Solution of Nonlinear Dynamic Response—Part II #### Contents: - Mode superposition analysis in nonlinear dynamics - Substructuring in nonlinear dynamics, a schematic example of a building on a flexible foundation - Study of analyses to demonstrate characteristics of procedures for nonlinear dynamic solutions - Example analysis: Wave propagation in a rod - Example analysis: Dynamic response of a three degree of freedom system using the central difference method - Example analysis: Ten-story tapered tower subjected to blast loading - Example analysis: Simple pendulum undergoing large displacements - **■** Example analysis: Pipe whip solution - Example analysis: Control rod drive housing with lower support - Example analysis: Spherical cap under uniform pressure loading - Example analysis: Solution of fluid-structure interaction problem Textbook: Sections 9.3.1, 9.3.2, 9.3.3, 9.5.3, 8.2.4 **Examples:** 9.6, 9.7, 9.8, 9.11 #### **References:** The use of the nonlinear dynamic analysis techniques is described with example solutions in Bathe, K. J., "Finite Element Formulation, Modeling and Solution of Nonlinear Dynamic Problems," Chapter in *Numerical Methods for Partial Differential Equations*, (Parter, S. V., ed.), Academic Press, 1979. Bathe, K. J., and S. Gracewski, "On Nonlinear Dynamic Analysis Using Substructuring and Mode Superposition," *Computers & Structures*, 13, 699-707, 1981. Ishizaki, T., and K. J. Bathe, "On Finite Element Large Displacement and Elastic-Plastic Dynamic Analysis of Shell Structures," *Computers & Structures*, 12, 309-318, 1980. THE SOLUTION OF THE DYNAMIC EQUILIB RIUM EQUATIONS CAN BE ACHIEVED USING - · DIRECT INTEGRATION METHODS - EXPLICIT INTE GR. - IMPLICIT INTEGR. - . MODE SUPERPOSITION - . SUBSTRUCTURING WE DISCUSS THESE TECHNIQUES BRIEFLY IN THIS LECTURE ## EXAMPLES EX.1 WAVE PROPAGA- EX.2 RESPONSE OF A 3 D.O.F. SYSTEM EX.3 ANALYSIS OF TEN STORY TAPERED TOWER EX.4 ANALYSIS OF PENDULUM EX.S PIPE WHIP RESPONSE SOLUTION #### SLIDES REGARDING - · ANALYSIS OF CRD HOUSING - · SOLUTION OF RESPONSE OF SPHERICAL CAP - · ANALYSIS OF FLUID-STRUCTURE INTERACTION PROBLEM (PIPE TEST) THE DETAILS OF THESE PROBLEM SOLUTIONS ARE FIVEN IN THE PAPERS, SEE STUDY BUIDE Markerboard 14-1 # Mode superposition: - The modes of vibration change due to the nonlinearities, however we can employ the modes at a particular time as basis vectors (generalized displacements) to express the response. - This method is effective when, in nonlinear analysis, - the response lies in only a few vibration modes (displacement patterns) - the system has only local nonlinearities Transparency 14-2 The governing equations in implicit time integration are (assuming no damping matrix) $$M^{t+\Delta t} \ddot{U}^{(k)} + {}^{\tau}\!\underline{K}\,\Delta U^{(k)} = {}^{t+\Delta t}R - {}^{t+\Delta t}F^{(k-1)}$$ Let now $\tau = 0$, hence the method of solution corresponds to the initial stress method. Using $$^{t+\Delta t}\underline{U} = \sum_{i=r}^{s} \underline{\varphi}_{i}^{t+\Delta t} x_{i}$$ $$^{o}\underline{K} \underline{\varphi}_{i} = \omega_{i}^{2} \underline{M} \underline{\varphi}_{i}$$ The modal transformation gives $$^{t+\Delta t}\underline{\ddot{X}}^{(k)}+\underline{\Omega}^{2}\,\Delta\underline{X}^{(k)}=\underline{\Phi}^{T}\,(^{t+\Delta t}\underline{R}\,-\,^{t+\Delta t}\underline{F}^{(k-1)})$$ equations cannot be solved individually over the time span Coupling! where $$\begin{split} \underline{\Omega}^2 &= \begin{bmatrix} \omega_r^2 \\ \ddots \omega_s^2 \end{bmatrix} \\ \underline{\Phi} &= [\underline{\Phi}_r \cdots \underline{\Phi}_s] \\ ^{t+\Delta t} \underline{X}^T &= [^{t+\Delta t} x_r \cdots ^{t+\Delta t} x_s] \end{split}$$ Transparency 14-3 Typical problem: Pipe whip: Elastic-plastic pipe Elastic-plastic stop Nonlinearities in pipe and stop. But the displacements are reasonably well contained in a few modes of the linear (initial) system. # Substructuring - Procedure is used with implicit time integration. All linear degrees of freedom can be condensed out prior to the incremental solution. - Used for local nonlinearities: Contact problems Nonlinear support problems Here $${}^{t}\underline{\hat{K}} = \left(\underline{K} + \frac{4}{\Delta t^2} \underline{M}\right) + {}^{t}\underline{K}_{nonlinear}$$ $$\begin{array}{c} \downarrow \\ \downarrow \\ total\ mass \\ matrix \\ effects \\ all\ linear \\ element\ contributions \\ \\ = \underline{\hat{K}} + {}^{t}\underline{K}_{nonlinear}$$ After condensing out all substructure internal degrees of freedom, we obtain a smaller system of equations: Transparency 14-10 Major steps in solution: • Prior to step-by-step solution, establish \hat{K} for all mass and constant stiffness contributions. Statically condense out internal substructure degrees of freedom to obtain \hat{K}_c . We note that $$\underbrace{\frac{{}^t\!\hat{\underline{K}}_c}{\hat{\underline{K}}_c}}_{\text{condensed}} = \underbrace{\frac{\hat{\underline{K}}_c}{\hat{\underline{K}}_c}}_{\text{from } \underline{\hat{\underline{K}}} = \underline{\underline{K}}} + \underbrace{\frac{{}^t\!\underline{\underline{K}}_{nonlinear}}{\text{all nonlinear effects}}}_{\text{all linear} + \underbrace{\frac{4}{\Delta t^2}\underline{\underline{M}}}_{\text{total mass matrix}}$$ - For each time step solution (and each equilibrium iteration): - Update condensed matrix, $\hat{\underline{K}}_c$, for nonlinearities. - Establish complete load vector for all degrees of freedom and condense out substructure internal degrees of freedom. - Solve for master dof displacements, velocities, accelerations and calculate all substructure dof disp., vel., acc. The substructure internal nodal disp., vel., acc. are needed to calculate the complete load vector (corresponding to all dof). Transparency 14-11 Solution procedure for each time step(and iteration): Example: Wave propagation in a rod Uniform, freely floating rod L = 1.0 mA = 0.01 m² $\rho = 1000 \text{ kg/m}^3$ $E = 2.0 \times 10^9 \text{ Pa}$ Transparency 14-14 Consider the compressive force at a point at the center of the rod: The exact solution for the force at point A is shown below. We now use a finite element mesh of ten 2-node truss elements to obtain the compressive force at point A. Transparency 14-15 All elements uniformly spaced Central difference method: · The critical time step for this problem is $$\begin{split} \Delta t_{cr} &= \text{L}_{\text{e}}/\text{c} = \text{t}^{\star} \left(\frac{1}{\text{number of elements}} \right) \\ \Delta t &> \Delta t_{cr} \text{ will produce an unstable} \\ &\text{solution} \end{split}$$ We need to use the inital conditions as follows: $$\underline{M} \overset{\circ}{\underline{U}} + \overset{\circ}{\underline{U}} = \overset{\circ}{\underline{B}}$$ $$\overset{\circ}{\underline{U}}_{i} = \overset{\circ}{\underline{R}_{i}}$$ • Using a time step equal to Δt_{cr} , we obtain the correct result: Transparency 14-18 • Using a time step equal to $\frac{1}{2} \Delta t_{cr}$, the solution is stable, but highly inaccurate. Now consider the use of the trapezoidal rule: - A stable solution is obtained with any choice of Δt . - Either a consistent or lumped mass matrix may be used. We employ a lumped mass matrix in this analysis. Transparency 14-19 Trapezoidal rule, $\Delta t = \Delta t_{cr|_{CDM}}$, initial conditions computed using $\underline{M}^0 \underline{\ddot{U}} = {}^0\underline{R}$. — The solution is inaccurate. Trapezoidal rule, $\Delta t = \Delta t_{cr}|_{CDM}$, zero initial conditions. - Almost same solution is obtained. Transparency 14-22 Trapezoidal rule, $\Delta t = 2\Delta t_{cr}|_{\text{CDM}}$ — The solution is stable, although inaccurate. The same phenomena are observed when a mesh of one hundred 2-node truss elements is employed. # Trapezoidal rule, $\Delta t = \Delta t_{cr}|_{CDM}$ # Transparency 14-26 Now consider a two-dimensional model of the rod: For this mesh, $\Delta t_{cr} \neq t^*/(10$ elements) because the element width is less than the element length. If $\Delta t = t^*/(10 \text{ elements})$ is used, the solution diverges - In element 5, $$|\tau_{ZZ}| > \left(\frac{1000 \text{ N}}{0.01 \text{ m}^2}\right)$$ at $$t = 1.9 t^*$$ Example: Dynamic response of three degree-of-freedom system using central difference method Transparency 14-27 Results: Response of right mass \bullet : $\Delta t = 0.05 sec$ \circ : $\Delta t = 0.15 \text{ sec}$ Transparency 14-30 Response of center mass: •: $\Delta = 0.05$ sec. o: $\Delta = 0.15$ sec. # Response of left mass: •: $\Delta = 0.05$ sec. \circ : $\Delta = 0.15$ sec. # Force (lbf) in center truss: | TIME | $\Delta t = 0.05$ | $\Delta t = 0.15$ | |------|-------------------|-------------------| | 9.0 | -0.666 | -0.700 | | 12.0 | -0.804 | -0.877 | | 15.0 | 0.504 | 0.503 | | 18.0 | 0.648 | -0.100 | | 21.0 | -0.132 | -0.059 | | 24.0 | -0.922 | 0.550 | Transparency 14-31 Example: 10 story tapered tower Girder properties: $E = 2.07 \times 10^{11} \text{ Pa}$ $\nu = 0.3$ $A = 0.01 \text{ m}^2$ $A_s = 0.009 \text{ m}^2$ $I = 8.33 \times 10^{-5} \text{ m}^4$ $\rho = 7800 \text{ kg/m}^3$ Purpose of analysis: - Determine displacements, velocities at top of tower. - Determine moments at base of tower. We use the trapezoidal rule and a lumped mass matrix in the following analysis. Transparency 14-35 We must make two decisions: - Choose mesh (specifically the number of elements employed). - Choose time step Δt . These two choices are closely related: The mesh and time step to be used depend on the loading applied. #### Some observations: - The choice of mesh determines the highest natural frequency (and corresponding mode shape) that is accurately represented in the finite element analysis. - The choice of time step determines the highest frequency of the finite element mesh in which the response is accurately integrated during the time integration. - Hence, it is most effective to choose the mesh and time step such that the highest frequency accurately "integrated"
is equal to the highest frequency accurately represented by the mesh. - The applied loading can be represented as a Fourier series which displays the important frequencies to be accurately represented by the mesh. Consider the Fourier representation of the load function: $$f(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos(2\pi f_n t) + b_n \sin(2\pi f_n t))$$ Including terms up to case 1: $f_n = 17 \text{ Hz}$ case 2: $f_n = 30 \text{ Hz}$ The loading function is represented as shown next. Transparency 14-39 Fourier approximation including terms up to 17 Hz: Fourier approximation including terms up to 30 Hz: Transparency 14-42 We choose a 30 element mesh, a 60 element mesh and a 120 element mesh. All elements are 2-node Hermitian beam elements. | 30 elements | 60 elements | 120 elements | |-------------|-------------|--------------| | | | | Determine "accurate" natural frequencies represented by 30 element mesh: From eigenvalue solutions of the 30 and 60 element meshes, we find | number 30 element mesh 60 element mesh 1 1.914 1.914 2 4.815 4.828 3 8.416 8.480 4 12.38 12.58 5 16.79 17.27 | T | node | natural frequencies (Hz) | | |] | | |--|---|--------|--------------------------|----------|------------|------|------------| | 2 4.815 4.828 accurated 4 12.38 12.58 16.79 17.27 | 3 | number | 30 elem | ent mesh | 60 element | mesh | 1 | | 3 8.416 8.480 4 12.38 12.58 5 16.79 17.27 | | 1 | 1 | .914 | 1.914 | | | | 3 8.416 8.480
4 12.38 12.58
5 16.79 17.27 | 1 | 2 | 4 | 1.815 | 4.828 | | accurate | | 5 16.79 17.27 | ł | 3 | 8 | 3.416 | 8.480 | | A CCUI ALC | | | 1 | 4 | 12 | 2.38 | 12.58 | | | | | | 5 | 16 | 6.79 | 17.27 | | | | 6 21.45 22.47 | T | 6 | 21 | .45 | 22.47 | | | | 7 26.18 28.08 | 1 | 7 | 26 | 5.18 | 28.08 | | 1 1 | | 8 30.56 29.80 | | 8 | 30 |).56 | 29.80 | | inaccurate | Transparency 14-43 Calculate time step: $$T_{co} = \frac{1}{17} Hz = .059 \text{ sec}$$ $$\Delta t \doteq \frac{1}{20} T_{co} = .003 \text{ sec}$$ - A smaller time step would accurately "integrate" frequencies, which are not accurately represented by the mesh. - A larger time time step would not accurately "integrate" all frequencies which are accurately represented by the mesh. Determine "accurate" natural frequencies represented by 60 element mesh: From eigenvalue solutions of the 60 and 120 element meshes, we find | | mode | natural freq | • | | |---|--------|-----------------|------------------|------------| | | number | 60 element mesh | 120 element mesh | | | | 5 | 17.27 | 17.28 | | | | 6 | 22.47 | 22.49 | accurate | | ŀ | 7 | 28.08 | 28.14 | l † | | | 8 _ | 29.80 | 29.75 | | | | 9 | 32.73 | 33.85 | | | | 10 | 33.73 | 35.06 | 1 | | | 11 | 36.30 | 38.96 | inaccurate | Transparency 14-46 Calculate time step: $$T_{co} = \frac{1}{30} Hz = .033 \text{ sec}$$ $\Delta t \doteq \frac{1}{20} T_{co} = .0017 \text{ sec}$ - The meshes chosen correspond to the Fourier approximations discussed earlier: - 30 element mesh Fourier approximation including terms up to 17 Hz. - 60 element mesh Fourier approximation including terms up to 30 Hz. Pictorially, at time 200 milliseconds, we have (note that the displacements are amplified for visibility): | 30 elements | 60 elements | |-------------|-------------| | | | Transparency 14-47 Pictorially, at time 400 milliseconds, we have (note that the displacements are amplified for visibility): | 30 elements | 60 elements | |-------------|-------------| | | | Transparency 14-50 Consider the horizontal displacement at the top of the tower: Consider the horizontal velocity at the top of the tower: Transparency 14-51 #### Comments: - The high-frequency oscillation observed in the moment reaction from the 60 element mesh is probably inaccurate. We note that the frequency of the oscillation is about 110 Hz (this can be seen directly from the graph). - The obtained solutions for the horizontal displacement at the top of the tower are virtually identical. # Example: Simple pendulum undergoing large displacements One truss element with tip concentrated mass is employed. Transparency 14-54 Calculation of dynamic response: - The trapezoidal rule is used to integrate the time response. - Full Newton iterations are used to reestablish equilibrium during every time step. - Convergence tolerance: ETOL = 10⁻⁷ (a tight tolerance) Choose $\Delta t = 0.1$ sec. The following response is obtained: Transparency 14-55 The strain in the truss is plotted: · An instability is observed. - The instability is unchanged when we tighten our convergence tolerances. - The instability is also observed when the BFGS algorithm is employed. - Recall that the trapezoidal rule is unconditionally stable only in linear analysis. Transparency 14-58 Choose $\Delta t = 0.025$ sec, using the original tolerance and the full Newton algorithm (without line searches). • The analysis runs to completion. The strain in the truss is stable: Transparency 14-59 It is important that equilibrium be accurately satisfied at the end of each time step: Finite element solution, $\Delta t = .025$ sec., equilibrium iterations used as described above. $\begin{array}{c} 90 \\ 0 \\ 45 \\ (\text{degrees}) \\ 0 \\ -45 \\ -90 \\ \end{array}$ time (sec) $\begin{array}{c} \text{time (sec)} \\ \text{Finite element solution,} \\ \Delta t = .025 \text{ sec., no} \\ \text{equilibrium iterations} \\ \text{used.} \end{array}$ # Although the solution obtained without equilibrium iterations is highly inaccurate, the solution is stable: # Transparency 14-62 # Example: Pipe whip analysis: all dimensions in inches Determine the transient response when a step load P is suddenly applied. ### Finite element model: Transparency 14-63 • The truss element incorporates a 3 inch gap. # Material properties: Pipe: $$E=2.698\times 10^7$$ psi $\nu=0.3$ $\sigma_y=2.914\times 10^4$ psi $E_T=0$ $\rho=8.62\times 10^{-3}$ $\frac{\text{slug}}{\text{in}^3}=7.18\times 10^{-4}$ $\frac{\text{lbf-sec}^2}{\text{in}^4}$ Restraint: $$E = 2.99 \times 10^7$$ psi $\sigma_y = 3.80 \times 10^4$ psi $E_T = 0$ The analysis is performed using - Mode superposition (2 modes) - Direct time integration We use, for each analysis, - Trapezoidal rule - Consistent mass matrix A convergence tolerance of $ETOL = 10^{-7}$ is employed. Transparency 14-66 Eigenvalue solution: Mode 1, natural frequency=8.5 Hz Mode 2, natural frequency=53 Hz Choice of time step: We want to accurately integrate the first two modes: $$\Delta t \doteq \frac{1}{20} T_{co} = \frac{1}{20} \left(\frac{1}{\text{(frequency of mode 2)}} \right)$$ =.001 sec Note: This estimate is based solely on a linear analysis (i.e, before the pipe hits the restraint and while the pipe is still elastic). Transparency 14-67 Determine the tip displacement: Transparency 14-68 Determine the moment at the built-in end of the beam: **Slide** 14-1 Slide 14-2 Slide 14-3 $\begin{array}{ll} R = 22.27 \text{ in.} & E = 1.05 \times 10^7 \text{ lb/in}^2 \\ h = 0.41 \text{ in.