sectional area. ~\

L(1 + E)

time t \
'\ te

X2j timeD

I .
I· '1 X1

L

'Ibpic Nine 9-3
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9-4 The 1\vo-Noded Truss Element - T.L.F.
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We may show that for the fibers of the
truss element

t _ [(1 + e) coste -sinte]
oX - (1 + e) sinte coste

Since the truss carries only axial stresses,
t
T

::;:: tp [(coste)2 (cOSte)(Sinte)]
- A (coste)(sinte) (sinte)2

, ,,
written in the stationary coordinate frame

Transparency
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(the components of the 2nd
Piola-Kirchhoff stress tensor
do not change during a
rigid body motion)

8s = 0T = [OP/A
- - 0

cis = t*T = [tP/A
- - 0

JS=[tP6A\ta
time 0 \

time t: The element
is moved as a rigid
body.

Physical explanation: we utilize an
time t* (conceptual): inter.medi~te *
Element is stretched configuration t
by tp.

The linearized equation of motion
simplifies to

f OC1111 Oe11 80e11 °dV + f dS11 80TJ11 °dVJov Jov

=t+.:lt9R, - f dS11 80e11 °dV
Jov

Transparency
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Again, we need only consider one
component of the strain tensor.
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Next we recognize:
tpts -o 11 - A

OC1111 = E , °v = A L

The stress and strain states are
constant along the truss.

Hence the equation of motion becomes

(EA) Oe11 80e11 L + tp 80Tl11 L
= t+·::ltffi - tp 80e11 L

To proceed, we must express the strain
increments in terms of the displacement
increments:

where

0=

u~

u~

u~

u~
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Since OE11 = OU1,1 + JU1,1 oU1,1 + JU2,1 OU2,1

+ ~ ((OU1,1)2 + (OU2,1)2)

Transparency
9-9

we recognize

t t
Oe11 = OU1,1 + OU1,1 OU1,1 + OU2,1 OU2,1

()OT) 11 = ()oU 1,1 oU 1,1 + ()OU2,1 OU2,1

= [()OU1,1 ()OU2,1] [O~1'1]
o 2,1

Transparency
9-10

t
OU2,1

time 0

time t

We notice the presence of Ju1,1 and
6U2,1 in Oe11. These can be evaluated
using kinematics:

t LltU1OU1,1 - ---:--L
= coste - 1

~--L--+l·1
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We can now write the displacement
derivatives in terms of the
displacements (this is simple because
all quantities are constant along the
truss). For example,

A 2 1
aUl UUl Ul - Ul

OU1,1 = a OXl = ~OXl = L

Hence we obtain

Transparency
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[
OU1,1] = 1 [-1
OU2,1 L 0

Therefore

_ [t
Oell - OU1,1 + OU1,1

= L
1

[-1 0 1 0] a
I 1-

JSLO

o 1 0
1

]
-1 0

tu ] [OU1'1]o 2,1 Uo 2,1

U~

u~

u~

u~

+ [coste-1 sinte] (1 [-1 0 1
I L 0 -1 0

initial displacement effect J~L1



Oe11 = ~[-1 0 1 0 ] Q
1'- -----',-

dSlO

+ ~ [-(coste - 1) i-side i coste - 1 i sinte] .Y
I I

dSL1

Topic Nine 9-9
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Also

o
-1 6 ~]) Q
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Using these expressions,

r-- - 1\(COSt6)2 (cOsl6)(sinl6) -(CosI6)2 -(cost6)(sinI6)

(sint6f - (cosl6)(sint6) -(sinI6)2

(cos16)2 (cost6)(sinl6)

symmetric (sinl6)2 1/~
I -

o

Transparency
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tpt1- 0
L -1

o

o
1
o

-1

-1
o
1
o

o



and

'lbpic Nine 9-11
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-coste
-sinte
coste
sinte

JF

We notice that the e.lement matrices
corresponding to the T.L. and U.L.
formulations are identical:

• The coordinate transformation used in
the U.L. formulation is contained in
the "initial displacement effect" matrix
used in the T.L. formulation.

• The same can also be shown in
detail analytically for a beam element,
see K. J. Bathe and S. Bolourchi,
Int. J. Num. Meth. in Eng., Vol. 14,
pp. 961-986, 1979.
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Example: Collapse analysis of a truss
structure

H = 5
A = 1
E = 200,000
ET = 0
cry = 100

H H

• Perform collapse analysis using U. L.
formulation.

• Test model response when using
M.N.O. formulation.

For this structure, we may analytically
Galculate the elastic limit load and the
ultimate limit load. We assume for now
that the deflections are infinitesimal.

Elastic limit load
(side trusses just become plastic)

P=341.4

Ultimate limit load
(center truss also becomes plastic)

P=441.4



analytical elastic limit load

~ : 1v =0.005

- : 1v=0.0001

Using automatic load step incrementa­
tion and the U.L. formulation, we
obtain the following results:

500 tnalytical ultimate limit load

400

p 30

200

100

o+--t----t--+--t---+--....
o .02 .04 .06 .08 .10

v

We now consider an M.N.O. analysis.

We still use the automatic load step
incrementation.

• If the stiffness matrix is not
reformed, almost identical results
are obtained (with reference to the
U.L. results).

Topic Nine 9-13
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• If the stiffness matrix is reformed
for a load level larger than the
elastic limit load, the structure is
found to be unstable (a zero
pivot is found in the stiffness
matrix).

Why?

Transparency
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Explanation:

• In the M.N.O. analysis, once the side
trusses have become plastic, they no
longer contribute stiffness to the
structure. Therefore the structure is
unstable with respect to a rigid body
rotation.



• In the U.L. analysis, once the side
trusses have become plastic, they still
contribute stiffness because they are
transmitting forces (this effect is
included in the ~KNL matrix).

Also, the internal force in the center
truss provides stability through the
~KNL matrix.

fP
100

1
00

Example: Large displacements of a
uniform cable

I' S -I prescribed
~ ---, displacement

~ · • · • · • • A-
g f Eight 2-node truss. ~Ieme~

. .. I' Imtlal S - 80 m
Imtla tensIon A = 10-4 m2

of 500 N E = 2.07 X 1011 Pa
p = 7750 kg/m3

• Determine the deformed shape
when S = 30 m.

Topic Nine 9-15
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This is a geometrically nonlinear
problem (large displacements/large
rotations but small strains).
The flexibility of the cable makes the
analysis difficult.

