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PREFACE
The analysis of complex static and dynamic problems in­
volves in essence three stages: selection of a mathematical
model, analysis of the model, and interpretation of the results.
During recent years the finite element method implemented on
the digital computer has been used successfully in modeling
very complex problems in various areas of engineering and
has significantly increased the possibilities for safe and cost­
effective design. However, the efficient use of the method is
only possible if the basic assumptions of the procedures
employed are known, and the method can be exercised
confidently on the computer.

The objective in this course is to summarize modern and
effective finite element procedures for the linear analyses of
static and dynamic problems. The material discussed in the
lectures includes the basic finite element formulations em­
ployed, the effective implementation of these formulations in
computer programs, and recommendations on the actual use
of the methods in engineering practice. The course is intended
for practicing engineers and scientists who want to solve prob­
lems using modem and efficient finite element methods.

Finite element procedures for the nonlinear analysis of
structures are presented in the follow-up course, Finite Element
Procedures for Solids and Structures - Nonlinear Analysis.

In this study guide short descriptions of the lectures and
the viewgraphs used in the lecture presentations are given.
Below the short description of each lecture, reference is made
to the accompanying textbookfor the course: Finite Element
Procedures in Engineering Analysis, by K.J. Bathe, Prentice­
Hall, Inc., 1982.

The textbook sections and examples, listed below the
short description of each lecture, provide important reading
and study material to the course.
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SolIe basic ccnacepls of eugiDeeriDg ualysis

LECTURE 1 Introduction to the course. objective of lectures

Some basic concepts of engineering analysis.
discrete and continuous systems. problem
types: steady-state. propagation and eigen­
value problems

Analysis of discrete systems: example analysis of
a spring system

Basic solution requirements

Use and explanation of the modern direct stiff­
ness method

Variational formulation

TEXTBOOK: Sections: 3.1 and 3.2.1. 3.2.2. 3.2.3. 3.2.4

Examples: 3.1. 3.2. 3.3. 3.4. 3.5. 3.6. 3.7. 3.8. 3.9.
3.10. 3.11. 3.12. 3.13. 3.14
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Some basic concepts 01 engineering aulysis

INTRODUCTION TO LINEAR
ANALYSIS OF SOLIDS AND STRUCTURES

• The finite element method is now
widely used for analysis of structural
engineering problems.

• 'n civil, aeronautical, mechanical,
ocean, mining, nuclear, biomechani­
cal,... engineering

• Since the first applications two
decades ago,

- we now see applications
in linear, nonlinear, static
and dynamic analysis.

- various computer programs
are available and in significant
use

My objective in this set of
lectures is:

• to introduce to you finite
element methods for the
linear analysis of solids
and structures.

["Iinear" meaning infinitesi­
mally small displacements and
linear elastic material proeer­
ties (Hooke's law applies)j

• to consider

- the formulation of the finite
element equilibrium equations

- the calculation of finite
element matrices

- methods for solution of the
governing equations

- computer implementations

.to discuss modern and effective
techniques, and their practical
usage.
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Some basic concepts of engineering analysis

REMARKS

• Emphasis is given to physical
explanations rather than mathe­
matical derivations

• Techniques discussed are those
employed in the computer pro­
grams

SAP and ADINA

SAP== Structural Analysis Program

ADINA=Automatic Dynamic
Incremental Nonlinear Analysis

• These few lectures represent a very
brief and compact introduction to
the field of finite element analysis

• We shall follow quite closely
certain sections in the book

Finite Element Procedures
in Engineering Analysis,
Prentice-Hall, Inc.
(by K.J. Bathe).

Finite Element Solution Process

Physical problem

Establish finite element
... - - ~ model of physical

problem

1I

: I,-__S_ol_v_e_th_e_m_o_d_el__

I ~

~ - - - iL-_I_n_te_r.;..p_re_t_t_h_e_re_s_u_lt_S_....J

Revise (refine)
the model?
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SolIe basic concepts of engiDeering analysis

10 ft
15 ft

I 12 at 15°,.

Analysis of cooling tower.

K~~~~~-~,-Fault
\\(no restraint assumed)

Altered' grit E= toEc.,

Analysis of dam.
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Some basic concepts of engineering analysis

B .
t­
W

o

E~~;;C=-------_........
F

Finite element mesh for tire
inflation analysis.
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SolDe basic concepts of engineering analysis

Segment of a spherical cover of a
laser vacuum target chamber.

l,W

p

p
PINCHED CYLINDRICAL

SHELL

OD;:...,...----.---~~~~~~C

EtW -50
P-100

-150 • 16x 16 MESH

-200 -

DISPLACEMENT DISTRIBUTION ALONG DC OF
PINCHED CYLINDRICAL SHELL

• 16x 16 MESH-0.2

Mil

""= 0.1

~ C

BENDING MOMENT DISTRIBUTION ALONG DC OF
PINCHED CYLINDRICAL SHELL
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SoBle basic concepts 01 engineering analysis

I
Finite element idealization of wind
tunnel for dynamic analysis

SOME BASIC CONCEPTS
OF ENGINEERING

ANALYSIS

The analysis of an engineering
system requires:

- idealization of system

- formulation of equili­
brium equations

- solution of equations

- interpretation of results

1·8



SYSTEMS

Some basic concepts of engineering analysis

DISCRETE

response is
described by
variables at a
finite number
of points

set of alge­
braic --
equations

CONTINUOUS

response is
described by
variables at
an infinite
number of
points

set of differ­
ential
equations

PROBLEM TYPES ARE

• STEADY -STATE (statics)

• PROPAGATION (dynamics)

• EIGENVALUE

For discrete and continuous
systems

Analysis of complex continu­
ous system requires solution of
differential equations using
numerical procedures

reduction of continuous
system to discrete form

powerful mechanism:

the finite element methods,
implemented on digital
computers

ANALYSIS OF DISCRETE
SYSTEMS

Steps involved:

- system idealization
into elements

- evaluation of element
equilibrium requirements

- element assemblage

- solution of response

1·9



Some basic concepts of engineering analysis

Example:

steady - state analysis of
system of rigid carts
interconnected by springs

Physical layout

ELEMENTS

U1 U3

I ~ : ~\l) .. F(4).. 31 F(4)
k, u1 - F(' ) 1

-1]["1] . [F14' ]
- ,

'4 [1
u2 -1 1 U F(4)

3 3

- F(2 )

F(2) --- 2,
'2 [ 1-1]["I]fF}]

1 u F(2) --1 2 2 F(S) F(S)
2 3

u, u2 -t] [F(5l]'5 [1k3 F(3) 1 u
2

= F1S )-1--- -- 2 3 3
F(3), -r1]fPl]'3 [ ]

-1 1 u F(3)
2 2
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SolIe basic cOIcepls of engineering analysis

Element interconnection
requirements :

F(4) + F(S) = R
3 3 3

These equations can be
written in the form

K U = E.

Equilibrium equations

K U = R (a)

+k4
k1 + k2 + k3 ~ -k2 - k3

UT = [u
- 1

RT = [R- 1

·····
: -k4... .'" ............................ ...· .· .· .

K = -k2 - k3 ~ k2 + k3 + kS~ -kS· .... ...............•................•.....•..... ...· .· .
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Some basic concepts of engineering analysis

and we note that

~= t ~(i)
i =1

where

: :]
o 0

etc ...

This assemblage process is
called the direct stiffness
method

The steady- state analysis is
completed by solving the
equations in (a)
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Some basic concepls 01 engineering analysis

u,
·

.................: :.............. .
· .

· . ~... .· .· .· .· .· .· .· .

u,

K1 .
... : :.............. .

· .
K=

· .... .· .· .· :

U1

............................... : .

K ~•••~~.~•••••••••~~••••••••••• :............... ~1---.JI.l\fl--r/A~,1\1\1\~~r/A
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SOlDe basic concepts of engineering analysis

· .... : : .· .· .

u,

· .• 'O ••••••••••••••••••••••••••••••••••••••••••••••· .· .· .

K =

u,

+ K4 ;

K1 +K2 + K3 ;-K2 -K3· .'O'O'O 'O'O'O'O'O'O'O'O'O'O'O'O'O'O:'O'O'O'O'O'O'O'O'O'O'O'O'O'O:'O'O'O'O'O'O'O'O'O'O'O'O'O'O •

· .· .
K=

· .'O'O ••••••••••••••••••••••••••••••••••••••••••••••· .· .· .

.
+ K4 ;

K1+K2 + K3 ~-K2 -K3 -K4
'O'O •••••••••••••••••••••••••••••••••••••••••••••

K = -K2 -K3 ~K2+ K3+ K5 -K
5

'O'O ••••••••••••••• : •••••••••••••••••••••••••••••

u,

I
K
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Some basic concepts of engineering analysis

In this example we used
the direct approach; alternatively
we could have used a variational
approach.

In the variational approach we
operate on an extremum
formu lation:

u = strain energy of system

W = total potential of the
loads

Equilibrium equations are obtained
from

an - 0 (b)
~-

1

In the above analysis we have

U=~UT!!!

W = UT R

Invoking (b) we obtain

K U = R

Note: to obtain U and W we
again add the contributions from
all elements

1·15



SOlDe basic concepts of engineering analysis

PROPAGATION PROBLEMS

main characteristic: the response
changes with time ~ need to
include the d'Alembert forces:

For the example:

m, a a

M = a m2 a

a a m3

EIGENVALUE PROBLEMS

we are concerned with the
general ized eigenvalue problem
(EVP)

A v = A B v

!l , .!l are symmetric matrices
of order n

v is a vector of order n

A is a scalar

EVPs arise in dynamic and
buckling analysis
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Some basic concepts of engineering analysis

Example: system of rigid carts

~lU+KU=O

Let

U = <p sin W(t-T)

Then we obtain

_w
2 ~~ sin W(t-T)

+ K <p sin W(t-T)= 0- - -

Hence we obtain the equation

There are 3 solutions

w, ,~,

(l)2 ' ~2 eigenpairs

w3 ' ~3

In general we have n solutions

1·17



ANALYSIS OF
CONTINUOUS SYSTEMS;
DIFFEBENTIAL AND
VABIATIONAL
FOBMULATIONS

LECTURE 2
59 MINUTES
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Analysis 01 continnous systems; differential and variational lonnDlations

LECTURE 2 Basic concepts in the analysis of continuous
systems

Differential and variational formulations

Essential and natural boundary conditions

Definition of em-I variational problem

Principle of virtual displacements

Relation between stationarity of total potential, the
principle of virtual displacements, and the differ­
ential formulation

Weighted residual methods, Galerkin, least
squares methods

Ritz analysis method

Properties of the weighted residual and Ritz
methods

Example analysis of a nonuniform bar, solution
accuracy, introduction to the finite element
method

TEXTBOOK: Sections: 3.3.1, 3.3.2, 3.3.3

Examples: 3.15, 3.16, 3.17, 3.18, 3.19, 3.20, 3.21,
3.22, 3.23, 3.24, 3.25
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Analysis of continuous systems; differential and variational formulations

BASIC CONCEPTS
OF FINITE
ELEMENT ANALYSIS ­
CONTINUOUS SYSTEMS

• We discussed some
basic concepts of
analysis of discrete
systems

• Some additional
basic concepts are
used in analysis of
continuous systems

CONTINUOUS SYSTEMS

differential
formulation

t
Weighted residual
methods

Galerkin _.._-----41~_
least squares

variational
formulation

Ritz Method

....
finite element method

2·3



Analysis of continuous systeDlS; differential and ,arialionalIOl'llulali.

Example - Differential formulation

aA I + A ~aI dx - aA Ixx oX X

/

Young's modulus, E
~Lt:) mass density,

cross-sectional area, A

R..~-------

The problem governing differential
equation is

Derivation of differential equation

The element force equilibrium require­
ment of a typical differential element
is using d'Alembert's principle

r
~ .-;+~~ dx

I~
Area A, mass density p

2
= p A a u
~

The constitutive relation is

au
a = E ­ax

Combining the two equations above
we obtain

2·4



baIysis 01 COitiDlOU systems; differatial aDd variationaliOl'lDDlatiODS

The boundary conditions are

u(O,t} =°
EA ~~ (L,t) = RO

with initial conditions

u(x,O} = °
~ (x O) =°at '

9 essential (displ.) B.C.

