Topic 14

Solution of
Nonlinear
Dynamic
Response—Part |
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Mode superposition:

» The modes of vibration change due to
the nonlinearities, however we can
employ the modes at a particular time
as basis vectors (generalized
displacements) to express the
response.

» This method is effective when, in
nonlinear analysis,

— the response lies in only a few
vibration modes (displacement
patterns)

—the system has only local
nonlinearities

\

\

M t+AtU(k) + TK AU(k) —

The governing equations in implicit time
integration are (assuming no damping
matrix)

trAtp _ tHAtpk—1)

Let now T = 0, hence the method of
solution corresponds to the initial stress
method.
Using
S
t+Atg — 2 gz +At

OKQi = =|2M91
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The modal transformation gives
t+AtX(k) + QZ Ax(k) — (DT (t+AtR _ t+AtF(k—1))
equations cannot be solved

individually over the time
span

~

\—

\

where Coupling!
2
2 _ | W,
0= %
Q - [Qr Qs]
t+Ath — [t+Atxr ves t+Atxs]
Typical problem:
|
7 D

7 A
Pipe whip: Elastic-plastic pipe
Elastic-plastic stop

* Nonlinearities in pipe and stop. But
the displacements are reasonably well
contained in a few modes of the
linear (initial) system.

_/
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Substructuring

* Procedure is used with implicit time
integration. All linear degrees of
freedom can be condensed out prior
to the incremental solution.

» Used for local nonlinearities:
Contact problems
Nonlinear support problems

\—

N
J

Example: @ -“masteér” node
e — Substructure
internal node
@
®
Substructure
model
/7
Ten story
building Finite element

model
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/entries from substructures

T i _m-aster dof
substructure
internal dof

\ ‘master dof
substructure
\ internal dof
// master dof
e / il |
v
K nonlinear
elements

\—

N

Here

tK = (K + K4t_2 M) + tKnonlinear

total mass || nonlinear stiffness
matrix effects

all linear o
element contributions

— W t
- K + 5 nonlinear

/
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After condensing out all substructure
internal degrees of freedom, we obtain
a smaller system of equations:

entries from condensed

/ésubstructures

master dof

N

Major steps in solution:

* Prior to step-by-step solution,
establish K for all mass and constant
stiffness contributions. Statically
condense out internal substructure
degrees of freedom to obtain K.

We note that

1> _ t
Kc - Kc + Knonlinear
= 7
condensed é all nonlinear effects

. 4
fomK=K+-5M

all linear—" \total mass matrix

element contributions

VAN




Topic Fourteen 14-9

[

* For each time step solution (and each
equilibrium iteration):

— Update condensed matrix, Kc, for
nonlinearities.

— Establish complete load vector for all
degrees of freedom and condense out

substructure internal degrees of freedom.
— Solve for master dof displacements,

velocities, accelerations and calculate all

substructure dof disp., vel., acc.

The substructure internal nodal disp., vel.,
acc. are needed to calculate the complete

load vector (corresponding to all dof).

\—

Solution procedure for each time step(and iteration):

S

[

[RUSE—— t+Atﬁ

substructure
degrees of
freedom
condensed
out

B e = t+Atﬁ -] t+AtUc —
L h_d

using
condensed
effective
stiffness
matrix 'K

Transparency
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Example: Wave propagation in a rod

Uniform, freely floating rod

S

_R .
R L=1.0m
A =0.01 m*
1000 N = 1000 kg/m®

E=20x10° Pa

time

Consider the compressive force at a
point at the center of the rod:
.5 5
R | I |
|
A

The exact solution for the force at
point A is shown below.

t* =time for stress wave
to travel through
1000 N the rod

Compressive
force

time

Vo t* tt %Lt 2t

O\
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We now use a finite element mesh of
ten 2-node truss elements to obtain
the compressive force at point A.

All elements uniformly spaced

R

—_——— 00— —— 00— O—0———0—

G)Bm/pressive force at point A

is measured using this element.

N

\

Central difference method:

» The critical time step for this problem is
_ _ 1

Mer =L Jfo =t (number of eIements)
At > At will produce an unstable
solution

« We need to use the inital conditions
as follows:

AN
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* Using a time step equal to At., we obtain

the correct result:

* For this special
case the exact
solution is obtained

1500, Finite elements
1000. q
Compressive exact
force (N) 500.
(1) NN ¢ 00000
t* 2t* time
—500

\

* Using a time step equal to } At., the
solution is stable, but highly

inaccurate.
1500

1000
Compressive

force (N) 500.

—500

Finite elements

00 b exact
© o o5 O p
<o ®
o
o ®
\g . o &
t* o J2t* time
®
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Now consider the use of the
trapezoidal rule:

« A stable solution is obtained with
any choice of At.

 Either a consistent or lumped
mass matrix may be used. We
employ a lumped mass matrix in
this analysis.

~

Trapezoidal rule, At = Atercom, initial

conditions computed using M°U = °R

— The solution is inaccurate.
Finite element solution,

1500, 10 element mesh
AA/ t soluti
1000, R AA  exact solution
Compressive WA s
force (N) 500. X %AA
A
O.ALA.AA , A,
t* 2t* time
AA

U\

Transparency
14-19

Transparency
14-20



14-14 Nonlinear Dynamic Response — Part 11

Transparency
1421

Transparency
14-22

-~

f

Trapezoidal rule, At = Atecom, Z€r0
initial conditions.

— Almost same solution is obtained.

Finite element solution,
10 element mesh

15001
o ©xact solution

1000L o—w
Compressive U
force (N) Q

500L O
]
0\ O ful Y { %
t* 02t* time
-500]. ©

~

Trapezoidal rule, At = 2Atcr|cou
— The solution is stable, although

inaccurate.
Finite element solution,
1500{- 10 element mesh
A At = 2Atcr,c0M
1000L 2
Compressive
force (N) a |4 N
5001 exact _solution
—S
04_a 2 } yoy
t* 2t* time
-5004)

U\
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Trapezoidal rule, At = % Ater|com
Transparency
Finite element solution, 1423
10 element mesh
1500}
o exact solution
o
1000} =
Compressive A
force (N
( )500..
<
o
0, i —
® time
-500}
The same phenomena are observed when
a mesh of one hundred 2-node truss
elements is employed. Transparency
— Here At = t*/100 exact solution; finite 14-24

element solution,
At = At.,, central
difference method

Finite element
solution, At = 3 Ater,
15°°-P central difference

method

1 000+

Compressive
force (N) 500,

—5004
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Trapezoidal rule, At = Ater|com
Finite element solution, 100 element mesh

1500L
exact solution

10004
Compressive
force (N)

500

0 ) , A han,
t* V ViV time

~500)

\

Now consider a two-dimensional model

of the rod: z
10m element5 | y

| o) |
0.1m
R/2_.| / ) l__'_
feaasssssss s ESYT

I
thickness = 0.2 m | Central difference
E=2x10° Pa !method is
v=20 iemployed
p = 1000 kg/m®

For this mesh, At # t*/(10 elements)
because the element width is less than
the element length.
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If At=t*/(10 elements) is used, the solution
diverges

—In element 5,

1000 N
Tzz| > <0.01 m2)

att=1.9t"

\

N\ (

Example: Dynamic response of three
degree-of-freedom system
using central difference method

ke m kNL m k. m
3 -|—~x3 +-x, X,

k. = 1 Ibf/ft 100
m = 1slug Force 1
OX; = %X, = X3 = 0 . 095
°X, = 0.555 ft/sec Displacement |X, — X5|

0):(2 = 1.000 ft/sec (Atcrit)linear = 1.11 sec
°X3 = 1.247 ft/sec (Atcrit)nonlinear = 0.14 sec

_J
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Results: Response of right mass

o . At = 0.05 sec
0. At = 0.15sec

~

Response of center mass:

. 2
Disp.
M 1r
X L
2 05
_1 -
oL
A=0.05 sec.
A=0.15 sec.

AN
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Response of left mass:

Disp. Y
(ft) 1r
X3 0 I%L I i
[’ ::/ 15 20‘;\\*25. t(sec)
—1 AN
\O\
o

e: A=0.05 sec.

A=0.15 sec.

Force (Ibf) in center truss:

TIME |At=0.05|At=0.15
9.0 | -0.666 | —0.700
12.0 | —0.804 | —-0.877
15.0 | 0.504 | 0.503
18.0 | 0.648 | -0.100
21.0 | -0.132 | -0.059
24.0 | -0.922 | 0.550

_/
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Example: 10 story tapered tower

Girder properties:

32 m Efg.g?xwﬁ Pa
~ - A=0.01 m?
A,=0.009 m?
I 1=8.33x107% m*
Pressure 32 m p=7800 kg/m®
induced |
by
blast — |
S A S
6.4~

m

N\ (

Applied load (blast):

2000

Force
per
unit
length
(N/m)
1000+

0 }

0 50 100 150 200
time (milliseconds)

AN
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Purpose of analysis:

» Determine displacements,
velocities at top of tower.

* Determine moments at base of
tower.

We use the trapezoidal rule and a
lumped mass matrix in the following
analysis.

We must make two decisions:

» Choose mesh (specifically the
number of elements employed).

« Choose time step At.
These two choices are closely related:

The mesh and time step to be used
depend on the loading applied.

L

Transparency
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Some observations:

» The choice of mesh determines
the highest natural frequency (and
corresponding mode shape) that is
accurately represented in the finite
element analysis.

» The choice of time step deter-
mines the highest frequency of
the finite element mesh in which
the response is accurately inte-
grated during the time integration.

\

~

» Hence, it is most effective to
choose the mesh and time step
such that the highest frequency
accurately “integrated” is equal to
the highest frequency accurately
represented by the mesh.

» The applied loading can be rep-
resented as a Fourier series which
displays the important frequencies
to be accurately represented by
the mesh.

_J
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Consider the Fourier representation of
the load function:

)= 3 +3(acos(2ntyt) +bsin(2mf,1)
n=1

Including terms up to
case 1. f,=17 Hz
case 2: f,=30 Hz

The loading function is represented as
shown next.

\—

N

Fourier approximation including terms

up to 17 Hz:
/Applied load
/Fourier approximation

2000+

Force per
unit length

(N/m)
1000+

0 100 200
time (milliseconds)

Transparency
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Fourier approximation including terms

up to 30 Hz: Applied load

20001

Force per
unit length
(N/m)

/ Fourier approximation

1000

0 100 200
time (milliseconds)

N(

» We choose a 30 element mesh,
a 60 element mesh and a 120
element mesh. All elements are
2-node Hermitian beam elements.

30 elements 60 elements | 120 elements

[T

PTILITT

AN
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Determine “accurate” natural frequen-

cies represented by 30 element mesh: Transparency
14-43

From eigenvalue solutions of the 30
and 60 element meshes, we find

mode natural frequencies (Hz)
number [30 element mesh | 60 element mesh
1 1.914 1.914
2 4.815 4.828
3 8.416 8.480 accurate
4 12.38 12.58 ‘
5 16.79 17.27
6 21.45 20 47
7 26.18 28.08 t
8 30.56 29.80 inaccurate

\

_/

\_
-

Calculate time step:

1 Transparency
Teo= sz =.059 sec 14-44
= 1 7 _
At= 50 Teo=.003 sec

» A smaller time step would accurately
“integrate”’ frequencies, which are not
accurately represented by the mesh.

« A larger time time step would not
accurately “integrate” all frequencies
which are accurately represented by
the mesh.
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Determine “accurate” natural frequen-
cies represented by 60 element mesh:

From eigenvalue solutions of the 60
and 120 element meshes, we find

mode natural frequencies (Hz)
number{ 60 element mesh [120 element mesh
5 17.27 17.28
6 22.47 22.49 accurate
7 28.08 28.14
8 29.80 29.75
9 32.73 33.85
10 33.73 35.06
11 36.30 38.96 inaccurate

N\

Calculate time step:

Teo= 510—Hz =.033 sec

At= T ,=.0017 sec

» The meshes chosen correspond to

the Fourier approximations discussed

earlier:

30 element mesh
including terms up
to 17 Hz.

60 element mesh
including terms up
to 30 Hz.

Fourier approximation

Fourier approximation

_/
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Pictorially, at time 200 milliseconds,
we have (note that the displacements

are amplified for visibility):

30 elements

60 elements

~

Pictorially, at time 400 milliseconds,
we have (note that the displacements

are amplified for visibility):

30 elements

60 elements

AN
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~ A

Consider the moment reaction at the

Transparency base of the tower:
14-49 a0l
20+ M
M
(KN-m)
0 —t }
250 500
time (milliseconds)

— 20—+

~——: 30 elements

AN 60 elements
—~ 40+

~
J

Consider the horizontal displacement
Transparency at the top of the tower:
14-50 u
06! 460 elements r
04+
u
™ g2
30 elements
0 t .
250 500
— .02+ time (milliseconds)
~.041
- 06}
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Consider the horizontal velocity at the
top of the tower:

1

60 elements

N

.6 4 —Vv
\ |
(m/s) 2
0 30 elements . _ .
' 500
_ol time
’ (milliseconds)
-.44
—-.61
Comments:

« The high-frequency oscillation
observed in the moment reaction
from the 60 element mesh is
probably inaccurate. We note that
the frequency of the oscillation is
about 110 Hz (this can be seen
directly from the graph).

» The obtained solutions for the
horizontal displacement at the top
of the tower are virtually identical.

J L
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Example: Simple pendulum undergoing
large displacements

EA = 10" X-G"
sec?

_ 2
g = 980 cm/sec e length = 304.43 cm

P tip

. ” ‘y mass = 10 kg
Initial conditions:

% = 90°

% =0

One truss element with tip concentrated
mass is employed.

Transparency
14-53
Transparency
14-54

Calculation of dynamic response:

- The trapezoidal rule is used to
integrate the time response.

« Full Newton iterations are used to
reestablish equilibrium during every
time step.

« Convergence tolerance:
ETOL=10""
(a tight tolerance)

/
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Choose At=0.1 sec. The following
response is obtained:

last obtained solution

Solution procedure
failed during next

90 time step.
45
o /
(degrees)
0 k t }
‘ 4 6 time (sec)
—45 expectec%
solution
_90_

\

N (

The strain in the truss is plotted:
« An instability is observed.

10x107°+
o
5 X 1 0 -5 T oo
strain . o
0 I ) |
2 6 time
~ %Oo (sec)
-5x107°+ ©
o
~10x 1075~

Transparency
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-

Transparency

14-57 » The instability is unchanged when
we tighten our convergence toler-
ances.

« The instability is also observed
when the BFGS algorithm is
employed.

- Recall that the trapezoidal rule is
unconditionally stable only in linear
analysis.

-

Choose At = 0.025 sec, using the
T original tolerance and the full Newton
by 7\ algorithm (without line searches).

* The analysis runs to completion.

90! Finite element solution

5
0 45]
(degrees)
0 , . 4
4 8

12 time
—-45] (sec)

—90T

AN
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The strain in the truss is stable:

finite element solution,

strain At=.025 sec
3x10764 é
2x107°+
1x1075+
0 .

4 é 12 time (sec)

~

\—

\

It is important that equilibrium be accurately
satisfied at the end of each time step:

90+

0 457

(degrees)
0 -

_._45_

_90..

Finite element solution, At = .025 sec.,
equilibrium iterations used as
described above.

time (sec)

12V\
Finite element solution,
At = 025 sec., no

equilibrium iterations
used.

_/
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Although the solution obtained without
equilibrium iterations is highly
inaccurate, the solution is stable:

Finite element solution, At=0.025 sec.,
5 No equilibrium iterations used.

10X 107«

% Finite element solution, At=0.025 sec.,
equilibrium iterations used as
described above.

strain

5x107%

4 8 12 time (sec)

\

Example: Pipe whip analysis:

y 360 P=6.57 X 1|05 b o775
|
O
pipe gap 3 in, 21 i];?/diameter
not drawn  ostraint  ©-7°

to scale

all dimensions in inches

» Determine the transient response
when a step load P is suddenly
applied.

L
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Finite element model:

;L Six Hermitian beam elements
g - - ° S - 'S truss

Vlf/element

« The truss element incorporates a
3 inch gap.

N

N\

Material properties:
Pipe: E=2.698 x 107 psi

v=0.3

0,=2.914 x10* psi

ES%zmms slug_ 7 1gx 10—+ Iof-sec?
’ in3 ' in4

Restraint: E=2.99 x 107 psi
0,=3.80 x 10* psi
ETIO

Transparency
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Tranlsgzgency The analysis is performed using
— Mode superposition (2 modes)

— Direct time integration

We use, for each analysis,
— Trapezoidal rule
— Consistent mass matrix

A convergence tolerance of
ETOL=10"" is employed.

N\

T Eigenvalue solution:
ransparency

14-66

U\

Mode 1, natural frequency=8.5 Hz

S

Mode 2, natural frequency =53 Hz

=~ =7
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Choice of time step:

We want to accurately integrate the
first two modes:

=1 _ 1 1
At= 20 Teo= 20 <(frequency of mode 2))

=.001 sec

Note: This estimate is based solely on a linear
analysis (i.e, before the pipe hits the
restraint and while the pipe is still elastic).

Transparency
14-67

N\ [

Determine the tip displacement:

time
(milliseconds)
0 2 4 6 8 10
0¢—o @ t t + + >
] 2
8 o}
tip —21 o
d?sp. 0 Gap
(in) M
-4 ¢ o
] 8 R o
o— mode superposition o

—6- o — direct integration

AN
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~

Determine the moment at the built-in
Transparency

14-69 end of the beam:
time
(milliseconds)
0 2 4 6 8 10
Moment OT ——23% : } : -
(Ib-in) ) ® )
—1 x107" [0} ® o
-2%x107+ o o o
[
—3X107' © [ L] g o
S
—4x1074

o — mode superposition
o — direct integration
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H—o'x"= 129 Sin2«1 1t

L

El, constant

L= 389

M

d = 0J in

ma

J-j-v;ﬁ-ﬂ‘ ‘ﬂ'\'{’"{ T

K]

Analysis of CRD housing with lower support

~

TIP
DEFLECTION
(INCHES) 0 22 00z

TIME (SECONDS

0?3 0.04 0.05 006
T

CRD housing tip deflection

Slide
14-1

Slide
14-2
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Slide
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Slide
144

s

)

i -‘
R Wo I

R=2227 in. E = 1.05 x 107 Ib/in®
h = 0.41 in. v=03
o= 26.67° ay = 2.4 x 10* Ib/in?