} & \nu = 0.3 \\ \Theta = 26.67^\circ & \sigma_y = 2.4 \times 10^4 \text{ lb/in}^2 \\ E_T = 2.1 \times 10^5 \text{ lb/in}^2 \\ \rho = 9.8 \times 10^{-2} \text{ lb/in}^3 \end{array}$ Ten 8-node axisymmetric els. Newmark inte ($\delta=0.55,~\alpha=0.276$) 2×2 Gauss integration consistent mass $600lb/in^2$ $\Delta t=10\mu sec,~T.L.$ Spherical cap nodes under uniform pressure loading Slide 14-4 Dynamic elastic-plastic response of a spherical cap, p deformation independent Slide 14-5 cap response predicted Slide 14-6 Slide 14-7 Slide 14-8 14-9 Slide ## Topic 15 # Use of Elastic Constitutive Relations in Total Lagrangian Formulation ## Contents: - Basic considerations in modeling material response - Linear and nonlinear elasticity - Isotropic and orthotropic materials - One-dimensional example, large strain conditions - The case of large displacement/small strain analysis, discussion of effectiveness using the total Lagrangian formulation - Hyperelastic material model (Mooney-Rivlin) for analysis of rubber-type materials - Example analysis: Solution of a rubber tensile test specimen - Example analysis: Solution of a rubber sheet with a hole ## Textbook: ### Reference: 6.4, 6.4.1 The solution of the rubber sheet with a hole is given in Bathe, K. J., E. Ramm, and E. L. Wilson, "Finite Element Formulations for Large Deformation Dynamic Analysis," *International Journal for Numerical Methods in Engineering*, 9, 353–386, 1975. # USE OF CONSTITUTIVE RELATIONS - We developed quite general kinematic relations and finite element discretizations, applicable to small or large deformations. - To use these finite element formulations, appropriate constitutive relations must be employed. - Schematically $$\underline{K} = \int_{V} \underline{B}^{T} \underline{C} \underline{B} dV, \quad \underline{F} = \int_{V} \underline{B}^{T} \underline{\tau} dV$$ constitutive relations enter here Transparency 15-1 For analysis, it is convenient to use the classifications regarding the magnitude of deformations introduced earlier: - Infinitesimally small displacements - Large displacements / large rotations, but small strains - Large displacements / large rotations, and large strains The applicability of material descriptions generally falls also into these categories. Transparency 15-2 ## Recall: - Materially-nonlinear-only (M.N.O.) analysis assumes (models only) infinitesimally small displacements. - The total Lagrangian (T.L.) and updated Lagrangian (U.L.) formulations can be employed for analysis of infinitesimally small displacements, of large displacements and of large strains (considering the analysis of 2-D and 3-D solids). - → All <u>kinematic</u> nonlinearities are fully included. # Transparency 15-4 ## We may use various material descriptions: | Material Model | Examples |
|-----------------|---| | Elastic | Almost all materials, for small enough stresses | | Hyperelastic | Rubber | | Hypoelastic | Concrete | | Elastic-plastic | Metals, soils, rocks under high stresses | | Creep | Metals at high temperatures | | Viscoplastic | Polymers, metals | | | | ## **ELASTIC MATERIAL BEHAVIOR:** In linear, infinitesimal displacement, small strain analysis, we are used to employing Transparency 15-5 # For 1-D nonlinear analysis we can use Transparency 15-6 We can generalize the elastic material behavior using: $$_{0}^{t}\!S_{ij}=_{0}^{t}\!C_{ijrs}\ _{0}^{t}\!\epsilon_{rs}$$ $$d_0 S_{ij} = {}_0 C_{ijrs} \, d_0 \epsilon_{rs}$$ This material description is frequently employed with - the usual constant material moduli used in infinitesimal displacement analysis - · rubber-type materials Transparency 15-8 Use of constant material moduli, for an isotropic material: $${}_{0}^{t}C_{ijrs} = {}_{0}C_{ijrs} = \lambda \; \delta_{ij} \; \delta_{rs} + \mu (\delta_{ir} \; \delta_{js} + \delta_{is} \; \delta_{jr})$$ Lamé constants: $$\lambda = \frac{E \nu}{(1 + \nu)(1 - 2\nu)}$$, $\mu = \frac{E}{2(1 + \nu)}$ Kronecker delta: $$\delta_{ij} = \begin{cases} 0; & i \neq j \\ 1; & i = j \end{cases}$$ ## **Examples**: 2-D plane stress analysis: $${}_{0}\underline{C} = \frac{E}{1 - \nu^{2}} \begin{bmatrix} 1 & \nu & 0 \\ \nu & 1 & 0 \\ \hline 0 & 0 & \frac{1 - \nu}{2} \end{bmatrix}$$ corresponds to ${}_{0}^{t}S_{12} = \mu \left({}_{0}^{t}\varepsilon_{12} + {}_{0}^{t}\varepsilon_{21} \right)$ Transparency 15-9 2-D axisymmetric analysis: $$\underline{C} = \frac{E(1-\nu)}{(1+\nu)(1-2\nu)} \begin{bmatrix} 1 & \frac{\nu}{1-\nu} & 0 & \frac{\nu}{1-\nu} \\ \frac{\nu}{1-\nu} & 1 & 0 & \frac{\nu}{1-\nu} \\ 0 & 0 & \frac{1-2\nu}{2(1-\nu)} & 0 \\ \frac{\nu}{1-\nu} & \frac{\nu}{1-\nu} & 0 & 1 \end{bmatrix}$$ Transparency 15-10 For an orthotropic material, we also use the usual constant material moduli: Example: 2-D plane stress analysis Transparency 15-12 Sample analysis: One-dimensional problem: Material constants E, ν Constitutive relation: ${}_{0}^{t}S_{11} = \tilde{E} \, {}_{0}^{t}\epsilon_{11}$ Sample analysis: One-dimensional problem: Material constants E, ν Transparency 15-13 Sample analysis: One-dimensional problem: Material constants E, ν Constitutive relation: ${}_0^t S_{11} = \tilde{E} \, {}_0^t \epsilon_{11}$ Transparency 15-14 We establish the force-displacement relationship: $$\begin{split} {}_{0}^{t} & \epsilon_{11} = \underbrace{{}_{0}^{t} u_{1,1}}_{{}^{t} \underline{L} - {}_{0}\underline{L}} + \frac{1}{2} \left({}_{0}^{t} u_{1,1} \right)^{2} \\ & = \frac{1}{2} \left[\left({}_{0}^{t} \underline{L} \right)^{2} - 1 \right], \\ {}_{0}^{t} & S_{11} = \frac{{}_{0}^{0} \rho}{{}_{p}^{t}} {}_{0}^{t} x_{1,1} {}^{t} T_{11} {}_{0}^{t} x_{1,1} \\ & = \frac{{}_{0}^{t} \underline{L}}{{}_{0}^{t} \underline{L}} \left({}_{0}^{t} \underline{L} \right) {}_{\bar{A}}^{t} \left({}_{0}^{t} \underline{L} \right) = \frac{{}_{0}^{t} \underline{L}}{{}_{\bar{A}}^{t}} {}_{\bar{A}}^{t} \end{split}$$ Transparency 15-16 Using ${}^tL={}^0L+{}^t\Delta,\ {}^tS_{11}=\tilde{E}\,{}^t_0\epsilon_{11},\ \ \mbox{we find}$ This is not a realistic material description for large strains. - The usual isotropic and orthotropic material relationships (constant Ε, ν, E_a, etc.) are mostly employed in large displacement/large rotation, but small strain analysis. - Recall that the components of the 2nd Piola-Kirchhoff stress tensor and of the Green-Lagrange strain tensor are invariant under a rigid body motion (rotation) of the material. - Hence only the actual straining increases the components of the Green-Lagrange strain tensor and, through the material relationship, the components of the 2nd Piola-Kirchhoff stress tensor. - The effect of rotating the material is included in the T.L. formulation, $${}_{0}^{t}\underline{F} = \int_{0} \underbrace{{}_{0}^{t}\underline{B}_{L}^{T}}_{0} \underbrace{{}_{0}^{t}\underline{\hat{S}}}_{0}^{0}dV$$ includes invariant under a rigid body rotation Transparency 15-18 ## Pictorially: Deformation to state 1 (small strain situation) Rigid rotation from state 1 to state 2 Transparency 15-20 For small strains, $$\begin{array}{l} {}^{1}_{0}\epsilon_{11}\;,\;\;{}^{1}_{0}\epsilon_{22}\;,\;\;{}^{1}_{0}\epsilon_{12}={}^{1}_{0}\epsilon_{21}<<1\;,\\ {}^{1}_{0}S_{ij}={}^{1}_{0}C_{ijirs}{}^{1}_{0}\epsilon_{rs},\\ \text{a function of E, }\nu\\ {}^{1}_{0}S_{ij}\doteq{}^{1}\tau_{ij} \end{array}$$ Also, since state 2 is reached by a rigid body rotation, $$\label{eq:epsilon_epsilon} \begin{split} & {}^{2}_{0}\epsilon_{ij} = {}^{1}_{0}\epsilon_{ij} \text{ , } {}^{2}_{0}S_{ij} = {}^{1}_{0}S_{ij}, \\ & {}^{2}\underline{T} = \underline{R}^{1}\underline{T}\,\underline{R}^{T} \\ & \text{rotation matrix} \end{split}$$ ## Applications: - Large displacement/large rotation but small strain analysis of beams, plates and shells. These can frequently be modeled using 2-D or 3-D elements. Actual beam and shell elements will be discussed later. - Linearized buckling analysis of structures. Transparency 15-21 Transparency 15-22 General shell: Transparency 15-24 Hyperelastic material model: formulation of rubber-type materials $${}_{0}^{t}S_{ij} = \underbrace{\frac{\partial_{0}^{t}W}{\partial_{0}^{t}\epsilon_{ij}}}_{0} \underbrace{}_{0}^{t}C_{ijrs} \underbrace{}_{0}^{t}\epsilon_{rs}$$ $$d_0 S_{ij} = \underbrace{{}_{0} C_{ijrs} d_0 \varepsilon_{rs}}_{\underbrace{\partial_0^2 \varepsilon_{ij} \partial_0^4 \varepsilon_{rs}}}$$ where ^t_oW = strain energy density function (per unit original volume) Rubber is assumed to be an isotropic material, hence $_{0}^{t}W = function of (I_{1}, I_{2}, I_{3})$ where the I_i 's are the invariants of the Cauchy-Green deformation tensor (with components ${}_{0}^{t}C_{ii}$): $$I_1 = {}_0^t C_{ii}$$ $$I_2 = \frac{1}{2} \left(I_1^2 - {}_0^t C_{ij} {}_0^t C_{ij} \right)$$ $$I_3 = \det \left({}_0^t \underline{C} \right)$$ Transparency 15-25 Example: Mooney-Rivlin material law $$_{0}^{t}W = \underbrace{C_{1}}_{material constants} (I_{1} - 3) + \underbrace{C_{2}}_{material constants} (I_{2} - 3)$$ with $$I_3 = 1$$ _sincompressibility constraint Note, in general, the displacementbased finite element formulations presented above should be extended to include the incompressibility constraint effectively. A special case, however, is the analysis of plane stress problems. Transparency 15-26 Special case of Mooney-Rivlin law: plane stress analysis Transparency 15-28 For this (two-dimensional) problem, $${}_{0}^{t}\underline{C} = \begin{bmatrix} {}_{0}^{t}C_{11} & {}_{0}^{t}C_{12} & 0 \\ {}_{0}^{t}C_{21} & {}_{0}^{t}C_{22} & 0 \\ 0 & 0 & {}_{0}^{t}C_{33} \end{bmatrix}$$ Since the rubber is assumed to be incompressible, we set $\det \binom{t}{0}C$ to 1 by choosing $${}_{0}^{t}C_{33} = \frac{1}{({}_{0}^{t}C_{11} {}_{0}^{t}C_{22} - {}_{0}^{t}C_{12} {}_{0}^{t}C_{21})}$$ We can now evaluate I_1 , I_2 : $$I_{1} = {}_{0}^{t}C_{11} + {}_{0}^{t}C_{22} + \frac{1}{({}_{0}^{t}C_{11} {}_{0}^{t}C_{22} - {}_{0}^{t}C_{12} {}_{0}^{t}C_{21})}$$ $$\begin{split} I_2 &= {}_0^t\!C_{11}\,{}_0^t\!C_{22} + \frac{{}_0^t\!C_{11}\,+\,{}_0^t\!C_{22}}{\left({}_0^t\!C_{11}\,{}_0^t\!C_{22} - {}_0^t\!C_{12}\,{}_0^t\!C_{21}\right)} \\ &- \frac{1}{2}\left({}_0^t\!C_{12}\right)^2 - \frac{1}{2}\left({}_0^t\!C_{21}\right)^2 \end{split}$$ Transparency 15-29 The 2nd Piola-Kirchhoff stresses are $$\begin{split} {}_{0}^{t}S_{ij} &= \frac{\partial_{0}^{t}W}{\partial_{0}^{t}\epsilon_{ij}} = 2\,\frac{\partial_{0}^{t}W}{\partial_{0}^{t}C_{ij}} \quad \begin{pmatrix} \text{remember} \\ {}_{0}^{t}C_{ij} &= 2\,\frac{1}{0}\epsilon_{ij} + \delta_{ij} \end{pmatrix} \\ &= 2\,\frac{\partial}{\partial_{0}^{t}C_{ij}} \bigg[C_{1}\,\left(I_{1}-3\right) + C_{2}\,\left(I_{2}-3\right) \bigg] \\ &= 2\,C_{1}\,\frac{\partial I_{1}}{\partial_{0}^{t}C_{ij}} + 2\,C_{2}\,\frac{\partial I_{2}}{\partial_{0}^{t}C_{ij}} \end{split}$$ Transparency 15-30 Performing the indicated differentiations gives $$\begin{bmatrix} \frac{t}{0}S_{11} \\ \frac{t}{0}S_{22} \\ \frac{t}{0}S_{1\underline{2}} \end{bmatrix} = 2C_1 \left\{ \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} - ({}_0^tC_{33})^2 \begin{bmatrix} {}_0^tC_{22} \\ {}_0^tC_{11} \\ {}_{-0}^tC_{1\underline{2}} \end{bmatrix} \right\}$$ $$+ 2C_2 \left\{ {}_0^tC_{33} \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} + \left[1 - ({}_0^tC_{33})^2 ({}_0^tC_{11} + {}_0^tC_{22}) \right] \begin{bmatrix} {}_0^tC_{22} \\ {}_0^tC_{11} \\ {}_{-0}^tC_{1\underline{2}} \end{bmatrix} \right\}$$ This is the stress-strain relationship. Transparency 15-32 We can also evaluate the tangent constitutive tensor ${}_{0}C_{ijrs}$ using $$\begin{split} {}_{0}C_{ijrs} &= \frac{\partial^{2}{}_{0}^{t}W}{\partial_{0}^{t}\epsilon_{ij}\,\partial_{0}^{t}\epsilon_{rs}} \\ &= 4\,C_{1}\,\frac{\partial^{2}I_{1}}{\partial_{0}^{t}C_{ij}\,\partial_{0}^{t}C_{rs}} + 4\,C_{2}\,\frac{\partial^{2}I_{2}}{\partial_{0}^{t}C_{ij}\,\partial_{0}^{t}C_{rs}} \end{split}$$ etc. For the Mooney-Rivlin law # Example: Analysis of a tensile test specimen: Mooney-Rivlin constants: $C_1 = .234 \text{ N/mm}^2$ $C_2 = .117 \text{ N/mm}^2$ thickness = 1 mm 9.53 thicknown 3.0 30.5 All dimensions in millimeters Transparency 15-33 # Finite element mesh: Fourteen 8-node elements Transparency 15-34 Transparency 15-36 Final deformed mesh (force = 4 N): Slide 15-1 Slide 15-2 Slide 15-3 Slide 15-4 Topic 16 # Use of Elastic Constitutive Relations in Updated Lagrangian Formulation ## Contents: - Use of updated Lagrangian (U.L.) formulation - Detailed comparison of expressions used in total Lagrangian (T.L.) and U.L. formulations; strains, stresses, and constitutive relations - Study of conditions to obtain in a general incremental analysis the same results as in the T.L. formulation, and vice versa - The special case of elasticity - The Almansi strain tensor - One-dimensional example involving large strains - Analysis of large displacement/small strain problems - Example
analysis: Large displacement solution of frame using updated and total Lagrangian formulations Textbook: 6.4, 6.4.1 Example: 6.19 ## SO FAR THE USE OF THE T.L. FORMULATION WAS IMPLIED Now suppose that we wish to use the U.L. formulation in the analysis. We ask Is it possible to obtain, using the U.L. formulation, identically the same numerical results (for each iteration) as are obtained using the T.L. formulation? Transparency 16-1 ## In other words, the situation is ## Program 1 - Only T.L. formulation is implemented - Constitutive relations are $$\int_{0}^{t} S_{ij} = \text{function of displacements} d_{0} S_{ij} = {}_{0} C_{ijrs} d_{0} \varepsilon_{rs}$$ Information obtained from physical laboratory experiments. Transparency 16-2 ## Program 2 - Only U.L. formulation is implemented - Constitutive relations are ${}^{t}T_{ij} = \cdots \rightarrow \bigcirc$ $$d_tS_{ij}=\cdots \ \rightarrow \ @$$ ## Question: How can we obtain with program 2 identically the same results as are obtained from program 1? Transparency 16-4 To answer, we consider the linearized equations of metion: $$\begin{split} &\int_{0V} {}_{0}C_{ijrs\;0}e_{rs}\;\delta_{0}e_{ij}\;{}^{0}dV + \int_{0V} {}_{0}^{t}S_{ij}\;\delta_{0}\eta_{ij}\;{}^{0}dV \\ &= {}^{t+\Delta t}\Re - \int_{0V} {}_{0}^{t}S_{ij}\;\delta_{0}e_{ij}\;{}^{0}dV \\ &\int_{tV} {}_{t}C_{ijrs\;t}e_{rs}\;\delta_{t}e_{ij}\;{}^{t}dV + \int_{tV} {}^{t}T_{ij}\;\delta_{t}\eta_{ij}\;{}^{t}dV \\ &= {}^{t+\Delta t}\Re - \int_{tV} {}^{t}T_{ij}\;\delta_{t}e_{ij}\;{}^{t}dV \end{split}$$ ## Terms used in the formulations: | T.L. formulation | U.L.
formulation | Transformation | |------------------------------------|---|--| | $\int_{^{0}V}^{^{0}}dV$ | $\int_{t_{V}}^{t}\!dV$ | $^{0}dV = \frac{^{t}\rho}{^{0}\rho} ^{t}dV$ | | _o eij, _o ηij | _t e _{ij} , _t ղij | ${}_{0}e_{ij} = {}_{0}^{t}x_{r,i} {}_{0}^{t}x_{s,j} {}_{t}e_{rs}$ ${}_{0}\eta_{ij} = {}_{0}^{t}x_{r,i} {}_{0}^{t}x_{s,j} {}_{t}\eta_{rs}$ | | $δ_0 e_{ij}$, $δ_0 η_{ij}$ | δ _t eij, δ _t ηij | $\begin{split} \delta_0 e_{ij} &= {}^t_0 x_{r,i} {}^t_0 x_{s,j} \delta_t e_{rs} \\ \delta_0 \eta_{ij} &= {}^t_0 x_{r,i} {}^t_0 x_{s,j} \delta_t \eta_{rs} \end{split}$ | Transparency 16-5 # Derivation of these kinematic relationships: A fundamental property of ${}_{\scriptscriptstyle{0}}^{\scriptscriptstyle{t}}\epsilon_{ij}$ is that $$_{0}^{t}\epsilon_{ij}d^{0}x_{i}d^{0}x_{j}=\frac{1}{2}\left((^{t}ds)^{2}-(^{0}ds)^{2}\right)$$ Similarly, $$_{0}^{t+\Delta t}\epsilon_{ij}d^{0}x_{i}d^{0}x_{j}=\frac{1}{2}((_{0}^{t+\Delta t}ds)^{2}-(_{0}^{0}ds)^{2})$$ and $${}_t\epsilon_{rs}\,d^tx_r\,d^tx_s=\frac{1}{2}\,(({}^{t+\Delta t}ds)^2-({}^tds)^2)$$ Transparency 16-6 Fiber $d^0\underline{x}$ of length 0ds moves to become $d^t\underline{x}$ of length tds . # Transparency 16-8 Hence, by subtraction, we obtain $$_0\epsilon_{ij} d^0x_i d^0x_j = {}_t\epsilon_{rs} d^tx_r d^tx_s$$ Using $$d^t\underline{x} = {}_0^t\underline{X} \ d^0\underline{x}$$, we obtain ${}_0\epsilon_{ij} \ d^0x_i \ d^0x_j = {}_t\epsilon_{rs} \, {}_0^tx_{r,i} \, {}_0^tx_{s,j} \ d^0x_i \ d^0x_j$ Since this relationship holds for arbitrary material fibers, we have $$_{0}\epsilon_{i\dot{k}}={}_{0}^{t}x_{r,i}\,{}_{0}^{t}x_{s,\dot{k}}\,{}_{t}\epsilon_{rs}$$ Now we see that $${}_{0}e_{ij} + {}_{0}\eta_{ij} = {}_{0}^{t}x_{r,i} \, {}_{0}^{t}x_{s,j} \, {}_{1}e_{rs} + {}_{0}^{t}x_{r,i} \, {}_{0}^{t}x_{s,j} \, {}_{1}\eta_{rs}$$ Since the factors ${}_0^t x_{r,i} {}_0^t x_{s,j}$ do not contain the incremental displacements u_i , we have $$\begin{array}{l} _{0}e_{ij}=\ _{0}^{t}x_{r,i}\ _{0}^{t}x_{s,j}\ _{t}e_{rs}\ \leftarrow\ \text{linear in }u_{i}\\ _{0}\eta_{ij}=\ _{0}^{t}x_{r,i}\ _{0}^{t}x_{s,j}\ _{t}\eta_{rs}\ \leftarrow\ \text{quadratic in }u_{i} \end{array}$$ Transparency 16-9 In addition, we have $$\begin{split} \delta_0 e_{i \not j} &= \, {}_0^t \! x_{r,i} \, \, {}_0^t \! x_{s, \not j} \, \delta_t e_{rs} \\ \delta_0 \eta_{i \not j} &= \, {}_0^t \! x_{r,i} \, \, {}_0^t \! x_{s, \not j} \, \delta_t \eta_{rs} \end{split}$$ These follow because the variation is taken on the configuration $t+\Delta t$ and hence the factors ${}_0^t x_{r,i} {}_0^t x_{s,j}$ are taken as constant during the variation. Transparency 16-10 ## We also have | T.L.