9 natural (force) B.C.

In general, we have

highest order of (spatial) deriva­
tives in problem-governing dif­
ferential equation is 2m.

highest order of (spatial) deriva­
tives in essential b.c. is (m-1)

highest order of spatial deriva­
tives in natural b.c. is (2m-1)

Definition:

We call this problem a Cm-1

variational problem.
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Analysis 01 continuous systems; differential and variatioD,a1 fOl'llolatiODS

Example - Variational formulation

We have in general

II=U-W

For the rod

fL
II = J }EA

o

and

i
L

au 2 B(--) dx - u f dx - u Rax L
o

u = 0o
and we have 0 II = 0

The stationary condition 6II = 0 gives

rL au au rL.B
JO(EA ax)(6 ax) dx -)0 6u t- dx

- 6u
L

R = 0

This is the principle of virtual
displacements governing the
problem. In general, we write
this principle as

or

(see also Lecture 3)

2·6



lIiIysis of ..IiDIGUS systems; differential and variatiooallormulatioDS

However, we can now derive the
differential equation of equilibrium
and the b.c. at x = l .

Writing a8u for 8au , re-
ax ax

calling that EA is constant and
using integration by parts yields

dx + [EA ~ I
ax x=L

- EA ~\dX
x=o

Since QUO is zero but QU is
arbitrary at all other points, we
must have

and

au IEAax- x=L=R

B a2uAlso f = -A p - and
, at2

hence we have

2·7



Analysis of cODtiDaoas syst_ diIIereatial and variatioul fOlllalatiODS

The important point is that invoking
o IT = 0 and using the essential

b.c. only we generate

• the principle of virtual
displacements

• the problem-governing differ­
ential aquatio!)

• the natural b.c. (these are in
essence "contained in" IT ,
i.e., inW).

In the derivation of the problem­
governing differential equation we
used integration by parts

• the highest spatial derivative
in IT is of order m .

• We use integration by parts
m-times.

Total Potential IT

I
Use oIT = 0 and essential "b.c.

~

2·8

Principle of Virtual
Displacements

I
Integration by parts

~
Differential Equation

of Equilibrium
and natural b.c.

_ solve
problem

_solve
problem



balysis of aDa. syst-: diBerential and variatiouallnaiatiOlS

Weighted Residual Methods

Consider the steady-state problem

(3.6)

with the B.C.

B.[</>] = q., i =1,2, •••
1 1

at boundary (3.7)

The basic step in the weighted
residual (and the Ritz analysis)
is to assume a solution of the
form

(3.10)

where the fi are linearly indepen­
dent trial functions and the ai
are multipliers that are deter­
mined in the analysis.

Using the weighted residual methods,
we choose the functions fi in (3.10)
so as to satisfy all boundary conditions
in (3.7) and we then calculate the
residual,

n
R = r - L2mCL a· f.] (3.11 )

1 =1 1 1

The various weighted residual methods
differ in the criterion that they employ
to calculate the ai such that R is small.
In all techniques we determine the ai
so as to make a weighted average of
R vanish.

2·9



Analysis 01 C.tinnoDS systems; differential and variational 10000nlations

Galerkin method

In this technique the parameters ai are
determined from the n equations

f f. R dD=O ;=1,2, ••• ,n
D 1

Least squares method

(3.12)

In this technique the integral of the
square of the residual is minimized with
respect to the parameters ai '

a
aa.

1

;=1,2, ••• ,n

[The methods can be extended to
operate also on the natural boundary
conditions, if these are not satisfied
by the trial functions.]

RITZ ANALYSIS METHOD

Let n be the functional of the

em-1 variational problem that is
equivalent to the differential
formulation given in (3.6) and (3.7).
In the Ritz method we substitute the
trial functions <p given in (3.10)
into n and generate n simul­
taneous equations for the para­
meters ai using the stationary
condition on n ,

2·10

an 0aa. =
1

;=1,2, ••• ,n (3.14)



Analysis of continuous systems; differential and variational formulations

Properties

• The trial functions used in the
Ritz analysis need only satisfy the
essential b.c.

• Since the application of oIl = 0
generates the principle of virtual
displacements, we in effect use
this principle in the Ritz analysis.

• By invoking 0 II = 0 we minimize
the violation of the internal equilibrium
requirements and the violation of
the natural b.c.

• A symmetric coefficient matrix
is generated, of form

K U = R

Example

R=100 N

2Area = 1 em

(
........_- x,u --- - - - - -- - ~---r;;;-==-e-.F- --.;;B;",.,. C

I-...--~~---·-I-..--------·-I100 em 80 em

Fig. 3.19. Bar subjected to
concentrated end force.
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Analysis of COitiDlOIS systems; differeatial ad ,ariali" fOllDaialiODS

Here we have

1
180

IT = 1 EA(~)2 dx
2 ax

o
- 100 uIx = 180

and the essential boundary condition
is u Ix=O = 0

Let us assume the displacements

Case 1

u = a1x + a2 i
Case 2

~u = I1JO 0< x < 100

100 < x < 180

We note that invoking oIT = 0
we obtain

1
180

oIT = (EA ~~) o(~~) dx - 100 OU Ix=180

o = 0

or the principle of virtual
displacements

£
180

(~~u)( EA ~~) dx = 100 OU Ix=180
o

JET T dV = IT. F.
- - 1 1

V

2·12



Analysis of continuous systems; differential and variational formulations

Exact Solution

Using integration by parts we
obtain

~ (EA ~) = 0ax ax

EA ~ = 100ax
x=180

The solution is

u = 1~O x ; 0 < x < 100

100 < x < 180

The stresses in the bar are

a = 100; 0 < x < 100

a = 100 ; 100 < x < 180
(l+x-l00)2

40

2·13



Analysis of continuous systems; differential and variational formulations

Performing now the Ritz analysis:

Case 1

f
180

dx+ I (1+ x-l00)2
2 40

100

Invoking that orr = 0 we obtain

E [0.4467

116

and

116

34076

128.6
a1 = ---=E=--- a - 0.341

2 - - E

Hence, we have the approximate
solution

u =
12C.6 0.341

E x - E
2x

2·14

a = 128.6 - 0.682 x



Analysis of continuous systems; differential and variational formulations

Case 2

Here we have

100

E J 1 2n=2 (100 uB)
a

f
180

dx+ I (1+x-l00)2
2 40

100

Invoking again on =0 we obtain

E [15.4 -13]
[~:] = [~oo]240

-13 13

Hence, we now have

10000 11846.2
U = E Uc EB

and

o = 100 0< x < 100

1846.2 = 23.08 x> 100o =
80

2-15



Aulysis of COilinDmas systems; diUerenliai and varialiOlla1I01'1BDlaIiGlS

u

EXACT

~-- --- -::.:--~~~.-.-.

" Sol ution 2

---..I~ ..,-__--r-__--.,r--- ~X

15000
E

10000
E

5000
-E-

100 180

CALCULATED DISPLACEMENTS

(J

50

100-I=:::==-==_==_:=os:=_=_=,==_=_==
"" EXACT

"I~
~ SOLUTION 1

I -< ,J SOLUTION 2

L._._. ~._._
-+ ---,~--------r-------~X

100 180

CALCULATED STRESSES
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balysis of coatiDloas systms; diBerenlial ud variational fonnllatioas

We note that in this last analysis

e we used trial functions that do
not satisfy the natural b.c.

e the trial functions themselves
are continuous, but the deriva­
tives are discontinuous at point
B. 1
for a em- variational problem
we only need continuity in the
(m-1)st derivatives of the func­
tions; in this problem m =1 .

edomains A - Band B- e are
finite elements and
WE PERFORMED A
FINITE ELEMENT
ANALYSIS.

2·17



FORMULATION OF THE
DISPLACEMENT-BASED
FINITE ELEMENT
METHOD

LECTURE 3
58 MINUTES
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Formulation of the displacement-based finite element method

LECTURE 3 General effective formulation of the displace­
ment-based finite element method

Principle of virtual displacements

Discussion of various interpolation and element
matrices

Physical explanation of derivations and equa­
tions

Direct stiffness method

Static and dynamic conditions

Imposition of boundary conditions

Example analysis of a nonuniform bar. detailed
discussion of element matrices

TEXTBOOK: Sections: 4.1. 4.2.1. 4.2.2

Examples: 4.1. 4.2. 4.3. 4.4
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Formulation of the displacement-based finite element method

FORMULATION OF
THE DISPLACEMENT ­
BASED FINITE
ELEMENT METHOD

- A very general
formu lation

-Provides the basis of
almost all finite ele­
ment analyses per­
formed in practice

-The formulation is
really a modern appli ­
cation of the Ritz/
Gelerkin procedures
discussed in lecture 2

-Consider static and
dynamic conditions, but
linear analysis

Fig. 4.2. General three-dimensional body.
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FOl'Dlulation of the displaceDlent·based finite e1mnent lDethod

The external forces are

fB f~ Fi
X X

fB = fB fS = fS Fi = Fi (4.1)y y y

fB fS Fi
Z Z Z

The displacements of the body from
the unloaded configuration are
denoted by U, where

uT = [u V w]

The strains corresponding to U are,

(4.2)

~T = [EXX Eyy EZZ YXy YyZ YZX] (4.3)

and the stresses corresponding to €

are

3·4



Formulation of the displacement-based finite element method

Principle of virtual displacements

where

ITT = [IT If w] (4.6 )

Fig. 4.2. General three-dimensional body.
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Formulation of the displaceaenl-based filile e1eDlenl .ethod

x,u

, ,
""

Finite element

For element (m) we use:

!!(m) (x, y, z) =!:!.(m) (x, y, z) 0 (4.8)

"T!! =[U, V, W, U2V2W2 ••• UNVNWN]

"T!! =[U,U2U3 ... Un] (4.9)

§.(m) (x, y, z) =~(m) (x, y, z) !! (4.'0)

!.(m) =f(m)~(m) + -rI(m) (4.'1)

3·&



'OI'IIalation of the displaceDlenl-based filile eleDlenl method

Rewrite (4.5) as a sum of integrations
over the elements

(4.12)

Substitute into (4.12) for the element
displacements, strains, and stresses,
using (4.8), to (4.10),____---..ll.c=~~------ -(m) T
j- I --£

'iTl~1 B(m)Tc(m)B(m)dv(m)j U=If ~ v(m) - l- - £1 ---- ~(m) = f.(m) ~(m)

j [I T (m) j (-£ )(m) = B(m) l..u·)
T L l(m) !!(m) 1.B dV(m) - --

I 1 m V I ( )T_" ,. _~m

:,. L f.
m

) !!sCm)Ti
m

)dScmlj y:(m) =!!(m) ~
_m_JV...:........<,==~I______ (m) T

El B(m)TTI(m)dv(m)j -US
m ;rm) - - -(m)T

-___.r__.........1 ------.... ~"<I:::
(4.13)
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Formulation of the displacement-based finite element .ethod

We obtain

K U = R

where

(4.14)

R=.Ba + Rs - R1 + ~ (4. 15)

K= ~f B(m)Tc(m)B(m)dV(m)
- mJ

V(m)- - - - (4.16)

R = "'1. H(m)TfB(m)dV(m) (4.17)
~ ~ lm) - -

R ="'1 HS (m)Tfs(m)dS(m) (4.18)
-S ~ ~m) - -

R ="'1 B(m)TT1(m)dV(m) (4.19)
-1 ~ V(m) - -

R =F
~ -

In dynamic analysis we have

f
(m)T -B(m)

~B = ~ V(m) .!:!. [1.

_ p(m).!:!.(m)~]dV(m)

MD+KU= R

(4.21 )

(4.22)

(4.20)

B(m) -B(m) •• (m)
1. = 1. - p!!
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Formulation of the displacement-based finite element method

To impose the boundary conditions,
we use

~a ~b ~a ~b

+

~a t!t>b -~

= (4.38)

.. ..
~a~+~a~=~-~b~-~b~

(4.39)

~=~a~+~b~+~a~+~b~
(4.40)

ransformed
egrees of\eedom

i A
! • V T
I d
! - f

Global degrees
of freedom

;- V
C,-:~:e)~ I

(restrained\~

rl'f u

L [

COS a
T =

sin a

-sin a]
cos a

'/.. U = T IT

Fig. 4.10. Transformation to skew
boundary conditions
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Formulation of the displacement-based finite element method

For the transformation on the
total degrees of freedom we use

so that

..
Mu+Ku=R

where

.th .th
1 J
column

!1. •• j
(4.41 ) i th row 1cos a. -s ina.