Er = 2.1 x 10° Ib/in®
p = 9.8 x 1072 Ib/in®

Ten 8-node axisymmetric els.
Newmark inte (8 = 0.55, a = 0.276)

2 X 2 Gauss integration
consistent mass

600lb/in® |

At = 10usec, T.L. 0 TIME

Spherical cap nodes under uniform pressure loading

NN(

0.02

DEFLECTION
W,— inches

0.04

0.06

0.08

N
\ &aapopwarnlan ——— /’
\\ {no iteration) /]

ADINA
(with iteration)

Dynamic elastic-plastic response of a spherical cap,

p deformation independent

AN
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TIME — msec

02 04 06 08 10

0.02+

DEFLECTION
W,— inches

0.04t

0.06

0.08L

Response of the cap using consistent and lumped

T 1

Nagarajan
& Popov ~
,”
,;' . Newmark integration
3 (3= 05 «=025
F .
consistent F
\\‘— mass [2
I'.
7 3
2o ek
lumped \.4"'
mass

mass idealization

N

~

0.02

DEFLECTION
W, —inches

0.04

0.-06

0.08

Effect of numbers of Gauss integration points on the

TIME — msec

0.2 0.4 0.6 0.8 1.0
T T T L] 1
Nagarajan
& Popov g
- Consistent mass
) Newmark integration
\’2,(2 (8=0.5, =0.25)
"N .5
! A\~
ra N
N o
Ix3 .,
|

cap response predicted

J L
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~

BLIND FLANGE

PULSE GUN 3-inch FLEXIBLE Ni 200 PPE \ \
it S

3-inch (D RIGID PIPE
sz L_. —‘J

NICKEL 200 WATER
E= 30110% pSI x= 32104 pSI
Ey=7371104 PSI P =9361107° M’%”
yv= 03
P = 83)510 4 SLUCET
ao= 1281103 sy N

Analysis of fluid—structure interaction problem
(pipe test)

\_

Slide
14-7

Slide
14-8

T

2500

2000+

1500
PRESSURE
(PSI)

T

1000t

500

1
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Topic 15

Use of Elastic
Constitutive
Relations in Total
Lagrangian
Formulation

Contents:

B Basic considerations in modeling material response
B Linear and nonlinear elasticity

B Isotropic and orthotropic materials

B One-dimensional example, large strain conditions

B The case of large displacement/small strain analysis,
discussion of effectiveness using the total Lagrangian
formulation

B Hyperelastic material model (Mooney-Rivlin) for analysis
of rubber-type materials

B Example analysis: Solution of a rubber tensile test
specimen

B Example analysis: Solution of a rubber sheet with a hole

Textbook:
Reference:

6.4, 6.4.1
The solution of the rubber sheet with a hole is given in

Bathe, K. J., E. Ramm, and E. L. Wilson, “Finite Element Formulations
for Large Deformation Dynamic Analysis,” International Journal for
Numerical Methods in Engineering, 9, 353-386, 1975.
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USE OF CONSTITUTIVE
RELATIONS

« We developed quite general kinematic
relations and finite element
discretizations, applicable to small or
large deformations.

* To use these finite element
formulations, appropriate constitutive
relations must be employed.

» Schematically
K=[8"cBav, E=[B'Tav
Vv \ \Y}

- , /
constitutive relations enter here

N\

For analysis, it is convenient to use the
classifications regarding the magnitude
of deformations introduced earlier:

* Infinitesimally small displacements

« Large displacements / large rotations,
but small strains

« Large displacements / large rotations,
and large strains

The applicability of material descriptions
generally falls also into these
categories.

J

Transparency
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Transparency
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Transparency
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~

Recall:

* Materially-nonlinear-only (M.N.O.)
analysis assumes (models only)
infinitesimally small displacements.

» The total Lagrangian (T.L.) and
updated Lagrangian (U.L.)
formulations can be employed for
analysis of infinitesimally small
displacements, of large displacements
and of large strains (considering the
analysis of 2-D and 3-D solids).

— All kinematic nonlinearities are
fully included.

\_

N\

We may use various material descriptions:

Material Model

Examples

Elastic

Hyperelastic
Hypoelastic
Elastic-plastic

Creep
Viscoplastic

Almost all materials, for small
enough stresses

Rubber
Concrete

Metals, soils, rocks under high
stresses

Metals at high temperatures
Polymers, metals
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ELASTIC MATERIAL BEHAVIOR:

In linear, infinitesimal displacement,
small strain analysis, we are used to
employing
stress Line_ar elgstic stress-strain
d‘ relationship
a
o |t ‘c =E'e
do = Ede
E
' strain
©

\-

For 1-D nonlinear analysis we can use

AN

e
stress  slope C Nonlinear elastic

stress-strain
relationship

slope 'C v = C'le
not constant

¢) strain
do = Cde

stress

In practice, a

piecewise linear

description is

used

strain

Transparency
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Transparency
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-

We can generalize the elastic material
behavior using:

(t)Sl} = 6C|}rs éers

doSj; = oCirs do€rs
This material description is frequently
employed with

« the usual constant material moduli
used in infinitesimal displacement
analysis

* rubber-type materials

~

Use of constant material moduli, for an
isotropic material:

oCijrs = oCiys = N 8 8rs + W(Bir 8js + dis By)

Lamé constants:

Ev _ E
A+vd—-2v) ' * " 20 +v)

A=

Kronecker delta:

={0; i # }

AN
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Examples:
2-D plane stress analysis:
1 v 0
. E v 1 0
R 1—v
0O O 5

corresponds t0 ¢S12 = p (0€12 + 0€21)

-

\

2-D axisymmetric analysis:

0 1-v
v
0 1—-v
1—2v
2(1 —v) 0
0 1

Transparency
15-9
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Transparency
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Transparency
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e N

For an orthotropic material, we also
use the usual constant material moduli:

Example: 2-D plane stress analysis

—

1 Vab

E. Eb ©
local coordinate 1 1

system a-b___ oC¢ = E 0

- b
Xo 1
L a sym. G

ab
Ea # Eb

X1

Sample analysis: One-dimensional
problem:
Material constants E, v

b1

E(1—v)
1+ v)(1 — 2v)

a oL }

——

Constitutive relation: ¢Sy = E d€41
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Sample analysis: One-dimensional
problem:
Material constants E, v
_In tension:

(1 +v)(1 —2v)

o - 4

——

Constitutive relation: ¢Sy = E d€14

Y,

~

Sample analysis: One-dimensional
problem:
Material constants E, v
_In tension:
4 In compression: A

z

N E( - v)

A T A - 20)
_ - 4

Constitutive relation: ¢S11 = E §€11

~

Transparency
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Transparency
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Transparency
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-~

We establish the force-displacement
relationship:

0€11 = (;(U1,1 + % (otU1,1)2
W -°L
oL
1[/'L)\2
=3[ (er) 1]
0

t _ Po, tr O
0511 = 1 tX1,1 T11 tX1,1

p
tL OL '(P OL OLtP
=°I<T>K<T>=TK

Using 'L = °L +'A, 4¢S11 = Ed€1y, we
find
'P

_OL CI)L
This is not a realistic material
description for large strains.

VAN
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» The usual isotropic and orthotropic
material relationships (constant E, v,
Ea, etc.) are mostly employed in
large displacement/large rotation, but
small strain analysis.

» Recall that the components of the
2nd Piola-Kirchhoff stress tensor and
of the Green-Lagrange strain tensor
are invariant under a rigid body
motion (rotation) of the material.

— Hence only the actual straining
increases the components of the
Green-Lagrange strain tensor and,
through the material relationship, the
components of the 2nd Piola-
Kirchhoff stress tensor.

— The effect of rotating the material is
included in the T.L. formulation,

IF = j 4BT 48 °dV

Voy
includes invariant under a
rotation rigid body rotation

W,
N

Transparency
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~

Transparency Pictorially:
15-19
X2
1. X2
0€22
4 1
T 0€22
L <
1 1o
0€3] \’ i, aal
X
(1)812 ~ ~_6811 ! 6812 X1

1

Deformation to state 1 Rigid rotation from
(small strain situation) state 1 to state 2

\

\

For small strains,

Transparency 1 1 1 1

15-20 0€11, 0€22, 0€12 = 0€21 << 1,

88')’ - g)Ci}rs g)ers,

a function of E, v

8Si}i 1Ti}
Also, since state 2 is reached by a
rigid body rotation,

gei} = S)Sij, ; SSi}: (1)Sij,,

“T=R'TR'
rotation matrix

/
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-

Applications:

« Large displacement/large rotation but
small strain analysis of beams, plates
and shells. These can frequently be
modeled using 2-D or 3-D elements.
Actual beam and shell elements will
be discussed later.

+ Linearized buckling analysis of

\—

~

structures.
Frame analysis: 4 2D
y 0{ < < plane stress
toe elements
[ N ]
;» : § : 0:</R
/
Axisymmetric l R oD
shell: axisymmetric
elements

Transparency
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—

General shell:
Transparency
15-23
3-D /
continuum
elements
Hyperelastic material model:
Transparency formulation of rubber-type materials
15-24
g = oW
0 i 368“’,

s (§Ci}rs o€rs

dOSI} = OCi}rs d08rs
—S— oW
0€; 90Ers
where
¢W = strain energy density function (per
unit original volume)

AN
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Rubber is assumed to be an isotropic
material, hence
oW = function of (I, Iz, L)

where the I’s are the invariants of the
Cauchy-Green deformation tensor (with
components ¢C;):

I = 6Ci
= % (15 — oC;; 6Cy)
Is = det (6C)

\—

-
(-

Example: Mooney-Rivlin material law
(;W=C1 (I1 —3)+Cz(12—3)

material constants

with
Is = 1—s—incompressibility constraint

Note, in general, the displacement-
based finite element formulations
presented above should be extended to
include the incompressibility constraint
effectively. A special case, however, is
the analysis of plane stress problems.

)

Transparency
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Transparency
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Transparency
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~

-

Special case of Mooney-Rivlin law:
plane stress analysis

time 0 time t

xa VXZ

X4

~

For this (two-dimensional) problem,

6C11 0C12 O
dC ={dC21 oC22 O
0 0 {Css

Since the rubber is assumed to be
incompressible, we set det (¢C) to 1 by
choosing

1
((;Cﬂ (;022 - (}012 (;021)

t
0Cas =

J
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We can now evaluate 14, I>:
1

I, = dCqq + &Cos +
Poom o2 T (1C11 8Ca2 — ¢C12 6C21)

0C11 + 0Ca22
(6C11 0C22 — ¢C12 6C21)

— 5 (8C12 — 3 (6C1)?

I = §C11 0C22 +

~

\

The 2nd Piola-Kirchhoff stresses are

tQ _ aéW aoW t rtimertnber
6
Ci (I — 3) + Co(lo — 3 ]
300.*[ 1 (I ) 2 (I2 )
aI1 312
= -+ 2C

_J

Transparency
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Transparency
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Transparency
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-

Performing the indicated differentiations
gives

0S11 1 6Ca2
0S22| = 2 C4 1 |- (6Csa)?| &C1a
0S12 0 —0Cnz
1 oCoz
+2C21Cas| 1 +[1 - (5033)2 (6C11 + 5022)] oC11

0 '—3012

This is the stress-strain relationship.

\—

~

We can also evaluate the tangent
constitutive tensor oCiys using

9% oW
0€i, 0 rs

_40 4
! a(;Ci}a(;Crs 2

0oCijrs =

oL,

30C i 90Crs

etc. For the Mooney-Rivlin law
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\

Example: Analysis of a tensile test

specimen:
Mooney-Riviin constants:
Cy = .234 N/mm?
Cz =.117 N/mm?
12.7
9.53 thickness = 1 mm

:[9.37

All dimensions in millimeters

3.0

30.5

~

-

Finite element mesh: Fourteen 8-node
elements

7

t
Constrained
displacements
Gauge —
length
L.
AR
2'2

J

Transparency
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Transparency
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Results: Force —deflection curves

Total
Gauge
4] response— response—_

10 20 30
Extension (mm)

N

Final deformed mesh (force=4 N):

=L+ [T T X
[ SR ST S S i T
‘L\T‘+-4
\\ | |
/ o
Undeformed Deformed
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\

. Slide
fe——— 20in ——— P=90 Ib/in? 15-1
2
_ -3 Ibsec
-~ p =125x10 Tt
20in b= 1in (THICKNESS)
—— —
Analysis of rubber sheet with hole
o - 150 1b
Slide
15-2
10in P 3001b
= 300 1b
|
!
| 3in Rodws
Hole
150 1b
!ﬁ 10 in J]
Finite element mesh
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150
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100 / ’/ /
T 7 4

/A
ew| A S e
// / / @ — P
50 / " 2 ‘
[ E e
/ / @-— P —w

®

) 2 4 6 8 10 12
w [in]

Static load-deflection curve for rubber sheet with hole

N\ (

[n]
0 INITIAL
" CONFIGURATION

P =150 Ib

—>2p

— 2P

|~ P

o 2 4 6 ] 10 12 14 1 ] 20 22 (in]

Deformed configuration drawn to scale of
rubher sheet with hole (static analysis)

_/
)
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win] P (Ib)
w0l
75
ol
| fo—10 At
At = 00015 sec
6
/ \
‘ e
[~ 7
/ s \@ \
2 S-S, V. Y
= <
/ 44— WILSON @- METHOD \\ \
2| /_/ 9:14 - N % / ©
// NEWMARK METHOO
/ / 8=050, =025
J
0 // 1 i
000 004 008 012 A[sec]

~\'v.a/

Displacements versus time for rubber
sheet with hole, T.L. solution
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Topic 16

Use of Elastic
Constitutive
Relations in
Updated
Lagrangian
Formulation

Contents:

B Use of updated Lagrangian (U.L.) formulation

Bl Detailed comparison of expressions used in total
Lagrangian (T.L.) and U.L. formulations; strains,
stresses, and constitutive relations

B Study of conditions to obtain in a general incremental
analysis the same results as in the T.L. formulation, and
vice versa

B The special case of elasticity

B The Almansi strain tensor

Bl One-dimensional example involving large strains

B Analysis of large displacement/small strain problems

B Example analysis: Large displacement solution of frame
using updated and total Lagrangian formulations

Textbook:

Example:

6.4, 6.4.1
6.19
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SO FAR THE USE OF
THE T.L. FORMULATION
WAS IMPLIED

Now suppose that we wish to use the
U.L. formulation in the analysis. We
ask

« Is it possible to obtain, using the U.L.
formulation, identically the same
numerical results (for each iteration)
as are obtained using the T.L.
formulation?

\_
-

In other words, the situation is

Program 1

* Only T.L. formulation
is implemented

— Constitutive relations are

P
6Sj = function of displacements

doSi} = OCij,rs do€s

Information obtained from physical |

laboratory experiments. a

Program 1 results

NG

Transparency
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Transparency
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Transparency
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-

Program 2

* Only U.L. formulation
is implemented

- Constitutive relations are
t'Ti}= = @
dtsi}= e @

Question:

How can we obtain
with program 2
identically the same
results as are
obtained from
program 17?

N\ (

To answer, we consider the linearized

equations of metion:

LV OCijrs 0€rs Soei}°dv +J°V (;Sij. Sonifdv

T.L.

= t+algp —ﬁv &Si}soeifdv

ﬁ v tCi}rs €rs Ste-.}‘dv + ffvtT"}Sm‘}th

U.L.

= rilg — L Ty de'dV

AN
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Terms used in the formulations:

T.L. U.L. Transparency
formulation|formulation| Transformation 16-5

t
f o4y f 4V | %dV = £ tdv
ov ty P

t t
OelJ, O”rllt tel}’ t'rlu' 0 % (:: r’IOt S,}t rs
oMNij = 0Xr,i 0Xsj tMrs

S0€i, = oXr.i OXsj Ot€
00€ij, OoMij | Ot€j, O ¢ Rt S

Oomj = oXr,i c;Xs,} OtMrs

N

N

Derivation of these kinematic
relationships: Transparency

16-6
A fundamental property of o€, is that

de, d d%% = 5 ((ds)® — (°ds)?)
Similarly,

taley dx d%% = 5 ((Fds)® — (°ds)?)
and

s A% dxs =  ((*'ds)” — (ds)?)
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Transparency
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s

time t y
S
X3 \\ th3
d'xz Vgt
. odS de 2 X
time 0 __sT—— 2 L te a0
Wz dx =X d"'x
X2

X1

Fiber d° of length °ds moves to
become d'x of length 'ds.

N

Hence, by subtraction, we obtain
o€ A% d°%, = 1Ers d'X: d'Xs
Using d'x = ¢X d°, we obtain
085} doXi dOX} = {Ers (;Xr,i (;Xs,} dOXi dOX}
Since this relationship holds for
arbitrary material fibers, we have

t,
o€ij = oXr,i 0Xs,jtErs

AN
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Now we see that
Oeu, + o'Y],* = (}Xr,i (sth’}ters + (;Xl',i OtXS,j, t'rlrs
Since the factors ¢x:i oXs; do not

contain the incremental displacements
ui, we have

o€ = 0Xr,i 3Xs,}ters < linear in u;
t, 1 o
oMij = oXr,i 0Xs,jtNrs < quadratic in u;

\—

\

In addition, we have

8Oei} = (;Xr,i 6Xs,} Bters

Soni} = (;Xr,i oth,} Smrs
These follow because the variation is
taken on the confiquration t+At and

hence the factors ox:, 3xs,} are taken as
constant during the variation.

J

Transparency
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Transparency
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~

We also have

T.L. U.L. .
. . Transformation
formulation|formulation
%
0Sj Ty 0Sy = 0y Xim Tmn X0
%
0 0 0 0
OCi}rs tCi}rs oCi}rs = $ tXiat X},b tCabpq t Xrpt Xs,q
(To be derived below)

~

Consider the tangent constitutive
tensors oCips and (Gips:

Recall that
dOSi} = OCi}rs doers
. Ndifferential
_GSy %increments

Now we note that
0

doSj = Tg tXi,a tX;b ASab

t t
do€rs = 0oXp,r 0Xq,s dtgpq

AN
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Hence

0
('tap to Xi,a ?xj,b dtsab) =OC§rs ((;Xp,r (;Xq,s dtqu)

—

dOYSq d;srs
Solving for diSa, gives

t
diSap = (D% (;Xa,i (;xb,} OCijrs (§Xp,r (;xq,s> Gt€pq

Vv

tCabpq

\

And we therefore observe that the
tangent material relationship to be used
is
'p
tCabpq = UB (;xa,i 6xb,; O.Cijrs (;Xp,r (;xq,s

_J

Transparency
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Transparency
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-

Now compare each of the integrals appearing in
the T.L. and U.L. equations of motion:

1) J; v (;Si}. Soei; %dv = J‘VlTi} Bte-g,‘dv ?
L 1

True, as we verify by substituting the
established transformations:

0
J;V (% toxi,m t'Tmn ?x},n ) ((;Xr,i (;Xs,} oiers) °dv

é?i} ﬁoei", .
= J; vtTmn Oters (({Xi,m éxr,i) (qx}.n (;xs,j.)% °dv
Bon S
=ﬁVtTmn Stemn th

N (

2) f Sy 8omy °dV = L’Ti}ﬁmi}tdv ?
L 1

True, as we verify by substituting the
established transformations:

0
J;v (t_pE toxi,m t'Tmn ?X},n) ((;Xr,i (;Xs,j, St’f]rs) odv

Jéij, &;Tlij'
°p
= L VtTmn OMrs (? Xi,m (}Xr,i)(?x},n (;xs,j) $ °dv

Smr Sns v

=J:VtTmn Stnmn th

_J
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3) ,LV OCi}rs 0€rs SOei} odv = J:V t_Cijrs tCrs Bteu. tdv r)

i J

True, as we verify by substituting the
established transformations:

(o]
0 0 0 0
L (t—pg t Xiat Xj.,b tCabpq t Xr,p t Xs,q) X

N

OCi}rs

(0Xk.r 0Xe.s t€ke) (0Xm, (;Xn,j. Bt€mn) “dV

. J . ]
Y Y

0€rs Soeij.