- Small perturbations in the nodal
coordinates lead to large
changes in the out-of-balance
loads.

- Use many load steps, with
equilibrium iterations, so that
the configuration of the cable
is never far from an equilibrium
configuration.

Solution procedure employed to solve
this problem:

• Full Newton iterations without line
searches are employed.

• Convergence criteria:

dU(i)T (t+~tR _ t+~tF(i-1))

- dU(1)T (t+~tR _ tF) <: 0.001

11t+~tR - t+~tF(i-1)112 <: 0.01 N



• The gravity loading and the prescribed
displacement are applied as follows:

Number of equilibrium
Time step Comment iterations required

per time step

1
The gravity loading

14is applied.

The prescribed

2-1001 displacement is applied ::;5
in 1000 equal
steps.

Pictorially, the results are

\
undeformed

~
8=55 m

Topic Nine 9-17
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104 Solution of Equations in Static Analysis - Part I
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SOLUTION OF NONLINEAR
EQUATIONS

We want to solve
HdtR _ HdtF = 0

externally applied nodal point forces
loads corresponding to internal

element stresses

• Loading is deformation-independent

T.L. formulation U.L. formulation

Transparency
10-2

The procedures used are based on the
Newton-Raphson method (commonly
used to find the roots of an equation).

A historical note:

• Newton gave a version of the method
in 1669.

• Raphson generalized and presented
the method in 1690.

Both mathematicians used the same
concept, and both algorithms gave the
same numerical results.



Consider a single Newton-Raphson
iteration. We seek a root of f(x), given
an estimate to the root, say Xi-1, by

. _. _ f(Xi-1)
x, - X'-1 f'(Xi-1)

Once Xi is obtained, Xi+1 may be
computed using

. _. _ f(Xi)
X1+1 - XI f'(xj)

The process is repeated until the root
is obtained.

The formula used for a Newton­
Raphson iteration may be derived using
a Taylor series expansion.

We can write, for any point Xi and
neighboring point Xj-1,

f(Xi) = f(Xi-1) + f'(Xi-1)(Xi - Xi-1)

+ higher order terms

. f(Xi-1) + f'(Xi-1)(Xj - Xi-1)

Topic Ten 10-5
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1()..6 Solution of Equations in Static Analysis - Part I

Transparency
10-5

Since we want a root of f(x) , we set
the Taylor series approximation of f(xi)
to zero, and solve for Xi:

Transparency
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Mathematical example, given merely to
demonstrate the Newton-Raphson
iteration algorithm:

Let f(x) = sin x , Xo = 2
Using Newton-Raphson iterations, we
obtain

o 2.0
1 4.185039863
2 2.467893675
3 3.266186277
4 3.140943912
5 3.141592654

error =

1.14
1.04
.67
.12

6.5 x 10-4 } quadratic

10
-9 convergence

< is observed



The approximations obtained using
Newton-Raphson iterations exhibit
quadratic convergence, if the
approximations are "close" to the root.

Mathematically, if IEi- 1 1 -.:.. 10-m

then IEil' 10-2m

where Ei is the error in the
approximation Xi.

The convergence rate is seen to be
quite rapid, once quadratic convergence
is obtained.

However, if the first approximation Xo is
"far" from the root, Newton-Raphson
iterations may not converge to the
desired value.

Example: f(x) = sin x , Xo = 1.58

o 1.58
1 110.2292036
2 109.9487161
3 109.9557430
4 109.9557429] not the desired root

Topic Ten 10-7
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10-8 Solution of Equations in Static Analysis - Part I

Pictorially:

Transparency
10-9

f

. '1
sin x

I-'\I'-----+---~..........------x

Pictorially: Iteration 1

Transparency
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.5 slope f' (xo)

xo

f

I-'\I'-----+------:~--~::----x
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Pictorially: Iteration 1
Iteration 2
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.5" slope f' (xo)

Xo

. 7
sin x

I-'V'-------+-~,.----~------..:::,,_k__--- X

Pictorially: Iteration 1
Iteration 2
Iteration 3 Transparency

10-12

x,

.5" slope f'(xo)

slope f' (X2)

. 7
Sin X

Xo

I-'V.'-------+-------"'Io.:-~k----~"'k_--- X
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Pictorially: Iteration 1
Iteration 2
Iteration 3
Iteration 4
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Xo

Pictorially:

5' slope f'(xo)

slope f' (X2)
lope f'(X3)

X3 Xl

f
Bad choice for Xo

f'(xo) = 0

I-JV''-----+-I----~------X

Xo Xo



Topic Ten 10-11

Newton-Raphson iterations for multiple
degrees of freedom

We would like to solve
feU) = HAtR - HAtF = Q

Transparency
10-15

where now f is a vector (one row for
each degree of freedom). For
equilibrium, each row in f must equal
zero.

To derive the iteration formula, we
generalize our earlier derivation. Transparency

10-16

We write
f(HAtUCi») = f(HAtUCi-1»)

+ [;6] (HAtUCi) - HAtUCi-1»)
- l+~t1!(i-1)

.
neglected to obtain a
Taylor series approximation

+ higher order terms
\
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Since we want a root of f(U), we set
the Taylor series approximation of
f(t+ IitU(i») to zero.

Transparency
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or

[~}[:n +

af1 •.. af1

aU 1 aUn

afn ... afn
aU 1 aUn

l+ t1tU(H) a square
matrix



We now use

af I [-at+~ri'l0 [at+~tF(i-1)] I
aO t+4Iy(H) =, ~~ It+4IU(H)- a1l t+4Iy(i-1)

because the loads are
deformation-independent

= _t+~tK(i-1)

--=--
the tangent stiffness matrix

Important: HAtK(i-1) is symmetric because

• We used symmetric stress and strain
measures in our governing equation.

• We interpolated the real
displacements and the virtual
displacements with exactly the same
functions.

• We assumed that the loading was
deformation-independent.

Thpic Ten 10-13
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Our final result is

This is a set of simultaneous linear
equations, which can be solved for
au(i). Then

HatU(i) = HatU(i-1) + au(i)
- - -

This iteration scheme is referred to
as the full Newton-Raphson method
(we update the stiffness matrix in
each iteration).