formulation | U.L.
formulation | Transformation | |---------------------|---------------------|---| | o ^t Sij | ^t Tij | ${}_{0}^{t}S_{ij} = \frac{{}^{0}\rho}{{}^{t}\rho} {}_{t}^{0} x_{i,m} {}^{t}T_{mn} {}_{t}^{0} x_{j,n}$ | | oCijrs | tCijrs | ${}_{0}C_{ijrs} = \frac{{}^{0}\rho}{{}^{0}\rho} {}^{0}x_{i,a} {}^{0}_{t}x_{j,b} {}_{t}C_{abpq} {}^{0}_{t}x_{r,p} {}^{0}_{t}x_{s,q}$ (To be derived below) | # Transparency 16-12 Consider the tangent constitutive tensors ${}_{0}C_{ijrs}$ and ${}_{t}C_{ijrs}$: Recall that Now we note that $$\begin{aligned} d_0 S_{ij} &= \frac{^0\rho}{^t\rho} \mathop{_t^0 X_{i,a}} \mathop{_t^0 X_{j,b}} d_t S_{ab} \\ d_0 \varepsilon_{rs} &= \mathop{_t^t X_{p,r}} \mathop{_t^t X_{q,s}} d_t \varepsilon_{pq} \end{aligned}$$ Hence $$\underbrace{\begin{pmatrix} {}^0\!\rho_{} {}^0\!x_{i,a} {}^0\!x_{j,b} \, d_t S_{ab} \end{pmatrix}}_{d_0 S_{ij}} = {}_0 C_{ijrs} \underbrace{\begin{pmatrix} {}^t\!x_{p,r} {}^0\!x_{q,s} \, d_t \epsilon_{pq} \end{pmatrix}}_{d_0 \epsilon_{rs}}$$ Solving for dtSab gives $$d_t S_{ab} = \underbrace{\begin{pmatrix} {}^t\!\rho \\ {}^0\!\rho \end{pmatrix} {}^t\!x_{a,i} \, {}^t\!x_{b,j} \, {}_0 C_{ijrs} \, {}^t\!x_{p,r} \, {}^t\!x_{q,s} \end{pmatrix}}_{t C_{abpq}} d_t \epsilon_{pq}$$ Transparency 16-13 And we therefore observe that the tangent material relationship to be used is $${}_tC_{abpq} = \frac{{}^t\rho}{{}^0\rho} \, {}^t_0 \! x_{a,i} \, {}^t_0 \! x_{b,i} \, {}^0\! C_{ijrs} \, {}^t_0 \! x_{p,r} \, {}^t_0 \! x_{q,s}$$ Now compare each of the integrals appearing in the T.L. and U.L. equations of motion: 1) $$\int_{0V} {}_{0}^{t} S_{ij} \, \delta_{0} e_{ij} \, {}^{0} dV = \int_{tV} {}^{t} T_{ij} \, \delta_{t} e_{ij} \, {}^{t} dV$$ True, as we verify by substituting the established transformations: Transparency 16-16 2) $$\int_{0}^{\infty} {}_{0}^{t} S_{ij} \delta_{0} \eta_{ij} {}^{0} dV = \int_{t_{V}}^{t} \tau_{ij} \delta_{t} \eta_{ij} {}^{t} dV$$? True, as we verify by substituting the established transformations: $$\begin{split} &\int_{o_{V}} \underbrace{\left(\frac{{}^{o}\rho}{{}^{t}\rho} {}^{o}x_{i,m} {}^{t}T_{mn} {}^{o}x_{j,n}\right)}_{o^{t}S_{ij}} \underbrace{\left((\frac{{}^{t}}{{}^{t}}x_{r,i} {}^{t}\sigma_{xs,j} {}^{t}\delta_{t}\eta_{rs}\right)}_{\delta_{o}\eta_{ij}} {}^{o}dV \\ &= \int_{o_{V}} {}^{t}T_{mn} \, \delta_{t}\eta_{rs} \, \underbrace{\left((\frac{{}^{t}}{{}^{t}}x_{i,m} {}^{t}\sigma_{xr,i} {}^{t}\right)}_{\delta_{mr}} \underbrace{\left((\frac{{}^{t}}{{}^{t}}x_{j,n} {}^{t}\sigma_{xs,j} {}^{t}\right)}_{\delta_{ns}} \underbrace{\left((\frac{{}^{t}}{{}^{t}}x_{j,n} {}^{t}\sigma_{xs,j} {}^{t}\right)}_{t} {}^{t}$$ $$3) \int_{^0\!V} {_0} C_{ijrs} \, {_0} e_{rs} \, \delta_0 e_{ij} \, ^0 \! dV = \int_{^1\!V} {_t} C_{ijrs} \, {_t} e_{rs} \, \delta_t e_{ij} \, ^t \! dV \, \, ?$$ True, as we verify by substituting the established transformations: $$\int_{0V} \underbrace{\begin{pmatrix} {}^{0}\rho {}^{0}_{t} X_{i,a} {}^{0}_{t} X_{j,b} {}^{t} C_{abpq} {}^{0}_{t} X_{r,p} {}^{0}_{t} X_{s,q} \end{pmatrix}}_{0C_{ijrs}} \times \underbrace{\begin{pmatrix} {}^{t}_{t} X_{k,r} {}^{0}_{t} X_{\ell,s} {}^{t} e_{k\ell} \end{pmatrix}}_{0C_{ijrs}} \underbrace{\begin{pmatrix} {}^{t}_{t} X_{k,r} {}^{0}_{t} X_{\ell,s} {}^{t} e_{k\ell} \end{pmatrix}}_{0e_{rs}} \underbrace{\begin{pmatrix} {}^{t}_{t} X_{m,i} {}^{0}_{t} X_{m,j} {}^{0}_{t} X_{m,j} {}^{0}_{t} A_{m,j} {}^{0$$ Transparency 16-17 Provided the established transformations are used, the three integrals are identical. Therefore the resulting finite element discretizations will also be identical. $$\left({}_{0}^{t}\underline{\mathsf{K}}_{\mathsf{L}} + {}_{0}^{t}\underline{\mathsf{K}}_{\mathsf{NL}}\right)\Delta\underline{\mathsf{U}} = {}^{t+\Delta t}\underline{\mathsf{R}} - {}_{0}^{t}\underline{\mathsf{F}}$$ $$({}^{t}_{t}\underline{\mathsf{K}}_{\mathsf{L}} \ + \ {}^{t}_{t}\underline{\mathsf{K}}_{\mathsf{NL}}) \ \Delta\underline{\mathsf{U}} = {}^{t+\Delta t}\underline{\mathsf{R}} \ - \ {}^{t}_{t}\underline{\mathsf{F}}$$ $$\begin{array}{rcl} & \underbrace{^t}_{0}\underline{K}_{L} & = \underbrace{^t}_{L}\underline{K}_{L} \\ & \underbrace{^t}_{0}\underline{K}_{NL} & = \underbrace{^t}_{L}\underline{K}_{NL} \\ & \underbrace{^t}_{0}\underline{F} & = \underbrace{^t}_{L}\underline{F} \end{array}$$ The same holds for each equilibrium iteration. Hence, to summarize once more, program 2 gives the same results as program 1, provided The Cauchy stresses are calculated from $${}^t\!\boldsymbol{\tau}_{ij} = \frac{{}^t\!\boldsymbol{\rho}}{{}^0\!\boldsymbol{\rho}}\, {}^t_0\!\boldsymbol{x}_{i,m}\, {}^t_0\!\boldsymbol{S}_{mn}\, {}^t_0\!\boldsymbol{x}_{j,n}$$ ② → The tangent stress-strain law is calculated from $${}_{t}C_{ijrs} = \frac{{}^{t}\rho}{{}^{o}\rho}\, {}^{t}_{0}x_{i,a}\, {}^{t}_{0}x_{j,b}\, {}_{0}C_{abpq}\, {}^{t}_{0}x_{r,p}\, {}^{t}_{0}x_{s,q}$$ Transparency 16-20 Conversely, assume that the material relationships for program 2 are given, hence, from laboratory experimental information, ${}^t T_{ij}$ and ${}_t C_{ijrs}$ for the U.L. formulation are given. Then we can show that, provided the appropriate transformations $${}_{0}^{t}S_{ij} = \frac{{}_{0}^{0}\rho}{{}_{0}^{t}}{}_{t}^{0}x_{i,m} {}^{t}T_{mn} {}_{t}^{0}x_{j,n}$$ $${}_{0}C_{ijrs} = \frac{{}_{0}^{0}\rho}{{}_{0}^{t}}{}_{t}^{0}x_{i,a} {}_{t}^{0}x_{j,b} {}_{t}^{0}C_{abpq} {}_{t}^{0}x_{r,p} {}_{t}^{0}x_{s,q}$$ are used in program 1 with the T.L. formulation, again the same
numerical results are generated. Hence the choice of formulation (T.L. vs. U.L.) is based solely on the numerical effectiveness of the methods: - The ^tB_L matrix (U.L. formulation) contains less entries than the ^tB_L matrix (T.L. formulation). - The matrix product $\underline{B}^T \underline{C} \underline{B}$ is less expensive using the U.L. formulation. Transparency 16-21 - If the stress-strain law is available in terms of ^tS, then the T.L. formulation will be in general most effective. - Mooney-Rivlin material law - Inelastic analysis allowing for large displacements / large rotations, but small strains # THE SPECIAL CASE OF ELASTICITY Consider that the components ${}_{0}^{t}C_{ijrs}$ are given: $${}_{0}^{t}S_{ij}={}_{0}^{t}C_{ijrs}\,{}_{0}^{t}\epsilon_{rs}$$ From the above discussion, to obtain the same numerical results with the U.L. formulation, we would employ $$\begin{split} ^t\! \tau_{ij} &= \frac{^t\!\rho}{^0\!\rho} \, _0^t\! x_{i,m} \, (_0^t\! C_{mnrs} \, _0^t\! \epsilon_{rs}) \, _0^t\! x_{j,n} \\ _t\! C_{ijrs} &= \frac{^t\!\rho}{^0\!\rho} \, _0^t\! x_{i,a} \, _0^t\! x_{j,b} \, _0\! C_{abpq} \, _0^t\! x_{r,p} \, _0^t\! x_{s,q} \end{split}$$ Transparency 16-24 We see that in the above equation, the Cauchy stresses are related to the Green-Lagrange strains by a transformation acting only on the m and n components of ${}_{0}^{t}C_{mnrs}$. However, we can write the total stressstrain law using a tensor, ^tC^a_{ijrs}, by introducing another strain measure, namely the Almansi strain tensor, $${}^{t}T_{ij} = {}^{t}C^{a}_{ijrs} \, {}^{t}_{i} \epsilon^{a}_{rs}$$ Almansi strain tensor $${}^t_t C^a_{ijrs} = \frac{{}^t\!\rho}{{}^0\!\rho}\, {}^t_0 x_{i,a}\, {}^t_0 x_{j,b}\, {}^t_0 C_{abpq}\, {}^t_0 x_{r,p}\, {}^t_0 x_{s,q}$$ Definitions of the Almansi strain tensor: $$\begin{split} {}^{t}_{t} & \epsilon^{a}_{mn} = {}^{o}_{t} x_{i,m} {}^{o}_{t} x_{j,n} {}^{t}_{o} \epsilon_{ij} \\ & {}^{t}_{t} \underline{\epsilon}^{a} = \frac{1}{2} \left(\underline{I} - {}^{o}_{t} \underline{X}^{T} {}^{o}_{t} \underline{X} \right) \\ & {}^{t}_{t} \epsilon^{a}_{ij} = \frac{1}{2} \left({}^{t}_{t} u_{i,j} + {}^{t}_{t} u_{j,i} - {}^{t}_{t} u_{k,i} {}^{t}_{t} u_{k,j} \right) \end{split}$$ Transparency 16-25 - A symmetric strain tensor, ${}^{t}_{ij}\epsilon^{a}_{ij}={}^{t}_{i}\epsilon^{a}_{ji}$ - The components of ^t_tε^a are not invariant under a rigid body rotation of the material. - Hence, ^tε^a is not a very useful strain measure, but we wanted to introduce it here briefly. ### Example: Uniaxial strain Transparency 16-28 It turns out that the use of ^tC^a_{ijrs} with the Almansi strain tensor is effective when the U.L. formulation is used with a linear isotropic material law for large displacement / large rotation but small strain analysis. • In this case, tCa may be taken as Practically the same response is calculated using the T.L. formulation with $$\begin{array}{l} {}_{0}^{t}C_{ijrs} = \lambda \ \delta_{ij} \ \delta_{rs} + \mu (\delta_{ir} \ \delta_{js} + \delta_{is} \ \delta_{jr}) \\ = {}_{0}C_{ijrs} \quad constants \end{array}$$ Transparency 16-29 Slide 16-1 The reason that <u>practically</u> the same response is calculated is that the required transformations to obtain <u>exactly</u> the same response reduce to mere rotations: Namely, in the transformations from ${}^{t}C^{a}_{ijrs}$ to ${}^{t}C_{abpq}$, and in the relation between ${}^{0}C_{ijrs}$ and ${}^{t}C_{ijrs}$, $$\frac{{}^{0}\rho}{{}^{t}\rho} \doteq 1, \ [{}^{t}_{0}\mathbf{x}_{i,j}] = {}^{t}_{0}\underline{\mathbf{X}} = {}^{t}_{0}\underline{\mathbf{R}} \ {}^{t}_{0}\underline{\mathbf{U}}$$ $$\doteq {}^{t}_{0}\underline{\mathbf{R}}$$ Transparency 16-31 However, when using constant material moduli (E, ν) for large strain analysis, with $$\mathsf{t}_{\mathsf{T}_{\mathsf{i}\mathsf{j}}} = \underbrace{{}^{\mathsf{t}}_{\mathsf{C}_{\mathsf{i}\mathsf{j}\mathsf{r}\mathsf{s}}}^{\mathsf{a}} {}^{\mathsf{t}}_{\mathsf{E}_{\mathsf{r}\mathsf{s}}}^{\mathsf{a}}}_{\mathsf{t}\mathsf{E}_{\mathsf{r}\mathsf{s}}}$$ and $$\underbrace{{}^{\mathsf{t}}_{\mathsf{S}_{\mathsf{i}\mathsf{j}}}}_{\mathsf{o}\mathsf{S}_{\mathsf{i}\mathsf{j}}} = \underbrace{{}^{\mathsf{t}}_{\mathsf{O}_{\mathsf{i}\mathsf{j}\mathsf{r}\mathsf{s}}}^{\mathsf{t}}_{\mathsf{o}\mathsf{E}_{\mathsf{r}\mathsf{s}}}^{\mathsf{t}}}_{\mathsf{t}\mathsf{E}_{\mathsf{r}\mathsf{s}}}$$ totally different results are obtained. Consider the 1-D problem already solved earlier: Before, we used ${}_{0}^{t}S_{11} = \tilde{E} {}_{0}^{t}\epsilon_{11}$. Now, we consider ${}^{t}T_{11} = \tilde{E} {}_{t}^{t}\epsilon_{11}^{a}$. Transparency 16-32 Here, we have $${}^{t}_{t}\epsilon^{a}_{11} = \underbrace{{}^{t}_{t}u_{1,1}}_{}^{} - \frac{1}{2}\left({}^{t}_{t}u_{1,1}\right)^{2} = \frac{1}{2}\left[1 - \left({}^{0}_{}L\right)^{2}\right]$$ $$\underbrace{{}^{t}_{L} - {}^{0}_{L}}_{}^{}$$ $${}^{\mathrm{t}}\! \mathbf{ au}_{11} = rac{{}^{\mathrm{t}}\! P}{ar{\mathsf{A}}}$$ Using ${}^tL = {}^oL + {}^t\Delta$, ${}^t\tau_{11} = \tilde{E}\,{}^t_1\epsilon^a_{11}$, we obtain the force-displacement relationship. Transparency 16-35 Example: Corner under tip load Finite element mesh: 51 two-dimensional 8-node elements All elements are plane strain elements. Consider a nonlinear elastic analysis. For what loads will the T.L. and U.L. formulations give similar results? Transparency 16-36 - For large displacement/large rotation, but small strain conditions, the T.L. and U.L. formulations will give similar results. - For large displacement/large rotation and large strain conditions, the T.L. and U.L. formulations will give different results, because different constitutive relations are assumed. Transparency 16-39 Results: Force-deflection curve - Over the range of loads shown, the T.L. and U.L. formulations give practically identical results - The force-deflection curve obtained with two 4-node isoparametric beam elements is also shown. ## Deformed configuration for a load of 5 MN (2-D elements are used): Transparency 16-40 Numerically, for a load of 5 MN, we have, using the 2-D elements, | | T.L. formulation | U.L. formulation | |------------------------------|------------------|------------------| | vertical tip
displacement | 15.289 m | 15.282 m | The displacements and rotations are large. However, the strains are small – they can be estimated using strength of materials formulas: $$\epsilon_{\text{base}} = \frac{M(h/2)}{E I}$$ where M $\stackrel{\bullet}{=}$ (5 MN)(7.5 m) $\stackrel{\bullet}{=}$ 3% Topic 17 # Modeling of Elasto-Plastic and Creep Response—Part I #### Contents: - Basic considerations in modeling inelastic response - A schematic review of laboratory test results, effects of stress level, temperature, strain rate - One-dimensional stress-strain laws for elasto-plasticity, creep, and viscoplasticity - Isotropic and kinematic hardening in plasticity - General equations of multiaxial plasticity based on a yield condition, flow rule, and hardening rule - Example of von Mises yield condition and isotropic hardening, evaluation of stress-strain law for general analysis - Use of plastic work, effective stress, effective plastic strain - Integration of stresses with subincrementation - Example analysis: Plane strain punch problem - Example analysis: Elasto-plastic response up to ultimate load of a plate with a hole - Computer-plotted animation: Plate with a hole Textbook: Section 6.4.2 Example: 6.20 References: The plasticity computations are discussed in Bathe, K. J., M. D. Snyder, A. P. Cimento, and W. D. Rolph III, "On Some Current Procedures and Difficulties in Finite Element Analysis of Elastic-Plastic Response," *Computers & Structures*, 12, 607–624, 1980. **References:** (continued) Snyder, M. D., and K. J. Bathe, "A Solution Procedure for Thermo-Elastic-Plastic and Creep Problems," *Nuclear Engineering and Design*, 64, 49–80, 1981. The plane strain punch problem is also considered in Sussman, T., and K. J. Bathe, "Finite Elements Based on Mixed Interpolation for Incompressible Elastic and Inelastic Analysis," *Computers & Structures*, to appear. - · WE DISCUSSED IN THE PREVIOUS LECTURES THE MODELING OF ELASTIC MATERIALS - LINEAR STRESS -STRAIN LAW - NONLINEAR STRESS-STRAIN LAW THE T.L. AND U.L. FORMULATIONS - · WE NOW WANT TO DISCUSS THE MODELING OF INELASTIC MATERIALS - ELASTO-PLASTICITY AND CREEP - FOLLOWS: MODELING OF SUCH RESPONSE IN 1-D ANALYSIS - WE DISCUSS BRIEFLY INCLASTIC MATERIAL BEHAVIORS, AS OB- WE GENERALIZE OUR SERVED IN LABORATORY TESTS MODELING CONSIDERATIONS TO 2-D AND 3-D STRESS SITUATIONS Markerboard 17-1 ### MODELING OF INELASTIC RESPONSE: ELASTO-PLASTICITY, CREEP AND VISCOPLASTICITY The total stress is not uniquely related to the current total strain. Hence, to calculate the response history, stress increments must be evaluated for each time (load) step and added to the previous total stress. Transparency 17-2 The differential stress increment is obtained as – assuming infinitesimally small displacement conditions – $$d\sigma_{ij} = C^{\text{E}}_{ijrs} \left(\text{de}_{rs} - \text{de}^{\text{IN}}_{rs} \right)$$ where C_{ijrs} = components of the elasticity tensor ders = total differential strain increment ders = inelastic differential strain increment The inelastic response may occur rapidly or slowly in time, depending on the problem of nature considered. Modeling: - In plasticity, the model assumes that ders occurs instantaneously with the load application. - In creep, the model assumes that de^{IN}_{rs} occurs as a function of time. - The actual response in nature can be modeled using plasticity and creep together, or alternatively using a viscoplastic material model. Transparency 17-3 - In the following discussion we assume small strain conditions, hence - we have either a materiallynonlinear-only analysis - or a large displacement/large rotation but small strain analysis - As pointed out earlier, for the large displacement solution we would use the total Lagrangian formulation and in the evaluation of the stress-strain