=J:V tCabpq t€pq Ot€ab th

\-
s

Provided the established
transformations are used, the three
integrals are identical. Therefore the
resulting finite element discretizations
will also be identical.

(KL + ¢Knu) AU = ""2R — (F

GKL + KNL) AU = t+AtB - }E

oKL =KL The same holds for

each equilibrium iteration.
oKL = KL eq °

o=

J L

Transparency
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Transparency
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-

Hence, to summarize once more,
program 2 gives the same results as
program 1, provided

® — The Cauchy stresses are
calculated from
t
tTij, = b% (;Xi,m (;Smn (;X},n

® — The tangent stress-strain law is
calculated from
t

— t t t. t
tCijrs - D% oXi,a Oxj,b OCabpq Oxr,p Oxs,q

~

Conversely, assume that the material
relationships for program 2 are given,
hence, from laboratory experimental
information, ‘Ty and «Cys for the U.L.
formulation are given.

Then we can show that, provided the
appropria(t)e transformations

(;Sl} = % ?xi,m tfrmn ?X},n
0

— 0 0 0 0
OCij.rs - % tXi,a txj,b tCabpq tXrp tXs,q

are used in program 1 with the T.L.
formulation, again the same numerical
results are generated.

AN
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(

Hence the choice of formulation (T.L.

vs. U.L.) is based solely on the
numerical effectiveness of the methods:

* The B matrix (U.L. formulation)
contains less entries than the ¢B.

matrix (T.L. formulation).

« The matrix product B"CB is less
expensive using the U.L. formulation.

\

+ |f the stress-strain law is available in
terms of ¢S, then the T.L. formulation
will be in general most effective.

— Mooney-Rivlin material law

— Inelastic analysis allowing for large
displacements / large rotations, but

small strains

Transparency
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e

THE SPECIAL CASE
OF ELASTICITY

Consider that the components oCy.s are
given:

tS _ t t

09j = 0ULsijrs 0€rs
From the above discussion, to obtain

the same numerical results with the

U.L. formulation, we would employ
t

tTu} = D%(;Xi,m ((;Cmnrs C;Srs) éx}.n

t

P, t t t
tCI}I’S =0 OXi,a OXJ,b OCabpq Oxr,p oxs’q

©

N\ [

We see that in the above equation, the
Cauchy stresses are related to the
Green-Lagrange strains by a
transformation acting only on the m
and n components of {Cmnrs.

However, we can write the total stress-
strain law using a tensor, {Cjs, by
introducing another strain measure,
namely the Almansi strain tensor,

Ty = {C;}s tE€7s_sAlmansi strain tensor
p
t t t t R t
tCi?rs = OB oXi,a OX},b oCabpq 0Xr,p 0Xs,q

Y
~
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Definitions of the Almansi strain tensor:

t 0 0 t
teﬁnn = tXi,m tX},n Oeij,

at
te2 = 1 (1- X" %) T
1 ——

N\

« A symmetric strain tensor, i€} = i€}

« The components of i{€? are not
invariant under a rigid body rotation
of the material.

« Hence, {€® is not a very useful strain
measure, but we wanted to introduce
it here briefly.

L

Transparency
16-25

Transparency
16-26



16-16 Elastic Constitutive Relations in U.L.F.

~

Example: Uniaxial strain
Transparency
16-27 , th 1 /A2
—» 011 = o + 2 \o,
| :ea_‘A_l(‘A)z
|—t A AT
strain
Green-Lagrange
1.0 ﬂ— Engineering
Almansi
+ = A
-1.0 1.0 o
-1.01
Transparency
16-28

It turns out that the use of IC%.s with
the Almansi strain tensor is effective
when the U.L. formulation is used with
a linear isotropic material law for large
displacement / large rotation but

small strain analysis.

_/
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* In this case, iCjs may be taken as

:Cﬁrs XS.* Srs + I.L(air 8}3 + Sis S‘r)

= tCij,s constants

Practically the same response is
calculated using the T.L. formulation
with

(§Cijrs =\ Si} Srs + P«(Bir 8}5 + Bis Sjr)

= oCjs  constants

~

\—

N[

LINEAR
40 |- SOLUTION .
TL 8UL SOLUTIONS
sob MALLETET AL
LOAD P [ib]
E =10 x 108 Ib.fin.2
v=02
20} l"
two
o ¢
TWELVE 8NODE ELEMENTS
FOR HALF OF ARCH
o 1 1 1 1
00 []] 0.2 03 04

VERTICAL DISPLACEMENT AT APEX W, [in]

Load-deflection curve for a shallow
arch under concentrated load

_/

Transparency
16-29

Slide
16-1



16-18 Elastic Constitutive Relations in U.L.F.

-

Transparency The reason that practically the same

16-30 response is calculated is that the
required transformations to obtain
exactly the same response reduce to
mere rotations:

Namely, in the transformations from
tCis 10 0Cabpq, and in the relation
between oCiys and Cygs,

0
%ﬁ 1, [ =& =dRddU

= {R
Transparency However, when using constant material
16-31 moduli (E, v) for large strain analysis,
with
tTij. = } ars }efs
~s
and T = A3 8rs + o (Bir §js + Bis )

(gsij- = tCij.rs (;Srs

totally different results are obtained.

J L
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Consider the 1-D problem already
solved earlier:

Material constants E, v A

m
It

E(1-v)

r OL
Before, we used §S11 = E ¢€11.
Now, we consider 'Ty; = E ie%,.

1+v)(1 —2v)

\

Here, we have

obtain the force-displacement
relationship.

1 1
€31 =11 — 5 (ui1)? = > [1 — (
L-°L
L
t
P
t
T = —
1=K

Using L= OL + tA, t'T11 = E {8?1, we

J

Transparency
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Transparency
16-33
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Transparency
16-34

Transparency
16-35

-

P

oL

\—

\

Example: Corner under tip load

L=10.0 m}g__1_
h=02m JL 50
b=10m

E = 207000 MPa
v=03
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Finite element mesh: 51 two-dimensional
8-node elements

25 elements |
| IR
.3
All elements are
plane strain
not drawn elements.
to scale
25
elements

~

Consider a nonlinear elastic analysis.
For what loads will the T.L. and U.L.
formulations give similar results?

VAN

Transparency
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-

Trmfeg;;emy — For large displacement/large _
rotation, but small strain condi-

tions, the T.L. and U.L. formula-

tions will give similar resulits.

— For large displacement/large
rotation and large strain condi-
tions, the T.L. and U.L. formula-
tions will give different results,
because different constitutive
relations are assumed.

(’

\

Results: Force-deflection curve
e Over the range of loads shown, the T.L.
Tmnlsé’_ ;;ency and U.L. formulations give practically
identical results
o The force-deflection curve obtained with
two 4-node isoparametric beam
elements is also shown.

61 2-D elements
- ’ Beam elements,
T.L and UL T.L. formulation
4] formulations -
Force \'\
(MN) 5 L
0 — —+ }
0 5 10 15

Vertical displacement of tip (m)

J
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~

Deformed configuration for a load of 5 MN
(2-D elements are used):

Undeformed |R

Deformed, load=1 MN

Deformed, load=5 MN

Transparency
16-40

N

Numerically, for a load of 5 MN, we have,
using the 2-D elements,

T.L. formulation|U.L. formulation
15.289 m 15.282 m

vertical tip
displacement

The displacements and rotations are large.
However, the strains are small — they can
be estimated using strength of materials

formulas:
Ebase = % where M = (5 MN)(7.5 m)

= 3%

J
~

Transparency
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Modeling of

Elasto-Plastic and
Creep
Response—Part |

Contents:

Bl Basic considerations in modeling inelastic response

B A schematic review of laboratory test results, effects of
stress level, temperature, strain rate

B One-dimensional stress-strain laws for elasto-plasticity,
creep, and viscoplasticity

B Isotropic and kinematic hardening in plasticity

B General equations of multiaxial plasticity based on a
yield condition, flow rule, and hardening rule

Bl Example of von Mises yield condition and isotropic
hardening, evaluation of stress-strain law for general
analysis

Use of plastic work, effective stress, effective plastic
strain

Integration of stresses with subincrementation

Example analysis: Plane strain punch problem

Example analysis: Elasto-plastic response up to ultimate
load of a plate with a hole

B Computer-plotted animation: Plate with a hole

Textbook:
Example:

References:

Section 6.4.2
6.20
The plasticity computations are discussed in

Bathe, K. J., M. D. Snyder, A. P. Cimento, and W. D. Rolph III, *‘On Some
Current Procedures and Difficulties in Finite Element Analysis of Elas-
tic-Plastic Response,” Computers & Structures, 12, 607-624, 1980.
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(continued)

Snyder, M. D., and K. J. Bathe, A Solution Procedure for Thermo-Elas-

tic-Plastic and Creep Problems,” Nuclear Engineering and Design, 64,
49-80, 1981.

The plane strain punch problem is also considered in

Sussman, T., and K. J. Bathe, “Finite Elements Based on Mixed Inter-
polation for Incompressible Elastic and Inelastic Analysis,” Computers
& Structures, to appear.
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(

MODELING OF INELASTIC

Transpaxency RESPONSE:

ELASTO-PLASTICITY, CREEP
AND VISCOPLASTICITY

» The total stress is not uniquely
related to the current total strain.
Hence, to calculate the response
history, stress increments must be
evaluated for each time (load) step
and added to the previous total
stress.

\—

» The differential stress increment is
Transparency

17.2 obtained as —assuming infinitesimally
small displacement conditions -

do; = Cips (ders — ders
where

Cis = components of the elasticity
tensor

des = total differential strain increment

dell = inelastic differential strain
increment
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The inelastic response may occur

rapidly or slowly in time, depending on

the problem of nature considered.

Modeling:

* In Blasticity, the model assumes that
dels occurs instantaneously with the

load application.

* In creep, the model assumes that
delY occurs as a function of time.

« The actual response in nature can be
modeled using plasticity and creep
together, or alternatively using a
viscoplastic material model.

~

N

— In the following discussion we
assume small strain conditions,
hence

« we have either a materially-
nonlinear-only analysis

- or a large displacement/large
rotation but small strain
analysis

A\

Transparency
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Transparency
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Transparency
17-5

Transparency
17-6

f

« As pointed out earlier, for the large
displacement solution we would use
the total Lagrangian formulation and
in the evaluation of the stress-strain
laws simply use

— Green-Lagrange strain component
for the engineering strain compo-
nents

and

— 2nd Piola-Kirchhoff stress compo-
nents for the engineering stress
components

~

Consider a brief summary of some
observations regarding material
response measured in the laboratory

* We only consider schematically what
approximate response is observed; no details
are given.

* Note that, regarding the notation, no time, t,
superscript is used on the stress and strain
variables describing the material behavior.

AN
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MATERIAL BEHAVIOR,
“INSTANTANEOUS”
RESPONSE

Tensile Test: Assume
 small strain conditions

* behavior in compression
is the same as in tension

~

Cros. —_— Hence
sectional
area Ao "2 fo £ € — €0
_ ©= 77
=L 1 0
g=2F1
Ao
engineering
stress, @
fracture
* ultimate
strain
assumed
7 =
, v engineering
// test strain, e
X /’/
RS -’ Constant temperature

J
~

Transparency
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Transparency
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Transparency
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-

Effect of strain rate:
g

de increasin
at 9

\-
-

Effect of temperature

ag

temperature is increasing

J
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MATERIAL BEHAVIOR, TIME-
DEPENDENT RESPONSE

* Now, at constant stress, inelastic
strains develop.

 Important effect for materials when
temperatures are high

\

Typical creep curve

Engineering strain, e

fracture
o = constant ¢
temperature = constant /

Instantaneous __/
strain
(elastic and Primary Secondary Tertiary
elasto-plastic) | | range range range

time

Transparency
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Transparency
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Transparency
17-13

Transparency
17-14

-

(

Effect of stress level on creep strain

temperature = constant
X
e
; : X ———s—=
o increasing fracture

X

_
— ~

time

\-

\

Effect of temperature on creep strain

o fracture o = constant

X

temperature increasing

N\

time
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MODELING OF RESPONSE

Consider a one-dimensional situation:

4

.

|
I

&
Lﬁ
>

.6’
-

» We assume that the load is increased
monotonically to its final value, P*.

« We assume that the time is “long” so
that inertia effects are negligible
(static analysis).

~

Transparency
17-15

N\

Load plasticity ‘creep effects
effects %
ps predominate

;

time-dependent inelastic strains
are accumulated — modeled as
creep strains

s time
time interval b (small)

without time-dependent
inelastic strains

AN

Transparency
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Transparency
17-17

-

Transparency
17-18

NG

Plasticity, uniaxial, bilinear o
material model  stess et
tb______________
Oy—-j-- - — 1.0 Et/
E AE
1.0 y/ 1.0 ,
1.0 ; ' strain
E ) teP ' t'oE
t'e
1.0 g E teE
Er tglN _ tgP
Creep, power law material model:
e’ = ap o' t*
C_ _____________ \/
te - to_ — E teE
tolN = 1oC 4 tgP
* t time
(small)

« The elastic strain is the same as in
the plastic analysis (this follows from

equilibrium).

» The inelastic strain is time-dependent
and time is now an actual variable.

\—
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Viscoplasticity:

» Time-dependent response is modeled
using a fluidity parameter -y:

s = O o _
e—E+'y<0'y 1>

| G ——

avP

where

_ _ 0 ,o=o0y
(0- 0'y>“‘{0._0.y,0.>0.y

N

Typical solutions (1-D specimen):

steady-state depends on
solution ; :
total total '“C'easfe '"t.
strain . . strain Oy as fungtion
increasing -y of e \/\
\
increasing y
elastic elastic
strain strain
time time
non-hardening material hardening material

VAN

Transparency
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Transparency
17-21

Transparency
17-22

[

PLASTICITY

« So far we considered only loading
conditions.

+ Before we discuss more general
multiaxial plasticity relations, consider
unloading and cyclic loading
assuming uniaxial stress conditions.

-

-

« Consider that the load increases in
tension, causes plastic deformation,
reverses elastically, and again causes
plastic deformation in compression.

load

' elastic plastic

N

elastic

elastic

—

time

-—

plastic

A\
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~

Bilinear material assumption, isotropic
hardening

g Er

Transparency
17-23

1.0

1.0

W e

plastic strain|g!
p y
i €1
—

__I plastic strain

eb

\

-
4

Bilinear material assumption, kinematic
hardening

o Er

Transparency
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1.0

(1]

plastic
strain €1

|
plastic strain eE
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Transparency
17-25

Transparency
17-26

-

MULTIAXIAL PLASTICITY

To describe the plastic behavior in
multiaxial stress conditions, we use

* A yield condition
* A flow rule
» A hardening rule

In the following, we consider isothermal
(constant temperature) conditions.

\

These conditions are expressed using a
stress function 'F.

Two widely used stress functions are the
von Mises function

Drucker-Prager function
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von Mises
tF = lts g — 'k
2 b}
t = to-ﬂ 'K =lt0'2
v 3 3’

Drucker-Prager

'F = 3a'c, + 'G-k

t

=9

1 's 's
o i i

g = ;t(—)'=

3
©

N

We use both matrix notation and index
notation:

de'1:1 do1
degz doz2
des doas

P — 33 do_ —
dg de'fg + de§1 T doq2
degs + degz doos
del1j3 + de§1_ Ld0'31

]
matrix notation
note that both def,

and deb; are added

/

Transparency
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Transparency
17-29

Transparency
17-30

~

defy def. defs
def = | de2 del. debs
def; deb. defs

index
notation

doy1 doi2 dois
do i} = d0'21 d0'22 d0'23
dos1 dosx doss

N\

The basic equations are then (von Mises 'F):
1) Yield condition

'F (oy, 'k) = 0
current stresses function of
plastic strains
'F is zero throughout the plastic response

iy - S - B
1-D equivalent: 3(0 %\0

(uniaxial stress) _
current stresses  function of
plastic strains.
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-

2) Flow rule (associated rule):
tF Tranls,;)gxl'ency
a -
dei'; = t)\ I
a()'i},
where \ is a positive scalar.
* 1-D equivalent:
P _ 21t
deis = 3 Ao
del = — 1\ 'o
22 3
de%s = — 1\ o
33 3
Transparency
17-32

3) Stress-strain relationship:
do = CF (de — de”)
* 1-D equivalent:

do = E (de1s — defy)
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Transparency
17-33

Transparency
17-34

~

Our goal is to determine CF" such that
do = C* de
|

instantaneous elastic-plastic stress-strain matrix

N

General derivation of CEF:

Define
tgy = o'F
= At
9 Tij 'e%; fixed
tos = o'F
= 7 LioP
9 €ij 'uij, fixed

_J
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Using matrix notation,

results from our
definition of the plastic

strain and stress
increment vectors

t. T _ gt [ ot vt T 1

g =1[q11{ g2z | Q33 (@012 @23 (@)qa1]

tETz [p11 | 'p2z | 'Pas | ‘P12 | 'pas | 'Pa]

\

We now determine '\ in terms of de:

Using 'F = 0 during plastic deformations,
_dF o'F

th %—%do.* + %’: def;
— thdg _ IET @EP
0 'A‘g

Transparency
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(

Transparency Also
17-37

'q" do ='q" (CF (de - de"))
o ‘ ¥ '
The flow rule assumption may be

written as

th d_g — th (QE (dg _ t)\ tg))= tx tET tg |

from d'F = 0

N

Solving the boxed equation for '\ gives

t., T ~nE

P''q+'9 C°'q

Transparency
17-38

Hence we can determine the plastic
strain increment from the total strain

Increment: total strain increment

e
d P—( thgEd'e' )t
P e = tETtg+thgEtg q

plastic strain
increment

_/
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We can now solve for CEF:

r——functlon of de
do = Q (de — de” )  from above

Et Et (T

C C
O o o L)

pPg+qCq

Transparency
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\

Example: Von Mises yield condition,
isotropic hardening

Two equivalent equations:

V2
O'y—T —0'2 0'2—0'3 03—0'1
principal stresses
e _ 1t R R . LK
e .
deviatoric stresses: s,* ‘,— = 3

J

Transparency
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~

Transparency Yield surface End view of
for plane stress yield surface
radius t(:"3 radius
‘o2 oy ; ‘oy
/ /7)
L_// v -
3] to,2
Transparency We now compute the derivatives of the
17-42 yield function.