The full Newton-Raphson iteration
shows mathematically quadratic
convergence when solving for the
root of an algebraic equation. In finite
element analysis, a number of require­
ments must be fulfilled (for example,
the updating of stresses, rotations
need careful attention) to actually
achieve quadratic convergence.



We can depict the iteration process in
two equivalent ways:

Topic Ten 10-15

f = t+~tR _ t+~tF(i-1)

t+.:ltF(i-1)

u

Modifications:

load I t+.:ltK(i-1)sope
t+~tR _

displacement

This is like a force­
deflection curve. We use
this representation henceforth.

Transparency
10-23

Transparency
10-24

'OK ~U(i) = HAtR _ HAtF(i-1)
- -

• 'T = 0: Initial stress method

• 'T = t: Modified Newton method

• Or, more effectively, we update the
stiffness matrix at certain times only.
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We note:

• The initial stress method and the
modified Newton method are much
less expensive than the full Newton
method per iteration.

• However, many more iterations are
necessary to achieve the same
accuracy.

• The initial stress method and the
modified Newton method "icannot"
exhibit quadratic convergence.

Example: One degree of freedom, two load
steps

force

displacement



Initial stress method: 'T = 0
Example: One degree of freedom, two load
steps

force
All slopes oK

I displacement
lU(l) lU(2) 2U(1) 2U(2) 2U(3) 2U(4)

Line searches:

We solve

and consider forming t+~tF(i) using

where we choose 13 so as to make
t+~tR - t+~tF(i) small "in some sense".

Topic Ten 10-17
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Aside:
Transparency

10-29
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If, for all possible U, the number

UT (H£ltR - H£ltF(i») = 0

then H£ltR _ H£ltF(i) = Q

any row
Reason: consider of .u

UT = [0 0 0 1

This isolates one row of
H£ltR _ H£ltF(i)

During the line search, we choo·se
U = ~O and seek ~ such that

~OT (H£ltR - H£ltE(i») = 0

a function of ~

since t+~tU(i) = t+~tU(i-1) + ~ ~O

In practice, we use

o 0]

~OT (H£ltR _ H£ltF(i»)
~OT (HatR _ HatF(,-1») -< STOL

- - - a convergence
tolerance



BFGS (Broyden-Fletcher-Goldfarb­
Shanno) method:

We define
~(i) = H.l1tU(i) _ H.l1tU(i-1)

lei) = H.l1tF(i) _ H.l1tF(i-1)

and want a coefficient matrix such that
(H.l1tK(i») ~(i) = lei)

Pictorially, for one degree of freedom,

Thpic 'Tha 10-19

Transparency
10-31

load

t+dtU(I) displacement
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• The BFGS method is an iterative
algorithm which produces successive
approximations to an effective
stiffness matrix (actually, to its
inverse).

• A compromise between the full
Newton method and the modified
Newton method

Step 1: Calculate direction of
displacement increment

~O(i) = (t+~tK-1)(i-1) (t+~tR _ t+~tF(i-1»

(Note: We do not calculate the inverse
of the coefficient matrix; we use
the usual ~ 0 ~T factorization)



Step 2: Line search

HAtU(i) = HAtU(i-1) + f3 ~O(i)

a function
~of ~

~O(i)T (HAtR _ HAtF(i»)

~O(i)T (Hl1tR _ Hl1tF(' 1») < STOL

Hence we can now calculate ~(i) and "1(i).

Step 3: Calculation of the new "secant"
matrix

(HAtK-1)(i) = A(i)T (HAtK-1)(i-1) A(i)

where

A(i) = I + V(i) W(i)T
- - - -
~(i) = vector, function of

~(i), "1(i), HAtK(i-1)

W(i) = vector, function of ~(i), "1(i)

See the textbook.

'lbpic Ten 10-21
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Important:

• Only veqtor prodl:Jcts are needed to
obtain ~(I) and W(I).

• Only vector products are used to
calculate ~O(i).

Reason:

~O(i) = {(! + W(i-1) ~(i-1)T) •••

o+ W(1) ~(1)T) TK-1 0 + ~(1) W(1)T)

... a+ ~(i-1) W(i-1)T)} X

[t+atR _ t+atF(i -1 )]



In summary

The following solution procedures are
most effective, depending·on the
application.

1) Modified Newton-Raphson iteration
with line searches
tK aO(i) = t+4tR _ t+4tF(i-1)
- - - -

t+4tU(i) = t+4tU(i-1) + ~ aO(i)
'---'

determined by the
line search

2) BFGS method with line searches

3) Full Newton-Raphson iteration with
or without line searches
(full Newton-Raphson iteration with
line searches is most powerful)

But, these methods cannot directly be
used for post-buckling analyses.

'Ibpic Ten 1()"23

Transparency
10-39

Transparency
10-40



10-24 Solution of Equations in Static Analysis - Part I

Modified Newton iteration with line
hsearc es: It+Atu(O) = tu, t+AtF(O) = tF i = 11- -'

ICalculate tK1
I i = i + 1 I ItK dO(i) = t+AtR - t+AtE(i-1>l

1
t+AtU(i) = t+AtU(i-1) + 13 dO(i)l

f Is t+AtR - t+AtE(i-1) . 0
Perform line search_
to determine 13 with dO(i) small?

No !ves

Transparency
10-41

BFGS method:
Transparency

10-42
It+Atu.(O) = tu , t+AtF(O) = tF, i = 11

~

ICalculate tKI
li=t 11--------j

Update inverse of
secant matrix ICalculate ~Q(i) I

t ~
Perform line search Is t+AtR _ t+AtE(i-1) == Q

to evaluate t+AtU~i) • No with ~O(i) small?
t+AtF(i)

~ Yes



i=i+1

Full Newton iteration with line searches:

IH dt!J.(O) = t!J.. H dtE(O) = tE, i = 11

.~

ICalculate Hdt.ts(i-1)1

+
IHdtK (i-1) liO(i) = HdtR _ HdtF(i-1)1t . - - - -.

IHdtU(i) = HdtU(i-1) + R liO(i)1 I
- t- to'- !

Perform line search Is HdtR - t+dtE(i-1) ..:.. 0

to determine ~ No with liQ(i) small?

!ves

Convergence criteria:

• These measure how well the obtained
solution satisfies equilibrium.