laws simply use - Green-Lagrange strain component for the engineering strain components and 2nd Piola-Kirchhoff stress components for the engineering stress components Transparency 17-6 Consider a brief summary of some observations regarding material response measured in the laboratory - We only consider schematically what approximate response is observed; no details are given. - Note that, regarding the notation, no time, t, superscript is used on the stress and strain variables describing the material behavior. ### MATERIAL BEHAVIOR, "INSTANTANEOUS" RESPONSE Tensile Test: Assume - · small strain conditions - behavior in compression is the same as in tension Hence $$\mathbf{e} = \frac{\ell - \ell_0}{\ell_0}$$ $$\sigma = \frac{P}{A_0}$$ Transparency 17-7 ### Effect of strain rate: ### MATERIAL BEHAVIOR, TIME-DEPENDENT RESPONSE Transparency 17-11 - Now, at constant stress, inelastic strains develop. - Important effect for materials when temperatures are high ### Typical creep curve Instantaneous strain (elastic and elasto-plastic) Engineering strain, e o = constant temperature = constant Tertiary range range time Effect of stress level on creep strain ### **MODELING OF RESPONSE** Consider a one-dimensional situation: - We assume that the load is increased monotonically to its final value, P*. - We assume that the time is "long" so that inertia effects are negligible (static analysis). Transparency 17-15 Transparency 17-18 Creep, power law material model: - The elastic strain is the same as in the plastic analysis (this follows from equilibrium). - The inelastic strain is time-dependent and time is now an actual variable. ### Viscoplasticity: • Time-dependent response is modeled using a fluidity parameter γ : $$\dot{e} = \frac{\dot{\sigma}}{E} + \underbrace{\gamma \left\langle \frac{\sigma}{\sigma_y} - 1 \right\rangle}_{\dot{e}^{VP}}$$ where $$\langle \sigma - \sigma_y \rangle = \begin{cases} 0 & \text{, } \sigma \leq \sigma_y \\ \sigma - \sigma_y & \text{, } \sigma > \sigma_y \end{cases}$$ Transparency 17-19 ### Typical solutions (1-D specimen): non-hardening material ### **PLASTICITY** - So far we considered only loading conditions. - Before we discuss more general multiaxial plasticity relations, consider unloading and cyclic loading assuming uniaxial stress conditions. Transparency 17-22 Consider that the load increases in tension, causes plastic deformation, reverses elastically, and again causes plastic deformation in compression. ### MULTIAXIAL PLASTICITY To describe the plastic behavior in multiaxial stress conditions, we use - · A yield condition - · A flow rule - · A hardening rule In the following, we consider isothermal (constant temperature) conditions. Transparency 17-26 These conditions are expressed using a stress function ^tF. Two widely used stress functions are the von Mises function **Drucker-Prager function** von Mises $${}^{t}F = \frac{1}{2} {}^{t}S_{ij} {}^{t}S_{ij} - {}^{t}K$$ $${}^{t}S_{ij} = {}^{t}\sigma_{ij} - \frac{{}^{t}\sigma_{mm}}{3} \delta_{ij}; {}^{t}K = \frac{1}{3} {}^{t}\sigma_{y}^{2}$$ Drucker-Prager $${}^{t}F = 3\alpha {}^{t}\sigma_{m} + {}^{t}\bar{\sigma} - k$$ $${}^{t}\sigma_{m} = \frac{{}^{t}\sigma_{ii}}{3}; {}^{t}\bar{\sigma} = \sqrt{\frac{1}{2}}{}^{t}s_{ij}{}^{t}s_{ij}$$ Transparency 17-27 We use both matrix notation and index notation: $$d\underline{e}^{P} = \begin{bmatrix} de_{11}^{P} & & & \\ de_{22}^{P} & & \\ de_{33}^{P} & & \\ de_{12}^{P} + de_{21}^{P} & \\ de_{23}^{P} + de_{32}^{P} & \\ de_{13}^{P} + de_{31}^{P} \end{bmatrix}, \quad d\underline{\sigma} = \begin{bmatrix} d\sigma_{11} & & \\ d\sigma_{22} & & \\ d\sigma_{33} & & \\ d\sigma_{12} & & \\ d\sigma_{23} & & \\ d\sigma_{31} \end{bmatrix}$$ $$\xrightarrow{\text{matrix notation}} \xrightarrow{\text{note that both de}_{12}^{P}} \xrightarrow{\text{and de}_{21}^{P}} \xrightarrow{\text{are added}}$$ $$de_{ij}^{P} = \begin{bmatrix} de_{11}^{P} & de_{12}^{P} & de_{13}^{P} \\ de_{21}^{P} & de_{22}^{P} & de_{23}^{P} \\ de_{31}^{P} & de_{32}^{P} & de_{33}^{P} \end{bmatrix}$$ index notation $$d\sigma_{ij} = \begin{bmatrix} d\sigma_{11} & d\sigma_{12} & d\sigma_{13} \\ d\sigma_{21} & d\sigma_{22} & d\sigma_{23} \\ d\sigma_{31} & d\sigma_{32} & d\sigma_{33} \end{bmatrix}$$ Transparency 17-30 The basic equations are then (von Mises ^tF): 1) Yield condition $${}^{t}F({}^{t}\sigma_{ij}, {}^{t}\kappa) = 0$$ current stresses function of plastic strains ^tF is zero throughout the plastic response • 1-D equivalent: $$\frac{1}{3}(^t\sigma^2 - {}^t\sigma_y^2) = 0$$ (uniaxial stress) current stresses function of plastic strains. 2) Flow rule (associated rule): $$de_{ij}^{P} = {}^{t}\lambda \ \frac{\partial^{t}F}{\partial^{t}\sigma_{ij}}$$ where ${}^t\!\lambda$ is a positive scalar. • 1-D equivalent: $$de_{11}^P=\frac{2}{3}\,{}^t\!\lambda\,{}^t\!\sigma$$ $$de_{22}^P = -\,\frac{1}{3}\,{}^t\!\lambda\,{}^t\!\sigma$$ $$\text{de}_{33}^P = -\,\frac{1}{3}\,{}^t\!\lambda\,{}^t\!\sigma$$ Transparency 17-31 3) Stress-strain relationship: $$d\sigma = C^{E} (de - de^{P})$$ • 1-D equivalent: $$d\sigma = E (de_{11} - de_{11}^{P})$$ Our goal is to determine $\underline{C}^{\text{EP}}$ such that $$d\underline{\sigma} = \underline{\underline{C}^{\mathsf{EP}}} \, d\underline{e}$$ instantaneous elastic-plastic stress-strain matrix Transparency 17-34 General derivation of \underline{C}^{EP} : **Define** $${}^{t}q_{ij} = \left. \frac{\partial^{t}F}{\partial^{t}\sigma_{ij}} \right|_{{}^{t}e_{ij}^{P} \text{ fixed}}$$ $$^{t}q_{ij} = \frac{\partial^{t}F}{\partial^{t}\sigma_{ij}}\Big|_{\substack{te_{ij}^{F} \text{ fixed}}}$$ $$^{t}p_{ij} = -\frac{\partial^{t}F}{\partial^{t}e_{ij}^{F}}\Big|_{\substack{t\sigma_{ij} \text{ fixed}}}$$ Using matrix notation, Transparency 17-35 definition of the plastic strain and stress increment vectors results from our $${}^{t}q^{T} = [{}^{t}q_{11} \mid {}^{t}q_{22} \mid {}^{t}q_{33} | 2 {}^{t}q_{12} | 2 {}^{t}q_{23} | 2 {}^{t}q_{31}]$$ $${}^t\underline{p}^T = [{}^tp_{11} \mid {}^tp_{22} \mid {}^tp_{33} \mid {}^tp_{12} \mid {}^tp_{23} \mid {}^tp_{31}]$$ We now determine ${}^t\!\lambda$ in terms of $d\underline{e}$: Using ^tF = 0 during plastic deformations, $$d^{t}F = \frac{\partial^{t}F}{\partial^{t}\sigma_{ij}}d\sigma_{ij} + \frac{\partial^{t}F}{\partial^{t}e_{ij}^{P}}de_{ij}^{P}$$ $$= {}^{t}q^{T}d\underline{\sigma} - {}^{t}p^{T}d\underline{e}^{P}$$ $$= 0$$ Also $$^{t}\underline{q}^{T}\underline{d\underline{\sigma}} = {^{t}\underline{q}}^{T}\underline{(\underline{C}^{E}(d\underline{e} - d\underline{e}^{P}))}$$ The flow rule assumption may be written as $$d\underline{e}^{P} = {}^{t}\lambda {}^{t}\underline{q}$$ Hence $${}^{t}\underline{q}^{T} d\underline{\sigma} = \underbrace{{}^{t}\underline{q}^{T} (\underline{C}^{E} (d\underline{e} - {}^{t}\lambda {}^{t}\underline{q})) = {}^{t}\lambda {}^{t}\underline{p}^{T} {}^{t}\underline{q}}_{from d^{T}F = 0}$$ Transparency 17-38 Solving the boxed equation for $^t\lambda$ gives $${}^{t}\lambda = \frac{{}^{t}q^{\mathsf{T}} \underline{C}^{\mathsf{E}} d\underline{e}}{{}^{t}p^{\mathsf{T}} \underline{q} + {}^{t}q^{\mathsf{T}} \underline{C}^{\mathsf{E}} \underline{q}}$$ Hence we can determine the plastic strain increment from the total strain increment: total strain increment $$\mathbf{d}\underline{\mathbf{e}}^{\mathsf{P}} = \begin{pmatrix} \mathbf{t}\underline{\mathbf{q}}^{\mathsf{T}}\,\underline{\mathbf{C}}^{\mathsf{E}}\,\mathbf{d}\underline{\mathbf{e}} \\ \mathbf{t}\underline{\mathbf{p}}^{\mathsf{T}}\,\mathbf{t}\underline{\mathbf{q}} + \mathbf{t}\underline{\mathbf{q}}^{\mathsf{T}}\,\underline{\mathbf{C}}^{\mathsf{E}}\,\mathbf{t}\underline{\mathbf{q}} \end{pmatrix} \mathbf{t}\underline{\mathbf{q}}$$ plastic strain increment We can now solve for $\underline{C}^{\text{EP}}$: $$d\underline{\sigma} = \underline{C}^{E} (d\underline{e} - d\underline{e}^{P}) \text{ function of } d\underline{e}$$ $$\underline{C}^{EP} = \underline{C}^{E} - \frac{\underline{C}^{E} {}^{t} \underline{q} (\underline{C}^{E} {}^{t} \underline{q})^{T}}{{}^{t} \underline{p}^{T} {}^{t} \underline{q} + {}^{t} \underline{q}^{T} \underline{C}^{E} {}^{t} \underline{q}}$$ Transparency 17-39 Example: Von Mises yield condition, isotropic hardening Two equivalent equations: $${}^{t}\sigma_{y} = \frac{\sqrt{2}}{2} \sqrt{\left({}^{t}\sigma_{1} - {}^{t}\sigma_{2}\right)^{2} + \left({}^{t}\sigma_{2} - {}^{t}\sigma_{3}\right)^{2} + \left({}^{t}\sigma_{3} - {}^{t}\sigma_{1}\right)^{2}}$$ principal stresses $$\label{eq:F} \begin{split} {}^t F &= \underbrace{\frac{1}{2}}_{\text{\downarrow}} {}^t s_{ij} {}^t s_{ij} - {}^t \kappa \;\; ; \;\; {}^t \kappa = \frac{1}{3} \, {}^t \sigma_y^2 \\ \text{deviatoric stresses:} \, {}^t s_{ij} = {}^t \sigma_{ij} - \frac{{}^t \sigma_{mm}}{3} \, \delta_{ij} \end{split}$$ Yield surface for plane stress End view of yield surface Transparency 17-42 We now compute the derivatives of the yield function. First consider ^tp_{ij}: $${}^{t}p_{ij} = -\left.\frac{\partial^{t}F}{\partial^{t}e^{P}_{ij}}\right|_{{}^{t}\sigma_{ij}\text{ fixed}} = -\left.\frac{\partial}{\partial^{t}e^{P}_{ij}}\left(\frac{1}{2}\,{}^{t}s_{ij}\,{}^{t}s_{ij}-\frac{1}{3}\,{}^{t}\sigma^{2}_{y}\right)$$ $$= \frac{2}{3} {}^t \sigma_y \, \frac{\partial^t \sigma_y}{\partial^t e^P_{ij}} \qquad ({}^t \sigma_{ij} \text{ fixed implies } {}^t s_{ij} \text{ is fixed)}$$ What is the relationship between ${}^t\sigma_y$ and the plastic strains? We answer this question using the concept of "plastic work". - The plastic work (per unit volume) is the amount of energy that is unrecoverable when the material is unloaded. - This energy has been used in creating the plastic deformations within the material. Transparency 17-43 Pictorially: 1-D example Consider 1-D test results: the current yield stress may be written in terms of the plastic work. Transparency 17-46 We can now evaluate ^tp_{ij} – which corresponds to a generalization of the 1-D test results to multiaxial conditions. $$\begin{split} {}^{t}p_{ij} &=
\frac{2}{3}\,{}^{t}\sigma_{y}\,\underbrace{\left(\frac{d^{t}\sigma_{y}}{d^{t}W_{P}}\,\frac{\partial^{t}W_{P}}{\partial^{t}e^{P}_{ij}}\right)}_{\frac{\partial^{t}\sigma_{y}}{\partial^{t}e^{P}_{ij}}} \\ &= \frac{2}{3}\,{}^{t}\sigma_{y}\,\left(\left(\frac{E\,E_{T}}{E-E_{T}}\right)\frac{1}{{}^{t}\sigma_{y}}\right)\,({}^{t}\sigma_{ij}) \\ &= \underbrace{\left[\frac{2}{3}\left(\frac{E\,E_{T}}{E-E_{T}}\right){}^{t}\sigma_{ij}\right]}_{\frac{\partial^{t}\sigma_{y}}{E-E_{T}}} \end{split}$$ Alternatively, we could have used that $d^tW_P={}^t\bar{\sigma}\;d^t\bar{e}^P$ where and then the same result is obtained using $${}^{t}p_{ij} = \frac{2}{3} \, {}^{t}\sigma_{y} \left(\frac{d^{t}\sigma_{y}}{d^{t}\bar{e}^{P}} \, \frac{\partial^{t}\bar{e}^{P}}{\partial^{t}e^{P}_{ij}} \right)$$ 17-47 **Transparency** Next consider ^tq_{ij}: $$\begin{split} {}^tq_{ij} &= \left. \frac{\partial^t F}{\partial^t \sigma_{ij}} \right|_{{}^te_{ij}^P \text{ fixed}} = \frac{\partial}{\partial^t \sigma_{ij}} \left(\frac{1}{2} \, {}^ts_{k\ell} \, {}^ts_{k\ell} - \frac{1}{3} \, {}^t\sigma_y^2 \right) \\ &= \left. {}^ts_{k\ell} \, \frac{\partial^t s_{k\ell}}{\partial^t \sigma_{ij}} = {}^ts_{k\ell} \, \frac{\partial}{\partial^t \sigma_{ij}} \left({}^t\sigma_{k\ell} - \frac{{}^t\sigma_{mm}}{3} \, \delta_{k\ell} \right) \right. \\ &= \left. {}^ts_{k\ell} \left(\delta_{ik} \, \delta_{j\ell} - \frac{\delta_{ij} \, \delta_{k\ell}}{3} \right) \right. \\ &= \left. {}^ts_{ij} \, \left(\text{note that} \, {}^ts_{k\ell} \, \delta_{k\ell} = {}^ts_{kk} = 0 \right) \end{split}$$ We can now evaluate \underline{C}^{EP} : where $$\beta = \frac{3}{2} \frac{1}{t_{\sigma_y^2}} \left(\frac{1}{1 + \frac{2}{3} \frac{E E_T}{E - E_T} \frac{1 + \nu}{E}} \right)$$ # Transparency 17-50 ### Evaluation of the stresses at time $t+\Delta t$: $$\begin{split} ^{t+\Delta t}\underline{\sigma} &= {}^t\!\underline{\sigma} + \! \int_t^{t+\Delta t} d\underline{\sigma} \\ &= {}^t\!\underline{\sigma} + \! \int_{t_e}^{t+\Delta t}\!\underline{e} \, \underline{C}^{EP} \, d\underline{e} \end{split}$$ The stress integration must be performed at each Gauss integration point. We can approximate the evaluation of this integral using the Euler forward method. • Without subincrementation: $$\int_{t_{\underline{e}}}^{t+\Delta t_{\underline{e}}} \underline{C}^{\text{EP}} \; d\underline{e} \doteq \underline{C}^{\text{EP}} \bigg|_{t} \underline{\Delta e} \underbrace{}^{t+\Delta t_{\underline{e}} - t_{\underline{e}}}$$ Transparency 17-51 • With n subincrements: $$\begin{split} \int_{t_{\underline{e}}}^{t+\Delta t_{\underline{e}}} \underline{C}^{\text{EP}} \, d\underline{e} &\doteq \underline{C}^{\text{EP}} \bigg|_{t} \frac{\underline{\Delta}\underline{e}}{n} \\ &+ \underline{C}^{\text{EP}} \bigg|_{t+\underline{\Delta}\tau} \underline{\underline{\Delta}\underline{e}} \underline{n} \underline{\Delta}\underline{t} \\ &+ \cdots \\ &+ \underline{C}^{\text{EP}} \bigg|_{t+(n-1)\Delta\tau} \underline{\underline{\Delta}\underline{e}} \underline{n} \end{split}$$ Transparency 17-54 Summary of the procedure used to calculate the total stresses at time $t+\Delta t$. Given: STRAIN = Total strains at time $t+\Delta t$ SIG = Total stresses at time t EPS = Total strains at time t (a) Calculate the strain increment **DELEPS**: DELEPS = STRAIN - EPS - (b) Calculate the stress increment DELSIG, assuming elastic behavior: DELSIG = C^E * DELEPS - (c) Calculate TAU, assuming elastic behavior: $$TAU = SIG + DELSIG$$ - (d) With TAU as the state of stress, calculate the value of the yield function F. - (e) If $F(TAU) \le 0$, the strain increment is elastic. In this case, TAU is correct; we return. (f) If the previous state of stress was plastic, set RATIO to zero and go to (g). Otherwise, there is a transition from elastic to plastic and RATIO (the portion of incremental strain taken elastically) has to be determined. RATIO is determined from $$F(SIG + RATIO * DELSIG) = 0$$ since $F = 0$ signals the initiation of yielding. Transparency 17-55 (g) Redefine TAU as the stress at start of yield TAU = SIG + RATIO * DELSIG and calculate the elastic-plastic strain increment $$DEPS = (1 - RATIO) * DELEPS$$ (h) Divide DEPS into subincrements DDEPS and calculate $$TAU \leftarrow TAU + \underline{C}^{EP} * DDEPS$$ for all elastic-plastic strain subincrements. Slide 17-1 Slide 17-2 Slide 17-5 Limit load calculations: • Plate is elasto-plastic. Transparency 17-59 Elasto-plastic analysis: Material properties (steel) This is an idealization, probably inaccurate for large strain conditions (e > 2%). Computer Animation Plate with hole # Modeling of Elasto-Plastic and Creep Response—Part II #### Contents: - Strain formulas to model creep strains - Assumption of creep strain hardening for varying stress situations - Creep in multiaxial stress conditions, use of effective stress and effective creep strain - **■** Explicit and implicit integration of stress - Selection of size of time step in stress integration - Thermo-plasticity and creep, temperature-dependency of material constants - Example analysis: Numerical uniaxial creep results - Example analysis: Collapse analysis of a column with offset load - Example analysis: Analysis of cylinder subjected to heat treatment #### Textbook: #### References: Section 6.4.2 The computations in thermo-elasto-plastic-creep analysis are described in Snyder, M. D., and K. J. Bathe, "A Solution Procedure for Thermo-Elastic-Plastic and Creep Problems," *Nuclear Engineering and Design*, 64, 49–80, 1981. Cesar, F., and K. J. Bathe, "A Finite Element Analysis of Quenching Processes," in *Numerical Methods for Non-Linear Problems*, (Taylor, C., et al. eds.), Pineridge Press, 1984. # **References:** (continued) The effective-stress-function algorithm is presented in Bathe, K. J., M. Kojić, and R. Slavković, "On Large Strain Elasto-Plastic and Creep Analysis," in *Finite Element Methods for Nonlinear Problems* (Bergan, P. G., K. J. Bathe, and W. Wunderlich, eds.), Springer-Verlag, 1986. The cylinder subjected to heat treatment is considered in Rammerstorfer, F. G., D. F. Fischer, W. Mitter, K. J. Bathe, and M. D. Snyder, "On Thermo-Elastic-Plastic Analysis of Heat-Treatment Processes Including Creep and Phase Changes," *Computers & Structures*, 13, 771-779, 1981. #### **CREEP** We considered already uniaxial constant stress conditions. A typical creep law used is the power creep law $e^C = a_0 \ \sigma^{a_1} \ t^{a_2}$. Transparency 18-1 Aside: other possible choices for the creep law are • $$e^{C} = a_0 \exp(a_1 \sigma) \left[1 - \exp\left(-a_2 \left(\frac{\sigma}{a_3}\right)^{a_4} t\right) \right] + a_5 t \exp(a_6 \sigma)$$ • $$e^{C} = (a_0 (\sigma)^{a_1}) (t^{a_2} + a_3 t^{a_4} + a_5 t^{a_6}) \exp \left(\frac{-a_7}{t_0 + 273.16}\right)$$ temperature, in degrees C We will not discuss these choices further. The creep strain formula $e^C = a_0 \, \sigma^{a_1} \, t^{a_2}$ cannot be directly applied to varying stress situations because the stress history does not enter directly into the formula. The assumption of strain hardening: - The material creep behavior depends only on the current stress level and the accumulated total creep strain. - To establish the ensuing creep strain, we solve for the "effective time" using the creep law: $${}^{t}e^{C}=a_{0}{}^{t}\sigma^{a_{1}}\underline{\bar{t}}^{a_{2}}$$ totally unrelated to the physical time (solve for \bar{t}) Transparency 18-5 The effective time is now used in the creep strain rate formula: $$\begin{split} {}^t \dot{e}^C &= a_0 \, \, {}^t \sigma^{a_1} \, a_2 \, \overline{t}^{a_2 - 1} \\ &= a_0^{1/a_2} \, a_2 \, ({}^t \sigma)^{a_1/a_2} ({}^t e^C)^{\frac{a_2 - 1}{a_2}} \end{split}$$ Now the creep strain rate depends on the current stress level and on the accumulated total creep strain. • Reverse in stress (cyclic conditions) Transparency 18-9 ### **MULTIAXIAL CREEP** The response is now obtained using $$^{t+\Delta t}\underline{\sigma}={}^{t}\underline{\sigma}+\int_{^{t}\underline{e}}^{^{t+\Delta t}\underline{e}}\underline{C}^{\mathsf{E}}\,\mathsf{d}\,(\underline{e}-\underline{e}^{\mathsf{C}})$$ As in plasticity, the creep strains in multiaxial conditions are obtained by a generalization of the 1-D test results. We define $${}^{t}\bar{\sigma}=\sqrt{ rac{3}{2}}\,{}^{t}s_{ij}\,{}^{t}s_{ij}$$ (effective stress) ${}^{t}\bar{e}^{C}=\sqrt{ rac{2}{3}}\,{}^{t}e_{ij}^{C}\,{}^{t}e_{ij}^{C}$ (effective strain) and use these in the uniaxial creep law: $$\bar{e}^C = a_0 \, \bar{\sigma}^{a_1} \, \bar{t}^{a_2}$$ Transparency 18-12 The assumption that the creep strain rates are proportional to the current deviatoric stresses gives $${}^{t}\dot{e}_{ij}^{C} = {}^{t}\gamma {}^{t}s_{ij}$$ (as in von Mises plasticity) $^{t}\gamma$ is evaluated in terms of the effective stress and effective creep strain rate: $${}^{t}\gamma = \frac{3}{2} \frac{{}^{t}\dot{\bar{e}}^{C}}{{}^{t}\bar{\sigma}}$$ $$({}^{t}\dot{e}^{C} = a_{0} a_{2} ({}^{t}\bar{\sigma})^{a_{1}} (\bar{t})^{a_{2}-1})$$ Using matrix notation, $$d\underline{e}^{C} = ({}^{t}\gamma) \underbrace{(\underline{D} \ {}^{t}\underline{\sigma})}_{\substack{\text{deviatoric} \\ \text{stresses}}} dt$$ For 3-D analysis, $$\underline{D} = \begin{bmatrix} \frac{2}{3} & -\frac{1}{3} & -\frac{1}{3} \\ & \frac{2}{3} & -\frac{1}{3} \\ & \frac{2}{3} \\ & & 1 \\ \text{symmetric} & 1 \\ & & 1 \end{bmatrix}$$ Transparency 18-13 - In creep problems, the time integration is difficult due to the high exponent on the stress. - Solution instability arises if the Euler forward integration is used and the time step Δt is too large. - Rule of thumb: $$\Delta \underline{\bar{\mathbf{e}}}^{\mathsf{C}} \leq \frac{1}{10} \, (^{\mathsf{t}} \underline{\bar{\mathbf{e}}}^{\mathsf{E}})$$ • Alternatively, we can use implicit integration, using the α -method: $$t^{t+\alpha\Delta t}\underline{\sigma} = (1-\alpha)^t\underline{\sigma} + \alpha^{t+\Delta t}\underline{\sigma}$$ ### Iteration algorithm: k = iteration counter at each integration point