T =
}h

1
(4.42) sin a. cos a.

1

L
Fig. 4.11. Skew boundary condition

imposed using spring element.

We can now also use this procedure
(penalty method)
Say Ui =b, then the constraint
equation is

___ 3·10

k U. = k b,
where

k » k ..
"

(4.44)



FormDlation of the displacement·based finite element method

Example analysis

80

x

z

y

100

Finite elements

area = 1

element ®

100

area = 9

J~
I" 100

-I

80
~I
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Formulation of the displacement·based finite element method

Element
interpolation functions

1.0

I ...
L

--I

Displacement and strain
interpolation matrices:

H(l} = [(l-L) y a ]
- 100 100 v(m} = H(m}U

!:!.(2} = [ a (1- L) :0]80

!!(l)=[ 1 1 a ]
100 100 av = B(m}U

!!(2) = [ 1 1
ay - -

a
80 80]
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FOI'IDDlation of the displacement·based finite element method

stiffness matrix

- 1
100

5.= (1 HEllO l~O [-l~O l~O o}Y
a

a

U

1
- 80

1
80

Hence

E [ 2.4 -2.4

=240 -2.4 15.4

a -13

Similarly for M '.!!B ' and so on.

Boundary conditions must still be
imposed.
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GENERALIZED
COORDINATE FINITE
ELEMENT MODELS

LECTURE 4
57 MINUTES
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Generalized coordinate finite element models

LECTURE 4 Classification of problems: truss, plane stress, plane
strain, axisymmetric, beam, plate and shell con­
ditions: corresponding displacement, strain, and
stress variables

Derivation of generalized coordinate models

One-, two-, three- dimensional elements, plate
and shell elements

Example analysis of a cantilever plate, detailed
derivation of element matrices

Lumped and consistent loading

Example results

Summary of the finite element solution process

Solu tion errors

Convergence requirements, physical explana­
tions, the patch test

TEXTBOOK: Sections: 4.2.3, 4.2.4, 4.2.5, 4.2.6

Examples: 4.5, 4.6, 4.7, 4.8, 4.11, 4.12, 4.13, 4.14,
4.15, 4.16, 4.17, 4.18
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Generalized coordinate finite eleDlent models

DERIVATION OF SPECIFIC
FINITE ELEMENTS

• Generalized coordinate
finite element models

~(m) = i B(m)T C(m) B(m) dV (m)

V(m)

aW) = J H(m)T LB(m) dV (m)
V(m)

R(m) = f HS(m)T f S(m) dS (m)
!!S (m) - -

S

etc.

In essence, we need

H(m) B(m) C (m)
- ,- '-

• Convergence of
analysis results

A

Across section A-A:
TXX is uniform.
All other stress components
are zero.

Fig. 4.14. Various stress and strain
conditions with illustrative examples.

(a) Uniaxial stress condition: frame
under concentrated loads.
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Ge.raJized coordiDale finite elementlDOIIeIs
Hale

\
I

6 I

\

\ -\- 1ZI \

TXX ' Tyy , TXY are uniform
across the thickness.
All other stress components
are zero.

Fig. 4.14. (b) Plane stress conditions:
membrane and beam under in-plane
actions.

u(x,y), v(x,y)
are non-zero
w= 0 , E zz = 0

Fig. 4.14. (e) Plane strain condition:
long dam subjected to water pressure.
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Generalized coordinate finite element models

Structure and loading
are axisymmetric.

j(
I

I
I

I,
I I\--

All other stress components
are non-zero.

Fig. 4.14. (d) Axisymmetric condition:
cylinder under internal pressure.

(before deformation)

(after deformation)

/

SHELL

Fig. 4.14. (e) Plate and shell structures.
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Generalized coordinate finite element models

Problem

Bar
Beam
Plane stress
Plane strain
Axisymmetric
Three-dimensional
Plate Bending

Displacement
Components

u
w

u, v
u, v
u,v

u,v, w
w

Table 4.2 (a) Corresponding Kine­
matic and Static Variables in Various
Problems.

Problem

Bar
Beam
Plane stress
Plane strain
Axisymmetric
Three-dimensional
Plate Bending

Strain Vector ~T-
(E"...,)
[IC...,]

(E"..., El'l' )'"7)
(E..., EJ"7 )'..7)

[E..., E"77 )'''7 Eu )

[E..., E"77 Eu )'''7 )'76 )'...,)

(IC..., 1(77 1("7)

. au au au au
Nolallon: E.. = ax' £7 = a/ )'''7 = ay + ax'

a1 w a1 w a1 w
••• , IC..., = -dxZ' IC77 = - OyZ,IC.., = 20x oy

Table 4.2 (b) Corresponding Kine­
matic and Static Variables in Various
Problems.
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Problem

Bar
Beam
Plane stress
Plane strain
Axisymmetric
Three-dimensional
Plate Bending

Generalized coordinate finite element models

Stress Vector 1:T

[T;u,]
[Mn ]

[Tn TJIJI T"'JI]
[Tn TJIJI T"'JI]

[Tn TJIJI T"'JI Tn]
[Tn TYJI Tn T"'JI TJI' Tu ]

[Mn MJIJI M"'JI]

Table 4.2 (e) Corresponding Kine­
matic and Static Variables in Various
Problems.

Problem Material Matrix.£

Bar
Beam

Plane Stress

E
El

[

1 v
E v 1

1-1':&
o 0 1 ~.]

Table 4.3 Generalized Stress-Strain
Matrices for Isotropic Materials
and the Problems in Table 4.2.
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Generalized coordinate finite element models

ELEMENT DISPLACEMENT EXPANSIONS:
For one-dimensional bar elements

For two-dimensional elements

(4.47)

For plate bending elements

2
w(x,y) =Y, + Y2 x + Y3Y+ Y4xy + Y5x + •..

(4.48)
For three-dimensional solid elements

u (x,y,z) =a, + Ozx + ~Y + Ci4Z + ~xy + ...

w(x,y,z) =Y, +y2x+y3y+y4z+y5xy+ ...

(4.49)

4·8



Hence, in general

u = ~ ex

Generalized coordinate finite element models

(4.50)

(4.51/52)

(4.53/54)

Example

(4.55)

Y.V

X.V

la) Cantilever plate

r Nodal point 6
lp

9

Element 0 0
5 8

CD @
Y.V V7

1 4 7

X.V V7

(bl Finite element idealization

Fig. 4.5. Finite element plane
stress analysis; i.e. T ZZ =T Zy =T

ZX
=0
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Generalized coordinate finite element models

2
LJ2.= US --II--.......---------....~

element ®

Element nodal point no. 4
=structure nodal point
no. 5 .

Fig. 4.6. Typical two-dimensional
four-node element defined in local
coordinate system.

For element 2 we have

[

U{X,y)] (2)
= H(2) u

v{x,y) --

where

uT = [U- 1

4·10



Generalized coordinate linite element models

To establish H (2) we use:

or

[
U(X,y)] =_~l!.
v(x,y)

where

! =[~ ~}!= [1 x y xy]

and

Defining

we have

Q = Aa.

Hence

H=iPA-1
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Generalized coordinate finite element models

Hence

H =fl- l4
and

(1+x ) ( Hy) : : a
I ••• I I

a : : (1 +x )( 1+y) :

H'ZJ = [0
- 0

Ull
:H II

: H ZI

U J V J U z t': u. v.

U2 U3 U4 Us U6 U7 Us U9 U1a

I 0 : H IJ H 17 : HI. H 16 : 0 0: HI. H u :

o :H ZJ H 21 : H:: H: 6 : 0 0: H.. H a :

VI -element degrees of freedom

U12 U1 3 U14 UIS -assemblage degrees

HIs: 0 0 zeros OJ offreedom

H zs : 0 0 zeros O

2x18

(a) Element layout (b) Local-global degrees of freedom

Fig. 4.7. Pressure loading on
element (m)
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Generalized coordinate finite element models

In plane-stress conditions the
element strains are

where

E - au . E _ av. _ au + av
xx - ax' yy - ay , Yxy - ay ax

Hence

where

I = [~
1 0

I
y'O

I

0 0 0 10I

0 1
I

X 10
I
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Generalized coordinate finite element models

ACTUAL PHYSICAL PROBLEM

GEOMETRIC DOMAIN
MATERIAL
LOADING
BOUNDARY CONDITIONS

1
MECHANICAL IDEALIZATION

KINEMATICS, e.g. truss
plane stress
three-dimensional
Kirchhoff plate
etc.

MATERIAL, e.g. isotropic linear
elastic
Mooney-Rivlin rubber
etc.

LOADING, e.g. concentrated
centrifugal
etc.

BOUNDARY CONDITIONS, e.g. prescribed

1

displacements
etc.

FINITE ELEMENT SOLUTION

CHOICE OF ELEMENTS AND
SOLUTION PROCEDURES

YIELDS:
GOVERNING DIFFERENTIAL
EQUATIONS OF MOTION
e.g.

..!.. (EA .!!!) = - p(x)ax ax

YIELDS:
APPROXIMATE RESPONSE
SOLUTION OF MECHANICAL
IDEALIZATION

Fig. 4.23. Finite Element Solution
Process
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Generalized coordinate finite element models

SECTION
ERROR ERROR OCCURRENCE IN discussing

error

DISCRETIZATION use of finite element 4.2.5
interpolations

NUMERICAL evaluation of finite 5.8. 1
INTEGRATION element matrices using 6.5.3
IN SPACE numerical integration

EVALUATION OF use of nonlinear material 6.4.2
CONSTITUTIVE models
RELATIONS

SOLUTION OF direct time integration, 9.2
DYNAMIC EQUILI-. mode superposition 9.4
BRIUM EQUATIONS

SOLUTION OF Gauss-Seidel, Newton- 8.4
FINITE ELEr1ENT Raphson, Quasi-Newton 8.6
EQUATIONS BY methods, eigenso1utions 9.5
ITERATION 10.4

ROUND-OFF setting-up equations and 8.5
their solution

Table 4.4 Finite Element
Solution Errors
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Generalized coordinate finite element models

CONVERGENCE

Assume a compatible
element layout is used,
then we have monotonic
convergence to the
solution of the problem­
governing differential
equation, provided the
elements contain:

1) all required rigid
body modes

2) all required constant
strain states

~ compatibleLW layout

CD incompatible
layout

~
t:=

no. of elements

If an incompatible element
layout is used, then in addition
every patch of elements must
be able to represent the constant
strain states. Then we have
convergence but non-monotonic
convergence.
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Geuralized coordinate finite e1eJDeDt models

7 "

/ " 'r-
>

,;

/

(

""
1-- - --

,
I
I
I
I

I
I
I

i
I

(a) Rigid body modes of a plane
stress element

......~_Q

I
I

I
I

(b) Analysis to illustrate the rigid
body mode condition

Rigid body
translation
and rotation;
element must
be stress­
free.

Fig. 4.24. Use of plane stress element
in analysis of cantilever
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Generalized coordinate filite elellent .adels

-------

Rigid body mode A2 = 0

Poisson's
ratio" 0.30

Young's r------,
modulus = 1.0 I

I
10

-l
I
I
I
I
I

_1

Rigid body mode Al = 0

I

t I

I
I

01 I
I
I

• I

1.

...--,.".-~\-- \
\

\ \
\ \
\ \
\ \
\ .J
\ -­--

('
\

---
\

\
\,.

..... .....

_-I
-- I

I
I
I

I
I
f

Rigid body mode A3 =0

..... I
'J

Flexural mode A4 =0.57692

Fig. 4.25 (a) Eigenvectors and
eigenvalues of four-node plane
stress element

~-
\ ......"