• We use
1) Energy

2) Force (or moment)

3) Displacement

Topic Ten 10-25
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Transparency
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On energy:

(Note: applied prior to line searching)

Transparency
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On forces:

IIt+dtR - t+dtF(i-1)1I2

RNORM <: RTOL
" 4 -#

reference force
(for moments, use RMNORM)

Typically, RTOL = 0.01
RNORM = max IitRI12

'-"

considering only translational
degrees of freedom

Note: lIal12 = ~~ (11k)2



On displacements:

IlaO(i)112 < DTOl
DNORM

~
reference displacement
(for rotations, use OMNORM)
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Topic 11

Solution of the
Nonlinear Finite
Element
Equations in
Static Analysis­
Part II

• Automatic load step incrementation for collapse and
post-buckling analysis

• Constant arc-length and constant increment of work
constraints

• Geometrical interpretations

• An algorithm for automatic load incrementation

• Linearized buckling analysis, solution of eigenproblem

• Value of linearized buckling analysis

• Example analysis: Collapse of an arch-linearized
buckling analysis and automatic load step
incrementation, effect of initial geometric imperfections

Sections 6.1,6.5.2

The automatic load stepping scheme is presented in

Bathe, K. J., and E. Dvorkin, "On the Automatic Solution of Nonlinear
Finite Element Equations," Computers & Structures, 17, 871-879,
1983.
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Transparency
11-1

Transparency
11-2

AUTOMATIC LOAD STEP
INCREMENTATION

• To obtain more rapid convergence in
each load step

• To have the program select load
increments automatically

• To solve for post-buckling response

An effective solution procedure would
proceed with varying load step sizes:

smaller
load increments

load large L
load I

ncrement

displacement
• Load increment for each step is to be

adjusted in magnitude for rapid
convergence.



We compute t+
4tR using

t+4tR = t+4tA R fa constant vector----
Hence we assume: Deformation-

independent
loading.

t+6tA R All loads are
identically scaled.

The basic approach:
load very slow converg,.ce If load were fixed

Thpic Eleven 11-5

Transparency
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t+6tA
'faster convergence

u
--I----t---t------displacement
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Transparency
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The governing equations are now:

TK ~U(i) = (t+atA(i-1) + ~A(i»)R _ t+atF(i-1)
. .

with a constraint equation

f(~A (i), ~U(i») = 0

The unknowns are ~U(i), ~A(i).

'T = t in the modified Newton-Raphson
iteration.

We may rewrite the equilibrium
equations to obtain

TK ~O(i) = t+at
A

(i-1) R _ t+atF(i-1)

TK ~O =Ji.ronly solve this once
I - - - for each load step.

Hence, we can add these to obtain

~U(i) = ~O(i) + ~A(i) ~U



Constraint equations:

[II Spherical constant arc-length criterion

(A(i»)2 + (U(i»)T (U(i»)/~ = (tif)2

'lbpic Eleven 11-7

Transparency
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where
A(i) = t+~tA(i) _ tA

U(i) = t+~tU(i) - tu

~ = A normalizing factor
applied to displacement
components (to make
all terms dimensionless)

displacement

This equation may be solved for AA(i)

as follows:

Using ~(i) = ~(i-1) + A~(i)

and U(i) = U(i-1) + AU(i)

= U(i-1) + AO(i) + A~(i) AU

we obtain a quadratic equation in AA(i)

(AO(i) and AU are known vectors).

Transparency
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Transparency
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Geometrical interpretation for single
degree of freedom system:

load

displacement

--s- shaded area is W
tAR___

(I] "Constant" increment of external
work criterion

First iteration: (tx, + ! Ax'(1)) RT AU(1)= W2 --
where W is the (preselected)
increment in external work:
t+~tA(1) R load tK

Transparency
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Successive iterations (i = 2,3, ...)

(
t+ dtX.(i-1) + .1 ~X.(i») R T ~U(i) = 0

2 --

This has solutions:

Topic Eleven 11-9

Transparency
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• t+dtx. (i) = _ t+ dtx.(i -1 )

load reverses direction
(This solution is disregarded)

Our algorithm:

• Specify R and the displacement at
one degree of freedom corresponding
to ~tx.. Solve for ~tU.

• Set ~e.

• Use [] for the next load steps.

• Calculate W for each load step.
When W does not change
appreciably, or difficulties are
encountered with [], use [l] for the
next load step.

Transparency
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Transparency
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Transparency
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- Note that Ai is adjusted for the next
load step based on the number of
iterations used in the last load step.

- Also, TK is recalculated when
convergence is slow. Full Newton­
Raphson iterations are automatically
employed when deemed more
effective.

Linearized buckling analysis:

The physical phenomena of buckling or
collapse are represented by the
mathematical criterion

det rK) = 0

where ,. denotes the load level
associated with buckling or collapse.



The criterion det CK) = 0 implies that
the equation

TK U* = 0-- -

has a non-trivial solution for U* (and
a U* is a solution with a being any
constant). Hence we can select a
small load £ for which very large
displacements are obtained.

This means that the structure is
unstable.

Physically, the smallest load imbalance
will trigger the buckling (collapse)
displacements:

load
imbalancet ?'U* E, I, L given

t~ ~ TR

Topic Eleven 11-11
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Pinned-pinned beam
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Transparency
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We want to predict the load level and
mode shape associated with buckling
or collapse. Hence we perform a
linearized buckling analysis.

We assume
TK = t-dtK + A CK - t-dtK)

TR = t-dtR + A CR - t-dtB)

A is a scaling factor which we
determine below. We assume here that
the value A we require is greater than 1.

Pictorially, for one degree of freedom:

slope t-MK
load slope tK
TR
-+-----~~.,.£-- estimated buckling load

tR-t--------Dl1'­
t - dtR --+-----,J"4F-

displacement
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TR R~ ~~""""",
Transparency
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K

1o

t-~tK-......_-
tK.-'-ri-----='"""""'~

The problem of solving for A such that
detrK) = 0 is equivalent to the
eigenproblem

t-~tK !I! = A C-~tK - tK) !I!
where !I! is the associated eigenvector
(buckling mode shape).
In general, t-.:1tK - tK is indefinite,
hence the eigenproblem will have both
positive and negative solutions. We
want only the smallest positive A value
(and perhaps the next few larger
values).