- $\alpha \ge \frac{1}{2}$ gives a stable integration algorithm. We use largely $\alpha = 1.0$. - In practice, a form of Newton-Raphson iteration to accelerate convergence of the iteration can be used. - Choice of time step Δt is now governed by need to converge in the iteration and accuracy considerations. - Subincrementation can be employed. - Relatively large time steps can be used with the effective-stressfunction algorithm. ### THERMO-PLASTICITY-CREEP Plasticity: stress σ_{y3} σ_{y2} Increasing temperature strain Creep: Increasing temperature time Now we evaluate the stresses using $$t^{+\Delta t}\underline{\sigma} = {}^{t}\underline{\sigma} + \int_{l_{\underline{e}}}^{t^{+\Delta t}\underline{e}} \underline{c}^{E} d(\underline{e} - \underline{e}^{P} - \underline{e}^{C} - \underline{e}^{TH})$$ thermal etrains Using the α -method, $$\label{eq:decomposition} \begin{split} ^{t+\Delta t}\!\underline{\sigma} &= \,^{t+\Delta t}\!\underline{C}^{\text{E}}\!\big\{[\underline{e} - \underline{e}^{\text{P}} - \underline{e}^{\text{C}} - \underline{e}^{\text{TH}}] \\ &+ \big[{}^{t}\!\underline{e} - {}^{t}\!\underline{e}^{\text{P}} - {}^{t}\!\underline{e}^{\text{C}} - {}^{t}\!\underline{e}^{\text{TH}}\big]\big\} \end{split}$$ where $$\underline{\mathbf{e}} = {}^{\mathbf{t} + \Delta \mathbf{t}}\underline{\mathbf{e}} - {}^{\mathbf{t}}\underline{\mathbf{e}}$$ # Transparency 18-20 and $$\begin{split} \underline{e}^{\mathsf{P}} &= \Delta t \; (^{t+\alpha\Delta t}\bar{\lambda}) \; (\underline{\mathsf{D}}^{\; t+\alpha\Delta t}\underline{\sigma}) \\ \underline{e}^{\mathsf{C}} &= \Delta t \; (^{t+\alpha\Delta t}\gamma) \; (\underline{\mathsf{D}}^{\; t+\alpha\Delta t}\underline{\sigma}) \\ e^{\mathsf{TH}}_{ij} &= (^{t+\Delta t}\alpha^{\; t+\Delta t}\theta \; - \; ^t\!\alpha^{\; t}\theta) \; \delta_{ij} \end{split}$$ where $^{\mathrm{t}}\alpha=$ coefficient of thermal expansion at time t $^{t}\theta$ = temperature at time t The final iterative equation is $$\begin{split} t^{+\Delta t}\underline{\sigma}_{(k)}^{(i-1)} &= \left.\underline{C}^{E}\right|_{t+\Delta t} \left[t^{+\Delta t}\,\underline{e}^{\,(i-1)} - {}^{t}\underline{e}^{P} - {}^{t}\underline{e}^{C} - {}^{t}\underline{e}^{TH} \right. \\ &- \left.\Delta t\,\left(t^{+\alpha\Delta t}\bar{\lambda}_{(k-1)}^{(i-1)}\right)\,\left(\underline{D}^{\,t^{+\alpha\Delta t}}\underline{\sigma}_{(k-1)}^{(i-1)}\right) \\ &- \left.\Delta t\,\left(t^{+\alpha\Delta t}\gamma_{(k-1)}^{(i-1)}\right)\,\left(\underline{D}^{\,t^{+\alpha\Delta t}}\underline{\sigma}_{(k-1)}^{(i-1)}\right) \\ &- \left.\underline{e}^{TH}\right] \end{split}$$ and subincrementation may also be used. Transparency 18-21 ## Numerical uniaxial creep results: The results are obtained using two solution algorithms: - $\alpha = 0$, (no subincrementation) - $\alpha = 1$, effective-stress-function procedure In all cases, the MNO formulation is employed. Full Newton iterations without line searches are used with 2) Stress increase from 100 MPa to 200 MPa Transparency 18-25 Load function employed: 3) Stress reversal from 100 MPa to -100 MPa $$e^{C} = 4.1 \times 10^{-11} (\sigma)^{3.15} t^{0.8}$$ Transparency 18-28 4) Constant load of 100 MPa $$e^{C} = 4.1 \times 10^{-11} (\sigma)^{3.15} t^{0.4}$$ 5) Stress increase from 100 MPa to 200 MPa .06 $$e^{C} = 4.1 \times 10^{-11} (\sigma)^{3.15} t^{0.4}$$.04 $\Delta t = 10 \text{ hr}$ $\sigma = 200 \text{ MPa}$ disp. (m) .02 $\sigma = 100 \text{ MPa}$ Transparency 18-29 6) Stress reversal from 100 MPa to -100 MPa Consider the use of $\alpha=0$ for the "stress increase from 100 MPa to 200 MPa" problem solved earlier (case #5): Transparency 18-32 Using $\Delta t=50$ hr, both algorithms converge, although the solution becomes less accurate for $\alpha=0$. Using $\Delta t=100$ hr, $\alpha=0$ does not converge at t=600 hr. $\alpha=1$ still gives good results. Transparency 18-33 Example: Column with offset load Goal: Determine the collapse response for different material assumptions: - Elastic - Elasto-plastic - Creep The total Lagrangian formulation is employed for all analyses. Transparency 18-36 ### Solution procedure: The full Newton method without line searches is employed with ETOL = 0.001 RTOL = 0.01 RNORM = 1000 KN Mesh used: Ten 8-node quadrilateral elements Transparency 18-37 Elastic response: We assume that the material law is approximated by $${}_{0}^{t}S_{ij}={}_{0}^{t}C_{ijrs}\ {}_{0}^{t}\epsilon_{rs}$$ where the components ${}_{0}^{t}C_{ijrs}$ are constants determined by E and ν (as previously described). Elasto-plastic response: Here we use $$E_T = 0$$ $\sigma_y = 3000 \text{ KPa}$ (von Mises yield criterion) and $$^{t+\Delta t}_{0}\underline{S}=_{0}^{t}\underline{S}\,+\int_{0}^{t+\Delta t}\underline{\underline{\mathcal{E}}}_{0}\underline{C}^{\text{EP}}\,d_{0}\underline{\underline{\mathcal{E}}}$$ where $_{0}\underline{C}^{\text{EP}}$ is the incremental elastoplastic constitutive matrix. Transparency 18-40 Plastic buckling is observed. #### Creep response: - Creep law: $\bar{e}^C = 10^{-16} (\bar{\sigma})^3 t$ (t in hours) No plasticity effects are included. - We apply a constant load of 2000 KN and determine the time history of the column. - For the purposes of this problem, the column is considered to have collapsed when a lateral displacement of 2 meters is reached. This corresponds to a total strain of about 2 percent at the base of the column. Transparency 18-41 We investigate the effect of different time integration procedures on the obtained solution: - Vary Δt ($\Delta t = .5, 1, 2, 5 hr.$) - Vary α ($\alpha = 0, 0.5, 1$) Collapse times: The table below lists the first time (in hours) for which the lateral displacement of the column exceeds 2 meters. | | $\alpha = 0$ | $\alpha = .5$ | $\alpha = 1$ | |-----------------|--------------|---------------|--------------| | $\Delta t = .5$ | 100.0 | 100.0 | 98.5 | | $\Delta t = 1$ | 101 | 101 | 98 | | $\Delta t = 2$ | 102 | 102 | 96 | | $\Delta t = 5$ | 105 | 105 | 90 | Transparency 18-44 Pictorially, using $\Delta t = 0.5$ hr., $\alpha = 0.5,$ we have | Time = 1 hr
(negligible creep
effects) | Time = 50 hr
(some creep
effects) | Time = 100 hr
(collapse) | |--|---|-----------------------------| | | | | Choose $\Delta t = 0.5$ hr. All solution points are connected with straight lines. Transparency 18-45 Effect of α : Choose $\Delta t = 5$ hr. All solution points are connected with straight lines. We conclude for this problem: - As the time step is reduced, the collapse times given by $\alpha = 0$, $\alpha = .5$, $\alpha = 1$ become closer. For $\Delta t = .5$, the difference in collapse times is less than 2 hours. - For a reasonable choice of time step, solution instability is not a problem. c, and the heat conduction coefficient, k. Slide 18-2 Temperature-dependence of the Young's modulus, E, Poisson's ratio, ν , and hardening modulus, E_T Slide 18-4 Temperature-dependence of the material yield stress Temperature-dependence of the instantaneous coefficient of thermal expansion (including volume change due to phase transformation), α Slide 18-6 The calculated transient temperature field Surface and core temperature; comparison between measured and calculated results Slide 18-8 #### Topic 19 # Beam, Plate, and Shell Elements—Part I #### Contents: - Brief review of major formulation approaches - The degeneration of a three-dimensional continuum to beam and shell behavior - Basic kinematic and static assumptions used - Formulation of isoparametric (degenerate) general shell elements of variable thickness for large displacements and rotations - Geometry and displacement interpolations - The nodal director vectors - Use of five or six nodal point degrees of freedom, theoretical considerations and practical use - The stress-strain law in shell analysis, transformations used at shell element integration points - Shell transition elements, modeling of transition zones between solids and shells, shell intersections #### Textbook: #### References: Sections 6.3.4, 6.3.5 The (degenerate) isoparametric shell and beam elements, including the transition elements, are presented and evaluated in Bathe, K. J., and S. Bolourchi, "A Geometric and Material Nonlinear Plate and Shell Element," *Computers & Structures*, 11, 23-48, 1980. Bathe, K. J., and L. W. Ho, "Some Results in the Analysis of Thin Shell Structures," in *Nonlinear Finite Element Analysis in Structural Mechanics*, (Wunderlich, W., et al., eds.), Springer-Verlag, 1981. Bathe, K. J., E. Dvorkin, and L. W. Ho, "Our Discrete Kirchhoff and Isoparametric Shell Elements for Nonlinear Analysis—An Assessment," *Computers & Structures*, 16, 89–98, 1983. # **References:** (continued) The triangular flat plate/shell element is presented and also studied in Bathe, K. J., and L. W. Ho, "A Simple and Effective Element for Analysis of General Shell Structures," *Computers & Structures*, 13, 673–681, 1981. ### STRUCTURAL ELEMENTS - Beams - Plates - Shells We note that in geometrically nonlinear analysis, a plate (initially "flat shell") develops shell action, and is analyzed as a shell. Transparency 19-1 Various solution approaches have been proposed: - Use of general beam and shell theories that include the desired nonlinearities. - With the governing differential equations known, variational formulations can be derived and discretized using finite element procedures. - Elegant approach, but difficulties arise in finite element formulations: - Lack of generality - Large number of nodal degrees of freedom - Use of simple elements, but a large number of elements can model complex beam and shell structures. - An example is the use of 3-node triangular flat plate/membrane elements to model complex shells. - Coupling between membrane and bending action is only introduced at the
element nodes. - Membrane action is not very well modeled. - Isoparametric (degenerate) beam and shell elements. - These are derived from the 3-D continuum mechanics equations that we discussed earlier, but the basic assumptions of beam and shell behavior are imposed. - The resulting elements can be used to model quite general beam and shell structures. We will discuss this approach in some detail. Transparency 19-5 ## Basic approach: Use the total and updated Lagrangian formulations developed earlier. We recall, for the T.L. formulation, $$\int_{0_V}^{t+\Delta t} S_{ij} \, \delta^{t+\Delta t} \epsilon_{ij} \, ^0 dV = {}^{t+\Delta t} \Re$$ Linearization $$\int_{0_V}^{t} {}_0 C_{ijrs} \, {}_0 e_{rs} \, \delta_0 e_{ij} \, ^0 dV + \int_{0_V}^{t} {}_0 S_{ij} \, \delta_0 \eta_{ij} \, ^0 dV$$ $$= {}^{t+\Delta t} \Re - \int_{0_V}^{t} {}_0 S_{ij} \, \delta_0 e_{ij} \, ^0 dV$$ Transparency 19-8 Also, for the U.L. formulation, $$\begin{split} \int_{t_{V}}^{t+\Delta t} S_{ij} \, \delta^{t+\Delta t} \epsilon_{ij}^{t} dV &= {}^{t+\Delta t} \Re \\ \text{Linearization} & \downarrow \\ \int_{t_{V}} {}^{t} C_{ijrs} \, {}^{t} e_{rs} \, \delta_{t} e_{ij}^{t} dV + \int_{t_{V}}^{t} T_{ij} \, \delta_{t} \eta_{ij}^{t} dV \\ &= {}^{t+\Delta t} \Re \, - \int_{t_{V}}^{t} T_{ij} \, \delta_{t} e_{ij}^{t} dV \end{split}$$ - Impose on these equations the basic assumptions of beam and shell action: - Material particles originally on a straight line normal to the midsurface of the beam (or shell) remain on that straight line throughout the response history. For beams, "plane sections initially normal to the mid-surface remain plane sections during the response history". The effect of transverse shear deformations is included, and hence the lines initially normal to the mid-surface do not remain normal to the mid-surface during the deformations. - 2) The stress in the direction "normal" to the beam (or shell) mid-surface is zero throughout the response history. Note that here the stress along the material fiber that is initially normal to the mid-surface is considered; because of shear deformations, this material fiber does not remain exactly normal to the mid-surface. - 3) The thickness of the beam (or shell) remains constant (we assume small strain conditions but allow for large displacements and rotations). # FORMULATION OF ISOPARAMETRIC (DEGENERATE) SHELL ELEMENTS - To incorporate the geometric assumptions of "straight lines normal to the mid-surface remain straight", and of "the shell thickness remains constant" we use the appropriate geometric and displacement interpolations. - To incorporate the condition of "zero stress normal to the mid-surface" we use the appropriate stress-strain law. Transparency 19-13 ### Shell element geometry Example: 9-node element ## Element geometry definition: - Input mid-surface nodal point coordinates. - Input all nodal director vectors at time 0. - · Input thicknesses at nodes. - Isoparametric coordinate system (r, s, t): - The coordinates r and s are measured in the mid-surface defined by the nodal point coordinates (as for a curved membrane element). - The coordinate t is measured in the direction of the director vector at every point in the shell. Interpolation of geometry at time 0: $\underbrace{\overset{0}{x_i}}_{\text{material}} = \underbrace{\sum_{k=1}^{N} h_k \, ^0 x_i^k}_{\text{mid-surface}} + \underbrace{\frac{t}{2} \sum_{k=1}^{N} a_k \, h_k \, ^0 V_{ni}^k}_{\text{thickness}}$ $\underbrace{\overset{0}{x_i}}_{\text{material}} = \underbrace{\overset{0}{\text{mid-surface}}}_{\text{only}} \underbrace{\overset{effect of shell}{\text{thickness}}}_{\text{thickness}}$ $\underbrace{\overset{0}{\text{with isoparametric}}}_{\text{coordinates } (r, \, s, \, t)}$ $h_k = 2\text{-D}$ interpolation functions (as for 2-D plane stress, plane strain and axisymmetric elements) ⁰x_i^k = nodal point coordinates ${}^{0}V_{ni}^{k} = components of {}^{0}\underline{V}_{n}^{k}$ Transparency 19-17 Similarly, at time t, $\begin{tabular}{l} t\text{-coordinate} \\ tx_i = \sum\limits_{k=1}^N h_k \begin{tabular}{c} tx_i^k + \begin{tabular}{c} \begin{tabular}{$ The nodal point coordinates and director vectors have changed. To obtain the displacements of any material particle, $$^{t}u_{i}={}^{t}x_{i}-{}^{0}x_{i}$$ Hence $$^{t}u_{i} = \sum_{k=1}^{N} h_{k} \, ^{t}u_{i}^{k} + \frac{t}{2} \sum_{k=1}^{N} a_{k} h_{k} (^{t}V_{ni}^{k} - {}^{0}V_{ni}^{k})$$ where $${}^{t}u_{i}^{k} = {}^{t}x_{i}^{k} - {}^{0}x_{i}^{k}$$ (disp. of nodal point k) $^{t}V_{ni}^{k} - {}^{0}V_{ni}^{k} = change in direction cosines$ of director vector at node k Transparency 19-20 The incremental displacements from time t to time $t+\Delta t$ are, similarly, for any material particle in the shell element, $$\begin{split} u_i &= {}^{t+\Delta t} x_i - {}^t x_i \\ &= \sum_{k=1}^N h_k \, u_i^k + \frac{t}{2} \sum_{k=1}^N \, a_k \, h_k \, V_{ni}^k \end{split}$$ where $\begin{array}{l} u_i^k = \text{incremental nodal point displacements} \\ V_{ni}^k = {}^{t+\Delta t}V_{ni}^k - {}^tV_{ni}^k = \text{incremental change} \\ & \text{in direction cosines} \\ & \text{of director vector} \\ & \text{from time t to time} \\ & t+\Delta t \end{array}$ To develop the strain-displacement transformation matrices for the T.L. and U.L. formulations, we need - the coordinate interpolations for the material particles (⁰x_i, ^tx_i). - the interpolation of incremental displacements from the incremental nodal point displacements and rotations. Hence, express the V_{ni}^{k} in terms of nodal point rotations. Transparency 19-21 We define at each nodal point k the vectors ${}^{0}\underline{V}_{1}^{k}$ and ${}^{0}\underline{V}_{2}^{k}$: $${}^0\!\underline{V}_1^k = \frac{\underline{e}_2 \times {}^0\!\underline{V}_n^k}{||\underline{e}_2 \times {}^0\!\underline{V}_n^k||_2} \ , \ {}^0\!\underline{V}_2^k = {}^0\!\underline{V}_n^k \times {}^0\!\underline{V}_1^k$$ The vectors ${}^0\underline{V}_1^k$, ${}^0\underline{V}_2^k$ and ${}^0\underline{V}_n^k$ are therefore mutually perpendicular. Then let α_k and β_k be the rotations about ${}^t\!\underline{V}^k_1$ and ${}^t\!\underline{V}^k_2$. We have, for small α_k , β_k , $$\underline{V}_{n}^{k} = - \, {}^{t}\underline{V}_{2}^{k} \, \alpha_{k} + {}^{t}\underline{V}_{1}^{k} \, \beta_{k}$$ Transparency 19-24 Hence, the incremental displacements of any material point in the shell element are given in terms of incremental nodal point displacements and rotations $$u_i = \sum_{k=1}^N \, h_k \, u_i^k + \frac{t}{2} \sum_{k=1}^N \, a_k \, h_k \, [-{}^t V_{2i}^k \, \alpha_k \, + \, {}^t V_{1i}^k \, \beta_k]$$ Once the incremental nodal point displacements and rotations have been calculated from the solution of the finite element system equilibrium equations, we calculate the new director vectors using $$t^{+\Delta t}\underline{V}_{n}^{k} = {}^{t}\underline{V}_{n}^{k} + \int_{\alpha_{k},\beta_{k}} (-{}^{\tau}\underline{V}_{2}^{k} d\alpha_{k} + {}^{\tau}\underline{V}_{1}^{k} d\beta_{k})$$ and normalize length Transparency 19-25 Nodal point degrees of freedom: - We have only five degrees of freedom per node: - three translations in the Cartesian coordinate directions - two rotations referred to the local nodal point vectors ${}^t\underline{V}_1^k$, ${}^t\underline{V}_2^k$ - The nodal point vectors ${}^{t}\underline{V}_{1}^{k}$, ${}^{t}\underline{V}_{2}^{k}$ change directions in a geometrically nonlinear solution. - Node k is shared by four shell elements - One director vector ^tV_n^k at node k - No physical stiffness corresponding to rotation about ¹V_n^k. If only shell elements connect to node k, and the node is not subjected to boundary prescribed rotations, we only assign five local degrees of freedom to that node. We transform the two nodal rotations to the three Cartesian axes in order to - connect a beam element (three rotational degrees of freedom) or - impose a boundary rotation (other than α_k or β_k) at that node. The above interpolations of ⁰x_i, ^tx_i, u_i are employed to establish the strain-displacement transformation matrices corresponding to the Cartesian strain components, as in the analysis of 3-D solids. # Transparency 19-32 Using the expression oe derived earlier the exact linear strain-displacement matrix oblained. However, using $\frac{1}{2} \, {}_{0} u_{k,i} \, {}_{0} u_{k,j}$ to develop the nonlinear strain-displacement matrix ${}_{0}^{t} \underline{B}_{NL}$, only an approximation to the exact second-order strain-displacement rotation expression is obtained because the internal element displacements depend nonlinearly on the nodal point rotations. The same conclusion holds for the U.L. formulation. We still need to impose the condition that the stress in the direction "normal" to the shell mid-surface is zero. We use the direction of the director vector as the "normal direction." Transparency 19-33 We note: \underline{e}_r , \underline{e}_s , \underline{e}_t are not mutually perpendicular in general. $\underline{\bar{e}}_r,\ \underline{\bar{e}}_s,\ \underline{e}_t$ are constructed to be mutually perpendicular. Then the stress-strain law used is, for a linear elastic material, k = shear correction factor Transparency 19-36 #### where #### using $$\begin{array}{ll} \ell_1 = \cos\left(\underline{e}_1,\,\underline{\bar{e}}_r\right) & m_1 = \cos\left(\underline{e}_2,\,\underline{\bar{e}}_r\right) & n_1 = \cos\left(\underline{e}_3,\,\underline{\bar{e}}_r\right) \\ \ell_2 = \cos\left(\underline{e}_1,\,\underline{\bar{e}}_s\right) & m_2 = \cos\left(\underline{e}_2,\,\underline{\bar{e}}_s\right) & n_2 = \cos\left(\underline{e}_3,\,\underline{\bar{e}}_s\right) \\ \ell_3 = \cos\left(\underline{e}_1,\,\underline{e}_t\right) & m_3 = \cos\left(\underline{e}_2,\,\underline{e}_t\right) & n_3 = \cos\left(\underline{e}_3,\,\underline{e}_t\right) \end{array}$$ - The columns and rows 1 to 3 in \underline{C}_{sh} reflect that the stress "normal" to the shell mid-surface is zero. - The stress-strain matrix for