First consider ‘py;

y E cr.* fixed E 2 I* a 3 !
24 a(ry (‘oy fixed implies 's;; is fixed)
—3 %5 d'ey, ¢ ¥

_J
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What is the relationship between ‘oy
and the plastic strains?

We answer this question using the
concept of “plastic work”.

» The plastic work (per unit volume) is
the amount of energy that is
unrecoverable when the material is
unioaded.

» This energy has been used in
creating the plastic deformations
within the material.

\—

-

* Pictorially: 1-D example

stress slope Et

time t
\s’l\ope E

Shaded area equals
plastic work ‘We:

1oP
'We = L "o de®

strain
tePy
* In general, 'Wp = f "oy dej,

0

Transparency
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Transparency
17-45

Transparency
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-

Consider 1-D test results: the current
yield stress may be written in terms of
the plastic work.

stress \t'l\me t
oy~ Er
O'y/
TE-dea-e
strain

We can now evaluate ‘py — which
corresponds to a generalization of the
1-D test results to multiaxial conditions.

tp“ - ?_ t(]' (dto'y ath> atO'y
Y3 Y \dWe def/ S e

\ J

-5 ((FE) )

_12 EET)t )
- 3(E—ET- T

AN
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Alternatively, we could have used that
d'We = 'g d'&”
where
te 3, . ' (effective stress)

g = § Si} Si}
effective

d'&” = /2 def del
377+ Tt |¢ plastic strain)

and then the same result is obtained
using

(increment in

tpi' — g tO' (dtO'y atép>
P73 Y \de" el

\

Next consider 'gy:

o'F o (1 1
t t. t t_2
q'l'=t_ =t—__(— Ske Ske——O'y)
d Oij e}, fixed 0 T 2 3
o's 9 'o
= 'Sk 3 < = sy (tG K~ 8k€)
O'ij. d O'i}', 3
Sii Oe
= tSke <8ik 8}6 - I*3 )

='s; (note that 'ske Ske = s = 0)

VAN
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Transparency
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Transparency
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-

We can now evaluate C*:

_ deqs dezz 2des2
1-v 2l o Q-T
1=ay PUs)) g0 ~Bisise [l - B'si'siz |
___________________ [ e B
| —
e I 11 2v B('s22) :":—3'822(812:"‘
=3 = = [ [ Y
C* =555 ! - Blsw's
e -
symmetric :%—B(‘sm) e
-
laee
|
31 1
where B = -
B =2z 4,2 EEr 1+v
3E-Er E

N

Evaluation of the stresses at time t+ At:

t+At t trat
g=0a +j da
t

(+A!§
='g + j C=" de

e

S

The stress integration

must be performed at
each Gauss integration
point.

AN
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We can approximate the evaluation of
this integral using the Euler forward
method.

* Without subincrementation:

t+ At t

I+Ate _
Jt B QEP dg = _QEP ég/ € e
t

e

Transparency
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N

 With n subincrements:

t+Ate A
= . e
f QEP dg - QEP K%
te ¢ n
i
- n At
t+AT e —
n
+ .o
t+(n—1)Ar

VAN
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Transparency

Pictorially:

+ + t+At
tCl' t+A-ro, t 2A1'g t 3A-ro_ o

t+AT t+2AT t+3AT
. — —~ t+ At

subincrements

N (

Transparency

Summary of the procedure used to
calculate the total stresses at time
t+ At.
Given:
STRAIN = Total strains at time t+At
SIG = Total stresses at time t
EPS = Total strains at time t

(a) Calculate the strain increment
DELEPS:
DELEPS = STRAIN — EPS

J L
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(b) Calculate the stress increment

DELSIG, assuming elastic behavior:

DELSIG = CE « DELEPS

(c) Calculate TAU, assuming elastic

behavior:
TAU = SIG + DELSIG

(d) With TAU as the state of stress,

calculate the value of the yield
function F.

(e) If F(TAU) = 0, the strain increment

is elastic. In this case, TAU is
correct; we return.

N\

If the previous state of stress was
plastic, set RATIO to zero and go
to (g). Otherwise, there is a
transition from elastic to plastic and
RATIO (the portion of incremental
strain taken elastically) has to be
determined. RATIO is determined
from

F (SIG + RATIO = DELSIG) = 0

since F = 0 signals the initiation of
yielding.

L

Transparency
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Transparency
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~

(9) Redefine TAU as the stress at start
of yield
TAU = SIG + RATIO = DELSIG
and calculate the elastic-plastic
strain increment
DEPS = (1 — RATIO) * DELEPS
(h) Divide DEPS into subincrements
DDEPS and calculate
TAU < TAU + CF* « DDEPS

for all elastic-plastic strain
subincrements.
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N/

AT T T
LI X XX AP
LB

KL

Ve

PLASTIC ZONE

Plane strain punch problem

N

f}_x
)T,

Finite element model of punch problem

AN
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Slide
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s

STRESS, O (pal)

100 1

[}

Solution

. .
¢ = 0.697 in.

Tn

L] Ty

a Tye
—== THEORETICAL

=~
S~

10 20 30
DISTANCE FROM CENTERLINE, b (in)

of Boussinesq problem—2 pt. integration

~

ZNW
STRESS, O (psi)

-

P3200t.
a=0 723 in.

¢

® oy
L
A T
- - = THEORETICAL

e

) 2.0 30
DISTANCE FROM CENTERLINE, b (in)

Solution of Boussinesq.problem—3 pt. Integration

VAN




Topic Seventeen 17-35

APPLIED
LOAD,
P/2rb

010 o.13
DISPLACEMENT, w/b

Load-displacement curves for punch problem

Slide
17-6
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Transparency
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~

Limit load calculations:

 Plate is elasto-plastic.

\_
~

Elasto-plastic analysis:

Material properties (steel)
g

740 —1—

(MPa) E, = 2070 MPa, isotropic hardening

~—E = 207000 MPa, v=0.3

e
This is an idealization, probably
inaccurate for large strain conditions
(e > 2%).

VAN




Topic Seventeen 17-37

-

TIME
LOAD = 8.8 MPA

]
o

17 7 7 7 7
17 7 7 77
77 7 7 77 A
l,l'I[I///
A
//
A
|
L1 | LA
//
sipn=
-1
»
L
41T
TIME = 44
LOAD = 512.5 MPA
I 7 77 7
11 1 7 7 77
17 7 777
77 7 //
17 777 %
% 5
I
vdp®
A | A
1
A1 LA
11
//
L]
11
/”
|
LA

\_

~

TIME =~ 52
LOAD = 850.2 MPA

_J

Computer

Animation
Plate with hole
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Modeling of

Elasto-Plastic and
Creep
Response—Part |l

Contents:

B Strain formulas to model creep strains

B Assumption of creep strain hardening for varying stress
situations

B Creep in multiaxial stress conditions, use of effective
stress and effective creep strain

B Explicit and implicit integration of stress
B Selection of size of time step in stress integration

B Thermo-plasticity and creep, temperature-dependency of
material constants

B Example analysis: Numerical uniaxial creep results

B Example analysis: Collapse analysis of a column with
offset load

B Example analysis: Analysis of cylinder subjected to heat
treatment

Textbook:
References:

Section 6.4.2

The computations in thermo-elasto-plastic-creep analysis are described
in

Snyder, M. D., and K. J. Bathe, “A Solution Procedure for Thermo-Elas-
tic-Plastic and Creep Problems,” Nuclear Engineering and Design, 64,
49-80, 1981.

Cesar, F., and K. J. Bathe, “A Finite Element Analysis of Quenching
Processes,” in Numerical Methods for Non-Linear Problems, (Taylor,
C., et al. eds.), Pineridge Press, 1984.
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References:
(continued)

The effective-stress-function algorithm is presented in

Bathe, K. J., M. Koji¢, and R. Slavkovi¢, “On Large Strain Elasto-Plastic
and Creep Analysis,” in Finite Element Methods for Nonlinear Prob-
lems (Bergan, P. G., K. J. Bathe, and W. Wunderlich, eds.), Springer-
Verlag, 1986.

The cylinder subjected to heat treatment is considered in

Rammerstorfer, F. G., D. F. Fischer, W. Mitter, K. J. Bathe, and M. D.
Snyder, “On Thermo-Elastic-Plastic Analysis of Heat-Treatment Pro-
cesses Including Creep and Phase Changes,” Computers & Structures,
13, 771-779, 1981.
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CREEP

We considered already uniaxial
constant stress conditions. A typical
creep law used is the power creep law
e® = ag o™ t*,

g3
eC

increasing
stress

time

Transparency
181

N (

Aside: other possible choices for the creep
law are

« €% = ao exp(ai o) [1 - exp(—a2 (a%>a4 t)]
+ as t exp(as o)

—ay )
'9 + 273.16

Nt

« €% = (ap (o)) (2 + ast™ + as t*) exp (

_S"
temperature, in degrees C

We will not discuss these choices further.

_

Transparency
18-2
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Transparency
18-3

Transparency
184

s

The creep strain formula e® = ap o™ *2
cannot be directly applied to varying stress
situations because the stress history does
not enter directly into the formula.

\—

~

Example:
g o2
T
t1 time

o2

/-creep strain not affected
01 by stress
history prior
to t4

\

o\ ,
decrease in the creep
strain is unrealistic

time
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The assumption of strain hardening:

» The material creep behavior depends
only on the current stress level and
the accumulated total creep strain.

» To establish the ensuing creep strain,
we solve for the “effective time” using

the creep law:

_ totally unrelated
'e® = a, '¢® 2.5 to the physical
time

(solve for 1)

\

The effective time is now used in the
creep strain rate formula:

t. t 1a,—1
&% = ap o™ a, I
32—1

— a(‘l)/az a, (10_)31/a2 (teC) az

Now the creep strain rate depends
on the current stress level and on
the accumulated total creep strain.

/

Transparency
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4 )

Transparency Pictorially:

187 * Decrease in stress

t
g o2

g1

— time
o2

material
response

a1

- time

\-

* Increase in stress

Transparency t
18-8 Y g2

(O

time

t.C g2

e __— _material
_— /response

t (0 8]

— time




Topic Eighteen 18-7

r

* Reverse in stress (cyclic conditions)

‘o

time

02

,——\FGZCUNG
- -
c ////,——— —S— 01 CUIve
e r e
7

VAN

—

t

time

~

MULTIAXIAL CREEP

The response is now obtained using

t+Atg

t+Atg — tg +J QE d(e — QC)

‘e

As in plasticity, the creep strains in
multiaxial conditions are obtained by a
generalization of the 1-D test results.

L

Transparency
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r

\—

Transparency .
18-11 We define
o= 3 'si's; (effective stress)
2 ®} S
15C = /26 tC ffective strain)
3 € € (effective strain
and use these in the uniaxial creep
law:
éc =ag0 a1 122
Transparency The assumption that the creep strain
18-12 rates are proportional to the current

deviatoric stresses gives

téi(; = ty tSi} (as in von Mises plasticity)

'y is evaluated in terms of the effective
stress and effective creep strain rate:

(8% = ap @ ('3)* (=)

J
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(

Using matrix notation,
de® = (*y) (D 'g) dt
Ny—

deviatoric
stresses

For 3-D analysis,

2
3

WIN W]

WIN GO =

lw)
Il

symmetric 1

=

~

* In creep problems, the time

integration is difficult due to the high

exponent on the stress.

« Solution instability arises if the Euler
forward integration is used and the

time step At is too large.
— Rule of thumb:

1 s
_1_0 (t—E)

A&® =

(0]}

« Alternatively, we can use implicit
integration, using the a-method:

t+(xAtg — (1 _ a) tg— + at+AtO‘

VAN

Transparency
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Transparency
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Transparency
18-16

e

Iteration algorithm:

Q+Atgg‘71) = tg +
gE [§(|—1)_ At t+aAt,yﬂ(——_12) (Q t+(lAt—q‘8(——1?))]

k = iteration counter at each integration point

we iterate at
each integration
point

N

« a="2 gives a stable integration
algorithm. We use largely a=1.0.

« In practice, a form of Newton-
Raphson iteration to accelerate
convergence of the iteration can
be used.

NG
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 Choice of time step At is now
governed by need to converge
in the iteration and accuracy
considerations.

« Subincrementation can be employed.

* Relatively large time steps can be
used with the effective-stress-
function algorithm.

-

N

THERMO-PLASTICITY-CREEP

stress
. . Oya_|
Plasticity: o)
Ty1_|
Increasing
temperature
strain
creep
strain
Creep:
Increasing
temperature
time

Transparency
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Transparency
18-19

‘Transparency
18-20

-

(

Now we evaluate the stresses using
t+Ate

I+Atg — tg +J; TQE d(g _ QP _ gC _ eTH)
e

e

thermal
strains

Using the a-method,
t+Atg _ t+AtQE{ [e — gP _ gc _ gTH]
+ [te _teP _ teC _ teTH]}

where

t+At t
€= -

|

~

and
gF’ — At (H-aAt)_\) (Q t+0LAtg)
eC — At (t+ocAt‘y) (Q H—aAt_)
)

eEH — (t+Ata t+Ate _ ta te)

4

a = coefficient of thermal expansion at
time t
'9 = temperature at time t
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The final iterative equation is Transparency
_ _ 18-21
t+Atg851) — QE [t+At e (i—-1) _ tgP _ tgc _ teTH
t+At -
_ At (t+0LAtx2ik—_12)) (_I:_) t+aAtg2ik_—1‘2))
alA i— ‘aA i—
= At (") (0 T MefY)
_ QTH:|
and subincrementation may also be
used.
Numerical uniaxial creep results:
Transparency
18-22

Area = 1.0m?

/ Uniaxial stress o

__>

/
Creep law:

e® = ap (o)™ t%
stress in MPa

5m tin hr
E = 207000 MPa
v=0.3
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Transparency
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-

-~

The results are obtained using two
solution algorithms:

« a=0, (no subincrementation)
« a=1, effective-stress-function

procedure

In all cases, the MNO formulation is
employed. Full Newton iterations
without line searches are used with

ETOL =0.001
RTOL=0.01
RNORM=1.0 MN

\_

~

1) Constant load of 100 MPa
eC — 4.1 % 10*11 (0_)3.15t0.8

0.1_-— At = 10 hl’
o =1
o = 100 MPa
displacement
(m) 0.051
0 + i
0 500 1000
time (hr)




Topic Eighteen 1815

2) Stress increase from 100 MPa to
200 MPa

eC — 4.1 % 10—11 (0_)3.15t0.8

61 o = 200 MPa
disp.
(m) At =10 hr
41 a=1
2]
o = 100 MPa
0 : ;
0 500 1000 time (hr)

N\

Load function employed:

200+
Applied
stress
(MPa)
100
0 i i
0 N 1000
500 510
time (hr)

_J

Transparency
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Transparency
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Transparency
18-28

~

-

3) Stress reversal from 100 MPa to
-100 MPa

eC — 4.1 X 10—11 (0_)3.15t0.8

) 0.1L At =10 hr o = 100 MPa
disp. o =1

(m)

0.05.

o =-100 MPa
0 % +
500 1000 time (hr)

—0.05+

\

4) Constant load of 100 MPa
eC — 4.1 X 10—11 (0_)3.15t0.4

01L At=10hr ~ 100 MP
disp. a=1 g = 100 MPa
(m)
.005.
0 | :
0 500 1000 time (hr)

J
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5) Stress increase from 100 MPa to
200 MPa

061 €°=4.1x10"" (0)*>"° 1%

At=10hr o = 200 MPa

04] =1
disp.
(m)

.02

o = 100 MPa
0 ! {
0 500 1000 time (hr)

\

6) Stress reversal from 100 MPa to
—100 MPa

eC — 41 % 10—11 (0_)3.15 t0.4
01J[_ At=10hr

disp o - 1 o = 100 MPa
(m)
.005]
0 | a
500 Noo time (hr)
o = —100 MPa
—.005.

Transparency
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Transparency
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Transparency
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-

Consider the use of a = 0 for the
“stress increase from 100 MPa to 200
MPa” problem solved earlier (case #5):

.06.1_
04l At=10hr
disp.
a=1
(m)
021 a=0
0 500 1000 time (hr)

N\

Using At = 50 hr, both algorithms
converge, although the solution becomes
less accurate for o = 0.

.06.
At=50hr a=1

.04
disp.
(m) =0

.02

0 500 1000 time (hr)

AN
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Using At = 100 hr, @ = 0 does not
converge att = 600 hr. o = 1 still gives
good results.

.06

04. At =100 hr

disp.
(m)
.02

0 500 1000 time (hr)

N\
-

Example: Column with offset load

R
= [~0.75
E=2x10° KPa
T v=0.0
plane stress
thickness=1.0 m
10 m
Euler buckling load=4100 KN
7 7
N TO m

J L

Transparency
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Transparency
18-35

Transparency
18-36

s

Goal: Determine the collapse response
for different material assumptions:
— Elastic
— Elasto-plastic
— Creep

The total Lagrangian formulation is
employed for all analyses.

N\

Solution procedure:

* The full Newton method without
line searches is employed with
ETOL =0.001
RTOL=0.01
RNORM=1000 KN
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4 )

Mesh used: Ten 8-node quadrilateral

lemen Transparency
elements 18.37

3x3 Gauss integration

“/ used for all elements

~
\_

~
/

Elastic response: We assume that the
material law is approximated by -
ransparency

t t t _
0Sij =0Ciyrs 0Ers 18-38
where the components ¢Cj.s are

constants determined by E and v (as
previously described).

Applied force
5000+ Euler pp

. buckling ioad Lateral
Applied displacement
force

0

0 2 4 6
Lateral displacement of top (m)
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-

Transpatency Elasto-plastic response: Here we use
Er=0

oy = 3000 KPa (von Mises yield

criterion)

and

trdtg _ tg +f 0
S=oSt|
where C=° is the incremental elasto-

plastic constitutive matrix.

t+At8
;QEP do€

N\

Plastic buckling is observed.