Transparency
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Transparency
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Solution of problem

desired solution

\
-1.0

negative values_. _

1.0

_ . positive values

Transparency
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Example of model with both positive
and negative eigenvalues:

buckling of this member
./corresponds to a

/' negative eigenvalue

~ buckling of this member
corresponds to a positive
eigenvalue
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We rewrite the eigenvalue problem as
follows:

Transparency
11-23

tK!h = (~ ~ 1) t-atK!h

'Y

Now we note that the critical buckling
mode of interest is the one for which 'Y
is small and positive.

Solution of problem

tK ~ = 'Y t-atK~; 'Y = ~ ~ 1
Transparency
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fA; values are negative

1.0

Ai values greater

than 1 1
--+~*-~~f---li--",*--*-~----"Y

"Y1 "Y2 \
desired
solution
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Value of linearized buckling analysis:

• Not expensive

• Gives insight into possible modes of
failure.

• For applicability, important that pre­
buckling displacements are small.

• Yields collapse modes that are
effectively used to impose
imperfections.
- To study sensitivity of a structure

to imperfections

But

- procedure must be employed with
great care because the results
may be quite misleading.

- procedure only predicts physically
realistic buckling or collapse
loads when structure buckles
"in the Euler column type".



,

Example: Arch uniform pressure load tp

Topic Eleven 11-17
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R = 64.85
Cl = 22.5°
E = 2.1 X 106

V = 0.3
h = b = 1.0

Finite element model:

Cross-section:

D t h

I-I
b

• Ten 2-node isoparametric beam
elements

• Complete arch is modeled.

Purpose of analysis:

• To determine the collapse mechanism
and collapse load level.

• To compute the post-collapse
response.

Transparency
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Transparency
11-29

Step 1: Determine collapse
mechanisms and collapse loads
using a linearized buckling
,analysis ('~tp = 10).

Second mode: per = 150

Transparency
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Step 2: Compute the response of the arch using
automatic step incrementation.

Pressure

120

80

40

Collapse load
predicted using
buckling analysis

~
- Computed

response,
about 60 steps.

8.006.004.002.00

Displacement of center of arch

Load level used -S-O+---,---r--...-----,.--.--.----~-...,.
for buckling 0
analysis



We have computed the response of a
perfect (symmetric) arch. Because the
first collapse mode is ·antisymmetric,
that mode is not excited by the
pressure loading during the response
calculations.

However, a real structure will contain
imperfections, and hence will not be
symmetric. Therefore, the antisymmetric
collapse mode may be excited,
resulting in a lower collapse load.

Hence, we adjust the initial coordinates
of the arch to introduce a geometric
imperfection. This is done by adding a
multiple of the first buckling mode to
the geometry of the undeformed arch.

The collapse mode is scaled so that
the magnitude of the imperfection is
less than 0.01.

The resulting "imperfect" arch is no
longer symmetric.

Topic Eleven 11-19
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Transparency
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Transparency
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Step 3: Compute the response of the "imperfect"
arch using automatic step incrementation.

120

80

Pressure
40

o+-.....,....-r--"-T'""----,--,------r-.--~
.00 2.00 4.00 6.00 8.00

Displacement of center of arch

Comparison of post-collapse
displacements:

"Perfect" arch: (disp. at center of arch
= -4.4)

~ ----­
~~--------~

"Imperfect" arch: (disp. at center of
arch = -4.8)
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Demonstrative
Exam~le Solutions
in Static Analysis

• Analysis of various problems to demonstrate, study, and
evaluate solution methods in statics

• Example analysis: Snap-through of an arch

• Example analysis: Collapse analysis of an elastic-plastic
cylinder

• Example analysis: Large displacement response of a shell

• Example analysis: Large displacements of a cantilever
subjected to deformation-independent and deformation­
dependent loading

• Example analysis: Large displacement response of a
diamond-shaped frame

• Computer-plotted animation: Diamond-shaped frame

• Example analysis: Failure and repair of a beam/cable
structure

Sections 6.1, 6.5.2, 8.6, 8.6.1, 8.6.2, 8.6.3
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12-4 Example Solutions in Static Analysis

Example: Snap-through of a truss arch
Transparency

12-1

L= 10.0

k=~A=2.1 X 105

• Perform post-buckling analysis using
automatic load step incrementation.

• Perform linearized buckling analysis.

Postbuckling analysis:
Transparency

12-2 The analytical solution is

30,000

20,000
R

10,000

0

-10,000
!:J.
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The automatic load step incrementation
procedure previously described may be
employed.

Using 1~ =1U = -0.1, we obtain

Transparency
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6 ~

analytical
solution.s-;;

finite element
j solution

~~lC

30,000

20,000
R

10,000

0~----+-~---+----l'L-+--

-10,000

Solution details for load step 7:

• The spherical constant are-length
algorithm is employed.

• The initial stiffness matrix is employed
for all iterations, tu = .8111, tR = 13,580.

Transparency
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i H.1tU(i) H.1tA(i) R u(i) A(i) R

1 .9220 16,690 .1109 3,120
2 .9602 15,220 .1491 1,640
3 .9686 14,510 .1575 936
4 .9699 14,340 .1588 763
5 .9701 14,310 .1590 734
6 .9701 14,310 .1590 731
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Pictorially, for load step 7,

17,000 i = 1

16,000
R A(1)R i = 2

15,000
A

i = 3

14,000 ~
13,000

load step 7

U
0

0.9 1.0 1.10 0.7 0.8 !l

Solution details for load step 8:

• The constant increment of external
work algorithm is employed.

• Modified Newton iterations are
used, tu = .9701 , tR = 14,310.

i t+4tU(i) t+4tA(i) R U(i) A(i) R

1 1.1227 14,740 .1526 440
2 1.1227 14,500 .1526 200
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= area of
quadrilateral
ABCE

of
i1ateral

E

B ana
0 sol

Wprescribed

U=U(1) tw=area
quadr
ABO

A E

5,000

Pictorially, for load step 8,
i=1

load step 7 ci load step 8

/ ~ical
ution

15,000

R

10,000

0.9 1.0 1.1 1.2

Transparency
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2.01.0 1.5
displacement

0.5

5,000

00

We now employ a linearized buckling
analysis to estimate the collapse load
for the truss arch.
Load
25,000 l-. 6'R = 1,000, TR = 25,600

1----------6'R = 10,000, TR = 21,10020,000
1- 6'R = 14,000, TR = 16,800

15,000 6'R = 14,500, TR = 15,000

10,000 l /
Rcr = 14,504 to3digits
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There are cases for which linearized
buckling analysis gives buckling loads
for stable structures. Consider the
truss arch reinforced with a spring as
shown:

R Load
100,000

k*= 16,000

50,000

246
displacement

This structure is always stable.