plasticity and creep solutions is similarly obtained by calculating the stressstrain matrix as in the analysis of 3-D solids, and then imposing the condition that the stress "normal" to the mid-surface is zero. - Regarding the kinematic description of the shell element, transition elements can also be developed. - Transition elements are elements with some mid-surface nodes (and associated director vectors and five degrees of freedom per node) and some top and bottom surface nodes (with three translational degrees of freedom per node). These elements are used - to model shell-to-solid transitions - to model shell intersections Transparency 19-40 b) Solid-shell intersection # Beam, Plate, and Shell Elements—Part II #### Contents: - Formulation of isoparametric (degenerate) beam elements for large displacements and rotations - A rectangular cross-section beam element of variable thickness; coordinate and displacement interpolations - Use of the nodal director vectors - The stress-strain law - Introduction of warping displacements - Example analysis: 180 degrees, large displacement twisting of a ring - Example analysis: Torsion of an elastic-plastic cross- - Recommendations for the use of isoparametric beam and shell elements - The phenomena of shear and membrane locking as observed for certain elements - Study of solutions of straight and curved cantilevers modeled using various elements - An effective 4-node shell element (the MITC4 element) for analysis of general shells - The patch test, theoretical and practical considerations - Example analysis: Solution of a three-dimensional spherical shell - Example analysis: Solution of an open box - Example analysis: Solution of a square plate, including use of distorted elements - Example analysis: Solution of a 30-degree skew plate - Example analysis: Large displacement solution of a cantilever | Contents: | | |-------------|--| | (continued) | | - Example analysis: Collapse analysis of an I-beam in torsion - Example analysis: Collapse analysis of a cylindrical shell Textbook: Sections 6.3.4, 6.3.5 Example: 6.18 References: The displacement functions to account for warping in the rectangular cross-section beam are introduced in Bathe, K. J., and A. Chaudhary, "On the Displacement Formulation of Torsion of Shafts with Rectangular Cross-Sections," *International Journal for Numerical Methods in Engineering*, 18, 1565–1568, 1982. The 4-node and 8-node shell elements based on mixed interpolation (i.e., the MITC4 and MITC8 elements) are developed and discussed in Dvorkin, E., and K. J. Bathe, "A Continuum Mechanics Based Four-Node Shell Element for General Nonlinear Analysis," *Engineering Computations*, 1, 77-88, 1984. Bathe, K. J., and E. Dvorkin, "A Four-Node Plate Bending Element Based on Mindlin/Reissner Plate Theory and a Mixed Interpolation," *International Journal for Numerical Methods in Engineering*, 21, 367–383, 1985. Bathe, K. J., and E. Dvorkin, "A Formulation of General Shell Elements—The Use of Mixed Interpolation of Tensorial Components," *International Journal for Numerical Methods in Engineering*, in press. The I-beam analysis is reported in Bathe, K. J., and P. M. Wiener, "On Elastic-Plastic Analysis of I-Beams in Bending and Torsion," *Computers & Structures*, 17, 711-718, 1983. The beam formulation is extended to a pipe element, including ovalization effects, in Bathe, K. J., C. A. Almeida, and L. W. Ho, "A Simple and Effective Pipe Elbow Element—Some Nonlinear Capabilities," *Computers & Structures*, 17, 659-667, 1983. # FORMULATION OF ISOPARAMETRIC (DEGENERATE) BEAM ELEMENTS - The usual Hermitian beam elements (cubic transverse displacements, linear longitudinal displacements) are usually most effective in the linear analysis of beam structures. - When in the following discussion we refer to a "beam element" we always mean the "isoparametric beam element." Transparency 20-1 - The isoparametric formulation can be effective for the analysis of - Curved beams - Geometrically nonlinear problems - Stiffened shell structures (isoparametric beam and shell elements are coupled compatibly) - The formulation is analogous to the formulation of the isoparametric (degenerate) shell element. Transparency 20-2 Consider a beam element with a rectangular cross-section: Transparency 20-4 Consider a beam element with a rectangular cross-section: Consider a beam element with a rectangular cross-section: Consider a beam element with a rectangular cross-section: The coordinates of the material particles of the beam are interpolated as $$\begin{split} {}^{t}\!x_{i} &= \sum_{k=1}^{N} \, h_{k} \, {}^{t}\!x_{i}^{k} + \frac{t}{2} \sum_{k=1}^{N} \, a_{k} \, h_{k} \, {}^{t}\!V_{ti}^{k} \\ &+ \frac{s}{2} \sum_{k=1}^{N} \, b_{k} \, h_{k} \, {}^{t}\!V_{si}^{k} \end{split}$$ where tV_{ti}^k = direction cosines of the director vector in the t-direction, of node k at time t ^tV_{si}^k = direction cosines of the director vector in the s-direction, of node k at time t Transparency 20-8 Since $$^tu_i = {}^tx_i - {}^0x_i$$, we have $$\begin{split} ^tu_i &= \sum_{k=1}^N \, h_k^{\ t} u_i^k + \frac{t}{2} \sum_{k=1}^N \, a_k^{\ } h_k^{\ } \, (^t\!V_{ti}^k - {}^0\!V_{ti}^k) \\ &+ \frac{s}{2} \sum_{k=1}^N \, b_k^{\ } h_k^{\ } \, (^t\!V_{si}^k - {}^0\!V_{si}^k) \end{split}$$ The vectors ${}^{o}\underline{V}_{t}^{k}$ and ${}^{o}\underline{V}_{s}^{k}$ can be calculated automatically from the initial geometry of the beam element if the element is assumed to lie initially in a plane. Also $$\begin{split} u_i &= \, ^{t + \Delta t} \! x_i \, - \, ^t \! x_i \\ &= \, \sum_{k=1}^N \, h_k \, u_i^k + \frac{t}{2} \, \sum_{k=1}^N \, a_k \, h_k \, V_{ti}^k + \frac{s}{2} \, \sum_{k=1}^N \, b_k \, h_k \, V_{si}^k \end{split}$$ Transparency 20-9 where V_{ti}^k and V_{si}^k are increments in the direction cosines of the vectors ${}^t\!\underline{V}_t^k$ and ${}^t\!\underline{V}_s^k$. These increments are given in terms of the incremental rotations $\underline{\theta}_k$, about the Cartesian axes, as $$\underline{V}_t^k = \underline{\theta}_k \times {}^t\!\underline{V}_t^k \ ; \ \underline{V}_s^k = \underline{\theta}_k \times {}^t\!\underline{V}_s^k$$ Using the above displacement and geometry interpolations, we can develop the straindisplacement matrices for the Cartesian strain components. A standard transformation yields the strain-displacement relations corresponding to the beam coordinates η, ξ, ζ. • The stress-strain relationship used for linear elastic material conditions is $$\underline{C}_{\text{beam}} = \begin{bmatrix} \textbf{F} & \textbf{0} & \textbf{0} \\ \textbf{0} & \textbf{Gk} & \textbf{0} \\ \textbf{0} & \textbf{0} & \textbf{Gk} \end{bmatrix}$$ k = shear correction factor since only the one normal and two transverse shear stresses are assumed to exist. Transparency 20-12 • The material stress-strain matrix for analysis of elasto-plasticity or creep would be obtained using also the condition that only the stress components $(\eta\eta)$, $(\eta\zeta)$ and $(\eta\xi)$ are non-zero. - Note that the kinematic assumptions in the beam element do not allow – so far – for cross-sectional out-of-plane displacements (warping). In torsional loading, allowing for warping is important. - We therefore amend the displacement assumptions by the following displacements: Torsion constant k in formula, $T = k G\theta a^3b$ | | k | | |----------|------------------|-------| | <u>b</u> | Analytical value | 4004 | | а | (Timoshenko) | ADINA | | 1.0 | 0.141 | 0.141 | | 2.0 | 0.229 | 0.230 | | 4.0 | 0·281 | 0.289 | | 10.0 | 0.312 | 0.323 | | 100.0 | 0.333 | 0.333 | Example: Twisting of a ring All dimensions in inches thickness = 0.2 $E=3\times 10^5~\text{psi}$ $\nu=0.3$ Transparency 20-16 Finite element mesh: Twelve 4-node iso-beam elements Demonstration Photograph 20-1 Close-up of ring deformations Use the T.L. formulation to rotate the ring 180 degrees: Force-deflection curve Pictorially, for a rotation of 180 degrees, we have Slide 20-1 #### MATERIAL DATA: GREENBERG et. al. $\varepsilon = \frac{\sigma}{E} \left[1 + \left(\frac{\sigma}{100} \right)^{2n} \right]$ E = 18,600; n = 9 ADINA: E = 18,600 ; ν = 0.0 σ_y = 93.33 ; Ε_T = 900 Elastic-plastic analysis of torsion problem Slide 20-2 Solution of torsion problem $(k = 100/\sqrt{3}, \theta = \text{rotation per unit length})$ # Use of the isoparametric beam and shell elements - The elements can be programmed for use with different numbers of nodes - For the beam, - 2, 3 or 4 nodes - For the shell, - 4, 8, 9, ..., 16 nodes - The elements can be employed for analysis of moderately thick structures (shear deformations are approximately taken into account). Transparency 20-20 The elements can be used for analysis of thin structures – but then only certain elements of those mentioned above should be used. For shells: Use only the 16-node element with 4 × 4 Gauss integration over the mid- For beams: Use 2-node beam element with 1-point Gauss integration along r-direction, or Use 3-node beam element with 2-point Gauss integration along r-direction, or Use 4-node beam element with 3-point Gauss integration along r-direction. Transparency 20-21 The reason is that the other elements become overly (and artificially) stiff when used to model thin structures and curved structures. Two phenomena occur: - · Shear locking - · Membrane locking - The 2-, 3- and 4-node beam elements with 1-, 2- and 3-point Gauss integration along the beam axes do not display these phenomena. - The 16-node shell element with 4 × 4 Gauss integration on the shell midsurface is relatively immune to shear and membrane locking (the element should not be distorted for best predictive capability). Transparency 20-24 • To explain shear locking, consider a 2-node beam element with exact integration (2-point Gauss integration corresponding to the r-direction). Transverse displacement: $$w = \frac{1}{2} (1 - r) \dot{w}_1 + \frac{1}{2} (1 + r) \dot{w}_2$$ Section rotation: $$\beta = \frac{1}{2} (1 - r)
\theta_1 + \frac{1}{2} (1 + r) \theta_2$$ Hence the transverse shear deformations are given by Transparency 20-25 Consider now the simple case of a cantilever subjected to a tip bending moment, modeled using one 2-node element: $$\frac{1}{\theta_1 = w_1 = 0} M$$ Here $$\beta = \frac{1}{2} (1 + r) \theta_2$$ $$\gamma = \frac{1}{L} w_2 - \frac{1}{2} (1 + r) \theta_2$$ #### We observe: - Clearly, γ cannot be zero at all points along the beam, unless θ_2 and w_2 are zero. But then also β would be zero and there would be no bending of the beam. - · Since for the beam - bending strain energy ∝ h³ - shear strain energy ∝ h any error in the shear strains (due to the finite element interpolation functions) becomes increasingly more detrimental as h becomes small. ## Transparency 20-28 For the cantilever example, the shear strain energy should be zero. As h decreases, the relative error in the shear strain increases rapidly and in effect, introduces an artificial stiffness that makes the model "lock." | h/L
L = 100 | θ _{analytical} | finite element solution (exact integration) | |----------------------|--|--| | 0.50
0.10
0.01 | 9.6×10^{-7} 1.2×10^{-4} 1.2×10^{-1} | 3.2×10^{-7} 2.4×10^{-6} 2.4×10^{-5} | Although we considered only one element in the solution, the same conclusion of locking holds for an assemblage of elements. Transparency 20-29 Example: Beam locking study L=10~m Square cross-section, height=0.1 m Two-node beam elements, full integration Plot tip deflection as a function of the number of elements: A remedy for the 2-node beam element is to use only 1-point Gauss integration (along the beam axis). This corresponds to assuming a constant transverse shear strain, (since the shear strain is only evaluated at the mid-point of the beam). The bending energy is still integrated accurately (since $\frac{\partial \beta}{\partial r}$ is correctly evaluated). | h/L | | finite element solution | |---------|----------------------------|-------------------------| | L = 100 | $ heta_{ ext{analytical}}$ | (1-point integration) | | 0.50 | 9.6×10^{-7} | 9.6×10^{-7} | | 0.10 | 1.2×10^{-4} | 1.2×10^{-4} | | 0.01 | 1.2×10^{-1} | 1.2×10^{-1} | Transparency 20-33 - The 3- and 4-node beam elements evaluated using 2- and 3-point integration are similarly effective. - We should note that these beam elements based on "reduced" integration are reliable because they do not possess any spurious zero energy modes. (They have only 6 zero eigenvalues in 3-D analysis corresponding to the 6 physical rigid body modes). - The formulation can be interpreted as a mixed interpolation of displacements and transverse shear strains. - Regarding membrane-locking we note that in addition to not exhibiting erroneous shear strains, the beam model must also not contain erroneous mid-surface membrane strains in the analysis of curved structures. - The beam elements with reduced integration also do not "membranelock". Transparency 20-36 Consider the analysis of a curved cantilever: The exactly integrated 3-node beam element, when curved, does contain erroneous shear strains and erroneous mid-surface membrane strains. As a result, when h becomes small, the element becomes very stiff. | h/R
R = 100 | $\theta_{\text{analytical}}$ $(\alpha = 45^{\circ})$ | finite element
solution: 3-node
element, 3-point
integration | finite element
solution: 3-node
element, 2-point
integration | |----------------------|--|---|---| | 0.50
0.10
0.01 | 7.5×10^{-7} 9.4×10^{-5} 9.4×10^{-2} | 6.8×10^{-7}
2.9×10^{-5}
4.1×10^{-4} | 7.4×10^{-7} 9.4×10^{-5} 9.4×10^{-2} | Transparency 20-37 • Similarly, we can study the use of the 4-node cubic beam element: | h/R
R = 100 | $\theta_{analytical}$ $(\alpha=45^{\circ})$ | finite element
solution: 4-node
element, 4-point
integration | finite element
solution: 4-node
element, 3-point
integration | |----------------------|--|---|---| | 0.50
0.10
0.01 | 7.5×10^{-7} 9.4×10^{-5} 9.4×10^{-2} | 7.4×10^{-7} 9.4×10^{-5} 9.4×10^{-2} | $7.4 \times 10^{-7} \\ 9.4 \times 10^{-5} \\ 9.4 \times 10^{-2}$ | We note that the cubic beam element performs well even when using full integration. Considering the analysis of shells, the phenomena of shear and membrane locking are also present, but the difficulty is that simple "reduced" integration (as used for the beam elements) cannot be recommended, because the resulting elements contain spurious zero energy modes. For example, the 4-node shell element with 1-point integration contains 6 spurious zero energy modes (twelve zero eigenvalues instead of only six). Transparency 20-40 Such spurious zero energy modes can lead to large errors in the solution that – unless a comparison with accurate results is possible – are not known and hence the analysis is unreliable. - For this reason, only the 16-node shell element with 4 × 4 Gauss integration on the shell mid-surface can be recommended. - The 16-node element should, as much as possible, be used with the internal and boundary nodes placed at their ¹/₃rd points (without internal element distortions). This way the element performs best. - Recently, we have developed elements based on the mixed interpolation of tensorial components. - The elements do not lock, in shear or membrane action, and also do not contain spurious zero energy modes. - We will use the 4-node element, referred to as the MITC4 element, in some of our demonstrative sample solutions. - For analysis of plates - For analysis of moderately thick shells and thin shells - The key step in the formulation is to interpolate the geometry and displacements as earlier described, but - To interpolate the transverse shear strain tensor components separately, with judiciously selected shape functions - To tie the intensities of these components to the values evaluated using the displacement interpolations rt transverse shear strain tensor component interpolation evaluated from displacement interpolations st transverse shear strain tensor component interpolation The MITC4 element - has only six zero eigenvalues (no spurious zero energy modes) - passes the patch test What do we mean by the patch test? The key idea is that any arbitrary patch of elements should be able to represent constant stress conditions. Transparency 20-45 #### THE PATCH TEST - We take an arbitrary patch of elements (some of which are geometrically distorted) and subject this patch to - the minimum displacement/rotn. boundary conditions to eliminate the physical rigid body modes, and - constant boundary tractions, corresponding to the constant stress condition that is tested. Transparency 20-48 We calculate all nodal point displacements and element stresses. The patch test is passed if the calculated element internal stresses and nodal point displacements are correct. Example: Spherical shell Transparency 20-52 Selection of director vectors: - One director vector is generated for each node. - The director vector for each node is chosen to be parallel to the radial vector for the node. - In two dimensions: Selection of displacement boundary conditions: Consider a material fiber that is parallel to a director vector. Then, if this fiber is initially located in the x-z plane, by symmetry this fiber must remain in the x-z plane after the shell has deformed: z material fiber at time 0 tvn material fiber at time t Transparency 20-53 Finite element mesh: Sixty-four MITC4 elements This condition is applied to each node on the x-z plane as follows: - A similar condition is applied to nodes initially in the y-z plane. - These boundary conditions are most easily applied by making each node in the x-z or y-z plane a 6 degree of freedom node. All other nodes are 5 degree of freedom nodes. - To prevent rigid body translations in the z-direction, the z displacement of one node must be set to zero. Linear elastic analysis results: • Displacement at point of load application is 0.0936 (analytical solution is 0.094). · Pictorially, z ∟y Transparency 20-57 Example: Analysis of an open (five-sided) box: Box is placed open-side-down/Add on a frictionless surface. Modeling of the box with shell elements: - Choose initial director vectors. - Choose 5 or 6 degrees of freedom for each node. - Choose boundary conditions. - Instead of input of director vectors, one for each node, it can be more effective to have ADINA generate mid-surface normal vectors. - If no director vector is input for a node, ADINA generates for each element connected to the node a nodal point mid-surface normal vector at that node (from the element geometry). - Hence, there will then be as many different nodal point mid-surface normal vectors at that node as there are elements connected to the node (unless the surface is flat). Nodal point mid-surface normal vectors for the box: - We use the option of automatic generation of element nodal point mid-surface normal vectors. - At a node, not on an edge, the result is one mid-surface normal vector (because the surface is flat). At an edge where two shell elements meet, two mid-surface normal vectors are generated (one for each element). two mid-surface normal vectors used at this node one mid-surface normal