Transparency
18-40
Elastic
20001
Applied
force
(KN)
10001
Elasto-plastic
0 . s : ; H
0 A 2 3 4 5

Lateral displacement of top (m)

AN




Topic Eighteen 18-23

Creep response:

« Creep law: &% = 107"%(G)3t (tin
hours)
No plasticity effects are included.

* We apply a constant load of 2000
KN and determine the time history of
the column.

» For the purposes of this problem, the
column is considered to have
collapsed when a lateral displacement
of 2 meters is reached. This
corresponds to a total strain of about
2 percent at the base of the column.

\

N\

We investigate the effect of different
time integration procedures on the
obtained solution:

« Vary At (At=.5, 1, 2, 5 hr.)

* Vary a (=0, 0.5, 1)

Transparency
1841

Transparency
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Transparency
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Transparency
18-44

~

Collapse times: The table below lists
the first time (in hours) for which the
lateral displacement of the column

exceeds 2 meters.

a=0 a=.5 a=
At=.5 100.0 100.0 98.5
At=1 101 101 98
At=2 102 102 96
At=5 105 105 90

\—

-
4

Pictorially, using At=0.5 hr., a=0.5,

we have
Time=1 hr Time=50 hr Time=100 hr
(negligible creep (some creep (collapse)
effects) effects)
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Choose At=0.5 hr.
— All solution points are connected
with straight lines.

2.5

= 0L=0
collapse * 1\//’{a= 5

2.0
Lateral
disp. 1.5
(m)

1.01

0.5

T

0
0

20 40 60 80 100 120
time (hr)

Effect of a: Choose At=5 hr.
— All solution points are connected
with straight lines.

2.5 a=0
2.0 collapse a=1, \/g= 5
h?teral 1.5,
isp.
(m) 1 .04_
0.5L
0 : : : ! 5 =
0 20 40 60 80 100 120

time (hr)

AN

Transparency
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-

T We conclude for this problem:
ransparency

18-47 « As the time step is reduced, the
collapse times given by a=0,
a=.5, a=1 become closer. For
At=.5, the difference in collapse
times is less than 2 hours.

» For a reasonable choice of time
step, solution instability is not a
problem.




Topic Eighteen 18-27

Ra = 25 mm

Analysis of a cylinder subjected to heat treatment

\

N

A
[+

Ws/kg°C

800 |
-

400 |

J A Il 1 A i

0 200 400 600 6°C 900

Terp\perature-dependence of the specific heat,
¢, and the heat conduction coefficient, k.

Slide
18-1

Slide
18-2
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Slide
18-3

Slide
184

e

20 40
E
10°NImm? v
12 36
0.8 34
04 32
—_—— N\ _
o N mr———
0 200 400 600 o °c 900

Temperature-dependence of the Young’s modulus, E,
Poisson’s ratio, », and hardening modulus, Ey

\

~

0 200 400 500 e °c 900

Temperature-dependence of the material yield stress
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a 10-5°¢—!

Temperature-dependence of the instantaneous coefficient
of thermal expansion (including volume change due to
phase transformation), a

\

~

1000
e % \-:;Sm
. \\ s

wl TN N
L \\ \(""
- oy ation \\A(‘-l.s
L RS
:—Jﬂw
0 02 04 0§ 08 r/R, 10

The calculated transient temperature field

/

Slide
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-

Slide
1000
18'7 5 OC _______
800 T
measured
600 temptctare i elament 1 catcutateq (PRI
400 - N _ o
trans formation
ok g TTT— > ]
oL L Lol 1 - Ll ! Lol
! 2 3 4 6 81 3 4 6§ 810 20 30 40 60 80 100 t sec 300
Surface and core temperature; comparison between
measured and calculated results
. 1000
Slide
18-8 .
500
N
mm?

r/F!a

—500 1

—1000

Measured residual stress field

NG
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1000 Slide
18-9
500
N
mm?
0
5001
—-1000

Calcuiated residual stress field
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Beam, Plate, and
Shell Elements—
Part |

Contents:

B Brief review of major formulation approaches

B The degeneration of a three-dimensional continuum to
beam and shell behavior

B Basic kinematic and static assumptions used

B Formulation of isoparametric (degenerate) general shell
elements of variable thickness for large displacements
and rotations

B Geometry and displacement interpolations
B The nodal director vectors

B Use of five or six nodal point degrees of freedom,
theoretical considerations and practical use

B The stress-strain law in shell analysis, transformations
used at shell element integration points

B Shell transition elements, modeling of transition zones
between solids and shells, shell intersections

Textbook:
References:

Sections 6.3.4, 6.3.5

The (degenerate) isoparametric shell and beam elements, including the
transition elements, are presented and evaluated in

Bathe, K. J., and S. Bolourchi, “A Geometric and Material Nonlinear
Plate and Shell Element,"” Computers & Structures, 11, 23-48, 1980.

Bathe, K. J., and L. W. Ho, *‘Some Results in the Analysis of Thin Shell
Structures,” in Nonlinear Finite Element Analysis in Structural
Mechanics, (Wunderlich, W., et al., eds.), Springer-Verlag, 1981.

Bathe, K. J., E. Dvorkin, and L. W. Ho, “Our Discrete Kirchhoff and Iso-
parametric Shell Elements for Nonlinear Analysis—An Assessment,”
Computers & Structures, 16, 89-98, 1983.
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References: The triangular flat plate/shell element is presented and also studied in
(continued)

Bathe, K. J., and L. W. Ho, “A Simple and Effective Element for Anal-
ysis of General Shell Structures,” Computers & Structures, 13, 673-
681, 1981.



Topic Nineteen 19-3

~

STRUCTURAL ELEMENTS

+ Beams
* Plates
» Shells

We note that in geometrically nonlinear
analysis, a plate (initially “flat shell”)
develops shell action, and is analyzed
as a shell.

\—

N\
(

Various solution approaches have been proposed:

» Use of general beam and shell
theories that include the desired
nonlinearities.

— With the governing differential
equations known, variational
formulations can be derived and
discretized using finite element
procedures.

— Elegant approach, but difficulties
arise in finite element formulations:
+ Lack of generality
» Large number of nodal degrees
of freedom

Transparency
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Transparency
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Transparency
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~

» Use of simple elements, but a large
number of elements can model
complex beam and shell structures.

— An example is the use of 3-node
triangular flat plate/membrane
elements to model complex shells.

— Coupling between membrane and
bending action is only introduced
at the element nodes.

— Membrane action is not very well
modeled.

N\

~

Example: )
=xampe 3 %degree of freedom with

\ _ artificia! stiffness
/\\/Xz

A S
/

X3
X
/ '/ bending
/ Xo / _membrane
X1 % artificial

stiffness

Stiffness matrix in = /
local coordinate Ke = ,
system (x;). - Km
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~

* |soparametric (degenerate) beam and
shell elements.

— These are derived from the 3-D
continuum mechanics equations
that we discussed earlier, but the
basic assumptions of beam and
shell behavior are imposed.

— The resulting elements can be
used to model quite general beam
and shell structures.

We will discuss this approach in some
detail.

~

Basic approach:

» Use the total and updated Lagrangian

formulations developed earlier.

L

Transparency
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Transparency
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~

We recall, for the T.L. formulation,
f t+A(;Sij, SHAJSi}OdV = t+Atg£
oy

Linearization l
LV OCij,rs Oers Soeu, odV +J(;V (}Su, Sonu,odv

= gy _ L , 95 Boey, °dV

\_

\

Also, for the U.L. formulation,

J;Vt+A§Si} 8t+A{8i}th — t+Atgt
Linearization l

ﬁ v tCijrs t€rs &ei} dV + ﬁ VtTi} at'f\i} e\,

— t+At9R —J:VtTi} Steij,tdv
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* Impose on these equations the basic
assumptions of beam and shell
action:

1) Material particles originally on a
straight line normal to the mid-
surface of the beam (or shell)
remain on that straight line
throughout the response history.

\

For beams, “plane sections initially
normal to the mid-surface remain
plane sections during the response
history”.

The effect of transverse shear
deformations is included, and
hence the lines initially normal to
the mid-surface do not remain
normal to the mid-surface during
the deformations.

VAN

Transparency
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~

Transparency

19-11 materia
particles

90°

time O

not 90° in general

time t

\-
(
2)

Transparency
19-12

The stress in the direction “normal”
to the beam (or shell) mid-surface is
zero throughout the response history.

Note that here the stress along the
material fiber that is initially normal
to the mid-surface is considered;
because of shear deformations, this
material fiber does not remain
exactly normal to the mid-surface.

The thickness of the beam (or shell)
remains constant (we assume small
strain conditions but allow for large

displacements and rotations).

J
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FORMULATION OF
ISOPARAMETRIC
(DEGENERATE) SHELL
ELEMENTS

* To incorporate the geometric
assumptions of “straight lines normal to
the mid-surface remain straight”, and of
“the shell thickness remains constant”
we use the appropriate geometric and
displacement interpolations.

* To incorporate the condition of “zero
stress normal to the mid-surface” we
use the appropriate stress-strain law.

\

\

Shell element geometry
Example: 9—node element

X3

'vK = director vector at node k

ax = shell thickness at node k
(measured into direction of 'V¥)

X4

Transparency
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Transparency
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Transparency
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-

Element geometry definition:

* Input mid-surface nodal point
coordinates.

* |Input all nodal director vectors at time 0.
* Input thicknesses at nodes.

S
k
Vi
X3
|
material particle
X2 0
X1 ( X')

N

 Isoparametric coordinate system
(r, s, t):

— The coordinates r and s are
measured in the mid-surface
defined by the nodal point
coordinates (as for a curved
membrane element).

— The coordinate t is measured in
the direction of the director vector
at every point in the shell.
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Interpolation of geometry at time O:

N N
0 Kk, t 0y /k
Xi = > hi °xi +§ > ak hk “Vni
_— CK=1 ) K=1

matgrial mid-surface effect of shell

particle only thickness

with isoparametric
coordinates (r, s, t)

hk = 2-D interpolation functions (as
for 2-D plane stress, plane
strain and axisymmetric elements)

= nodal point coordinates
°VK: = components of °V§

oXik

N

Similarly, at time {, t-coordinate

N N
Y = tek L 4 ty/k.
A= &M T AN M
The nodal point coordinates and director
vectors have changed.

—
Cx9] motion (x!)

X2

L

Transparency
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Transparency
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Transparency
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~

To obtain the displacements of any
material particle,

tUi = tXi — OXi
Hence
t A P thk  Oy/k
ui= > hg'ui +§ > ak hk (Vni — "Vhni)
K=1 K=1
where
tu%‘ = tx:‘ — OXF (disp. of nodal point k)

'WK — °Vii = change in direction cosines
of director vector at node k

N

The incremental displacements from
time t to time t+At are, similarly, for
any material particle in the shell
element,

t+At t
U =

Xi — Xj
N K t N
=thui+§Eakth'§i
K=1 K=1

where
uf = incremental nodal point displacements

Vi = "AK — ' = incremental change
in direction cosines
of director vector
from time t to time
t+ At
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To develop the strain-displacement
transformation matrices for the T.L. and
U.L. formulations, we need

— the coordinate interpolations for the
material particles (°x;, x,).

— the interpolation of incremental
displacements from the incremental

nodal point displacements and
rotations.

Hence, express the V& in terms of
nodal point rotations.

We define at each nodal point k the
vectors °V and °Vs:

0_\_/}(\
X
3 k OV“2‘
_9_3 _e_2 Oy 7K
X2 Vi
©1

X4
k_ €2X OM':\
=7 Jle2 x Vil

The vectors °V¥, °V5 and °V§ are
therefore mutually perpendicular.

oV = oV x V¥

J L

Transparency
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Then let ax and Bk be the rotations
about 'V and 'V&. We have, for small

ok, Pk,
VE = — 'V o + 'V B

ty /k
Bk Vi
V1'Va
t
Ok )
Bk
ty 7k
t+ At sk
¥1 y_n with Otk == 0

~

Hence, the incremental displacements
of any material point in the shell
element are given in terms of
incremental nodal point displacements
and rotations
A kK, b < ty /k ty 7k
Ui = k§1 he Ui + 5 > ax hi [—'V3i o + VT Bl

k=1

U\
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Once the incremental nodal point
displacements and rotations have been
calculated from the solution of the finite
element system equilibrium equations,
we calculate the new director vectors
using

t+At_V_Ir(‘l — tylr(1 +f . (__Ty_lé dak + Tyl{ dBk)
ok,

|—and normalize length

~

~

Nodal point degrees of freedom:

» We have only five degrees of
freedom per node:
— three translations in the Cartesian
coordinate directions

— two rotations referred to the local
nodal point vectors 'Vf, Vs

« The nodal point vectors 'V, ‘V§
change directions in a geometrically
nonlinear solution.

L
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— Node k is shared
by four shell elements

€3
€2
€1
— Node k is shared
by four shell elements
€3 — One director vector

no physical
€2 stiffness

'Y at node k

— No physical stiffness
corresponding to
rotation about 'V.

_
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4 )

— Node k is shared
by four shell elements

€3 . .
, ho physical St:e dlrec(:jtorkvector
— stiffness / t-atyk Vn at node

— No physical stiffness
corresponding to
rotation about 'V.

« If only shell elements connect to
node k, and the node is not
subjected to boundary prescribed
rotations, we only assign five
local degrees of freedom to that
node.

+ We transform the two nodal rotations
to the three Cartesian axes in order
to
— connect a beam element (three

rotational degrees of freedom) or
— impose a boundary rotation (other
than ax or Bk) at that node.

Transparency
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« The above interpolations of °x;, 'xi, u;

are employed to establish the strain-
displacement transformation matrices
corresponding to the Cartesian strain

components, as in the analysis of 3-D

solids.

\—

\-
-

+ Using the expression 08, derived earlier

the exact linear strain-displacement
matrix JB, is obtained.

However, using % oUk,i ol ; to develop the
nonlinear strain-displacement matrix
0B, only an approximation to the exact
second-order strain-displacement rotation
expression is obtained because the inter-
nal element displacements depend non-
linearly on the nodal point rotations.

The same conclusion holds for the U.L.

formulation.

J
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We still need to impose the condition
that the stress in the direction
“normal” to the shell mid-surface is
zero.

We use the direction of the director
vector as the “normal direction.”

\

X4

We

€s X € - _
€s = €t X e

er

=" les x el

note: e, €s, € are not mutually
perpendicular in general.

ér, 8s, & are constructed to
be mutually perpendicular.
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-

\

Then the stress-strain law used is, for
Tmnlsgg;ency a linear elastic material,
1 v O 0 0 0 |
1 0 0 0 0
E 0 0 0 0
Con = Qen|-—— 1-v Qsn
1—v 5 10 0
-V
symmetric k( 2 ) 0
1 —
k( 2 v)
k = shear correction factor
where
Tmnfsl;.;zency row 1 @J)i--.(.’.'l’_).z.__f[‘]i-_____fJ."l‘ __________ mm n 1€1_j
Qsh =

row 4|2¢,62 2mimz 2ninz €Mz + €2m1 mMynz + M2ny  Nq€2 + Naéy

using

¢1 = cos (e1, &) | M1 = CcOS (€2, &) | N1 = COS (€3, &)
€2 = cos (&1, &) | M2 = COs (€2, &)} N2 = cos (3, &)
€3 = cos (e1, &) i M3 = cos (€2, &) | Nz = COS (3, &)

_J
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» The columns and rows 1 to 3 in Cqn

reflect that the stress “normal” to the
shell mid-surface is zero.

The stress-strain matrix for plasticity
and creep solutions is similarly
obtained by calculating the stress-
strain matrix as in the analysis of 3-D
solids, and then imposing the
condition that the stress “normal” to
the mid-surface is zero.

\—

N

Regarding the kinematic description of
the shell element, transition elements
can also be developed.

Transition elements are elements with
some mid-surface nodes (and
associated director vectors and five
degrees of freedom per node) and
some top and bottom surface nodes
(with three translational degrees of
freedom per node). These elements
are used

— to model shell-to-solid transitions
— to model shell intersections
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X3

X4

\

a) Shell intersection

b) Solid-shell intersection

S

) e

¢

J
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Beam, Plate, and
Shell Elements—
Part Il

Contents:

B Formulation of isoparametric (degenerate) beam
elements for large displacements and rotations

B A rectangular cross-section beam element of variable
thickness; coordinate and displacement interpolations

B Use of the nodal director vectors
B The stress-strain law
B Introduction of warping displacements

B Example analysis: 180 degrees, large displacement
twisting of a ring

B Example analysis: Torsion of an elastic-plastic cross-
section

B Recommendations for the use of isoparametric beam and
shell elements

B The phenomena of shear and membrane locking as
observed for certain elements

B Study of solutions of straight and curved cantilevers
modeled using various elements

B An effective 4-node shell element (the MITC4 element)
for analysis of general shells

B The patch test, theoretical and practical considerations

B Example analysis: Solution of a three-dimensional
spherical shell

B Example analysis: Solution of an open box

B Example analysis: Solution of a square plate, including
use of distorted elements

B Example analysis: Solution of a 30-degree skew plate

B Example analysis: Large displacement solution of a
cantilever
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Contents: H Example analysis: Collapse analysis of an I-beam in
(continued) torsion

Bl Example analysis: Collapse analysis of a cylindrical shell
Textbook: Sections 6.3.4, 6.3.5
Example: 6.18
References: The displacement functions to account for warping in the rectangular

cross-section beam are introduced in

Bathe, K. J., and A. Chaudhary, “‘On the Displacement Formulation of
Torsion of Shafts with Rectangular Cross-Sections,” International
Journal for Numerical Methods in Engineering, 18, 15656—-1568, 1982.

The 4-node and 8-node shell elements based on mixed interpolation
(i.e., the MITC4 and MITCS8 elements) are developed and discussed in

Dvorkin, E., and K. J. Bathe, “A Continuum Mechanics Based Four-
Node Shell Element for General Nonlinear Analysis,” Engineering
Computations, 1, 77-88, 1984.

Bathe, K. J., and E. Dvorkin, “A Four-Node Plate Bending Element
Based on Mindlin/Reissner Plate Theory and a Mixed Interpolation,”
International Journal for Numerical Methods in Engineering, 21, 367-
383, 1985.

Bathe, K. J., and E. Dvorkin, “A Formulation of General Shell Ele-
ments—The Use of Mixed Interpolation of Tensorial Components,”
International Journal for Numerical Methods in Engineering, in press.

The I-beam analysis is reported in

Bathe, K. J., and P. M. Wiener, ‘On Elastic-Plastic Analysis of I-Beams
in Bending and Torsion,” Computers & Structures, 17, 711-718, 1983.
The beam formulation is extended to a pipe element, including ovali-
zation effects, in

Bathe, K. J., C. A. Almeida, and L. W. Ho, “A Simple and Effective Pipe
Elbow Element—Some Nonlinear Capabilities,” Computers & Struc-
tures, 17, 6569-667, 1983.
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FORMULATION OF
ISOPARAMETRIC
(DEGENERATE) BEAM
ELEMENTS

« The usual Hermitian beam elements
(cubic transverse displacements,
linear longitudinal displacements) are
usually most effective in the linear
analysis of beam structures.