\
\ \
\

\...~-, \
.... \.... ~

\
\
\

\
\
\.----"'"="""- \

--~

I
'-

Flexural mode As =0.57692 Shear mode A. =0.76923

r--------1
I I
I I
I I
I :
I I
I I
I IL .J

,-----,
I

I I
I I
I I
I I
I I
I I
I I
I I

Stretching mode A7 =0.76923 Uniform extension mode As =1.92308

Fig. 4.25 (b) Eigenvectors and
eigenvalues of four-node plane
stress element
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(0 ® G)

® ®-. ®

/ @)
@ @

Generalized coordiDate finite element lDodels

·11

~
17

'c.
IT

,I>

~.f:

20

IS

a) compatible element mesh; 2
constant stress a = 1000 N/cm
in each element. YY

b) incompatible element mesh;
node 17 belongs to element 4,
nodes 19 and 20 belong to
element 5, and node 18 belongs
to element 6.

Fig. 4.30 (a) Effect of displacement
incompatibility in stress prediction

0yy stress predicted by the
incompatible element mesh:

Point Oyy(N/m
2

)

A 1066
B 716
C 359
D 1303
E 1303

Fig. 4.30 (b) Effect of displacement
incompatibility in stress prediction
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IMPLEMENTATION or
METHODS IN
COMPUTER PROGRAMS;
EXAMPLES SAP, ADINA

LECTURE 5
56 MINUTES

5·1



"pi_entation of metllods in computer prograDlS; examples SIP, ADlRA

LECTURE 5 Implementation of the finite element method

The computer programs SAP and ADINA

Details of allocation of nodal point degrees of
freedom. calculation of matrices. the assem­
blage process

Example analysis of a cantilever plate

Out-of-core solution

Eff&ctive nodal-point numbering

Flow chart of total solution process

Introduction to different effective finite elements
used in one. two. three-dimensional. beam.
plate and shell analyses

TEXTBOOK: Appendix A, Sections: 1.3. 8.2.3

Examples: A.I. A.2. A.3. A.4. Example Program
STAP
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l_pIg_talioa of _ethods in CODIpDter program; mDlples SAP, ADINA

N = no. of d.o.f.

of total structure

T
K(m) = 1. B(m) C(m)B(m) dV(m)
- V(m)- --

R(m) = 1. H(m)T fB(m) dV (m)
-B v(m) - -

H(m) B(m)
- -
kxN .hN

IMPLEMENTATION OF

THE FINITE ELEMENT

METHOD

We derived the equi­
librium equations

where
In practice, we calculate compacted
element matrices.

K = ~ K(m) ; R = ~ R ( m)
- m- -B m!..!B ~ , ~B'

nxn nxl

n = no. of
element d.o.f.

tl ~

kxn R,xn

The stress analysis process can be
understood to consist of essentially
three phases:

1. Calculation of structure matrices
K , M , C , and R, whichever are
applicable.

2. Solution of equilibrium equations.

3. Evaluation of element stresses.

5·3



IDlpl_81taliol of Dlethods in toDlpuler progrw; mDlples SAP, ADIlI

The calculation of the structure
matrices is performed as follows:

1. The nodal point and element in­
formation are read and/or generated.

2. The element stiffness matrices,
mass and damping matrices, and
equivalent nodal loads are calculated.

3. The structure matrices K, M ,
C , and R, whichever are
applicable, are assembled.

l Sz :: 6

t W:: 3

Z

x
/U:: 1

/Sx:: 4

r-----y V::2 Sy:: 5

Fig. A.1. Possible degrees of
freedom at a nodal point.

I
- nodal point_. -...

- ....i

ID(I,J) =

Degree of
freedom
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....taIiOi of IIeIWs in coapler P.... UUlples SIP, ABilA

Temperature at top face a l00"C

aOem

<D ®
E = l(Jl1 N/cm2 2 E = 2 x l(Jl1 N Icm2 t
., - 0.15 t" =0.20 8

4 _1 7 -7
~

\
Temperature at Degree of
bottom face = 70'C freedom

number

a t 6 5 9 t~l1
@ 4 Element

E. 2 x l(Jl1 Nlem2 number
E· lOS N/em

2 t4 II'" 0.20 t10
.,-0.15 3 82 5 __ -9

Node

Fig. A.2. Finite element cantilever
idealization.

1n this case the 10 array is
given by

1 1 1 0 0 0 0 0 0

1 1 1 0 0 0 0 0 0

10 = 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 ] 1
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0.0 40.0 80.0]

0.0 0.0 0.0]

70.0 85.0 100.0]

IJDpleDIeDtatiOD of methods in CODIpater.programs; examples SAP, ADIIA

and then

0 0 0 1 3 5 7 9 11

0 0 0 2 4 6 8 10 12

10= 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

Also

XT = [ 0.0 0.0 0 . 0 60.0 60.0 60.0 120.0 120.0 120.0]

TY = [ 0.0 40.0 80.0 0.0 40.0 80.0

TZ =[0.0 0.0 0.0 0.0 0.0 0.0

TT =[70.0 85.0 100.0 70.0 85.0 100.0
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Implementation of methods in computer programs; examples SAP, ADINA

For the elements we have

Element 1: node numbers: 5,2,1,4;
material property set: 1

Element 2: node numbers: 6325·I , , ,

material property set: 1

Element 3: node numbers: 8547·, , , ,
material property set: 2

Element 4: node numbers: 9658-, , , ,
material property set: 2

CORRESPONDING COLUMN AND ROW NUMBERS

For compacted I
matrix 1 2 3 4 5 6 7 8

For !1
.., 4 0 0 0 0 1 2oJ

LMT = [3 4 0 0 0 0 1 2]
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Implementation of methods in computer programs; examples SAP, ADINA

Similarly, we can obtain the LM
arrays that correspond to the
elements 2,3, and 4. We have for
element 2,

L MT = [5 6 0 0 0 0 3 4]

for element 3,

L MT = [9 10 3 4 1 2 7 8]

and for element 4,

LMT = [11 12 5 6 3 4 9 10]

J
SkYline

.~ 0 0 0

"o 0 0 0

" ------m =3o k 36 '0 0 6

'-
k 45 k46 0" 0

(a) Actual stiffness matrix

kss kS6

k66

1

2

4

6

10

12

16

18

22

A(21) stores kS8

Fig. A.3. Storage scheme used for a
typical stiffness matrix.

A(17)

A(16)

A(15t

A(14)

A(13)

A(12)

A(91

A(8)

A(7)

A(6) A(lll

A(lO)

Symmetric

(b) Array A storing elements
of K.

A(l) A(3)

A(2) A(S)

A(4)

,. mK =3

·1"kll k 12 0 k 14

k n k 23 0

k 33 k 34

K=
k 44

A=
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_pl••taiioo of lDeIJaods in COIDpater prograJDS; eDIIIples SAP, ADINA

x =NONZERO ELEMENT
0= ZERO ELEMENT

.--, COLUMN HEIGHTS
I I I

X 0 0 0 10 0 10
o 0 0 0:0 0:0
xix x 010 0 x
XIX 0 010 0 0
XIX 0 0 X 0 0

X 0 X 10 0 0
I xxlxXIO

xix XiX

SYMMETRIC IX X lX
XIX

IX

ELEMENTS IN ORIGINAL STIFFNESS MATRIX

Fig. 10. Typical element pattern in
a stiffness matrix using block storage.

BLOCK 1

BLOCK 2~---~

I
X 0
X 0
XIX
XiX
XiXI

X

~_BLOCK 4

ELEMENTS IN DECOMPOSED STIFFNESS MATRIX

Fig. 10. Typical element pattern in
a stiffness matrix using block storage.
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IIIlpl••tation of methods in computer programs; examples SAP, ABilA

20

3~ 1 2 3 4 5 6 7 8 9 10 11 12 1,

14 15 16 17 18 19

~ 21 22 23 24 25 26 27 28 29 30 31 32 33

32

2283033

(b) Good nodal point numbering,
mk + 1 = 16.

Fig. A.4. Bad and good nodal point
numbering for finite element
assemblage.

(a) Bad nodal point numbering,
mk + 1 = 46.

9 11 14 16 19 21 24 26 29 3164

5

1

2 7 12 17 22 27

~,

, 3 8 10 13 15 18 20 23 5
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"pI••tation of Ilethods in cOIlpuler program; exallples SAP, ADINA

START

READ NEXT DATA CASE

Read nodal point data
(coordinates, boundary
conditions) and establish
equation numbers in the
10 array.

Calculate and store load
vecton for all load cases.

Read. generate. and store
element data. Loop over all
element groups.

Read element group data, and
assemble global structure
stiffness matrix. Loop over
all element groups.

Calculate .b..Q..!:.T factorization
of global stiffness matrix(·)

FOR EACH LOADCASE

Read load vector and calculate
nodal point displacements. ~---1

Read element group data and
calculate element stresses.
Loop over all element groups.

END

Fig. A.5. Flow chart of program
STAP. *See Section 8.2.2.
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Implementation of methods in computer programs; examples SAP, ADINA

z

ONE - DIMENSIONAL
ELEMENT

I
-'-------4

! RING ELEMENT

x

;--.-------------... y

Fig. 12. Truss element
p. A.42.

5-12

z 2

3

Fig. 13. Two-dimensional plane
stress, plane strain and axisymmetric
elements.
p ..A.43.

y



y

Implementation of metbods in computer programs; examples SAP, ADINA

2

---5

x
~------ Fig. 14. Three-dimensional solid -------....~

and thick shell element
p. A.44.

z

y

Fig. 15. Three-dimensional beam
element
p A.45.
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Implementation of methods in computer programs; examples SAP, ADINA

3-16 NODES

TRANSITION
ELEMENT

•

•

-- --. __e_

---L~-----
•

y

x

Fig. 16. Thin shell element
(variable-number-nodes)
p. A.46.
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FOBMULATION AND
CALCULATION OF
ISOPABAMETBIC
MODELS

LECTURE 6
57 MINUTES
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FOl'Dlolation and calculation of isoparmetric models

LECTURE 6 Formulation and calculation of isoparametric
continuum elements

Truss. plane-stress. plane-strain. axisymmetric
and three-dimensional elements

Variable-number-nodes elements. curved ele­
ments

Derivation of interpolations. displacement and
strain interpolation matrices. the Jacobian
transformation

Various examples: shifting of internal nodes to
achieve stress singularities for fracture me­
chanics analysis

TEXTBOOK: Sections: 5.1. 5.2. 5.3.1. 5.3.3. 5.5.1

Examples: 5.1. 5.2. 5.3. 5.4. 5.5. 5.6. 5.7. 5.8. 5.9.
5.10. 5.11, 5.12. 5.13. 5.14. 5.15. 5.16. 5.17

6·2



FOI'DlDlatiOl ud calculation of isopariUHbic models

FORMULATION AND
CALCULATION OF ISO­
PARAMETRIC FINITE
ELEMENTS

interpolation matrices
and element matrices

-We considered earlier
(lecture 4) generalized
coordinate finite
element models

-We now want to discuss
a more general approach
to deriving the required

isoparametric
elements

lsoparametric Elements
Basic Concept: (Continuum Elements)

Interpolate Geometry

N
x=L

i=l
h. x. ;

I I

N
y= L

i =1
h. y. ;

I I

N
z=L

i=l
h. z.

I I

Interpolate Displacements

N
u= 1:

i =1
h. u.

I I

N
v= L

i == 1
h . v .

I I

N
w= L

i =1
h.w.