vector used at this node Transparency 20-61 ### Degrees of freedom: Note added in preparation of study-guide In the new version of ADINA (ADINA 84 with an update inserted, or ADINA 86) the use of the 5 or 6 shell degree of freedom option has been considerably automatized: - The user specifies whether the program is to use 5 or 6 degrees of freedom at each shell mid-surface node N $\,$ - IGL(N).EQ.0→6 d.o.f. with the translations and rotations corresponding to the global (or nodal skew) system - IGL(N).EQ.1 \rightarrow 5 d.o.f. with the translations corresponding to the global (or nodal skew) system but the rotations corresponding to the vectors V_1 and V_2 - The user (usually) does not input any mid-surface normal or director vectors. The program calculates these automatically from the element mid-surface geometries. - The user recognizes that a shell element has no nodal stiffness corresponding to the rotation about the mid-surface normal or director vector. Hence, a shell midsurface node is assigned 5 d.o.f. unless - a shell intersection is considered - a beam with 6 d.o.f. is coupled to the shell node - a rotational boundary condition corresponding to a global (or skew) axis is to be imposed - a rigid link is coupled to the shell node For further explanations, see the ADINA 86 users manual. Displacement boundary conditions: Box is shown open-side-up. representative node not at a corner The state of Consider a linear elastic static analysis of the box when a uniform pressure load is applied to the top. We use the 128 element mesh shown (note that all hidden lines are removed in the figure): Transparency 20-64 We obtain the result shown below (again the hidden lines are removed): • The displacements in this plot are highly magnified. $<_{\mathsf{x}}^{\mathsf{y}}$ 4-node shell element Slide 20-3 Simply-supported plate under uniform pressure, L/h = 1000 Slide 20-4 Simply-supported plate under concentrated load at center, L/h = 1000 Slide 20-5 Clamped plate under uniform pressure, L/h = 1000 Slide 20-6 Clamped plate under concentrated load at center, L/h = 1000 Slide 20-7 Effect of mesh distortion on results in analysis of a simply-supported plate under uniform pressure (L/h = 1000) | MESH | FEM MO | FEM MO
Mmax Mmax | FEM MO
Mmin Mmin | |---------|--------|---------------------|---------------------| | 4 X 4 | 0. 879 | 0.873 | 0.852 | | 8 X 8 | 0. 871 | 0.928 | 0.922 | | 16 X 16 | 0.933 | 0.961 | 0.919 | | 32X32 | 0.985 | 0.989 | 0.9 90 | Solution of skew plate at point C using uniform skew mesh Slide 20-9 | MESH | wc wc | Mmax Mmax | Mmin Mo | |-------|-------|-----------|---------| | 2 X 2 | 0.984 | 0.717 | 0.602 | | 4 × 4 | 0.994 | 0.935 | 0.878 | Solution of skew plate using a more effective mesh Slide **20-11** Large displacement analysis of a cantilever Slide 20-17 Slide 20-19 torsional moment. # A Demonstrative Computer Session Using ADINA— Linear Analysis #### Contents: - Use of the computer program ADINA for finite element analysis, discussion of data preparation, program solution, and display of results - **■** Capabilities of ADINA - Computer laboratory demonstration—Part I - Linear analysis of a plate with a hole for the stress concentration factor - Data input preparation and mesh generation - Solution of the model - Study and evaluation of results using plots of stresses, stress jumps, and pressure bands #### Textbook: ### References: ### Appendix The use of the ADINA program is described and sample solutions are given in Bathe, K. J., "Finite Elements in CAD - and ADINA," Nuclear Engineering and Design, to appear. ADINA, ADINAT, ADINA-IN, and ADINA-PLOT Users Manuals, ADINA Verification Manual, and ADINA Theory and Modeling Guide, ADINA Engineering, Inc., Watertown, MA 02172, U.S.A. Proceedings of the ADINA Conferences, (Bathe, K. J., ed.) Computers & Structures 13, 5-6, 1981 17, 5-6, 1983 21, 1-2, 1985 **References:** (continued) The use of pressure band plots to evaluate meshes is discussed in Sussman, T., and K. J. Bathe, "Studies of Finite Element Procedures—Stress Band Plots and the Evaluation of Finite Element Meshes," *Engineering Computations*, to appear. ## A FINITE ELEMENT ANALYSIS — LINEAR SOLUTION - We have presented a considerable amount of theory and example solution results in the lectures. - The objective in the next two lectures is to show how an actual finite element analysis is performed on the computer. Transparency 21-1 - We cannot discuss in detail all the aspects of the analysis, but shall summarize and demonstrate on the computer the major steps of the analysis, and concentrate on - possible difficulties - possible pitfalls - general recommendations We will use as the example problem the plate with a hole already considered earlier, and perform linear and nonlinear analyses - elastic analysis to obtain the stress concentration factor - elasto-plastic analysis to estimate the limit load - an analysis to investigate the effect of a shaft in the plate hole The first step for a finite element analysis is to select a computer program. We use the ADINA system. | ADINA-IN | to prepare, generate
the finite element
data | |------------|--| | ADINA | to solve the finite element model | | ADINA-PLOT | to display numeri-
cally or graphically
the solution results | Transparency 21-5 User —— ADINA-IN —— generated ADINA input file User types into terminal ADINA-IN commands interactively or for batch mode processing. User checks input and generated data on graphics display terminal. - ADINA-IN generates the input data for ADINA. - The input data is checked internally in ADINA-IN for errors and consistency and is displayed as per request by the user. - The degree of freedom numbers are generated (for a minimum bandwidth). · User runs ADINA to calculate the response of the finite element model. ADINA writes the model data and calculated results on an output file and stores the model data and calculated results on the porthole file. • User runs ADINA-PLOT to access the output data and display selected results; displacements, stresses, mode shapes, maxima, . . . ## A brief overview of ADINA - · Static and dynamic solutions - · Linear and nonlinear analysis - Small and very large finite element models can be solved. The formulations, finite elements and numerical procedures used in the program have largely been discussed in this course. Transparency 21-12 # DISPLACEMENT ASSUMPTIONS - · Infinitesimally small displacements - Large displacements/large rotations but small strains - Large deformations/large strains ## **MATERIAL MODELS** Isotropic Linear Elastic Orthotropic Linear Elastic Isotropic Thermo-Elastic Curve Description Model for Analysis of Geological Materials Concrete Model Transparency 21-13 ## **MATERIAL MODELS** Isothermal Plasticity Models Thermo-Elastic-Plastic and Creep Models Nonlinear Elastic, Incompressible Models **User-Supplied Models** Transparency 21-17 Transparency 21-20 # A SUMMARY OF IMPORTANT OBSERVATIONS - We need to check the finite element data input carefully - prior to the actual response solution run, and - after the response solution has been obtained by studying whether the desired boundary conditions are satisfied, whether the displacement and stress solution is reasonable (for the desired analysis). - We need to carefully evaluate and interpret the calculated response - study in detail the calculated displacements and stresses along certain lines, study stress jumps - stress averaging, stress smoothing should only be done after the above careful evaluation Transparency 21-24 ## Data for Construction of 64 Element Mesh: Finite element mesh to be generated using ADINA-IN: Mesh contains 64 elements, 288 nodes. Transparency 21-25 Demonstration Photograph 21-1 Finite Element Research Group Laboratory computer configuration ADINA Demonstration 21-1 Input data ``` QUARTER PLATE WITH HOLE - 64 ELEMENTS 2261001110 1 0 1 1.0000000 C*** MASTER CONTROL 50 30 3 LOAD CONTROL 0 MASS AND DAMPING CONTROL . 0 C*** 5 EIGENVALUE SOLUTION CONTROL TIME INTEGRATION METHOD CONTROL 20.5000000000.25000000 INCREMENTAL SOLUTION CONTROL 1 210 15.0010000000.0100000000.05 PRINT-OUT CONTROL 1 1 ``` Transparency 21-26 (Repeat 21-25) Finite element mesh to be generated using ADINA-IN: Mesh contains 64 elements, 288 nodes. ## Stress vector output: Example The length of the line is proportional to the magnitude of the stress. Transparency 21-27 ADINA Demonstration 21-2 Deformed mesh plot Plate with hole: Schematic drawing Transparency 21-29 (Repeat 21-25) Finite element mesh to be generated using ADINA-IN: • Mesh contains 64 elements, 288 nodes. Stress point numbers and integration point numbers for element 57 Transparency 21-30 ## Behavior of stresses near the stress concentration: Maximum principal stress calculation: $$\sigma_1 = \frac{\sigma_{yy} + \sigma_{zz}}{2} + \sqrt{\frac{(\sigma_{yy} - \sigma_{zz})^2}{4} + \sigma_{yz}^2}$$ Transparency 21-33 (Repeat 21-30) Stress point numbers and integration point numbers for element 57 ``` RESULTANT = SMAX ARITHMETIC EXPRESSION: (TYY+TZZ)/TWO+SQRT((TYY-TZZ)*(TYY-TZZ)/FOUR+TYZ*TYZ) TYY = YY-STRESS TZZ = ZZ-STRESS TYZ = YZ-STRESS TMO = 2.000000 FOUR = 4.000000 EXTREME ELEMENT RESULTS PER ELEMENT GROUP FOR WHOLE MODEL INTERVAL TSTART= 1.00000 TEND= 1.00000 SCANNED FOR ABSOLUTE MAXIMUM ELEMENT GROUP NO = 1 (2-D SOLID) LISTED RESULTS ARE MEASURED IN GLOBAL COORDINATE SYSTEM RESULTANT SMAX ELEMENT POINT TIME STEP 0.345151E+03 57 4 0.100000E+01 1 ``` # ADINA Demonstration 21-3 Close-up of calculations Finite element mesh to be generated using ADINA-IN: Mesh contains 64 elements, 288 nodes. Transparency 21-34 (Repeat 21-25) (Repeat 2-33) - To be confident that the stress discontinuities are small everywhere, we should plot stress jumps along each line in the mesh. - An alternative way of presenting stress discontinuities is by means of a pressure band plot:
- Plot bands of constant pressure where pressure = $$\frac{-(\tau_{xx} + \tau_{yy} + \tau_{zz})}{3}$$ Transparency 21-36 (Repeat 2-35) Sixty-four element mesh: Pressure band plot ADINA Demonstration 21-4 Close-up of pressure bands # A SUMMARY OF IMPORTANT OBSERVATIONS - We need to check the finite element data input carefully - prior to the actual response solution run, and - after the response solution has been obtained by studying whether the desired boundary conditions are satisfied, whether the displacement and stress solution is reasonable (for the desired analysis). Transparency 21-37 (Repeat 21-22) Transparency 21-38 (Repeat 21-23) - We need to carefully evaluate and interpret the calculated response - study in detail the calculated displacements and stresses along certain lines, study stress jumps - stress averaging, stress smoothing should only be done after the above careful evaluation # A Demonstrative Computer Session Using ADINA— Nonlinear Analysis #### Contents: - Use of ADINA for elastic-plastic analysis of a plate with a hole - Computer laboratory demonstration—Part II - Selection of solution parameters and input data preparation - Study of the effect of using different kinematic assumptions (small or large strains) in the finite element solution - Effect of a shaft in the plate hole, assuming frictionless contact - Effect of expanding shaft - Study and evaluation of solution results #### Textbook: #### References: #### Appendix The use of the ADINA program is described and sample solutions are given in Bathe, K. J., "Finite Elements in CAD - and ADINA," Nuclear Engineering and Design, to appear. ADINA, ADINAT, ADINA-IN, and ADINA-PLOT Users Manuals, ADINA Verification Manual, and ADINA Theory and Modeling Guide, ADINA Engineering, Inc., Watertown, MA 02172, U.S.A. **References:** (continued) Proceedings of the ADINA Conferences, (K. J. Bathe, ed.) $Computers \ \& \ Structures$ 13, No. 5-6, 1981 17, No. 5-6, 1983 21, No. 1-2, 1985 The contact solution procedure used in the analysis of the plate with the shaft is described in Bathe, K. J., and A. Chaudhary, "A Solution Method for Planar and Axisymmetric Contact Problems," *International Journal for Numerical Methods in Engineering*, 21, 65–88, 1985. ## A FINITE ELEMENT ANALYSIS — NONLINEAR SOLUTION - We continue to consider the plate with a hole. - A nonlinear analysis should only be performed once a linear solution has been obtained. The linear solution checks the finite element model and yields valuable insight into what nonlinearities might be important. Transparency 22-1 ## Plate with hole: Schematic drawing Transparency 22-2 (Repeat 21-4) (Repeat 21-25) Finite element mesh to be generated using ADINA-IN: Mesh contains 64 elements, 288 nodes. - Some important considerations are now - What material model to select - What displacement/strain assumption to make - What sequence of load application to choose - What nonlinear equation solution strategy and convergence criteria to select - We use the ADINA system to analyse the plate for its elastoplastic static response. - We also investigate the effect on the response when a shaft is placed in the plate hole. ## Some important observations: - The recommendations given in the linear analysis are here also applicable (see previous lecture). - For the nonlinear analysis we need to, in addition, be careful with the - sequence and incremental magnitudes of load application - choice of convergence tolerances Transparency 22-6 Limit load calculations: • Plate is elasto-plastic. Transparency 22-8 Elasto-plastic analysis: Material properties (steel) This is an idealization, probably inaccurate for large strain conditions (e > 2%). ## Load history: - Load is increased 50 MPa per load step. - · Load is released in one load step. Transparency 22-9 USER-SUPPLIED MATERIAL 1 PLASTIC E=207000 NU=0.3 ET=2070 YIELD=740 MATERIAL 1 PLASTIC E=207000 NU=0.3 ET=2070 YIELD=740 DELETE EQUILIBRIUM-ITERATIONS DELETE EQUILIBRIUM-ITERATIONS ADINA ADINA ADINA Demonstration 22-1 Input data Transparency 22-10 (Repeat 21-25) Finite element mesh to be generated using ADINA-IN: • Mesh contains 64 elements, 288 nodes. Transparency 22-11 Load history: - Load is increased 50 MPa per load step. - · Load is released in one load step. - The BFGS method is employed for each load step. Convergence criteria: Energy: $$\frac{\Delta\underline{\boldsymbol{U}}^{(i)^T} \big[^{t+\Delta t}\underline{\boldsymbol{R}} - {}^{t+\Delta t}\underline{\boldsymbol{F}}^{(i-1)}\big]}{\Delta\underline{\boldsymbol{U}}^{(1)^T} \big[^{t+\Delta t}\underline{\boldsymbol{R}} - {}^{t}\underline{\boldsymbol{F}}\big]} \leq \text{ETOL} = 0.001$$ Force: $$\frac{\|^{t+\Delta t}\underline{R}-{}^{t+\Delta t}\underline{F}^{(i-1)}\|_2}{RNORM} \leq RTOL = 0.01$$ $$(\mathsf{RNORM} = \underbrace{100\ \mathsf{MPa}}_{\substack{\mathsf{nominal}\\ \mathsf{applied}\\ \mathsf{load}}} \times \underbrace{0.05\ \mathsf{m}}_{\substack{\mathsf{width}}} \times \underbrace{0.01\ \mathsf{m}}_{\substack{\mathsf{thickness}}}$$ Transparency 22-12 ADINA Demonstration 22-2 Plot of plasticity in plate with hole ## Stress vector output: Example The length of the line is proportional to the magnitude of the stress. #### ADINA Demonstration 22-3 Close-up of stress vectors around hole Finite element mesh to be generated using ADINA-IN: Mesh contains 64 elements, 288 nodes. Transparency 22-14 (Repeat 21-25) M.N.O. Materially-Nonlinear-Only analysis T.L. Total Lagrangian formulation U.L. Updated Lagrangian formulation Transparency 22-15 (Repeat 21-25) Finite element mesh to be generated using ADINA-IN: Mesh contains 64 elements, 288 nodes. ADINA Demonstration 22-4 Elasto-plastic load displacement response - The shaft is initially flush with the hole. - We assume no friction between the shaft and the hole. ### Detail of shaft: Transparency 22-18 Solution procedure: Full Newton iterations without line searches Convergence criteria: Energy: ETOL = 0.001 Force: RTOL = 0.01, RNORM = 0.05 N Incremental contact force: $$\frac{\|\underline{\Delta}\underline{R}^{(i-1)} - \underline{\Delta}\underline{R}^{(i-2)}\|_2}{\|\underline{\Delta}\underline{R}^{(i-1)}\|_2} \leq RCTOL = 0.05$$ ADINA Demonstration 22-5 Deformed mesh ADINA Demonstration 22-6 Close-up of deformations at contact Glossary # Glossary of Symbols Contents: - **■** Glossary of Roman Symbols - **■** Glossary of Greek Symbols # **Glossary of Roman Symbols** | 2 | The Euclidean norm or "two-norm." For a vector $\underline{\mathbf{a}}$ $\ \underline{\mathbf{a}}\ _2 = \sqrt{\sum_k (\mathbf{a}_k)^2}$ | |---------------------------------|--| | ~ | When used above a symbol, denotes "in the rotated coordinate system." | | a _k , b _k | Cross-sectional dimensions of a beam at nodal point k . | | ¹A | Cross-sectional area at time t . | | <u>A</u> (i) | A square matrix used in the BFGS method. | | <u>B</u> L | Linear strain-displacement matrix used in linear or M.N.O. analysis. | | о <mark>В</mark> ь | Linear strain-displacement matrix used in the T.L. formulation. | | <u>‡</u> B∟ | Linear strain-displacement matrix used in the U.L. formulation. | | t <u>B</u> L0, t <u>B</u> L1 | Intermediate matrices used to compute ${}_{0}^{\dagger}B_{L}$; ${}_{0}^{\dagger}B_{L1}$ contains the "initial displacement effect." | | å <u>B</u> NL | Nonlinear strain-displacement matrix used in the T.L. formulation, | | ¹ <u>B</u> NL | Nonlinear strain-displacement matrix used in the U.L. formulation. | | С | The wave speed of a stress wave (dynamic analysis). | | Cii | Diagonal element corresponding to the <i>i</i> th degree of freedom in the damping matrix (dynamic analysis). | | <u>C</u> | The damping matrix (dynamic analysis). | | C ₁ , C ₂ | The Mooney-Rivlin material constants (for rubberlike materials). | |---------------------------------|---| | оСij | Components of the Cauchy-Green deformation tensor (basic concepts of Lagrangian continuum mechanics). | | <u>C</u> e | Matrix containing components of the constitutive tensor referred to a local coordinate system. | | C | Matrix containing components of the constitutive tensor, used in linear and M.N.O. analysis. | | <u>о</u> С | Matrix containing components of the constitutive tensor ${}_0C_{ijrs}$, used in the T.L. formulation. | | t <u>C</u> | Matrix containing components of the constitutive tensor ${}_tC_{ijrs}$, used in the U.L. formulation. | | Cirs | Components of elastic constitutive tensor relating $d\sigma_{ij}$ to de_{rs}^{E} | | C _{ijrs} | Components of elasto-plastic constitutive tensor relating $d\sigma_{ij}$ to de_{rs} | | oC _{ijrs} | Components of tangent constitutive tensor relating doS _{ij} to doE _{rs} | | tC _{ijrs} | Components of tangent constitutive tensor relating d_tS_{ij} to $d_t\epsilon_{rs}$ | | DNORM | Reference displacement used with displacement convergence tolerance DTOL (solution of nonlinear | | DMNORM | equations). DMNORM is the reference rotation used when rotational degrees of freedom are present. | | DTOL | Convergence tolerance used to measure convergence of the displacements and rotations (solution of nonlinear equations). | | ETOL | Convergence tolerance used to measure convergence in energy (solution of nonlinear equations). | |---------------------------|--| | f(x) | A function that depends on X (solution of nonlinear equations). | | <u>f(U</u>) | A vector function that depends on the column vector \underline{U} (solution of nonlinear equations). | | ţВ, ţS | Components of externally applied forces per unit current volume and unit current surface area. | | ¹F | Yield function
(elasto-plastic analysis). | | ^t <u>F</u> | Vector of nodal point forces equiva-
lent to the internal element stresses. | | <u>₀</u> E | Vector of nodal point forces equivalent to the internal element stresses (T.L. formulation). | | £ | Vector of nodal point forces equivalent to the internal element stresses (U.L. formulation). | | <u>F</u> _I (t) | Column vector containing the inertia forces for all degrees of freedom (dynamic analysis). | | <u>F</u> ⊳(t) | Column vector containing the damping forces for all degrees of freedom (dynamic analysis). | | F _E (t) | Column vector containing the elastic forces (nodal point forces equivalent to element stresses) for all degrees of freedom (dynamic analysis). | | g | Acceleration due to gravity. | | G _{ab} | Shear modulus measured in the local coordinate system <i>a-b</i> (orthotropic analysis). | | h | Cross-sectional height (beam element). | | h _k | Interpolation function corresponding to nodal point k . | | | f(x) f(U) t ^β _i , t ^s _i tF tF tF Er(t) Gab h | | H | Displacement interpolation matrix (derivation of element matrices). | ¹ <u>Ŕ</u> | Effective stiffness matrix, including inertia effects and nonlinear effects | |-------------------------------------|---|---------------------------------|--| | H ^s | Displacement interpolation matrix for surfaces with externally applied tractions (derivation of element matrices). | <u> </u> | (dynamic substructure analysis). <u>K</u> after static condensation (dynamic substructure analysis). | | I_1, I_2, I_3 | The invariants of the Cauchy-Green deformation tensor (analysis of rubberlike materials). | ' <u>K</u> c | ${}^{t}\hat{\underline{K}}$ after static condensation (dynamic substructure analysis). | | J | The Jacobian matrix relating the X _i coordinates to the isoparametric coor- | ^t <u>K</u> nonlinear | Nonlinear stiffness effects due to geometric and material nonlinearities (dynamic substructure analysis). | | | dinates (two- and three-dimensional solid elements). | t _L | Length, evaluated at time t . | | .Ω | The Jacobian matrix relating the ^t X _i coordinates to the isoparametric coordinates (two- and three-dimensional solid elements in geometrically | L _e | Element length, chosen using the relation $L_e = c \Delta t$ (dynamic analysis). | | | nonlinear analysis). | L _w | Wave length of a stress wave (dynamic analysis). | | k | Shear factor (beam and shell analysis). | m _{ii} | Lumped mass associated with degree of freedom i (dynamic analysis). | | ^t Κ | The tangent stiffness matrix, including all geometric and material nonlinearities. | <u>M</u> | The mass matrix (dynamic analysis). | | <u>⁵</u> K | The tangent stiffness matrix, including all geometric and material non-linearities (T.L. formulation). | ^t p _{ij} | Quantities used in elasto-plastic analysis, defined as | | <u> </u> | The tangent stiffness matrix, including all geometric and material non- | | $^{t}p_{ij} = -\frac{\partial^{t}F}{\partial^{t}e_{ij}^{p}}\Big _{^{t}\sigma_{ij} \text{ fixed}}$ | | δ <u>Κ</u> ι , ξ <u>Κ</u> ι | The contribution to the total tangent stiffness matrix arising from the linear part of the Green-Lagrange strain tensor. | ¹q _{ij} | Quantities used in elasto-plastic analysis defined as ${}^tq_{ij} = \frac{\partial^t F}{\partial^t \sigma_{ij}} \bigg _{{}^te^P_{ij} \text{ fixed}}$ | | | ${}_{0}^{L}\underline{K_{L}}$ - T.L. formulation ${}_{1}^{L}\underline{K_{L}}$ - U.L. formulation | r,s,t | Isoparametric coordinates (two- and three-dimensional solid elements, shell elements). | | ¹K _{NL} , ¹K _{NL} | The contribution to the total tangent stiffness matrix arising from the nonlinear part of the Green-Lagrange strain tensor. | <u>₫</u> <u>R</u> | Rotation matrix (polar decomposition of ${}^{\text{t}}\underline{\underline{C}}$). | | | $_0^{t}\underline{K}_{NL}$ - T.L. formulation | <u>R</u> | Reference load vector (automatic load step incrementation). | | | tK _{NL} - U.L. formulation | <u>'R</u> | Applied loads vector, corresponding | | <u> </u> | Effective stiffness matrix, including inertia effects but no nonlinear effects (dynamic substructure analysis). | | to time t. | | '9 R | Virtual work associated with the applied loads, evaluated at time t . | Tn | Smallest period in finite element assemblage (dynamic analysis). | |---|---|-----------------------------|---| | RNORM, | Reference load used with force tolerance RTOL (solution of nonlinear equations). | ^t u _i | Total displacement of a point in the <i>i</i> th direction. | | RMNORM | Reference moment used when rotational degrees of freedom are present. | ^t ü _i | Total acceleration of a point in the <i>i</i> th direction (dynamic analysis). | | RTOL | Convergence tolerance used to measure convergence of the out-of-bal- | Ui | Incremental displacement of a point in the <i>i</i> th direction. | | | ance loads (solution of nonlinear equations). | u _i s | Components of displacement of a point upon which a traction is applied. | | ^t s _{ij} | Deviatoric stress evaluated at time t (elasto-plastic analysis). | t oui, | Derivatives of the total displace-
ments with respect to the original | | 'S | Surface area, evaluated at time t. | | coordinates (T.L. formulation). | | o ^t S _{ij} | Components of 2nd Piola-Kirchhoff stress tensor, evaluated at time t and referred to the original configuration | oUi,j. | Derivatives of the incremental displacements with respect to the original coordinates (T.L. formulation). | | | (basic Lagrangian continuum mechanics). | tU _{i,j} | Derivatives of the incremental displacements with respect to the current coordinates (U.L. formulation). | | ₀ S _{ij} , _t S _{ij} | Components of increments in the 2nd Piola-Kirchhoff stress tensors: | ui ^k | Incremental displacement of nodal | | | $_{0}S_{ij} = {}^{t+\Delta_{0}}S_{ij} - {}^{t}S_{ij}$ | | point k in the ith direction. | | | $_{t}S_{ij}={}^{t+\Delta t}_{t}S_{ij}-{}^{t}T_{ij}$ | ${}^{t}u_{i}^{k}$ | Total displacement of nodal point k in the i th direction at time t . | | <u>\$</u> | Matrix containing the components of the 2nd Piola-Kirchhoff stress tensor (T.L. formulation). | <u>û</u> | A vector containing incremental nodal point displacements. | | δ <u>Ŝ</u> | Vector containing the components of the 2nd Piola-Kirchhoff stress tensor | * <u>û</u> | A vector containing total nodal point displacements at time t. | | | (T.L. formulation). | <u>'Ü</u> | Vector of nodal point accelerations, evaluated at time t . | | t , t+Δt | Times for which a solution is to be obtained in incremental or dynamic analysis. The solution is presumed | ť <u>ὑ</u> | Vector of nodal point velocities, evaluated at time t . | | | known at time t and is to be determined for time $t + \Delta t$. | <u>'U</u> | Vector of nodal point displacements, evaluated at time t. | | ŧ | "Effective" time (creep analysis). | <u>⊹∪</u> | Stretch matrix (polar decomposition | | Ţ | Displacement transformation matrix (truss element). | | of oC). | | T _{co} | Cut-off period (the smallest period to be accurately integrated in dynamic analysis). | <u>v</u> ⁽ⁱ⁾ | Column vector used in the BFGS method (solution of nonlinear equations). | | ¹V | Volume evaluated at time t . | |---|--| | ¹ <u>V</u> k , ¹Vk | Director vector at node k evaluated at time t (shell analysis). | | ⊻kn | Increment in the director vector at node k (shell analysis). | | ¹ <u>V</u> ⁴, ¹ <u>V</u> 2 | Vectors constructed so that ${}^{t}\underline{V}_{1}^{k}$, ${}^{t}\underline{V}_{2}^{k}$ and ${}^{t}\underline{V}_{n}^{k}$ are mutually perpendicular (shell analysis). | | ¹Vs , ¹Vt | Director vectors in the s and t directions at node k , evaluated at time t (beam analysis). | | \underline{V}_{s}^{k} , \underline{V}_{t}^{k} | Increments in the director vectors in the s and t directions at node k (beam analysis). | | <u>w</u> (i) | Vector used in the BFGS method (solution of nonlinear equations). | | W | Preselected increment in external work (automatic load step incrementation). | | ů W | Strain energy density per unit original volume, evaluated at time t (analysis of rubberlike materials). | | ^t W _P | Plastic work per unit volume (elastoplastic analysis). | | ^t x _i | Coordinate of a material particle in the i th direction at time t . | | ^t Xi ^k | Coordinate of node k in the i th direction at time t . | | oʻxi,j, oʻXij | Components of the deformation gradient tensor, evaluated at time t and referred to the configuration at time 0 . | | °x _{i,j} , ° <u>X</u> _{ij} | Components of the inverse deforma-
tion gradient tensor. | # **Glossary of Greek Symbols** | α | Parameter used in the α -method of time integration. $\alpha = 0 - \text{Euler forward method}$ $\alpha = \frac{1}{2} - \text{Trapezoidal rule}$ $\alpha = 1 - \text{Euler backward method}$ | <u>∂f</u>
∂ <u>Ū</u> | |-------------------------|---|---| |
α_{k} | Incremental nodal point rotation for node k about the ${}^{t}\underline{V}_{1}^{k}$ vector (shell analysis). | δ | | ^t α | Coefficient of thermal expansion (thermo-elasto-plastic and creep analysis). | δ _{ij} | | β | Line search parameter (used in the solution of nonlinear equations). | <u>δ</u> ⁽ⁱ⁾ | | β | Section rotation of a beam element. | $\Delta \ell$ | | βк | Incremental nodal point rotation for node k about the ${}^{1}V_{2}^{k}$ vector (shell analysis). | Δt | | γ | Transverse shear strain in a beam element. | Δt_{cr} | | γ | Fluidity parameter used in viscoplastic analysis. | Δ <u>U</u> ⁽ⁱ⁾ | | γ | Related to the buckling load factor λ through the relationship $\gamma = \frac{\lambda-1}{\lambda}$ | $\Delta \overline{ar{\mathbb{U}}}$ | | tγ | Proportionality coefficient between the creep strain rates and the total deviatoric stresses (creep analysis). | $\Delta ar{\underline{U}}^{(i)}$, $\Delta ar{ar{\underline{U}}}$ | | <u>Υ</u> ⁽ⁱ⁾ | Force vector in the BFGS method. | | | <u>∂f</u>
∂ <u>Ū</u> | A square coefficient matrix with entries $\left[\frac{\partial \underline{f}}{\partial \underline{U}}\right]_{ij} = \frac{\partial f_i}{\partial U_j}$ (solution of nonlinear equations). | |--|---| | δ | When used before a symbol, this denotes "variation in." | | δ_{ij} | Kronecker delta; $\delta_{ij} = \begin{cases} 0; & i \neq j \\ 1; & i = j \end{cases}$ | | $ar{\delta}^{(i)}$ | Displacement vector in the BFGS method. | | $\Delta \ell$ | "Length" used in the constant arclength constraint equation (automatic load step incrementation). | | Δt | Time step used in incremental or dynamic analysis. | | $\Delta t_{\sf cr}$ | Critical time step (dynamic analysis). | | Δ <u>U</u> ⁽ⁱ⁾ | Increment in the nodal point displacements during equilibrium iterations $\Delta \underline{U}^{(i)} = {}^{t+\Delta t}\underline{U}^{(i)} - {}^{t+\Delta t}\underline{U}^{(i-1)}$ | | $\Delta ar{\mathbb{U}}$ | Vector giving the direction used for line searches (solution of nonlinear equations). | | $\Delta ar{ar{U}}^{(i)}, \Delta ar{ar{ar{U}}}$ | Intermediate displacement vectors used during automatic load step incrementation. | | $\Delta \underline{X}^{(k)}$ | Increment in the modal displacements (mode superposition analysis). | |--------------------------------|---| | ΔΤ | A time step corresponding to a sub-
division of the time step Δt (plastic
analysis). | | t ₀ E _{ij} | Components of Green-Lagrange strain tensor, evaluated at time t and referred to time 0. | | ο <mark>ε</mark> ij | Components of increment in the Green-Lagrange strain tensor: ${}_{0}\epsilon_{ij}={}^{t+\Delta t}{}_{0}\epsilon_{ij}-{}_{0}^{t}\epsilon_{ij}$ | | ξεij | Components of Almansi strain tensor. | | η, ξ, ζ | Convected coordinate system (used in beam analysis). | | οηij | The "nonlinear" part of the increment in the Green-Lagrange strain tensor. | | θ _k | Nodal point rotation for node k (two-dimensional beam analysis). | | θ ^k | Nodal point rotation for node k about the x_i axis (beam analysis). | | tθ | Temperature at time t (thermo-
elasto-plastic and creep analysis). | | t _K | Variable in plastic analysis. | | λ | Lamé constant (elastic analysis). $\lambda = \frac{E \nu}{(1 + \nu)(1 - 2\nu)}$ | | λ | Scaling factor used to scale the stiffness matrix and load vector in linearized buckling analysis. | | tλ | Load factor used to obtain the current loads from the reference load vector: ${}^{t}\underline{R} = {}^{t}\lambda\underline{R}$ | | | (automatic load step incrementation). | | ^t λ | Proportionality coefficient in calculation of the plastic strain increments (plastic analysis). | |------------------|---| | μ | Lamé constant (elastic analysis). $\mu = \frac{E}{2(1 + \nu)}$ | | υ | Poisson's ratio. | | Vab | Poisson's ratio referred to the local coordinate system <i>a-b</i> (orthotropic analysis). | | П | Total potential energy (fracture mechanics analysis). | | tρ | Mass density, evaluated at time t . | | ^t ơij | Components of stress tensor evaluated at time t in M.N.O. analysis. | | ^t õ | Effective stress (used in creep analysis) ${}^t\!\bar{\sigma} = \sqrt{\frac{3}{2}} {}^t\!s_{ij} {}^t\!s_{ij}$ | | t _{σy} | Yield stress at time t (plastic analysis). | | σ_{y} | Initial yield stress (plastic analysis). | | Σm | Denotes "sum over all elements." | | ¹ <u>\$</u> | Vector containing the components of the stress tensor in M.N.O. analysis. | | τ | (as a left superscript)—Denotes a time. | | | Examples | | | ${}^{T}\underline{K}_{,}{}^{T}\underline{R}_{,}$ - linearized buckling analysis ${}^{T}\underline{K}_{,}$ - solution of nonlinear equations | | 'τ _{ij} | Components of Cauchy stress tensor, evaluated at time t . | | t <u>T</u> | Matrix containing the components of
the Cauchy stress tensor (U.L.
formulation). | | <u>'Î</u> | Vector containing the components of the Cauchy stress tensor (U.L. formulation). | |----------------------------|--| | Φ | A vector containing the nodal point displacements corresponding to a buckling mode shape. | | Φ_i | A vector containing the nodal point displacements corresponding to the <i>i</i> th mode shape. | | ω_{i} | Natural frequency of the <i>i</i> th mode shape. | | ω _n | Largest natural frequency of element m . | | $(\omega_{n}^{(m)})_{max}$ | Largest natural frequency of all individual elements. | MIT OpenCourseWare http://ocw.mit.edu Resource: Finite Element Procedures for Solids and Structures Klaus-Jürgen Bathe The following may not correspond to a particular course on MIT OpenCourseWare, but has been provided by the author as an individual learning resource. For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.