« When in the following discussion we
refer to a “beam element’” we always
mean the “isoparametric beam
element.”

Transparency
20-1

\-

N(

» The isoparametric formulation can be
effective for the analysis of

— Curved beams
— Geometrically nonlinear problems

— Stiffened shell structures
(isoparametric beam and shell
elements are coupled compatibly)

» The formulation is analogous to the
formulation of the isoparametric
(degenerate) shell element.

Transparency
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Consider a beam element with a
rectangular cross-section:

X3 ax = thickness at
Y node k

b.\ in t-direction

[ \ bk = thickness at
G \e—gr node k

in s-direction

N

Consider a beam element with a
rectangular cross-section:

X3 ax = thickness at

node k
in t-direction

K \ bk = thickness at
X N node k
in s-direction

X4
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Consider a beam element with a
rectangular cross-section:

X3

ax = thickness at
node k
in t-direction

\ \ by = thickness at
\‘{k' node k
in s-direction

'V& = director vector in s-direction

X1 'k = director vector in t-direction

N

Consider a beam element with a
rectangular cross-section:

X3

ax = thickness at

'Y node k
b'x ! in t-direction
0 \ b = thickness at
61\‘{‘(' node k
in s-direction

'V& = director vector in s-direction
'W¥ = director vector in t-direction

Transparency
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The coordinates of the material
particles of the beam are interpolated as

N N
%= > hk‘x5‘+% > ax hk 'V
K= K=1

—t

N
+ k21 bk hi 'V&;

NI ®»

where

WX = direction cosines of the director
vector in the t-direction, of node
k at time t

WX = direction cosines of the director
vector in the s-direction, of node
k at time t

~

Since 'u; = i — %, we have

t N N thsk Ok

ui = > hk'Ui +§ > ak hk (Vi — “V5)
k=1 k=1

N
+5 2 biche (Va - °VE)

The vectors °V¥ and °VE can be
calculated automatically from the initial
geometry of the beam element if the
element is assumed to lie initially in a
plane.

J
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N t N s N
=2 hkuE‘+§ > akth§+-2‘k21 bk h« V&

where V5 and V& are increments in the
direction cosines of the vectors V¥ and
'V&. These increments are given in
terms of the incremental rotations 0O,
about the Cartesian axes, as

Vi =0 X 'VE Vs =0 X Vs

~

\

» Using the above displacement and geometry
interpolations, we can develop the strain-
displacement matrices for the Cartesian strain
components. A standard transformation yields
the strain-displacement relations corresponding
to the beam coordinates 1, &, (.

X3

X1 N ¥ ""“/‘

ANG

Transparency
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» The stress-strain relationship used for

linear elastic material conditions is
nm mM&¢ m{ —— components

E 0 O
gbeam= 0 Gk O
0 0 Gk

k = shear correction factor

since only the one normal and two
transverse shear stresses are assumed
to exist.

N\

« The material stress-strain matrix for
analysis of elasto-plasticity or creep
would be obtained using also the
condition that only the stress
components (nm), (m{) and (n&)are
non-zero.
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* Note that the kinematic assumptions in the Transparency
beam element do not allow — so far — for 20-13
cross-sectional out-of-plane displacements
(warping). In torsional loading, allowing for
warping is important.

* We therefore amend the displacement
assumptions by the following displacements:

g Un=a gl +BEE -1
/ /{ exact warping exact warping
£, u;  displacements displacements

for infinitely for square
A narrow section section

AN

Transparency
Torsion constant k in formula, 20-14
T=k GO a°b
K

b Analytical value

a (Timoshenko) ADINA

10 0-141 0141

20 0-229 0-230

40 0-281 0-289
100 0-312 0:323

100:0 0-333 0-333
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Example: Twisting of a ring

All dimensions in inches
thickness =0.2
E=3x105 psi

v=0.3

\—

N

Finite element mesh: Twelve 4-node
iso-beam elements

4-node
element

0, prescribed

J
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Use the T.L. formulation to rotate the ring
180 degrees:

Force-deflection curve

50+

Moment
(Ib-in) o5 1

0+ f I

0 90 180
Rotation (degrees)

Demonstration
Photograph
20-1

Close-up of

ring deformations

Transparency
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r

Pictorially, for a rotation of 180 degrees,

we have

Top view y,
X

Side view 1
1,

~
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N\

Slide
MATERIAL DATA: 20-1
GREENBERG et. ol.
- g g _\2n
€% ["(loo) ]
E=18,600; n=9
ADINA:
€=18,600 ;¥=00
0,793.33 ; E; 900
Elastic—plastic analysis of torsion problem
7k Slide
0351 20-2
0.30 |- p ADINA
0251 ,\GREENBERG et. al.
0.20}+
0.15
0.10+
0.05 |-
L 1 1 1 |
2.0 4.0 6.0 8.0 10.0
G8/k

Solution of torsion problem
(k = 100/\/3, 0 = rotation per unit length)
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Use of the isoparametric beam and
shell elements

» The elements can be programmed for
use with different numbers of nodes

— For the beam,
2, 3 or 4 nodes

— For the shell,
4, 8, 9, -, 16 nodes

» The elements can be employed for
analysis of moderately thick structures
(shear deformations are approximately
taken into account).

\—

N (

X4

» The elements can be used for
analysis of thin structures — but then
only certain elements of those
mentioned above should be used.

For shells: Use only the 16-node
element with 4 X 4 Gauss
integration over the mid-

X3 surface.
S

s
X2

integration point




Topic Twenty 20-15

For beams:

Use 2-node beam element with 1-point
Gauss integration along r-direction,

or

Use 3-node beam element with 2-point
Gauss integration along r-direction,

or

Use 4-node beam element with 3-point
Gauss integration along r-direction.

N[

The reason is that the other elements
become overly (and artificially) stiff
when used to model thin structures and
curved structures.

Two phenomena occur:
» Shear locking
* Membrane locking

J

Transparency
20-21

Transparency
20-22



20-16 Beam, Plate and Shell Elements — Part II

Transparency
20-23

Transparency
20-24

s

* The 2-, 3- and 4-node beam
elements with 1-, 2- and 3-point Gauss
integration along the beam axes do
not display these phenomena.

* The 16-node shell element with 4 x 4
Gauss integration on the shell mid-
surface is relatively immune to shear
and membrane locking (the element
should not be distorted for best
predictive capability).

~

* To explain shear locking, consider a
2-node beam element with exact
integration (2-point Gauss integration
corresponding to the r-direction).

W4 W2
r=0

r=—1
Transverse displacement:

w=%(1 —r)w1+—12(1 +r) wz

Section rotation:
B=g(1-008+1(1+n6

J L
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Hence the transverse shear deformations
are given by

_ 20w _
Y=L or aw
ow X
X -

neutral axis

~

\-

N

Consider now the simple case of a
cantilever subjected to a tip bending
moment, modeled using one 2-node

element:
e y |h

M
D
/ !

L

%101 — 2DM

Here B=%(1 +1) 02

'y=1EW2—-12—(1+r)02

Transparency
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We observe:

« Clearly, y cannot be zero at all points
along the beam, unless 6> and wz
are zero. But then also  would be
zero and there would be no bending
of the beam.

+ Since for the beam
— bending strain energy « h®
— shear strain energy « h
any error in the shear strains (due to
the finite element interpolation
functions) becomes increasingly more
detrimental as h becomes small.

\

N

« For the cantilever example, the
shear strain energy should be zero.
As h decreases, the relative error in
the shear strain increases rapidly
and in effect, introduces an artificial
stiffness that makes the model
“lock.”

h/L finite element solution
L=100 | Oanaytca | (exact integration)

050 |96x107|  32x1077
010 |[1.2x107* 2.4 x 107°
0.01 1.2 x 107" 2.4 x 107°
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~

* Although we considered only one
element in the solution, the same
conclusion of locking holds for an
assemblage of elements.

b

each element should carry
a constant bending moment

~

Example: Beam locking study

D)
n equally spaced elements
L=10m
Square cross-section, height=0.1 m

Two-node beam elements,
full integration

JAN
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Plot tip deflection as a function of the
number of elements:

\

az.oo-“ Beam theory solution
.00 \\ .. .
20 Finite element solution
\ - (2-node beam elements,
Tp full integration)
deflection 16,007
(m) : |
8007 l_s— Height of element = Length of element
T e T e 600 800 1o§
n102
Number of elements
Beam theory solution
0.3 1
. 0.2 -
Tip
deflection o i
(m) Finite element solution

0.1 \'\

DD

10 20 30
Number of elements

VAN
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A remedy for the 2-node beam element is to
use only 1-point Gauss integration (along the
beam axis).
This corresponds to assuming a constant
transverse shear strain, (since the shear strain
is only evaluated at the mid-point of the beam).

The bending energy is still integrated accurately

. 0B
(since ar

is correctly evaluated).

h/L
L=100

Oanalytical

finite element solution
(1-point integration)

0.50
0.10
0.01

9.6 x 1077
1.2 x 107*
1.2 x 107"

9.6 x 1077
12%x 10°*
1.2x 107"

)

\

* The 3- and 4-node beam elements evaluated
using 2- and 3-point integration are similarly
effective.

* We should note that these beam elements
based on “reduced” integration are reliable
because they do not possess any spurious
zero energy modes. (They have only 6 zero
eigenvalues in 3-D analysis corresponding to
the 6 physical rigid body modes).

* The formulation can be interpreted as a
mixed interpolation of displacements and
transverse shear strains.

~
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* Regarding membrane-locking we
note that in addition to not exhibiting
erroneous shear strains, the beam
model must also not contain errone-
ous mid-surface membrane strains in
the analysis of curved structures.

 The beam elements with reduced
integration also do not “membrane-
lock”

\

Consider the analysis of a curved
cantilever:
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The exactly integrated 3-node beam
element, when curved, does contain
erroneous shear strains and erroneous
mid-surface membrane strains. As a
result, when h becomes small, the

element becomes very stiff.

finite element
solution: 3-node

h/R Oanalytical element, 3-point

finite element
solution: 3-node
element, 2-point

R=100( (a =45°) | integration integration
050 {75x 1077 6.8 x 1077 74 x 1077
010 |9.4x107° 29x107° 9.4 x 1075
001 |94x1072 41 x10™* 9.4 x 1072

\

N\

 Similarly, we can study the use of the
4-node cubic beam element:

finite element

finite element

h/R Oanaiytical solution: 4-node | solution: 4-node
R=100| (o =45 | element, 4-point | element, 3-point
integration integration
050 |75x1077 74 x1077 7.4 x 1077
0.10 9.4 x 107° 9.4 x 1075 9.4 x 1075
0.01 9.4 x 1072 9.4 x 1072 9.4 x 1072

We note that the cubic beam element

performs well even when
integration.

using full

AN
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Considering the analysis of shells, the
phenomena of shear and membrane
locking are also present, but the
difficulty is that simple “reduced”
integration (as used for the beam
elements) cannot be recommended,
because the resulting elements contain
spurious zero energy modes.

For example, the 4-node shell element
with 1-point integration contains 6
spurious zero energy modes (twelve
zero eigenvalues instead of only six).

~

Such spurious zero energy modes can
lead to large errors in the solution that
— unless a comparison with accurate
results is possible — are not known and
hence the analysis is unreliable.

AN
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~

» For this reason, only the 16-node
shell element with 4 x 4 Gauss
integration on the shell mid-surface
can be recommended.

» The 16-node element should, as
much as possible, be used with the
internal and boundary nodes placed
at their ird points (without internal
element distortions). This way the
element performs best.

\_

~

* Recently, we have developed
elements based on the mixed
interpolation of tensorial components.

» The elements do not lock, in shear or
membrane action, and also do not
contain spurious zero energy modes.

« We will use the 4-node element,
referred to as the MITC4 element, in
some of our demonstrative sample
solutions.

Transparency
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[=X]
[
/ =

S
» For analysis of plates

» For analysis of moderately thick
shells and thin shells

\

N

» The key step in the formulation is to
interpolate the geometry and
displacements as earlier described,
but

— To interpolate the transverse shear
strain tensor components
separately, with judiciously selected
shape functions

— To tie the intensities of these
components to the values
evaluated using the displacement
interpolations
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nt transverse shear strain tensor
component interpolation

Transparency

TP e |

. evaluated from
displacement interpolations

st transverse shear strain tensor
component interpolation

=

J L

The MITC4 element Transparency
20-46
 has only six zero eigenvalues (no

spurious zero energy modes)
» passes the patch test

What do we mean by the patch test?

The key idea is that any arbitrary
patch of elements should be able to
represent constant stress conditions.
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THE PATCH TEST

* We take an- arbitrary patch of
elements (some of which are geo-
metrically distorted) and subject
this patch to
— the minimum displacement/rotn.

boundary conditions to eliminate
the physical rigid body modes,
and

— constant boundary tractions,
corresponding to the constant
stress condition that is tested.

N

« We calculate all nodal point

displacements and element stresses.

The patch test is passed if the calcu-
lated element internal stresses and
nodal point displacements are correct.

J
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X2

0.10) (10,10)

47

47 E=2.1x108

(8,7) v=0.3
thickness =0.01
0
(8,3)
2,2)
(10,0)
(0,0 X4
10

PATCH OF ELEMENTS CONSIDERED

MEMBRANE TESTS

- i

BENDING/TWISTING TESTS

Transparency
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Example: Spherical shell

radius=10.0
thickness =0.04
E=6.825x10"
v=0.3

\—

\

Selection of director vectors:
« One director vector is generated
for each node.

« The director vector for each node
is chosen to be paraliel to the
radial vector for the node.

* In two dimensions: y director
vector

radial

vector

_/
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Selection of displacement boundary

conditions:

» Consider a material fiber that is
parallel to a director vector. Then, if
this fiber is initially located in the x-z
plane, by symmetry this fiber must
remain in the x-z plane after the shell

has deformed:

r4

material
fiber at time 0

-V

— tyyk
Vn

material fiber
attime t

\

~

Finite element mesh: Sixty-four MITC4 elements

Symmetric
boundary conditions

(y=20)

AN

z
xJ\y

Symmetric
boundary conditions

_s—kx=0)

.

1.0

1.0

u, = 0 (to prevent rigid-body motion)

Transparency
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This condition is applied to each node
on the x-z plane as follows:

~

N\

A similar condition is applied to
nodes initially in the y-z plane.

» These boundary conditions are
most easily applied by making
each node in the x-z or y-z
plane a 6 degree of freedom
node. All other nodes are 5
degree of freedom nodes.

» To prevent rigid body translations
in the z-direction, the z displace-
ment of one node must be set
to zero.
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Linear elastic analysis results:

+ Displacement at point of load
application is 0.0936 (analytical
solution is 0.094).

* Pictorially, 2
| Ly

\

Example: Analysis of an open (five-sided)
box:

Box is placed open-side-down/Add on a

frictionless surface. o Uniform pressure

Box is modeled
using shell
elements

rigid,
frictionless
surface

Transparency
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20-68
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~

Transparency
20-59
Modeling of the box with shell

elements:
— Choose initial director vectors.

— Choose 5 or 6 degrees of freedom
for each node.

— Choose boundary conditions.

N

— Instead of input of director vectors,
one for each node, it can be more
effective to have ADINA generate
mid-surface normal vectors.

— If no director vector is input for a
node, ADINA generates for each
element connected to the node a
nodal point mid-surface normal
vector at that node (from the
element geometry).

— Hence, there will then be as many
different nodal point mid-surface
normal vectors at that node as
there are elements connected to
the node (unless the surface is
flat).

Transparency
20-60

J L
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-

Nodal point mid-surface normal vectors for the box:

— We use the option of automatic generation of
element nodal point mid-surface normal vectors.

— At a node, not on an edge, the result is one
mid-surface normal vector (because the surface
is flat).

— At an edge where two shell elements meet,
two mid-surface normal vectors are generated
(one for each element). | ___ .o mid-surface

normal vector
used at this node

two mid-surface
normal vectors
used at this node

~

Degrees of freedom:

5 degrees of

freedom
6 degrees
of freedom no rotational
stiffness for
this degree
of freedom

J

Transparency
20-61

Transparency
20-62
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Transparency
20-63

Note added in preparation of study-guide

In the new version of ADINA (ADINA 84 with an update inserted, or ADINA 86)

the use of the 5 or 6 shell degree of freedom option has been considerably automatized:

- The user specifies whether the program is to use 5 or 6 degrees of freedom at each
shell mid-surface node N
IGL(N).EQ.0—6 d.o.f. with the translations and rotations corresponding to the
global (or nodal skew) system
IGL(N).EQ.1—5 d.o.f. with the translations corresponding to the global (or nodal
skew) system but the rotations corresponding to the vectors V,
and V,
- The user (usually) does not input any mid-surface normal or director vectors. The
program calculates these automatically from the element mid-surface geometries.
- The user recognizes that a shell element has no nodal stiffness corresponding to
the rotation about the mid-surface normal or director vector. Hence, a shell mid-
surface node is assigned 5 d.o.f. unless
a shell intersection is considered
a beam with 6 d.o.f. is coupled to the shell node
a rotational boundary condition corresponding to a global (or skew) axis is to be
imposed
a rigid link is coupled to the shell node

For further explanations, see the ADINA 86 users manual.

Displacement boundary conditions:
Box is shown open-side-up.
——: admissible

, —>—: deleted
representative node
not at a corner ( ,’( -
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Consider a linear elastic static analysis
of the box when a uniform pressure
load is applied to the top.