I I

N =number of nodes
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Formulation and calculation of isoparametric models

1/0 Element Truss

2/0 Elements Plane stress Continuum
Plane strain Elements
Axisymmetric Analysis

3/0 Elements Three-dimensional
Thick Shell

(a) Truss and cable elements

(b) Two-dimensional elements

Fig. 5.2. Some typical continuum
elements
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FOI'Ilalation and calcalatioD 01 isoparametric models

(c) Three-dimensional elements

Fig. 5.2. Some typical continuum
elements

Consider special geometries first:

~~==-=l======~I=-==r======r==~1

Truss, 2 units long
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F..utioa and calculation of isoparalDebic lDodels

S

Ill(
1 1

~ J~
ll(

-
1

1

-

r

1 - D Element

2 Nodes:

2/D element, 2x2 units

Similarly 3/D element 2x2x2 units
(r-s-taxes)

-11.0

~~ -+- .. _ h1 = %(1 + r)

2 -r 1

-r



Formulation ud calculation 01 isoparUletric lIodeis

1.0 --- -... -e_----......:::::...::::=-- -..:...::-:::;. h2 = Y.z(1- r) - Y.z(1- r2)
2 3 1

2 - 0 Element

4 Nodes:

3

Similarly
h2 =%(1- r)(1 + 5)

h3 =%(1- r)(1- 5)

h4 =%(1 + r)(1-s)

/-r-r----+~~-r

h1 =~(1 + r)(1 + 5)

4
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Formulation and calculation of isoparametric models

6·8

3

3

Construction of S node element
(2 dimensional)

first obtain hS :

....--+-+--+~_..... 1

-+--+-I--I--I---I--------I--.._r

Then obtain h1 and h2 :

tfF--.-~-_-_-~-r~~_------..1L...4. !1.0
1

h1 =%(1 + r)(1 + s)

-%hS

Sim. h2 = %(1- r)(1 + s)

-%hS

4



Formulation and calculation of isoparametric models

r = +1

y

6

3
\
\

r =-1

\
\---;q-----

\
\

r =0

s=o
---..
8 r

x

(a) Four to 9 variable-number-nodes
two-dimensional element

Fig. 5.5. Interpolation functions of
four to nine variable-number-nodes
two-dimensional element.

-~hs ·1· . - ~hs

-~hs -;h6

... -~h6 -~h7

Include only if node i is defined

h, = ~(l+r)(l+s)

h 2 = ~(l-r)(l+s)

h 3 = ~(l-r) (1 -s)

h. = ~(1 +r) (l-s)

h s = ~(1 -r2 ) (1 +s)

'h6 = ~ (1 - S2) (1 - r)

h 7 = ~(1 -r2) (1 -s)

h s = i (1 - s2) (1 + r)

h~:: ( 1- r"") (1- S'")

i = 5 i = 6 i = 7 i = 8 I:: r
-~ her

-~ h<j

-ihq

-~hq

-ihq

-1 h<j

-th"
-th<f

(b) Interpolation functions

Fig. 5.5. Interpolation functions of
four to nine variable-number-nodes
two-dimensional element:
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Fonnulation and calculation of isoparametric models

Having obtained the hi we can
construct the matrices Hand !!:

- The elements of H are the· h·
- I

(or zero)
- The elements of B are the
derivatives of thehi (or zero),

Because for the 2x2x2 elements
~we can use 1:;'=~

x==r
y == s
z == t

EXAMPLE 4 node 2 dim. element
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Formulation and calculation of isoparametric models

ah1 0 ah4 0

ar ar
u1

[

Erl ah1 ah4
v1

0 0ESS as as u2
Yrs ah1 ah1 3h4 ah4

as at' as ar v4
\.. Iv-

B

We note again r==x
s=y

GENERAL ELEMENTS

Y,v

s r = +1
s =+1

r---t---4_r •
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Formulation and calculation of isoparametric models

Displacement and geometry inter-
polation as before, but

[:] = [:: :]l~] Aside:as as as ay cannot use

or a a ar--- ax + ...ax ar
a a- = J ax (in general)ar -

a _ J-1 a
(5.25)a-x- ar

Using (5.25) we can find the matrix
.!!. of general elements

The !:! and J! matrices are a
function of r, s , t ; for the
integration thus use

dv = det J dr ds dt
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FOI'Dlalation ud calculation of isoparmebic .odels

Fig. 5.9. Some two-dimensional elements

Element 1

z.._----+----......-"·r

+-
3, '4-

"""1--1-----------t..~1
6 em.

X

Element 2

2.

...

J =

+--_1< '0' I I=>

1+ 3.....-------.....;
cDG-W\

o

1 1
213 2

&-13



Formulation and calculation of isoparametric models

Element 3

\c.1V\

(1 +5)]
(3+r)

2 c l"l1

2.

I •

-+---~~- -,c
: '3,.~'t' .....,..

.I.
...L...3-"'

1
------14--,

1c.W'I

3

r=-I

Natural space

3
•
I I
,-. -I'

L/4

Actual physical space

Fig. 5.23. Quarter-point one­
dimensional element.
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Formulation and calculation of isoparametric models

Here we have

3

x=L:
i =1

hence

L 2h.x. 9 x =-4(1+r )
1 1

J = [!:.. + !'- LJ- 2 2

and

or

Since

r = 2.Jf- 1

We note

1 singularity at X = 0 !
/x
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Formulation and calculation of isoparaDlebic Dlodels

Numerical Integration

Gauss Integration
Newton-Cotes Formulas

K = '" a··k F··k- !:J IJ -IJ
I,J,k

x

x

6·16
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Formulation of structural elements

LECTURE 7 Formulation and calculation of isoparametric
structural elements

Beam, plate and shell elements

Formulation using Mindlin plate theory and uni­
fied geneJ,"al continuum formulation

Assumptions used including shear deformations

Demonstrative examples: two-dimensional beam,
plate elements

Discussion of general variable-number-nodes
elements

Transition elements between structural and con­
tinuum elements

Low- versus high-order elements

TEXTBOOK: Sections: 5.4.1, 5.4.2, 5.5.2, 5.6.1

Examples: 5.20, 5.21, 5.22, 5.23, 5.24, 5.25, 5.26, 5.27

7·2



FORMULATION OF
STRUCTURAL
ELEMENTS

• beam, plate and
shell elements

• isoparametric
approach for
interpolations

Continuum
Approach

FOI'IIDlati.... slnclDrai e1U11DIs

Strength of Materials
Approach

• straight beam
elements

use beam theory
including shear
effects

• plate elements

use plate theory
including shear
effects

(ReissnerIMindlin)

" particles remain on
a straight line during
deformation"

Use the general
principle of virtlial
displacements, but

-- exclude the stress
components not
applicable

-- use kinematic
constraints for
particles on
sections originallv
normal to the mid­
surface

e.g.
beam

e.g.
shell

7·3



Formulation of structural elements

..
x

Neutral
axis

Beam
section Boundary conditions between

beam elements

Deformation of cross-section

wi = wi ;-0 +0x x

dw _ dw
dx -0 - dx +0

x x

a) Beam deformations excluding
shear effect

Fig. 5.29. Beam deformation
mechanisms

Neutral
axis

Beam
section

Deformation of cross-section

WI - Wi
x-O x+O

Boundary conditions between
beam elements

./

b) Beam deformations including
shear effect

Fig. 5.29. Beam deformation
mechanisms
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Formulation of structural elements

We use

dwS=--ydx (5.48)

(5.49)

_(L
J pw dx

o

L-Lm S dx

o
(5.50)

L

+ GAkJ (~~ - S) o(~~ -S) dx
o

L-i p oW dx
o

L-i m oS dx = 0
o

(5.51)
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Formulation of structural elements

(a) Beam with applied loading

E = Young's modulus, G = shear modulus
3

k = §.. A = ab I = ab
6 ' , 12

Fig. 5.30. Formulation of two­
dimensional beam element

(b) Two, three- and four-node models;
0i ={3i ' i=1,... ,q (Interpolation
functions are given in Fig. 5.4)

Fig. 5.30. Formulation of two­
dimensional beam element
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Formulation of structural elements

The interpolations are now

q

W =~ h.w.L..J 1 1
i =,

q

B =~ h.e.L..J 1 1
i =,

(5.52)

w = H U' B = H U
1-/-' .:...:.s-

dW = BU' ~ = B U
dX 1-/ -' dX ~-

Where

TQ. =[w, Wq 8, 8qJ

~ = [h, hq 0 OJ

~ = [0 0 h, hqJ

(5.53)

(5.54)

and

!!w = J-
1[:~l ... :> 0... 0]

_ _, f, dh, dhq ]
~ - J LO... a dr' ... ar (5.55)
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Formulation of structural elements

So that

K=E1 f1 T
~ ~ det J dr

-1

and

+ GAk t
-1

T
(~-tla) (~-~)det J dr

(5.56)

R= f ~ p det J dr
-1

+/ ~ m det J dr (5.57)
-1

Considering the order of inter­
polations required, we study

GAk (5.60)
ex. = IT

Hence

- use parabolic (or higher-order)
elements

. discrete Kirchhoff theory
- reduced numerical integration

7-8



Formulation of structural elements

Fig. 5.33. Three-dimensional more
general beam element

Here we use

(5.61)

q

Q,z(r,s,t) = L
k=l

q

+~ 'b h Q,V k
2 L.- k k sx

k=l
q q

Q,y(r,s,t) =L hk Q,Yk +i L akh k Q,V~y
k=l k=l

q

+~ '" b h Q,V k
2 LJ k k sy

k=l
q

hk Q,Zk +i L ak hk Q,V~Z
k=l
q

+ ~2 '" b h £V
k

LJ k k sz
k=l

7·9



Formulation of structural elements

So that

1 0u (r,s,t) = x- x

v (r,s,t) = ly _ 0y (5.62)

1 0w (r,s,t) = z- z

q
v(r,s,t)=L:

k=l

and

q t q k
u(r,s, t) = L: hku k +"2 L: akh k Vtx

k=l k=l

q

+t .E bkh k V~x
k=l

t q
hkvk +2 L

k=l

q

+tL:
k=l

q
w(r,s,t)=L:

k=l

(5.63)

7·10



Formulation of structural elements

Finally, we express the vectors V~

and V~ in terms of rotations about

the Cartesian axes x, y , z ,

k a kv = e x 'is...:..s ~

where

ek
x

e = ek
~ y

ek
z

(5.65)

(5.66)

We can now find

£nn
q

Yni; = ~!4~ (5.67)
k=l

Ynl;;

where

uT = [Uk vkwk ek ekek ] (5.68)
~ x y z

and then also have

Tnn
E a a £nn

Tn~
= a Gk a

Yn~

TnI';; 0 a Gk Ynl;;

(5.77)
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Formulation of structural elements

and w=w(x,y)

.... -- ----

(5.78)

Hence

Fig. 5.36. Deformation mechanisms
in analysis of plate including shear
deformations

E
XX

dl\

dX

dS
Eyy = z _-.1. (5.79)dy

Yxy
dS

X
_ dSy

dy dX

dW
SyYyz dy -

= (5.80)
dW

Yzx -+ SdX x
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Formulation of structural elements

and

LXX 1 v a

Lyy = z_E_ v 1 a2l-v

a a l-v
L xy 2

(5.81)

aw
Lyz ay - By

E (5.82)= 2(1+v)
L

ZX
aw + B
ax x

The total potential for the
element is:

1II=-
2

L xy

dz dA

+~
2
f fh/\yyZ Yzx] ~yzJ dx dA

A -h/2 ~zx

-fw P dA
A

(5.83)
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Formulation of structural elements

or performing the integration
through the thickness

IT =t iT .<q, .<dA +t // f,; y dA
A A

-I: P dA (5.84)
A

where

K =
as

_ .-J.-
ay

asx _~
ay ax

; y =

aw + s
ax x

(5.86)

1 v 0

Eh3
1 0C =. v

~ 12(l-v2 ) 1-v
0 0

2

7·14

[

1
Ehk

f.s = 2{1+v) 0
(5.87)



Formulation of structural elements

Using the condition c5TI= 0 we
obtain the principle of virtual
displacements for the plate
element.

-fw p dA = 0

A (5.88)

We use the interpolations

q

w=~h.w.LJ 1 1
i=l

q

S =~ h. ei
y LJ 1 x

i=l

and
q

x =~h.x.LJ 1 1
i=l

(5.89)

q

Y=~h.y.LJ 1 1
;=1

7·15



Formulation of structural elements

s
Mid-surface

r
\....-~-----t~

Fig. 5.38. 9 - node shell element

For shell elements we proceed as in
the formulation of the general beam
elements,

(5.90)
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Formulation of structural elements

Therefore,

where

To express Y~ in terms of

rotations at the nodal- point k

we define

(5.91)

(5.92)

°V1
k

= (e x Ov k) / Ie x °Vkl (5.93a)- -y -n -y-n

then

Vk °Vk °V k S..:...n = - ~ O',k + -1 k (5.94)

7·17



Finally, we need to recognize the
use of the following stress-strain
law

l = ~h ~ (5.100)

1 v a a a a

1 a a a a

Jl a a a
T

( 1_~2 ) !2sh~h=~h 1-v a a-2-

1-v a-2-

symmetric 1-v
2

(5.101)

16· node parent element with cubic interpolation I- 2 -I5

• •
2

• •

Some derived elements:

64£>-[>
000
o \'.' .\

Variable - number - nodes shell element

7·18



Formnlalion of structural elements

a) Shell intersections

•

b) Solid to shell intersection

Fig. 5.39. Use of shell transition
elements
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Numerical integrations, modeling considerations

LECTURE 8 Evaluation of isoparametric element matrices

Numercial integrations. Gauss. Newton-Cotes
formulas

Basic concepts used and actual numerical opera­
tions performed

Practical considerations

Required order of integration. simple examples

Calculation of stresses

Recommended elements and integration orders
for one-, two-. three-dimensional analysis. and
plate and shell structures

Modeling considerations using the elements.