Transparency
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We perform a linearized buckling
analysis. When the load level is close
to the inflection point, the computed
collapse load is also close to the
inflection point.

displacement

642

load100,000

80,000

60,000 llR = 10,000, TR = 60,700

40,000 j--------:===--==::::....--l'R = 40,000, TR = 44,10C

20,000

0
0



Example: Elastic-plastic cylinder under
internal pressure

Topic Twelve 12-9

Transparency
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Very
long

E=8667
v=0.3
ET=O
cry = 17.32
Inner radius = 1
Outer radius = 2

- Goal: Determine the limit load.

Finite element mesh: Four 8-node
axisymmetric elements

z 1.0 1.0

1.0

We note that, due to the boundary
conditions and loading used, all
stresses are constant in the z direc­
tion. Hence, 6-node elements could
also have been used.

Transparency
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12-10 Example SolutioDS in Static Analysis

(the elastic limit
load is
P=7.42)P 10

8

5

Since the displacements are small, we
use the M.N.O. formulation.

• We employ the following load
function:

15

Transparency
12-13

155 10
time

0+-1---4----+----1--­
01

Transparency
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Now we compare the effectiveness of
various solution procedures:

- Full Newton method with line
searches

- Full Newton method without line
searches

- BFGS method
- Modified Newton method with

line searches
- Modified Newton method without

line searches
- Initial stress method
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The following convergence tolerances are
employed:

Transparency
12-15

VVhen any of these procedures are used,
the following force-deflection curve is
obtained. For P = 14, no converged
solution is found.

Transparency
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5

0-jL--__-+ +--__-+_
o 2x10- 4 4x10- 4 6x10- 4

displacement of inner surface

15 P= 14 (no solution obtained)

---..s-- p = 13.5

~computed solution

~a smooth curve fitting
the computed solutions.

10
P



12-12 Example Solutions in Static Analysis

Transparency
12-17

Transparency
12-18

We now compare the solution times for
these procedures. For the comparison,
we end the analysis when the solution for
P=13.5 is obtained.

Normalized
Method time

Full Newton method with line searches 1.2
Full Newton method 1.0
BFGS method 0.9
Modified Newton method with line

searches 1.1
Modified Newton method 1.1
Initial stress method 2.2

Now we employ automatic load step
incrementation.

• No longer need to specify a load
function

• Softening in force-deflection curve
is automatically taken into account.

Here we use

ETOL=10- 5

RTOL=O.01

RNORM=1.0



15

Result: Here we selected the displacement
of the inner surface for the first
load step to be 10-4 .

computed limit load
+--.....:....----:m::=....-E!ll------e---&-- p = 13.8

Topic Twelve 12-13
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10

P

5

08)-----+---+--+-----+---+-----1f---­
o 2x10- 4 4x10- 4 6x10- 4 8x10- 4 10x10-4 12x10-4

displacement of inner surface

Example: Spherical Shell

~thin
axisymmetric
shell,
clamped edges

+ ~Concentrated
~ forcE;) P
~

Transparency
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h = 0.01576 in
R = 4.76 in
e= 10.9°
E = 107 psi
v = 0.3

12-14 Example Solutions in Static Analysis
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tp,U/O.0859 in

r ., 5~

~

Transparency
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Finite element mesh: Ten 2-D
axisymmetric elements

~~I : I : I I I

:l~

Deformed configuration for P= 100 Ib:

1:=:r=:r=:I:=:r=%_-:r=:r __
i -T':::;a~

=:J::::::=t:::::::::X:=~c::::;:::::::r -c::::
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Force-deflection curve obtained using
10 element mesh: Transparency

12-23

0.20

T.L.
formulation

0.05 0.10 0.15
displacement of apex (in)

linear
analysis

O-f'----+----+-----~--__I+
o

50

100

applied
load
(Ib)

Comparison of solution procedures:

1) Apply full load (100 Ib) in 10
equal steps:

Transparency
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Solution procedure Normalized solution time

Full Newton with line searches
Full Newton without line searches
BFGS method
Modified New10n with line searches
Modified New10n without line searches

1.4
1.0

did not converge
did not converge
did not converge
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Transparency
12-25 2) Apply full load in 50 equal steps:

Solution procedure

Full Newton with line search
Full Newton without line search
BFGS method
Modified Newton with line search
Modified Newton without line search

Normalized solution time

1.3
1.0
1.6
1.9

did not converge

Transparency
12-26 Convergence criterion employed:

Maximum number of iterations permitted = 99
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We may also employ automatic load
step incrementation:

Transparency
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Here we use

ETOL = 10-5

and
IIt+atR - t+atF(i-1)112 <

1.0 -~
R~M RTOl

as convergence tolerances.

Results: Using different choices of initial
prescribed displacements,
we obtain

Transparency
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.20

(!) : 1u = 0.01 in

- : 1u =0.001 in

.05 .10 .15
displacement of apex (in)

O~---+-----t---+----+­
o

50

100

applied
load
(Ib)
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Example: Cantilever under pressure
loading

uniform pressure load p

~:.::_+--+--+--+-.I ojp.2 m
10,m

E=207000 MPa
v=0.3
Plane strain, width = 1.0 m

• Determine the deformed shape of
the cantilever for p = 1 MPa.

- Since the cantilever undergoes
large displacements, the pressure
loading (primarily the direction of
loading) depends on the config­
uration of the cantilever:

~IP

deformation-independent deformation-dependent



The purpose of this example is to
contrast the assumption of deforma­
tion-independent loading with the
assumption of deformation-dependent
loading.

Finite element model: Twenty-five two­
dimensional a-node elements
(1 layer, evenly spaced)

Solution details:

• Full Newton method without line
searches is used.

• Convergence tolerances are

ETOL= 10-3

RTOL= 10-2
,

RNORM = 1.0 MN

'Ibpic Twelve 12·19
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Results: Force-deflection curve
• For small deflections, there are

negligible differences between
the two assumptions.

1.2 deformation-independent

(J,al L~ loading ,"?: .i
.6 CH I
4 c!p> l!» deformation-dependent
. ~ loading
.2 e

C!)