We use the 128 element mesh shown
(note that all hidden lines are removed
in the figure): z

N

We obtain the result shown below
(again the hidden lines are removed):

- The displacements in this plot are
highly magnified.

y
~

Transparency
20-64

Transparency
20-65
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Slide
20-3

Slide
20-4

~

o}
—1
% ERROR -5
IN CENTER - -
DISPLACFMENT v-as N2
-10
-15
2 4 6
N

Simply-supported plate under uniform pressure,
L/h = 1000

N\

% ERROR _5

IN CENTER
DISPLACEMENT

-10

15

Simply-supported plate under concentrated load
at center, L/h = 1000

AN
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-

% ERROR  _g
IN CENTER
DISPLACEMENT

-10

-15

Clamped plate under uniform pressure, L/h = 1000

\—

(o]
/li
.ol
% ERROR -5
IN CENTER
DISPLACEMENT )
-10
-1
5 2 4 6

Clamped plate under concentrated load at
center, L/h = 1000

Slide
20-5

Slide
20-6
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Slide
20-7

Slide
20-8

~

/
[ . ]/] L2
- /

=
N
[~
b

&
C A C
Mesh | Mesh
wFEM Mesh | 093
WKIRCTIIONE | Mesh Il 101
MEEM Mesh 1 0.85

MKIRCHIIOFF " Mesh 1 1.02

Effect of mesh distortion on results in analysis of
a simply-supported plate under uniform pressure

N\

(L/h = 1000)
, Top view
é i i/
30° x
‘ P x4 MESH
SIMPLY SUPPORTED EDGES BOUNDARY CONDITION wsO
Es30-108 ON FOUR EDGES
y=0.3
b=|

thickness=0.0l
uniform pressure p=|

Analysis of skew plate

AN
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MESH wEM / wo Mmor /Miox | M An:«?‘
axa 0.879 0.873 0.852
8xe 0.7 0.928 0.922
16X 16 0.933 0.961 0.919
32x32 0.985 0.989 0.990

Solution of skew plate at point C using
uniform skew mesh

2Xx2 MESH
MESH wEEM/ w MGy, / Mnox M /w2
2x2 0.984 0717 0.602
4x4 0.994 0.935 0.878

Solution of skew plate using a more

effective mesh

Slide
209

Slide
20-10
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Slide
20-11

Slide
20-12

s

L=12 IN
I=1/12 IN®
A=1 IN?

E=3.0x107 PSI

v=0

M : CONCENTRATED
END MOMENT

Large displacement analysis of a cantilever

\

N

0.8

0.6
RATIOS
u/t, v/L, ¢/2nm
0.4

0.2

| l I 1
0 0.1 62 03 04 0.5

MOMENT PARAMETER 7= ML/2%EI

v

Response of cantilever

J
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4 )

—___ ANALYT. SOLN. Slide
20-13

TWO 4-~-NODE ELEMENT MODEL

Large displacement/rotation analysis of a
cantilever

~

Slide
20-14
M -
L o8
- ° & —a - v w/L
YA
o s ,
r 04 g u/L
THREE 4-~NODE ELEMENT MODEL
o > /2w
0.2
| ! !
0.l 0.2 03
ML
2TEX
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\-

Y MATERIAL DATA:
SIide E = 30«x IOG psi
20-15 v = 03

E;: 00
7 a, = 30x103 psi
;[io.m
091N
__%.O.ilh
Analysis of |-beam
— FIXED END
Slide
20-16

—— SECTION #l

— FREE END

A

Iso-beam model

J
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—FIXED END

N

Shell model

JY
Y

y ——
/
Y,
7 X —» — -
7 T 6, Z
Y,
7 - C— —
— |y

10.0IN ——»

r—s.ow—vl
|

I-beam

AN

Slide
20-17

Slide
20-18
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Slide
20-19

Slide
20-20

-

shell

MERCHANT'S
7 - UPPER BOUND /model
300
"SAND HEAP"
4.« 1
200 Iiso-beam
model
T IN-LBS -
100 4
LI I 1 1 ! | I 1
0 0.10 0.20 030 0.40
8, RADIANS

Rotation of /-beam about X-axis for increasing
torsional moment.

N\

E =21,000
y=0
Ey=0
9X9 UNIFORM MESH USED

Oy=4.2
TO REPRESENT AREA ABCD

L =18,200
R= 7,600
b= 40°
thickness =76

Large deflection elastic-plastic analysis of a cylin-
drical shell

AN
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p X 103
1 O Krékelond
— MITC4
2 — 4 POINT GAUSS INTEGRATION
THROUGH ELEMENT THICKNESS

I e

l 1 | L

50 100 150 200

vB

Response of shell

Slide
20-21



Topic 21

A Demonstrative
Computer Session
Using ADINA—
Linear Analysis

Contents:

B Use of the computer program ADINA for finite element
analysis, discussion of data preparation, program
solution, and display of results

B Capabilities of ADINA
B Computer laboratory demonstration—Part I

B Linear analysis of a plate with a hole for the stress
concentration factor

Bl Data input preparation and mesh generation
B Solution of the model

B Study and evaluation of results using plots of stresses,
stress jumps, and pressure bands

Textbook:
References:

Appendix

The use of the ADINA program is described and sample solutions are
given in

Bathe, K. J., ‘‘Finite Elements in CAD — and ADINA," Nuclear
Engineering and Design, to appear.

ADINA, ADINAT, ADINA-IN, and ADINA-PLOT Users Manuals,
ADINA Verification Manual, and ADINA Theory and Modeling Guide,
ADINA Engineering, Inc., Watertown, MA 02172, U.S.A.

Proceedings of the ADINA Conferences, (Bathe, K. J., ed.)
Computers & Structures

13, 5-6, 1981

17, 5-6, 1983

21, 1-2, 1986
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References:
(continued)

The use of pressure band plots to evaluate meshes is discussed in

Sussman, T., and K. J. Bathe, “Studies of Finite Element Procedures—
Stress Band Plots and the Evaluation of Finite Element Meshes,” Engi-
neering Computations, to appear.
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A FINITE ELEMENT
ANALYSIS — LINEAR
SOLUTION

+ We have presented a considerable

amount of theory and example solu-
tion results in the lectures.

The objective in the next two lec-
tures is to show how an actual finite
element analysis is performed on the
computer.

\—

N

We cannot discuss in detail all the
aspects of the analysis, but shall
summarize and demonstrate on the
computer the major steps of the
analysis, and concentrate on

— possible difficulties
— possible pitfalls
— general recommendations

/

Transparency
21-1

Transparency
21-2
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Transparency
21-3

Transparency
214

~

We will use as the example problem
the plate with a hole already consid-
ered earlier, and perform linear and

nonlinear analyses

— elastic analysis to obtain the
stress concentration factor

— elasto-plastic analysis to estimate
the limit load

— an analysis to mvestlgate the effect
of a shaft in the plate hole

\—

\
4

Plate with hole: Schematic drawing

! } } E =207000 MPa
Y/ v =03
thickness = 0.01 m

quarter of the

?'-11 - plate and
use symmetry
conditions
0.01m -4

plane stress
conditions

j® We consider this

i

0.1m

_/
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» The first step for a finite element Transparenc
analysis is to select a computer pro- s
gram. We use the ADINA system.

ADINA-IN to prepare, generate
the finite element
data

ADINA to solve the finite
element model
ADINA-PLOT |[to display numeri-
cally or graphically
the solution results

\—

N\

Schematically:

Transparency
Computer 21-6
ADINA-IN -——st/ora}—,
o 7 N/
terminal (input
and numerica/
graphics
Sdisplay

terminal

User work-station
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Transparency
21-7

Transparency
21-8

e

User

generated
—— ADINA
input file

ADINA-IN

» User types into terminal ADINA-IN

commands interactively or for batch
mode processing. User checks input
and generated data on graphics
display terminal.

\—

)

ADINA-IN ADINA

input file,

\

i.e. ADINA
data input

ADINA-IN generates the input data
for ADINA.

« The input data is checked internally

in ADINA-IN for errors and consis-
tency and is displayed as per
request by the user.

The degree of freedom numbers are
generated (for a minimum band-
width).

)
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Transparency
sate inpt AOINA 21-9
ADINA
output file
of ADINA
model and
calculated
results
» User runs ADINA to calculate the
response of the finite element
model. ADINA writes the model data
and calculated results on an output
file and stores the model data and
calculated results on the porthole
file.
User —____ Transparency
~~ 21-10

ADINA-PLOT

porthole

file display output

data, numerically
or graphically

e User runs ADINA-PLOT to access
the output data and display selected
results; displacements, stresses,
mode shapes, maxima, . . .
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-

Transparency

21-11 A brief overview of ADINA
 Static and dynamic solutions

 Linear and nonlinear analysis

« Small and very large finite element
models can be solved.

The formulations, finite elements and
numerical procedures used in the pro-
gram have largely been discussed in
this course.

\

Transparency
21-12

DISPLACEMENT
ASSUMPTIONS

* Infinitesimally small displacements

» Large displacements/large rotations
but small strains

» Large deformations/large strains
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MATERIAL MODELS
Isotropic Linear Elastic
Orthotropic Linear Elastic
Isotropic Thermo-Elastic

Curve Description Model for Analysis
of Geological Materials

Concrete Model

N (

MATERIAL MODELS

Isothermal Plasticity Models

Thermo-Elastic-Plastic and Creep
Models

Nonlinear Elastic, Incompressible
Models

User-Supplied Models

Transparency
21-13
Transparency
21-14
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Transparency
21-15

‘Transparency
21-16

s

|
—_————e—®
ONE-DIMENSIONAL ! RING ELEMENT

ELEMENT

Y
<

Truss and Cable Element
(2,3, or 4 nodes)

\

N

Two-Dimensional Solid Element
(variable number of nodes)

_/
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4

Y4

Three~Dimensional Solid Element
{variable number of nodes)

Transparency
21-17

Two-Node Beam Element

Transparency
21-18
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Transparency
21-19

Transparency
21-20

Isoparametric Beam Element
(2,3, 4 nodes)

AT EACH NODE 6 BEAM
DEGREES OF FREEDOM
PLUS OVALIZATION
DEGREES OF FREEDOM

Pipe Element with Ovalization

)
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4 Node Element

ELEMENTS ARE USED WITH
5 OR 6 DEGREES OF

16 Node Element FREEDOM PER NODE

Transition Element

Piate and Shell Elements

Transparency
21-21

\_

A SUMMARY OF IMPORTANT
OBSERVATIONS

» We need to check the finite element
data input carefully

— prior to the actual response
solution run, and

— after the response solution has
been obtained by studying
whether the desired boundary
conditions are satisfied, whether
the displacement and stress
solution is reasonable (for the
desired analysis).

_/

Transparency
21-22
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s

Transparency

21-23
+ We need to carefully evaluate and

interpret the calculated response

— study in detail the calculated dis-
placements and stresses along
certain lines, study stress jumps

— stress averaging, stress smooth-
ing should only be done after the
above careful evaluation

N

Transparency Data for Construction of
21-24 64 Element Mesh:

N

100 MPa

R

(@]

E = 207,000 MPa
v=2023

Plane stress
thickness = 0.01 m

-\; y

7

AN

O
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Finite element mesh to be generated
using ADINA-IN:

* Mesh contains 64 elements,
288 nodes.

/} // // _s—eight-node
& isoparametric
A element
o
0 g

Transparency
21-25

Demonstration
Photograph
21-1
Finite Element Research
Group Laboratory
computer configuration
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ADINA
Demonstration
21-1
Input data

Transparency
21-26
(Repeat 21-25)

~

QUARTER PLATE WITH HOLE - 64 ELEMENTS

2261001110 ] 1 1 1.0000000

Caxx MASTER CONTROL
99999 ] "] 1 2 " 1
C##% 3 LOAD CONTROL

] 4 " U] "] "] e

Ce#% 4 MASS AND DAMPING CONTROL

@ ") "] "] .0 .0
C### 5 EIGENVALUE SOLUTION CONTROL

' "] @ 2 o @
C##% € TIME INTEGRATION METHOD CONTROL

e 20. 500022000, 25000000 "] e
Cw#xs 7 INCREMENTAL SOLUTION CONTROL

1 1 210 15.201000000. 210000020. 25
C### 8 PRINT-OUT CONTROL

1 1 1 1 1 1 @

S8 30

~

Finite element mesh to be generated

using ADINA-IN:

* Mesh contains 64 elements,

288 nodes.
_/ // // _<—-eight-node
A isoparametric
A element
e
//
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Stress vector

integration

point s

£

output: Example

maximum principal stress
(tensile)

——s— minimum principal stress
(compressive)

The length of the line is proportional

to the magnitude of the stress.

Transparency
21-27

TIME 1|.908

DMAX ,328

ADINA
Demonstration
21-2
Deformed mesh

plot
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Transparency
21-28

Transparency
21-29
(Repeat 21-25)

~

Plate with hole: Schematic drawing

0.01m —

! 0.1m

E

v

thickness = 0.01 m

T
)
//A\We consider this
0.1 / /) / plate and

= 207000 MPa
=03

quarter of the

use symmetry
conditions

plane stress
conditions

Finite element mesh to be generated

using ADINA-IN:

» Mesh contains 64 elements,

288 nodes.
// /Z // _<—eight-node
isoparametric
// element
//
|t

J
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Stress point humbers and integration
point numbers for element 57

2 integration
point

stress point

~

~

Behavior of stresses near the stress
concentration:

radius
o | of
hole

stress computed at closest
integration point

length of element

<— Stress computed at nodal point

distance zZ =

J L

Transparency
21-30

Transparency
21-31
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Transparency
21-32

Transparency
21-33
(Repeat 21-30)

-

Maximum principal stress calculation:

2
owt o Oyw — O
o= Tt Oz (O 0n) g2

N\

Stress point numbers and integration
point numbers for element 57

2 integration
point

stress point

AN
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RESULTANT = SMAX ARITHMETIC EXPRESSION:

(TYY+T22) /TWO+SQRT ((TYY-TZZ) #(TYY-TZ2) /FOUR+TYZ#TYZ)

TYY = YY-STRESS
TIZ = 7Z-5TRESS
TvZ = YZ-STRESS
TWO = 2.00000
FOUR = 4.0000@

EXTREME ELEMENT RESULTS PER ELEMENT GROUP FOR WHOLE MODEL

\.

INTERVAL TSTART= 1.020Q TEND= 1.Q200d SCANNED FOR ABSOLUTE MAXIMUM
ELEMENT GROUP NO = 1 (2-D SOLID) LISTED RESULTS ARE MEASURED IN
GLOBAL COORDINATE SYSTEM
RESULTANT SMAX ELEMENT POINT TIME STEP
2. 343151E+03 57 4 0. 1000RE+01 1

Finite element mesh to be generated
using ADINA-IN:

« Mesh contains 64 elements,
288 nodes.

/ // // _s—-eight-node

isoparametric
a4 // element

N

\

ADINA
Demonstration
21-3
Close-up of
calculations

Transparency
21-34
(Repeat 21-25)
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Transparency
21-35
(Repeat 2-33)

Transparency
21-36
(Repeat 2-35)

-~

* To be confident that the stress
discontinuities are small everywhere,
we should plot stress jumps along each
line in the mesh.

« An alternative way of presenting
stress discontinuities is by means of
a pressure band plot:

— Plot bands of constant pressure
where

_(TXX + Tyy + Tzz)
3

pressure =

\

Sixty-four element mesh: Pressure band
plot

5 MPa 5 MPa
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.
N
')

-

A SUMMARY OF IMPORTANT
OBSERVATIONS

« We need to check the finite element
data input carefully

— prior to the actual response
solution run, and

— after the response solution has
been obtained by studying
whether the desired boundary
conditions are satisfied, whether
the displacement and stress
solution is reasonable (for the
desired analysis).

\

ADINA
Demonstration
21-4
Close-up of
pressure bands

" Transparency
21-37
{Repeat 21-22)
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(’

Transparency
21-38

(Repeat 21-23)  We need to carefully evaluate and
interpret the calculated response

— study in detail the calculated dis-
placements and stresses along
certain lines, study stress jumps

— stress averaging, stress smooth-
ing should only be done after the
above careful evaluation




Topic 22

A Demonstrative
Computer Session
Using ADINA—

Nonlinear Analysis

Contents:

B Use of ADINA for elastic-plastic analysis of a plate with
a hole

B Computer laboratory demonstration—Part I

B Selection of solution parameters and input data
preparation

B Study of the effect of using different kinematic
assumptions (small or large strains) in the finite element
solution

Bl Effect of a shaft in the plate hole, assuming frictionless
contact

B Effect of expanding shaft
B Study and evaluation of solution results

Textbook:

References:

Appendix

The use of the ADINA program is described and sample solutions are
given in

Bathe, K. J., “‘Finite Elements in CAD — and ADINA," Nuclear
Engineering and Design, to appear.

ADINA, ADINAT, ADINA-IN, and ADINA-PLOT Users Manuals,
ADINA Verification Manual, and ADINA Theory and Modeling Guide,
ADINA Engineering, Inc., Watertown, MA 02172, U.S.A.




22-2 Computer Session Using ADINA — Nonlinear Analysis

References:
(continued)

Proceedings of the ADINA Conferences, (K. J. Bathe, ed.)
Computers & Structures

13, No. 5-6, 1981

17, No. 5-6, 1983

21, No. 1-2, 1985

The contact solution procedure used in the analysis of the plate with
the shaft is described in

Bathe, K. J., and A. Chaudhary, “A Solution Method for Planar and
Axisymmetric Contact Problems,” International Journal for Numeri-
cal Methods in Engineering, 21, 65-88, 1985.
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A FINITE ELEMENT
ANALYSIS — NONLINEAR
SOLUTION

* We continue to consider the plate
with a hole.

* A nonlinear analysis should only be
performed once a linear solution has
been obtained.

The linear solution checks the finite
element model and yields valuable
insight into what nonlinearities might
be important.

~

J

N

Plate with hole: Schematic drawing

! ] ! E =207000 MPa
Y v=03
thickness = 0.01 m

~S~We consider this

j quarter of the
plate and

use symmetry
conditions
0.01m—
plane stress
! conditions

i

0.im

N

Transparency
22-1

Transparency
22-2
{Repeat 21-4)
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Transparency
22-3
(Repeat 21-25)

Transparency
224

-

—

Finite element mesh to be generated

using ADINA-IN:
* Mesh contains 64 elements,
288 nodes.
T /l // // _s-eight-node
¥ isoparametric
element
s

\

« Some important considerations are
now

What material model to select
What displacement/strain
assumption to make

What sequence of load applica-
tion to choose

What nonlinear equation solution
strategy and convergence criteria
to select

VNS
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* We use the ADINA system to
analyse the plate for its elasto-
plastic static response.

» We also investigate the effect on
the response when a shaft is
placed in the plate hole.

\

Some important observations:

« The recommendations given in the
linear analysis are here also appli-
cable (see previous lecture).

» For the nonlinear analysis we need
to, in addition, be careful with the

— sequence and incremental
maghnitudes of load application
— choice of convergence tolerances

AN

Transparency
22-5

Transparency
226
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Transparency
22-7

Transparency
22-8

~

f

Limit load calculations:

| Y
rTr11
O
L
P

» Plate is elasto-plastic.