TEXTBOOK: Sections: 5.7.1. 5.7.2. 5.7.3. 5.7.4. 5.8.1. 5.8.2. 5.8.3

Examples: 5.28. 5.29. 5.30. 5.31. 5.32. 5.33. 5.34.
5.35. 5.36. 5.37. 5.38. 5.39

8·2



Numerical integrations. modeling considerations

NUMERICAL INTEGRATION.
SOME MODELING CONSIDERATIONS

• Newton-Cotes formu las

• Gauss integration

• Practical considerations

• Choice of elements

We had

K = f BT C B dV (4.29)
- V - --

M = J p HT H dV (4.30)
- V --

R = f HT fB dV (4.31 )
~ V - -

T
R = f HS fS dS (4.32)-s S - -

Rr= f ~T !.r dV (4.. 33)
V
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Numerical integrations, modeling considerations

In isoparametric finite element
analysis we have:

-the displacement interpolation
matrix t:! (r,s,t)

-the strain-displacement
interpolation matrix ~ (r,s,t)

Where r,s,t vary from -1 to +1.

Hence we need to use:

dV =det.4 dr ds dt

Hence, we now have, for example in
two-dimensional analysis:

+1 +1

!$ =f f ~T ~ ~ det A dr ds
-1 -1

+1 +1

M=f f p tlT tt det J dr ds

-1 -1

etc...
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Numerical integrations, modeling considerations

The evaluation of the integrals
is carried out effectively using
numerical integration, e.g.:

K=L~a.·.F ..- . 4J lJ -lJ
1 J

where

a. ..
IJ

F··-IJ

i, j denote the integration points

= weight coefficients

= B··T C B·· detJ··-IJ - -IJ ~J

-
r

- r = ±O.577
5 = ±O.577

r = ±O.775 5 =± 0.775
r= 0 5=0

,

\\
2x2 - point integration
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Numerical integrations. modeling coDSideratiODS

z

L.-- ---.~ Y 3x3 - point integration

Consider one-dimensional integration
and the concept of an interpolating
polynomial.

1st order interpolating
---"'--polynomial in x.