O...----tf----t-----t---_t__
.00 2.00 4.00 6.00 8.00
vertical displacement of tip (m)

Pictorially, for p = 1.0 MPa,

undeformed

~ deformation-independent
loading

/
deformation-dependent
loading



Twenty
3-node
isobeam elements

Example: Diamond-shaped frame

~ frictionless hinge

/
beam cross-section: 1 in
E=30x 106 psi
v=0.3

15 in

15 in

x 1 in

Topic 1\velve 12-21
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Force-deflection curve, obtained using
the T.L formulation:

• A constant load increment of 250
Ibs is used.

80,000

60,000
P

(Ibs) 40,000

20,000

O-¥----+-----+---l----
o 10 20 30

displacement of top hinge (inches)
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12-22 Example SolutioDS in Static Analysis

Computer
Animation
Diamond shaped
frame

TIME I

LOAD. HPA

t

TIME I IS/il
LOAD I 32Sfilfil HPA

.." ," ," ," ," ," ," ,

, ", ", ", ", ", ", '"y

TIME 399
LOAD 75lillillil HPA

.." ," ," ," ," ," ,'" ," ,A ~

~ ~, '", '", ", '", '", '", ", '"y



Example: Failure and repair of a
beam/cable structure
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~ 9

cable: E=207000 MPa
A= 10- 4 m
no pretension

5m

10 m

beam: E=207000 MPa
v=0.3
O"y=200 MPa
ET =20700 MPa

p = 7800 kg/m3

cross-section:
0.1 m x 0.1 m

In this analysis, we simulate the
failure and repair of the cable.

Steps in analysis:

Load step Event

1 Beam sags under its weight, but
is supported by cable.

1 to 2 Cable snaps, plastic flow occurs at
built-in end of beam.

2 to 4 A new cable is installed, and is
tensioned until the tip of the beam
returns to its location in load
step 1.

Transparency
12-38



12-24 Example Solutions in Static Analysis
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Finite element model:

Two truss elements:

/ Truss #2 is tensioned
by imposing a fictitious
thermal strain.

Load Active
step truss

1 #1
2 none
3 #2
4 #2

Transparency
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Five 2-node Hermitian beam elements
5 Newton-Cotes integration points in r direction
3 Newton-Cotes integration points in s direction

Solution details: The U.L. formulation
is employed for the truss elements
and the beam elements.

Convergence tolerances:

ETOL= 10-3

RTOL= 10-2

RNORM=7.6x10- 3 MN

RMNORM =3.8 x 10-2 MN-m



Comparison of solution algorithms:

Method Results

Full Newton with line searches All load steps successful,
normalized CPU time = 1.0.

Full Newton Stiffness matrix not positive definite
in load step 2.

BFGS All load steps successful,
normalized CPU time = 2.5.

Modified Newton with or without No convergence in load step 2.
line searches

Results:

Load Disp. Stress Moment at
step of tip in cable built-in end

1 -.008 m 64 MPa 9.7 KN-m

2 -.63 m - 38 KN-m

3 -.31 m 37 MPa 22 KN-m

4 -.008 m 72 MPa 6.2 KN-m

Note: The elastic limit moment at the built-in
end of the beam is 33 KN-m.
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12-26 Example Solutions in Static Analysis
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Pictorially,

Load step 1:
(Displacements are magnified
by a factor of 10)

Load step 3:

Load step 2:

Load step 4:
(Displacements are magnified
by a factor of 10)
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Solution of
Nonlinear
Dynamic
Response-Part I

• Basic procedure of direct integration

• The explicit central difference method, basic equations,
details of computations performed, stability
considerations, time step selection, relation of critical
time step size to wave speed, modeling of problems

• Practical observations regarding use of the central
difference method

• The implicit trapezoidal rule, basic equations, details of
computations performed, time step selection,
convergence of iterations, modeling of problems

• Practical observations regarding use of trapezoidal rule

• Combination of explicit and implicit integrations

Sections 9.1, 9.2.1, 9.2.4, 9.2.5, 9.4.1, 9.4.2, 9.4.3, 9.4.4, 9.5.1, 9.5.2

9.1,9.4,9.5,9.12



SOLUTION OF DYNAMIC
EQUILIBRIUM EQUATIONS

• Direct integration methods
Explicit
Implicit

• Mode superposition

• Substructuring

The governing equation is

'Ibpic Thirteen 13-3

Transparency
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FI(t) + Fo(t) + FE(t) R(t)
Transparency

13-2

Inertia Damping "Elastic" Externally
forces forces forces applied loads

1
nodal point

forces equivalent to
element stresses

This equation is to be satisfied at the
discrete times

o ~t 2~t 3~t t-~t t t+~t



13-4 Nonlinear Dynamic Response - Part I
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Issues to discuss:

• What are the basic procedures for
obtaining the solutions at the discrete
times?

• Which procedure should be used for
a given problem?

Transparency
13-4

Explicit time integration:

Central difference method

Mto + C tu + tF = tR

tu = _1_ (H.:1tU _ t-.:1tU)
- 2~t - -

to = 1 (H.:1tU _ 2 tu + t-.:1tU)
- (At)2 - - -

• Used mainly for wave propagation
problems

• An explicit method because the
equilibrium equation is used at time t
to obtain the solution for time t+ ~t.



Using these equations,

( 1 M + _1_ c) t+ .itU = tR
~- 2~t- - -

where

tAt t 2 t ( 1 1) t-.it
R = R - E+ (~t)2 M U - ~ M - 2~t C U

• The method is used when M and C
are diagonal:

t+.it ( 1 ) t AUj = 1 1 H
~f mjj + 2~t Cjj

and, most frequently, Cjj = O.

Note:

• We need mjj > 0 (assuming Cjj 0)

• tF = L tF(m)

m

where m denotes an element.

• To start the solution, we use

-~tu = aU - Llt aU + Llf 00
- - - 2-

Topic Thirteen 13-5
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13-6 Nonlinear Dynamic Response - Part I
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The central difference method is only
conditionally stable. The condition is

T ..ssmallest period in
at < atcr = ---!! finite element

"IT assemblage

In nonlinear analysis, Tn changes
during the time history

- becomes smaller when the system
stiffens (for example, due to large
displacement effects),

- becomes larger when the system
softens (for example, due to material
nonlinearities).