\

\

Elasto-plastic analysis:
Material properties (steel)

g

740 ——

(M(Iz-’a) E,= 2070 MPa, isotropic hardening

E=207000 MPa, v=0.3

e
» This is an idealization, probably

inaccurate for large strain conditions
(e > 20/0).
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Load history:
Transparency
229
650
Load
(MPa)
Y .
0 13 14  time
» Load is increased 50 MPa per load step.
» Load is released in one load step.
USER-SUPRPLIED
ADINA
Demonstration
MATERIAL 1 PLASTIC E=2@700@ NU=@.3 ET=2@07@ YIELD=7402 22_1
MATERIAL 1 PLASTIC E=20702@2 NU=Q.3 ET=2@72 YIELD=74@
DELETE EQUILIBRIUM—-ITERATIONS Input data
DELETE EQUILIBRIUM-ITERATIONS
ADINA
ADINA
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Transparency
- 22-10
{Repeat 21-25)

Transparency
22-11

r

Finite element mesh to be generated
using ADINA-IN:

« Mesh contains 64 elements,

N

288 nodes.
/ Jf / _s-eight-node
isoparametric
//'4 element
//
//
Load history:
650
Load
(MPa)
0 -
0 1314 time

» Load is increased 50 MPa per load step.
» Load is released in one load step.

» The BFGS method is employed for each load step.

VAN
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Convergence criteria:

Energy:

AUOT [t+AtR _ t+At|-_-(i—1)]

_—AU“)T[H,AtR _ tF] = ETOL = 0.001

Force:
t+Aty  t+Ate(i—1)
LR om—2 = RTOL = 0.01
(RNORM = 100 MPa x 0.05 m X 0.01 m)
nominal width thickness
applied
load
f

Transparency
22-12

ADINA
Demonstration
22-2
Plot of plasticity
in plate with hole
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Transparency
22-13

ADINA
Demonstration
22-3
Close-up of stress
vectors around hole

~

Stress vector output: Example

maximum principal stress

integration / (tensile)

pOInt \\

—s— minimum principal stress
(compressive)

The length of the line is proportional
to the magnitude of the stress.

ORIGINAL — BSCALE 367.56
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Finite element mesh to be generated

using ADINA-IN: Tranzs%):ﬁency
* Mesh contains 64 elements, (Repeat 21-25)
288 nodes.
/i /7 // _s-eight-node
¥ isoparametric
v element
//
//

\

Transparency

M.N.O. Materially-Nonlinear- 22-15

Only analysis

TL. Total Lagrangian
formuiation

U.L. Updated Lagrangian
formulation
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Transparency
22-16
(Repeat 21-25)

r

ADINA
Demonstration
22-4
Elasto-plastic load
displacement response

Finite element mesh to be generated
using ADINA-IN:

« Mesh contains 64 elements,
288 nodes.

/[. // // _s_eight-nodet_
Isoparametri
a4 // eIeFr)nent ene
//
\
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Plate with shaft: 100 MPa
long shaft,

Prr i
ot // ;E: 02.%7000 MPa

_ thickness=0.05 m
c- g 037000 MPa ‘/ plane strain
v conditions

thickness=0.01 m
plane stress
conditions

N

) 100 MPa
» The shaft is initially flush with the hole.

« We assume no friction between the shaft and
the hole.

~

Detail of shaft:

shaft / \l\ plate

(collapsed 8-node
elements)

Z2ANG

Transparency
22-17

Transparency
22-18
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Transparency
22-19

ADINA
Demonstration
22-5

Deformed mesh

~

‘Solution procedure: Full Newton

iterations without
line searches

Convergence criteria:
Energy: ETOL = 0.001
Force: RTOL = 0.01, RNORM = 0.05 N

Incremental contact force:

JAR" — AR,

AR, =RCTOL =005

DEFORMED —__ DSCALE 18641
TIME {.800 DMAX 329
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Plate with expanding shaft:
Transparency
100 MPa 22-20
FT 1711 /shaﬁ
Elasto-plastic
plate \\ /
N
100 MPa
» The shaft now uniformly expands.
4 )
ADINA
Demonstration
22-6
Close-up of

deformations at
contact
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Glossary of Roman Symbols

Glossary G-1

(>

The Euclidean norm or ‘‘two-norm.’’
For a vector a

lale = /S (2d?

When used above a symbol, denotes
“in the rotated coordinate system.”

ak ’bk

Cross-sectional dimensions of a beam
at nodal point k.

Cross-sectional area at time ¢£.

A(i)

A square matrix used in the BFGS
method.

BL
oBL

t
1B

Linear strain-displacement matrix
used in linear or M.N.O. analysis.

Linear strain-displacement matrix
used in the T.L. formulation.

Linear strain-displacement matrix
used in the U.L. formulation.

t {,
oBro, oB1

Intermediate matrices used to com-
pute 3B,; §By; contains the ‘‘initial
displacement effect.’’

i
oBnL

t
{BnL

Nonlinear strain-displacement ma-
trix used in the T.L. formulation,

Nonlinear strain-displacement ma-
trix used in the U.L. formulation.

The wave speed of a stress wave
(dynamic analysis).

Diagonal element corresponding to the
ith degree of freedom in the damping
matrix (dynamic analysis).

O

The damping matrix (dynamic
analysis).

C1 ,CZ

The Mooney-Rivlin material con-
stants (for rubberlike materials).

Components of the Cauchy-Green
deformation tensor (basic concepts of
Lagrangian continuum mechanics).

Matrix containing components of the
constitutive tensor referred to a local
coordinate system.

10

Matrix containing components of the
constitutive tensor, used in linear and
M.N.O. analysis.

Matrix containing components of the
constitutive tensor oCiyes ,

used in the T.L. formulation.

Matrix containing components of the
constitutive tensor (Cys,

used in the U.L. formulation.

Chs

Cje

Components of elastic constitutive ten-
sor relating doy to det

Components of elasto-plastic consti-
tutive tensor relating doj; to ders

oCiys

tCijrs

Components of tangent constitutive
tensor relating doSy to do€rs

Components of tangent constitutive
tensor relating diSy to Ch€rs

DNORM

DMNORM

Reference displacement used with
displacement convergence tolerance
DTOL (solution of nonlinear
equations).

DMNORM is the reference rotation
used when rotational degrees of
freedom are present.

DTOL

Convergence tolerance used to mea-
sure convergence of the displace-
ments and rotations (solution of non-
linear equations).




G-2 Glossary

det The determinant function, for
example, detdX .

'dv A differential element of volume
evaluated at time .

odv A differential element of volume
evaluated at time 0.

d'x Vector describing the drientation and
length of a differential material fiber at
time ¢ (basic concepts of Lagrangian
continuum mechanics).

d®x Vector describing the orientation and
length of a differential material fiber
at time O (basic concepts of Lagrangian
continuum mechanics).

'8 Effective creep strain, evaluated at
time ¢ (creep analysis).

€jj Components of infinitesimal strain ten-
sor (linear and M.N.O. analysis).

06 Linear (in the incremental displace-
ments) part of oEj;

(T.L. formulation)
1€jj Linear (in the incremental displace-
ments) part of ,ei}
(U.L. formulation).
'e!,‘-',“ Various types of inelastic strains
1.C evaluated at time ¢ (inelastic
i analysis):
'ei'; IN  inelastic
¢ WTH C creep
¥ P  plastic
te¥P ™" thermal
|/ . .
' ve viscoplastic
©r, €5, & Unit vectors in the 7, s, and ¢ direc-
tions (shell analysis).
é , & Qnit_vectors constructed so that
€r, s, €t
are mutually orthogonal (shell
analysis).
E Young’s modulus.
Ea.Eb Young’s moduli in the a and b direc-

tions (orthotropic analysis).

Er

Strain hardening modulus (elasto-
plastic analysis).

ETOL

Convergence tolerance used to mea-
sure convergence in energy (solution
of nonlinear equations).

f(x)

1{{%))

A function that depends on X
(solution of nonlinear equations).

A vector function that depends on
the column vector U
(solution of nonlinear equations).

(f'B tf'S

Components of externally applied
forces per unit current volume and unit
current surface area.

'F

Yield function (elasto-plastic anal-
ysis).

Vector of nodal point forces equiva-
lent to the internal element stresses.

Vector of nodal point forces equiva-
lent to the internal element stresses
(T.L. formulation).

Vector of nodal point forces equiva-
lent to the internal element stresses
(U.L. formulation).

Fi(t)
Fo(t)

Fe(t)

Column vector containing the inertia
forces for all degrees of freedom
(dynamic analysis).

Column vector containing the damp-
ing forces for all degrees of freedom
(dynamic analysis).

Column vector containing the elastic
forces (nodal point forces equivalent
to element stresses) for all degrees
of freedom (dynamic analysis).

Acceleration due to gravity.

Shear modulus measured in the local
coordinate system a-b (orthotropic
analysis).

Cross-sectional height (beam ele-
ment).

hi

Interpolation function correspond-
ing to nodal point k.




I

Displacement interpolation matrix
(derivation of element matrices).

Displacement interpolation matrix
for surfaces with externally applied
tractions (derivation of element
matrices).

LIz, Is

The invariants of the Cauchy-Green
deformation tensor (analysis of rub-
berlike materials).

The Jacobian matrix relating the X;
coordinates to the isoparametric coor-
dinates (two- and three-dimensional
solid elements).

The Jacobian matrix relating the Xi
coordinates to the isoparametric coor-
dinates (two- and three-dimensional
solid elements in geometrically
nonlinear analysis).

Shear factor (beam and shell
analysis).

oK

K

The tangent stiffness matrix, includ-
ing all geometric and material
nonlinearities.

The tangent stiffness matrix, includ-
ing all geometric and material non-
linearities (T.L. formulation).

The tangent stiffness matrix, includ-
ing all geometric and material non-
linearities (U.L. formulation).

t t
OKL ’ tKL

The contribution to the total tangent
stiffness matrix arising from the lin-
ear part of the Green-Lagrange
strain tensor.

OtKL - T.L. formulation

KL - U.L. formulation

t t
OKNL ’ tKNL

The contribution to the total tangent
stiffness matrix arising from the
nonlinear part of the Green-
Lagrange strain tensor.

JKNL - T.L. formulation

KnL - U.L. formulation

=

Effective stiffness matrix, including
inertia effects but no nonlinear
effects (dynamic substructure
analysis).

Glossary G-3

Effective stiffness matrix, including
inertia effects and nonlinear effects
(dynamic substructure analysis).

K after static condensation (dynamic
substructure analysis).

'K after static condensation
(dynamic substructure analysis).

t
Knonlinear

Nonlinear stiffness effects due to
geometric and material nonlinearities
(dynamic substructure analysis).

tL Length, evaluated at time ¢.
Le Element length, chosen using the
relation L,=¢ At (dynamic analysis).
Lw Wave length of a stress wave
(dynamic analysis).
mi Lumped mass associated with degree
of freedom i (dynamic analysis).
M The mass matrix (dynamic analysis).
t
Pi Quantities used in elasto-plastic
analysis, defined as
v JF
Pr T e
4 (Ui}; fixed
‘q i Quantities used in elasto-plastic
analysis defined as
g = JF
-
Iy 'ef; fixed
r,s,t Isoparametric coordinates (two- and
three-dimensional solid elements,
shell elements).
SB Rotation matrix (polar decomposi-
tionof ¢C ).
R Reference load vector (automatic
load step incrementation).
'R Applied loads vector, corresponding

to time ¢.




G-4 Glossary

‘R

Virtual work associated with the
applied loads, evaluated at time ¢.

RNORM,

RMNORM

Reference load used with force tol-
erance RTOL (solution of nonlinear
equations). .

Reference moment used when rota-
tional degrees of freedom are present.

RTOL

Convergence tolerance used to mea-
sure convergence of the out-of-bal-
ance loads (solution of nonlinear
equations).

tg.

Deviatoric stress evaluated at time ¢
(elasto-plastic analysis).

'S

Surface area, evaluated at time ¢.

t
oS

Components of 2nd Piola-Kirchhoff
stress tensor, evaluated at time ¢ and
referred to the original configuration
(basic Lagrangian continuum
mechanics).

oS , 1Sy

Components of increments in the 2nd
Piola-Kirchhoff stress tensors:

oSy = "8y — S

tSu, - t+A: =~ t,.rl*

Matrix containing the components of
the 2nd Piola-Kirchhoff stress tensor
(T.L. formulation).

Vector containing the components of
the 2nd Piola-Kirchhoff stress tensor
(T.L. formulation).

t,

t+At

Times for which a solution is to be
obtained in incremental or dynamic
analysis. The solution is presumed
known at time t and is to be deter-
mined for time ¢+ Af.

~—l

“Effective” time (creep analysis).

I—

Displacement transformation matrix
(truss element).

TCO

Cut-off period (the smallest period to
be accurately integrated in dynamic
analysis).

Th Smallest period in finite element
assemblage (dynamic analysis).
tui Total displacement of a point in the
ith direction.
Gy Total acceleration of a point in the ith
direction (dynamic analysis).
Ui Incremental displacement of a point
in the ith direction.
u Components of displacement of a point
upon which a traction is applied.
1
ouij Derivatives of the total displace-
ments with respect to the original
coordinates (T.L. formulation).
oUij Derivatives of the incremental dis-
placements with respect to the orig-
inal coordinates (T.L. formulation).
tUij Derivatives of the incremental dis-
placements with respect to the cur-
rent coordinates (U.L. formulation).
ur Incremental displacement of nodal
point k in the ith direction.
uf Total displacement of nodal point % in
the ith direction at time ¢.
a A vector containing incremental
nodal point displacements.
ta A vector containing total nodal point
displacements at time ¢.
0 Vector of nodal point accelerations,
evaluated at time ¢.
U Vector of nodal point velocities,
evaluated at time ¢.
‘U Vector of nodal point displacements,
evaluated at time ¢.
oU Stretch matrix (polar decomposition
of ¢C ).
v Column vector used in the BFGS

method (solution of nonlinear
equations).




'V

Volume evaluated at time ¢.

ty 7k ty /k
ynlvni

Director vector at node k evaluated at
time ¢ (shell analysis).

Va

Increment in the director vector at
node k (shell analysis).

ty /k ty 7k
\_/1!\_/2

Vectors constructed so that
e, "5 and 'VK are mutually
perpendicular (shell analysis).

Vs, W

Director vectors in the s and ¢
directions at node k, evaluated at
time t (beam analysis).

Increments in the director vectors in
the s and t directions at node k (beam
analysis).

Vector used in the BFGS method (solu-
tion of nonlinear equations).

Preselected increment in external
work (automatic load step in-
crementation).

Strain energy density per unit origi-
nal volume, evaluated at time ¢
(analysis of rubberlike materials).

Plastic work per unit volume (elasto-
plastic analysis).

Coordinate of a material particle in
the ith direction at time ¢.

Coordinate of node & in the ith direc-
tion at time ¢.

oXij , oXj

Components of the deformation grad-
ient tensor, evaluated at time ¢ and
referred to the configuration at time 0.

gxi,j, ' (%XI}

Components of the inverse deforma-
tion gradient tensor.

Glossary G-5
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Glossary G-7

Parameter used in the o-method of
time integration.

0 - Euler forward method
2 - Trapezoidal rule
1 - Euler backward method

63
81
6

O

Incremental nodal point rotation for
node & about the 'V§ vector (shell
analysis).

Coefficient of thermal expansion
(thermo-elasto-plastic and creep
analysis).

Line search parameter (used in the
solution of nonlinear equations).

Section rotation of a beam element.

Bk

Incremental nodal point rotation for
node k about the 'V§ vector (shell
analysis).

Transverse shear strain in a beam
element.

Fluidity parameter used in visco-
plastic analysis.

Related to the buckling load factor
A through the relationship
A1
Y=7X

Proportionality coefficient between
the creep strain rates and the total
deviatoric stresses (creep analysis).

U]

Force vector in the BFGS method.

é)_f A square coefficient matrix with
oU entries
ﬂ] _
au i ol i
(solution of nonlinear equations).

) When used before a symbol, this
denotes *‘variation in.”

8% Kronecker delta;

5. — [0; i#}
Y =g
§(i) Displacement vector in the BFGS
method.

Af ‘‘Length’’ used in the constant arc-
length constraint:equation (automatic
load step incrementation).

At Time step used in incremental or
dynamic analysis.

At Critical time step (dynamic anal-
ysis).

AQ“) Increment in the nodal point dis-
placements during equilibrium iter-
ations
AU®D = tratgm _ t+ay -1

AU Vector giving the direction used for

- line searches (solution of nonlinear
equations).
AQ(”, AU Intermediate displacement vectors

used during automatic load step
incrementation.
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P

Proportionality coefficient in calcula-
tion of the plastic strain increments
(plastic analysis).

Lamé constant (elastic analysis).

M=)

Vab

Poisson’s ratio.

Poisson’s ratio referred to the local
coordinate system a-b (orthotropic
analysis).

Total potential energy (fracture
mechanics analysis).

Mass density, evaluated at time .

Components of stress tensor evaluated
at time ¢ in M.N.O. analysis.

Effective stress (used in creep
analysis)

t= _ (3. e
g = ESu‘,S.*

Oy

Oy

Yield stress at time ¢ (plastic
analysis).

Initial yield stress (plastic analysis).

3M

Denotes “‘sum over all elements.”

Vector containing the components of
the stress tensor in M.N.O. analysis.

AX® Increment in the modal displacements

- (mode superposition analysis).

AT A time step corresponding to a sub-
division of the time step At (plastic
analysis).

&si, Components of Green-Lagrange strain
tensor, evaluated at time ¢t and re-
ferred to time 0.

o€ Components of increment in the Green-
Lagrange strain tensor:
o€ = H%Gi}_ o€

:83 Components of Almansi strain tensor.

n, & ¢ Convected coordinate system (used
in beam analysis).

oM The “nonlinear” part of the incre-
ment in the Green-Lagrange strain
tensor.

Ok Nodal point rotation for node k (two-
dimensional beam analysis).

e%‘ Nodal point rotation for node k
about the x; axis (beam analysis).

'9 Temperature at time ¢ (thermo-
elasto-plastic and creep analysis).

t

K Variable in plastic analysis.

A Lamé constant (elastic analysis).

_ Ev
A= (1 +v)(1-2v)

A Scaling factor used to scale the stiff-
ness matrix and load vector in lin-
earized buckling analysis.

\ Load factor used to obtain the cur-

rent loads from the reference load
vector: tB _ tA B

(automatic load step incre-
mentation).

(as a left superscript)—Denotes a time.

Examples

"K,"R - linearized buckling analysis
K - solution of nonlinear equations

Components of Cauchy stress tensor,
evaluated at time ¢.

Matrix containing the components of
the Cauchy stress tensor (U.L.
formulation).




I

Vector containing the components of
the Cauchy stress tensor (U.L.
formulation).

A vector containing the nodal point
displacements corresponding to a
buckling mode shape.

of

A vector containing the nodal point
displacements corresponding to the
ith mode shape.

W;

Natural frequency of the ith mode
shape.

o™

(m)
(

Wn )max

Largest natural frequency of element
m.

Largest natural frequency of all
individual elements.

Glossary G-9
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