.-8

a

I
I

a+b
-2-

x
b



Numerical integrations, modeling considerations

I actual function F

2nd order interpolating
~~~~polynomial in x .

a a+b
2

b

etc....

In Newton - Cotes integration we use
sampling points at equal distances,
and

b n
{ F(r)dr=(b-a)~C.nF.+RJ LJ 1 1 n
a ;=0

(5.123)

n = number of intervals

Cin =Newton - Cotes constants

interpolating polynomial is of
order n.
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Numerical integrations, modeling considerations

Upper Bound on
Error R. as

Number of a Function of
Intervals n q q Cn cn q C· Cn the Derivative of F2 3 5 6

1 1 10-I(b-a}lF"(r)"2 T
2 1 4 1 10-3(b-a)5PV(r)6" 6" 6"
3 1 3 3 1 1O-3(b-a)5F'V(r)"8 "8 "8 "8
4 7 32 12 32 7 10-6(b-a)7FVI(r)90 90 90 90 90

5 19 75 50 50 75 19 10-6(b-a)7Fv'(r)
288 288 US 288 ill 288

6 41 216 27 272 27 216 41 lO-'(b-a)'FVIU(r)
840 840 840 840 840 840 840

Table 5.1. Newton-Cotes numbers
and error estimates.

In Gauss numerical integration we
use

bfF(r)dr" U 1F(r1 ) + u2F(r2) + ••.

a

+0. F(r )+Rn n n (5.124)

where both the weights a1 •... •an
and the sampling points r1 •...• ~

are variables.

The interp(llating polynomial is now
of order 2n -1 .
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Numerical integrations, modeling considerations

n rj /X,

1 O. (I5 zeros) 2. (I5 zeros)
2 ±0.57735 02691 89626 ooסס1.0 ooסס0 ooסס0

3 ±0.77459 66692 41483 0.55555 55555 55556
ooסס0.0 ooסס0 ooסס0 0.88888 88888 88889

4 ±0.86113 63115 94053 0.34785 48451 37454
±0.33998 10435 84856 0.65214 51548 62546

5 ±0.90617 98459 38664 0.23692 68850 56189
±0.53846 93101 05683 0.47862 86704 99366
ooסס0.0 ooסס0 ooסס0 0.56888 88888 88889

6 ±0.93246 95142 03152 0.17132 44923 79170
±0.66120 93864 66265 0.36076 15730 48139
±0.23861 91860 83197 0.46791 39345 72691

Table 5.2. Sampling points and
weights in Gauss-Legendre numeri-
cal integration.

Now let,

ri be a sampling point and

eli be the corresponding weight

for the interval -1 to +1.

Then the actual sampling
point and weight for the
interval a to bare

a + b + b - a r. and b - a el.
-2- 2 1 2 I

and the ri and eli can be
tabulated as in Table 5.2.
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Numerical integrations, modeling considerations

In two- and three-dimensional analysis
we use

+1 +1f f F(r,s) dr ds =I: "1
-1 -1 1

or

+1f F(ri's) ds
-1

(5.131)

+1 +1f f F(r,s)drds= I: ,,;,,/(ri'sj)
-1 -1 i ,j

(5.132 )

and corresponding to (5.113),
a·IJ• = a. a. , where a. and a.

I J I J
are the integration weights for
one-dimensional integration.
Similarly,

+1 +1 +1f f 1F(r,s,t}drdsdt
-1 -1 -1

= ~a.·a.·a.kF(r.,s.,tk)LJ 1 J 1 J
i,j,k

(5.133 )
and a··k = a. Q. Qk .IJ I J
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Numerical integrations, modeling considerations

Practical use of numerical integration

.The integration order required to
evaluate a specific element matrix
exactly can be evaluated by study­
ing the function f to be integrated.

• In practice, the integration is
frequently not performed exactly,
but the· integration order must be
high enough.

Considering the evaluation of the
element matrices, we note the
following requirements:

a) stiffness matrix evaluation:

(1) the element matrix does
not contain any spurious zero
energy modes (i.e., the rank of
the element stiffness matrix is
not smaller than evaluated
exactly) ; and

(2) the element contains the
required constant strain states.

b) mass matrix evaluation:

the total element mass must be
included.

c) force vector evaluations:

the total loads must be in­
cluded.
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Numerical integrations, modeling considerations

Demonstrative example

2x2 Gauss integration
"absurd" results

3x3 Gauss integration
correct results

Fig. 5.46. 8 - node plane stress
element supported at B by a
spring.

Stress calculations

(5.136)

• stresses can be calculated at
any point of the element.

• stresses are, in general, discon­
tinuous across element
boundaries.
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Numerical integrations. modeling considerations

thickness = 1 cm
A -p 3xl07 2

1~[
E = N/cm

<3> e. CD \) = 0.3

I 1> p 300 N=c·

:... ..,- -of
3c.m. 3 Coft'1.

A

8 ...

'100 N!Crrt'l.
/

(a) Cantilever subjected to bending
moment and finite element solutions.

Fig.5.47. Predicted longitudinal
stress distributions in analysis of
cantilever.

= a .
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Numerical integratiODS. modeling coDSideratioDS

'?, A
,

~ @ B <D 4l,
, C.

I, s_ a~ "?

v = 0.3

P = lOON

" "
8 & <D
Co 174+ /lA/e-t'-

Co

A A

® B 8 <D
Co c

~I".00 "'Ie-."

(b) Cantilever subjected to tip-shear
force and finite element solutions

Fig. 5.47. Predicted longitudinal
stress distributions in analysis of
cantilever.

Some modeling considerations

We need

• a qualitative knowledge of the
response to be predicted

• a thorough knowledge of the
principles of mechanics and
the finite element procedures
available

• parabolic/undistorted elements
usually most effective

8-14



Numerical integrations, modeling considerations

Table 5.6 Elements usually effective
in analysis.

TYPE OF PROBLEM

TRUSS OR CABLE

TWO-DIMENSIONAL
PLANE STRESS
PLANE STRAIN
AXISYMMETRIC

THREE-DIMENSIONAL

ELEMENT

2-node

8-node or
9-node

20-node

D
D

3-D BEAM -= ~
3-node or
4-node -/.....

PLATE

SHELL

9-node

9-node or
16-node L7
~~
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Numerical integrations, modeling considerations

4/'1ode

I
elEJmerrt

1

S node g I'\oole..
~kl'7ll'"t

~

e 1er1l(1'It. i
J
I

I

a) 4 - node to 8 - node element
transition region

8

4- I\oc:(e

4 node ele,"~"t.

eIem tnt""
A

4- node
el ....~I\"t

c

119

B U.s

VA

A
'Ve- llA ~

C U,

Constraint uA = (uC + uB)/2
equations:

vA = (vC + vB)/2

b) 4 - node to 4 - node element
transition

/.
!

c) 8 - node to finer 8 - node element
layout transition region

Fig. 5.49. Some transitions with
compatible element layouts
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Solution of IiDile e1eDleul equilihrilll equations iu slatic aaalysis

LECTURE 9 Solution of finite element equations in static
analysis

Basic Gauss elimination

Static condensation

Substructuring

Multi-level substructuring

Frontal solution

t l> tT - factorization (column reduction scheme)
as used in SAP and ADINA

Cholesky factorization

Out-of-core solution of large systems

Demonstration of basic techniques using simple
examples

Physical interpretation of the basic operations
used

TEXTBOOK: Sections: 8.1. 8.2.1. 8.2.2. 8.2.3. 8.2.4.

Examples: 8.1. 8.2. 8.3. 8.4. 8.5. 8.6. 8.7. 8.8. 8.9. 8.10
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SoJutiOD of filile e1emenl equilihrillD equations in slatic analysis

SOLUTION OF
EQUILIBRIUM

EQUATIONS IN
STATIC ANALYSIS

• Iterative methods,
e.g. Gauss-8eidel

• Direet methods

these are basically
variations of
Gauss elimination

- static condensation
- substructuring
- frontal solution
- .L Q. .bT factorization
- Cholesky decomposition
- Crout
- column reduction

(skyline) solver

THE BASIC GAUSS ELIMINATION PROCEDURE

Consider the Gauss elimination
solution of

5 -4 , 0 U, 0

-4 6 -4 , U2
,

= (8.2), -4 6 -4 U3 0

0 , -4 5 U4 0

9·3



Solation of finite element eqailihriUl equations in static analysis

STEP 1: Subtract a multiple of
equation 1 from equations 2 and
3 to obtain zero elements in the
first column of K.

r------------
ol l! 16

I 5 -5
I
IoI_~ 29
: 5 5
I

o: -4

5 -4 1 o

1

-4

5

(8.3)

5 -4 o o

9·4

o

o

o

14 16
5-5r--------

0: ~ _20
I 7 7
I

0: _ 20 65
I 7 14
I

= (8.4)



Solation of finite element eqailillriUl equations in static analysis

STEP 3:

5 -4 1 0 U1 0

0 14 16 1 U2 1S -s
15 20 .- 8 (8.5)

0 0
7 -T U3 "7

r---
70 0 0 I 5 U4I "6 "6I

I

Now solve for the unknowns u4 ,
U3 ' U2 and U, :

12
=5

(8.6)
1 - (-156) U3 - (1) U4 _ 13

U =--------:;-;;-----2 14 -S
5

19 36 7o - (-4) 35 - (1)15 - (0)"5 _ 8
U =----~----1 5 - "5
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Solution of finite element eqDilihriDlD equations in slatic analysis

STATIC CONDENSATION

Partition matrices into

[~a ~-ac] [!!a] [Ba]
.!Sea ~-ec !!c = Be

Hence

and

(8.28)

( -1) -1
~a - ~ilC .!Sec.!Sea !!a = Ba -~c .!Sec ~---------­Kaa

Example

tee r:~a
I

U1 05 I -4 1 0
I---+------------

-4 6 -4 1 U2 1
=

1 -4 6 -4 U3 0

0 1 -4 5 U4 0

~c
'---y----'

~a

Hence (8.30) gives

~ - ,- -
6 -4 -4 [1/5] [-4 1

Kaa = -4 6 -4 1

1 -4 5 0
'-- - 1....-

9·8

so that

14 16 15 -5

K =
16 29 -4-a.a -5 5

0] 1 -4 5
~ -

and we have obtained the 3x3
unreduced matrix in (8.3)



SoIltiOl of finite elemelt eqlilihrilDl equations in static aualysis

5 -4 0 VI

:1-4 6 -4 U2

1 -4 6 -4 U3 :10 1 -4 5 U4

14 -!§ U2"5 5

-!§ 29 -4 U3 0
5 -5

-4 5 V4 0

Fig. 8.1 Physical systems
considered in the Gauss elimination
solution of the simply supported beam.
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Solutiou of finite element eqDilihriom equations in static analysis

SUBSTRUCTUR ING

• We use static condensation on the
internal degrees of freedom of a
substructure

• the result is a new stiffness matrix
of the substructure involving
boundary degrees of freedom only

-?-?
-~-o--o

e--c>---n
l -6

50x50

Example

......--.- L

32x32

Fig. 8.3. Truss element with
linearly varying area.

We have for the element.

9·8

[

17

~~ -20
6L

3

-20

48

-28



SoIali. oIliDile e1emeal eqailihrilDl eqaaliODS ia stalic aaalysis

First rearrange the equations

EA, [ '7
6"L 3

-20
Static condensation of U2 gives

EA, Ir7
6L 3

3] [-20]- [lJ[-20
25 -28 48

or

ll. EA, [ 1
9 L -1

and

9·9



Solution of fiDile elemeul equilibrilll equati. in slatic aDalysis

Multi-level Substructuring

I' L 'I' L~ , L ,I. L .1
A 2A 4A, I SA, I I 16A,

, , \ '~

-\&-o=2:E~f' · 'n-~ -U Ur;, U6 U7 Us Ug
I U2 U3 u. Rs

Bar with linearly varying area

-I I 1-

U, - u3u2

---I • .-
U, u3

(a) First-level substructure

---I I I I 1-

U, - Usu3

_I I • I 1-

U, Us

(b) Second-level substructure

_I I I I I I I I 1-
U, - ug

Us.Rr;,

-. I I I I I I I 1-
U, ug

(c) Third-level substructure and
actual structure.

Fig. 8.5. Analysis of bar using
substructuring.
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Solution of fiDile e1eDleul equilihrio equti. ill static analysis

Frontal Solution

Elementq Element q + 1 Elementq + 2 Elementq + 3

--------
m m+3

~I N:"

Element 1 Element 4

4

Wave front Wave front
for node 1 for node 2

Fig.8.6. Frontal solution of plane
stress finite element idealization.

• The frontal solution consists of
successive static condensation of
nodal degrees of freedom.

• Solution is performed in the
order of the element numbering .

• Same number of operations are
performed in the frontal solution
as in the skyline solution, if the
element numbering in the wave
front solution corresponds to
the nodal point numbering in the
skyline solution.
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Solution of finite element equilibrium equations in static analysis

L D LT FACTORIZATION

- is the basis of the skyline solu-
tion (column reduction scheme)

- Basic Step

L- 1 K = K--1 - -1

Example:

5 -4 a 5 -4 a

4 -4 6 -4 a ~4 16
5 5 5

=
1 a -4 6 -4 a _16 29 -4-5 5 5

a a a a -4 5 a -4 5

We note

4 4

-1- 5 -5
L = 1 ~1 1-1 a a

5 S-

o a a a a a

9·12



Solution of finite element equilibrium equations in static analysis

Proceeding in the same way

-1 -11.2 1.1 K:= S

x x x x x

x x x x

S x ....... x upper
:= triangular

x x matrix

x

x

Hence

or

Also, because ~ is symmetric

where

0:= di agona1 rna t r i x d .. := s ..
11 11

9·13



Solution of finite eleJDent equilihriDII equations in static analysis

In the Cholesky factorization, we use

where

t = L D~

SOLUTION OF EQUATIONS

Using

9·14

K = L 0 LT

we have

L V = R

o LT U = V

where

-IV := L
- -n-l

and

(8.16)

(8.17)

(8.18)

(8.19)

(8.20)



Solution of finite element equilibrimn equations in static analysis

COLUMN REDUCTION SCHEME

5 -4 1

6 -4 1

6 -4

5

~
4 5 4

5 -5
5

14 -4 14 -4- 55
6 -4 6 -4

5
5

~
5 4 1 5 4 1

-5 5 -5 5

14 8 1 14 8
5 7 5 -7

15 -4
15 -4T T

5 5
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Solation of finite element eqailihriam eqaati. in static analysis

X=NONZERO ELEMENT
0= ZERO ELEMENT

_~ COLUMN HEIGHTS

SYMMETRIC

o 0 000
o 0 000

'-----,

X 000 X
o 0 000
o 0 x 0 0
o X 000
X X X X 0

X X X X
X XX

X

X

ELEMENTS IN ORIGINAL STIFFNESS MATRIX

Typical element pattern in
a stiffness matrix

SKYLINE

o 0 000
o 0 000

L...-_

X 0 0 0 X
X 0 0 0 X
X 0 X 0 X
X X X 0 X
X X X X X

X X X X
X X X

X X
X

ELEMENTS IN DECOMPOSED STIFFNESS MATRIX

Typical element pattern in
a stiffness matrix

9-16



SYMMETRIC

Solution of finite element equilibrium equations in static analysis

x = NONZERO ELEMENT
0= ZERO ELEMENT

COLUMN HEIGHTS
I I I

-x 0 0 0 10 0:0
o 0 0 0:0 010
xix x 010 0 x
XlX 0 010 0 0
xIx 0 0 x 0 0

x 0 X\O 0 0
x xix XIO

xix xix
Ix XlX

xIx
Ix

ELEMENTS IN ORIGINAL STIFFNESS MATRIX

Typical element pattern in
a stiffness matrix using block
storage.
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SOLUTION OF
FINITE ELEMENT
EQUILIBRIUM
EQUATIONS
IN DYNAMIC ANALYSIS

LECTURE 10
56 MINUTES
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Solotion of finite e1mnent eqoiIihrio equations in dynaDlic analysis

LECTURE 10 Solution of dynamic response by direct
integration

Basic concepts used

Explicit and implicit techniques

Implementation of methods

Detailed discussion of central difference and
Newmark methods

Stability and accuracy considerations

Integration errors

Modeling of structural vibration and wave propa­
gation problems

Selection of element and time step sizes
I

Recommendations on the use of the methods in
practice

TEXTBOOK: Sections: 9.1. 9.2.1. 9.2.2. 9.2.3. 9.2.4. 9.2.5. 9.4.1.
9.4.2. 9.4.3. 9.4.4

Examples: 9.1. 9.2. 9.3. 9.4. 9.5. 9.12
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Solution of finite element equilihriDl equations in dyDalDic ualysis

DIRECT INTEGRATION
SOLUTION OF EQUILIBRIUM
EQUATIONS IN DYNAMIC
ANALYSIS

MU+CU+KU=R-- -- -- -
• explicit, implicit

integration

• computational
considerations

• selection of solution
time step (b. t)

• some modeling
considerations

Equilibrium equations in dynamic
analysis

MU + C U+ K U = R (9.1)