We can estimate Tn:

(Wn)2 < max {(w~m»)2} over all elements m
'-"'

frequency

Hence the largest frequency of all
individual elements, (w~m»)max, is used:

2"IT
Tn > ( (m»)Wn max

In nonlinear analysis (w~m»)max will in
general change with the response.



The time integration step, ilt, used can
be

2
ilt = (m») < ilter

Wn max

We may call ~m) the critical time step of
Wn

element m.

Hence (m~) is the smallest of these
Wn max

"element critical time steps."

Proof that (Wn)2 < (w~m»)~ax:

Using the Rayleigh quotient (see textbook),
we write

Topic Thirteen 13-7
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(

the summation is)
taken over all
finite elements

Let OU(m) = ~~ K(m) ~n ,j(m) = ~~ M(m) ~n ,

then



13-8 Nonlinear Dynamic Response - Part I
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Consider the Rayleigh quotient for a
single element:

,hT K(m) ,h OU(m)
(m) _ ~n ~n _

p - ~~ M(m) ~n - ji(m)

Using that p(m) < (w~m»)2 where w~m) is
the largest frequency (rad/sec) of
element m, we obtain

OU(m) < (w~m»)2 ji(m)

Therefore (Wn)2 is also bounded:

L (w~m»)2 ji(m)

( ) 2 < .:..:.m:..-.-_----,---.,------_
Wn - L ji(m)

m

(W~m»)~ax~

<~

resulting in

(Wn)2 < (w~m»)~ax



The largest frequencies of simple
elements can be calculated analytically
(or upper bounds can be estimated).

Example: E, A, P
r U2

( r U1

• • pA L
m 1_.----.1 m = -2-

We note that hence the critical time
step for this element is

= ~; L = length of element!

Note that ~ is the time required for a

wave front to travel through the
element.

'Ibpic Thirteen 13-9
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13-10 Nonlinear Dynamic Response - Part 1

Transparency
13-15

Modeling:

Let the applied wavelength be Lw

distance

Transparency
13-16 Then tw = Lw wave speed

C .->
'--'

Choose dt = tw c number of time steps used
n /' to represent the wave

'--'

Le = edt
'--'

\
related to

element length



Notes:

_ (E'.s-Young's modulus
• In 1-D, c - -Vp~density

• In nonlinear analysis, dt must satisfy
the stability limit throughout the
analysis. Since c changes, use the
largest value anticipated.

• It may also be effective to change
the time step during the analysis.

• Low-order elements:

La Iff }Usually

~
preferable

La
same lengths, good

• Higher-order elements:

(~ : t : t : C
~ L*

I ·1 L _ L conservative
different lengths, not good e - 8 --S

Topic Thirteen 13-11
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13·12 Nonlinear Dynamic Response - Part I
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Some observations:

1) Linear elastic 1-D analysis

R
R
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time

For this special case the exact solution
is obtained for any number of elements
provided La = c dt.

Wave travels one element per time
step.

2) Uniform meshing is important, so
that with the time step selected, no
unduly small time step in any region
of the total mesh is used.

Different time steps for different
parts of the mesh could be used,
but then special coupling
considerations must be enforced.

3) A system with a very large
bandwidth may also be solved
efficiently using the central difference
method, although the problem may
not be a wave propagation problem.



4) Explicit time integration lends itself
to parallel processing.

Topic Thirteen 13-13
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=

-
L'>'R

Can consider a
certain number of
equations in parallel
(by element groups)

Implicit time integration:

Basic equation (assume modified
Newton-Raphson iteration):

M t+AtQ(k) + C t+AtU(k) + tK ~U(k) =
- - --

We use the equilibrium equation at
time t+ ~t to obtain the solution for
time t+~t.
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13·14 Nonlinear Dynamic Response - Part I
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Trapezoidal rule:

t+~tu = tu + ~t eU + t+~tU)

t+~tu = tu + ~t CO + t+~tO)

Hence

t+~tu = ~ (t+~tu - tU) _ tu
- at - - -

In our incremental analysis, we write

t+~tU(k) = ~ (t+~tU(k-1) + aU(k) _ tU) _ tu
- at - - - -

t+~tO(k) = 4 (t+~tU(k-1) + au(k) _ tU)
- (at)2 - --

4 t· t"--U-Uat- -



and the governing equilibrium equation
is

( tK + 4 M + ~C) aU(k)- M2- at -
. , '

tK

Some observations:

1) As ~t gets smaller, entries in tl(
increase.

2) The convergence characteristics of
the equilibrium iterations are better
than in static analysis.

3) The trapezoidal rule is
unconditionally stable in linear
analysis. For nonlinear analysis,

- select ~t for accuracy

- select ~t for convergence
of iteration

Topic Thirteen 13-15
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13·16 Nonlinear Dynamic Response - Part I
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Convergence criteria:

Energy:

~.u.(i)T (HAtB - HAtE(i-1) - MHAtQ(i-1)_ .Q HAt.u(i-1»)

~U(1)T (HAtR _ tE - M HAtU(O) - C HAtU(O»)

:5 ETOL

Forces:

RNORM

< RTOL

(considering only translational degrees
of freedom, for rotational degrees of
freedom use RMNORM).

Note: 11~1I2 = ~t- (ai



Displacements:

nIldU I 112 < DTOl
DNORM -

(considering only translational degrees
of freedom, for rotational degrees of
freedom, use DMNORM).

Modeling:

• Identify frequencies contained in the
loading.

• Choose a finite element mesh that
can accurately represent the static
response and all important
frequencies.

• Perform direct integration with

dt • 2~ Teo

(Teo is the smallest period (sees) to
be integrated).

'lbpic Thirteen 13-17
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13·18 Nonlinear Dynamic Response - Part I
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- Method used for structural
vibration problems.

- Typically it is effective to use
higher-order elements.

- It can also be effective to use
a consistent mass matrix.

Typical problem:

Because a
structural dynamics
problem is thought
of as a "static
problem including
inertia forces".

Transparency
13-32 -0 load

time
Analysis of tower under blast load

• We assume that only the structural
vibration is required.

• Perhaps about 100 steps are
sufficient to integrate the response.



Combination of methods: explicit and
implicit integration
• Use central difference method first,

then switch to trapezoidal rule, for
problems which show initially wave
propagation, then structural vibration.

• Use central difference method for
certain parts of the structure, and
implicit method for other parts; for
problems with "stiff" and ''flexible''
regions.

Topic Thirteen 13-19
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