or

10·3



Solution of finite elelleul equilihrilll equatiolS in dynaJDic analysis

Load description

time

time--
Fig. 1. Evaluation of externally
applied nodal point load vector
tR at time t.

THE CENTRAL DIFFERENCE METHOD (COM)

to = _l_(_t-tltu+ t+tltU) (9.4)
- 2tlt - -

an explicit integration scheme

10·4



Solation of finite eleDlent eqailibrimn equations in dynanaic analysis

Combining (9.3) to (9.5) we obtain

(-'-M + -'- c)t+~tu = tR_ ~K __2_ M)tu2 - 2~t - - - - 2 - -
~t ~t

-(-'- M_-'- c)t-~tu2 - 2~t - -
~t

(9.6)
where we note

! t!!=(~!(mT!!

= ~ (l5-(m) t lL) = ~t£(m)

Computational considerations

• to start the solution. use

(9.7)

• in practice. mostly used with
lumped mass matrix and low-order
elements.

10·5



Solution of finite element equilibrium equations in dynamic analysis

Stability and Accuracy of COM

-l'I t must be smaller than l'I t e r

Tn
l'Iter = TI ; Tn = smallest natural

period in the system

hence method is conditionally stable

_ in practice, use for continuum elements,

l'It < l'IL
- e e=~

for lower-order elements

L'lL = smallest distance between
nodes

for high-order elements

l'IL = (smallest distance between
nodes)/(rel. stiffness factor)

• method used mainly for wave
propagation analysis

• number of operations
ex no. of elements and no. of

time steps

10·6



Solution of finite elelDent eqoiIibriDII eqoatiou in dynandc analysis

THE NEWMARK METHOD

(9.28)

{9.29J
an implicit integration scheme solution
is obtained using

.In practice, we use mostly

a. = la , 0 = ~

which is the

constant-average-acceleration
method
(Newmark's method)

• method is unconditionally stable

• method is used primarily for analysis
of structural dynamics problems

• number of operations

== ~n m2 + 2 n mt
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Solution of finite element equilibriDII equations in dynmic analysis

Accuracy considerations

• time step !'1t is chosen based
on accuracy considerations only

• Consider the equations

~1U+KU=R

and

where

K ¢.
--1

Using

¢"1 K ¢ = 0.2

2:: w· ~1 <p.
1 --1

where

we obtain n equations from which
to solve for xi(t) (see lecture 11)

10·8

.. 2 Tx. + w. x. = ~. R
1 1 1 ~1-

i=l, ... ,n



Solution 01 finite eleDlent equilibriDll equations in dynaDlic analysis

Hence, the direct step-by-step
solution of

r~O+KU=R

corresponds to the direct step-by­
step solution of

.. 2
x· + w. x·

1 1 1

with

i=l, ... ,n

n

U = ~<I>.x.
- ~-l 1

i =1

Therefore, to study the accuracy of
the Newmark method, we can study
the solution of the single degree of
freedom equation

.. 2
x+w x=r

Consider the case

.. 2
x + w x = a

o· ax= 0·· 2x = -w

10·9



Solotion of finite element eqoiIihriDl equations in dynandc analysis

19.0 19.0

15.0 Houbolt 15.0
method

§
11.0 11.0..

le
....

5-w
E!:. ..
C

le.g
7.0 0 7.0

'" ~C/I
C
0 >
"iii '"u
"8 5.0 '" 5.0"0.;:

'"'" "0
Co ~

'" .~
C/I Q.:!

3.0 E 3.0c
'"'" 8.l:!

tf :!
c

'.01~4t€
'"

1.~l:!
'"Q"

1.0 1.0

~ PE

0.06 0.10 0.14 0.18 0.06 0.10 0.14 0.18

Fig. 9.8 (a) Percentage period elonga- Fig. 9.8 (b) Percentage period elonga-
tions and amplitude decays. tions and amplitude decays.

4t-----r----:--r--r----r-----,...-----,-----,

equation
.. 2 . 2 . tx + ~wx + w x = S1n p

static
response

2

1

31----+--f-+-+----t-----t-----.,t----'-1

...
o
'0
~
"t:J
CtIo
CJ

'E
CtI
c::
>­
o

1 2 3

Fig. 9.4. The dynamic load factor
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SoIIIi. of filile 81••1eqailihrillD eqaaliOlS in dJllillic analysis

D:.r • 1.05
- nYNAMIC RESPONSE
_ .. - STATIC RESPONSE

~ =0.05

g
7T

+gi
r.it

z~~.:.::::7'--!2C \ '
~ 1

- .j.'" ,fs!
,;1
• 1

!
T

81
74- ._--+-- -t-" - -- .... __..--t- ---+-._--+_.. - ........-..._-.-1
'c.oe o.."~ fl. 'JO n. 7~ I. 00

I I ,.,~.

Response of a single degree
of freedom system.

DLF .. 0.50
- DYNAMIC RESPONSE
--- STATIc.: RESPONSE

.f... = 3.0
w

....

.... , ------ - ./ /'

--~ -----=~---':....;-,,---=__==_7'~--- _.~~.:.--==---/-/"7--_____ ......
+

g,
::i-+-~--+---+--- " .. -------t-----+---+I--t -__---+--+1~--+--+I::-:---+----,+1:::---+----,+1::-:---+------::+-'::-:---+-----:<'
c.':;: C.25 ~.I)C :."L :.00 : . .?~ I.SO 1.75 2.00 2.25 2.50 2.75 3.00

TIllE

Response of a single degree
of freedom system.
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Solution of finite element equilibrium equations in dynamic analysis

Modeling of a structural vibration
problem

1) Identify the frequencies con­
tained in the loading, using a
Fourier analysis if necessary.

2) Choose a finite element mesh
that accurately represents all
frequencies up to about four
times the highest frequency
w contained in the loading.

u

3) Perform the direct integration
analysis. The time step /':, t for
this solution should equal about
1
20 Tu,where Tu = 2n/wu '
or be smaller for stability reasons.

Modeling of a wave propagation
problem

If we assume that the wave length
is Lw ' the total time for the
wave to travel past a point is

(9.100)

where c is the wave speed. Assuming
that n time steps are necessary to
represent the wave, we use

(9.101 )

and the "effective length" of a
finite element should be

10·12

c /':,t (9. 102)



SoIaliOi .. filile 81••1eqailihriDl eqaali_ in dJUlDic ualysis

SUMMARY OF STEP-BY-STEP INTEGRATIONS

-INITIAL CALCULATIONS ---

1. Form linear stiffness matrix K,
mass matrix M and damping
matrix ~, whichever appl icable;

Calculate the following constants:

Newmark method: 0 > 0.50, ex. 2:. 0.25(0.5+0)2

2a
O

= , / (aAt )

a4 = 0/ ex.- ,

as = -a3

a,=O/(aAt)

as = I1t(O/ex.- 2)/2

ag = I1t(' - 0)

a3 = , / (2ex. )- ,

a7 =-a2

Central difference method:

a, = '/2I1t

... 0 O· 0··
2. Inltlahze !!., !!., !!. ;

For central difference method
only, calculate I1tu from
initial conditions: -

3. Form effective linear coefficient
matrix;

in implicit time integration:

in explicit time integration:

M= a~ + a,f.
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Solution of finite element equilibrium equations in dynamic analysis

4. In dynamic analysis using
implicit time integration
triangularize R:.

--- FOR EACH STEP ---

(j) Form effective load vector;

in implicit time integration:

in explicit time integration:

(ii) Solve for displacement
increments;

in implicit time integration:

in explicit time integration:

10·14



SoI.ti. of filile elOl.1 equilihriDl equations in dynamic analysis

Newmark Method:

Central Difference Method:
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MODE SUPERPOSITION
ANALYSIS; TIME
BISTORY

LECTURE 11
48 MINUTES

11·1



Mode slperpClilion analysis; lillie bistory

LECTURE 11 Solution of dynamic response by mode
superposition

The basic idea of mode superposition

Derivation of decoupled equations

Solution with and without damping

Caughey and Rayleigh damping

Calculation of damping matrix for given
damping ratios

Selection of number of modal coordinates

Errors and use of static correction

Practical considerations

TEXTBOOK: Sections: 9.3.1. 9.3.2. 9.3.3

Examples: 9.6. 9.7. 9.8. 9.9. 9.10. 9.11

11·2



Mode superposition analysis; time history

Mode Superposition Analysis

Basic idea is:

transform dynamic equilibrium

equations into a more effective
form for solution,

using

!L = 1:. !(t)
nxl nxn nxl

P = transformation matrix

! (t ) =general ized displacements

Using

!L(t) = 1:. !(t)

on

MU+ c 0 + K U = R

we obtain

(9.30)

(9.1)

~ R(t) + f i(t) + R!(t) ~(t)

(9.31)
where

C fT ~ f ;

R = PT R (9.32)

11·3



(9.34)

Mode sDperJMlilion ualysis; tiDle history

An effective transformation matrix f
is established using the displacement
solutions of the free vibration equili­
brium equations with damping
neglected,

M 0 + K U = 0

Using

we obtain the generalized eigenproblem,

(9.36)

with the n eigensolutions (w~, p..,) ,
2 2

( ul2 ' ~) , ... , (wn ' .P.n) , and

11·4

T 1== 0'<P 1" M'" "- _.:t:..J

i = j

i ., j

2
< W- n

(9.37)

(9.38)



Mode superposition analysis; time history

Defining

(9.39)
we can write

and have

(9.40)

Now using

!L(t) = ! ~Jt)

¢T M¢ = I (9.41)

(9.42)

we obtain equilibrium equations
that correspond to the modal
generalized displacements

!(t) + !T ~! !(t) + r;i ~(t) = !T !S.(t)

(9.43)

The initial conditions on ~(t) are
obtained using (9.42) and the
M - orthonormality of ¢; i.e.,
at time 0 we have

(9.44)
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Mode SUperpClitiOD aualysis; tilDe bislory

Analysis with Damping Neglected

(9.45)

i.e., n individual equations of
the form

2.x .(t) + w. x. (t) = r. (t )1 1 1 1

where

with

T aX'I = lj). M U1 -1 - -t=O

• .T O'X'I =-'-- cp.M U1 -1 - -t=O

i = ',2, ... ,n

(9.46)

(9.47)

Using the Duhamel integral we have

=-' jtr1·(T) sinw.(t-T)dTw. 1

1 0 (9.48)

+ a.. sin w.t + 8. cos w·t111 1

where a.i and 8i are determined

from the initial conditions in (9.47).

And then

11-&

(9.49)



Mode sDperp.ition analysis; time history

4f----..-----:--..--r----,..----~---_r_---...,

equation
•• 2 . 2 .x + E;,wx + W X = S 1n P t

static
response

~= \-0

31-__-+__+--+-+-__+-__-+ -+-__--.,

0 2
....
0.....
u
CtI.....
-0
CtI
0

u

E
CtI
r:::::
>-

0

2 3

Fig. 9.4. The dynamic load factor

Hence we use

uP =~¢. x· (t)
-- ~--l 1

i =1

where

uP - U

The error can be measured using

(9.50)
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Mode superposition analysis; time history

Static correction

Assume that we used p
modes to obtain ~p , then let

n

~_=LriUl~)
i =1

Hence

Tr. = ¢. R
1 -1-

Then

and

K flU fiR

Analysis with Damping Included

Recall, we have

!(t) + !T f!i(t) + fi !(t) = !T ~(t)

(9.43)

If the damping is proportional

T¢. C (po = 2w. E;,. cS. .
-1 ---J 1 1 1J

and we have

(9.51)

x.(t) + 2w. E;,. x.(t) + w~ x.(t) = r
1
·(t)

1 1 1 1 1 1

i=l, ... ,n

(9.52)
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Mode superposition analysis; time history

A damping matrix that satisfies the
relation in (9.51) is obtained using
the Caughey series,

(9.56)

where the coefficients ak ' k = , , ••• , p ,
are calculated from the p simultane-
ous equations

A special case is Rayleigh damping,

C = a ~1 + B K- -- --

example:

Assume ~, = 0.02

w, = 2

calculate a and B

We use

(9.55)

or

'/
a + Bw:- 2w. ~.
- - 1 1 1

2w. ~.
1 1
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Mode superposition analysis; time history

Using this relation for wl ' [,1 and
w2 ' [,2 ' we obtain two equations

for a and 13:

a + 4ii = 0.08

a + 913 = 0.60

The solution is a = -0.336
and 13 = O. 104 . Thus the
damping matrix to be used is

C = -0.336 M + 0.104 K

Note that since

2a + 13 w. = 2w. [, .
1 1 1

for any i, we have, once a and
13 have been established,

E,. =
1

2
a + SW.

1

2w.
1

a 13= - + - w
2w. 2 i

1
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Mode sDperp.ition analysis; time history

Response solution

As in the case of no damping.
we solve P equations

x. + 2w. E,. x· + w~ x. = r.
1 111111

with

r·
1

I
TO

xi t = 0 "--. !i!i .!:L

• ITO'
xi t = 0 = !i f1 .!:L

and then

P
uP ~¢. x. (t)LJ-1 1

i =1

Practical considerations

mode superposition analysis
is effective

- when the response lies in a
few modes only, P« n

- when the response is to be
obtained over many time in­
tervals (or the modal response
can be obtained in closed form).

e.g. earthquake engineering
vibration excitation

- it may be important to
calculate E p(t) or the
static correction.
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SOLUTION METHODS
FOR CALCULATIONS
OF FREQUENCIES
AND MODE SBAPES

LECTURE 12
58 MINUTES
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Solution methods for calculations of frequencies and mode shapes

LECTURE 12 Solution methods for finite element
eigenproblems

Standard and generalized eigenproblems

Basic concepts of vector iteration methods.
polynomial iteration techniques. Sturm
sequence methods.' transformation methods

Large eigenproblems

Details of the determinant search and subspace
iteration methods

Selection of appropriate technique. practical
considerations

TEXTBOOK: Sections: 12.1. 12.2.1. 12.2.2. 12.2.3. 12.3.1. 12.3.2.
12.3.3. 12.3.4. 12.3.6 (the material in Chapter 11
is also referred to)

Examples: 12.1. 12.2. 12.3. 12.4
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Solatiu methods for calculations of frequencies and mode shapes

SOLUTION METHODS FOR
EIGENPROBLEMS

Standard EVP:

r! = \ !
nxn
Generalized EVP:

!sP.-=\!i! - (\=w
2

)

Quadratic EVP:

Most emphasis on the generalized
EVP e.g. earthquake engineering

"Large EVP" n> 500

m> 60

1p=l, ... ,3"n

In dynamic analysis, proportional
damping

r sP.- = w2 !i!

If zero freq. are present we can
use the following procedure

r sP.- + )1 Ii sP.- = (w2 + ~r)!i sP.-
or

(r+)1 !i)sP.- = \ !i sP.­

\ = w2 + )1
or

2
W =\-)1
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Solation lIethods lor calcalatiou oIlreqa.cies and lIode shapes

p(A)

p(A) = det(K - A ~)

In buckling analysis

.!$.!=A~!

where

p(A) = det (~ - A ~)

p(A)
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Solution methods for calculations of frequencies and mode shapes

Rewrite problem as:

and solve for largest K:

.... -- -~

(~ - ~ ~)! = n .K 2£.

Traditional Approach: Trans­
form the generalized EVP or
quadratic EVP into a stand­
ard form, then solve using
one of the many techniques
available
e.g.

.Ki=;\!ii

M=I::I::T i=hTjJ

hence

~ :t = ;\ i ; K= 1::- 1 K [-T

or

M= W02 WT etc ...
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SolotiOl .elhods lor calcolations oIlreqoeacies ud .ode sllapes

Direct solution is more effective.
Consider the Gen. EVP ! ! = AM!
with

1.3 . .. 1n

eigenpairs ( Ai' 1.i)
are required or

i=l, ,p
i=r, ,s

The solution procedures in use
operate on the basic equations
that have to be satisfied.

1) VECTOR ITERATION TECHNIQUES

Equation:

e.g. Inverse It.
~P_=A~~

! ~+l = M~

~+l

• Forward Iteration

• Rayleigh Quotient Iteration

can be employed to cal­
culate one eigenvalue
and vector, deflate then
to calculate additional
eigenpair

Convergence to "an eigenpair",
which one is not guaranteed
(convergence may also be slow)
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Solution methods for calculations of frequencies and mode shapes

2) POLYNOMIAL ITERATION METHODS

! ~ = A ~ ~ ~ (K - A M) ¢ 0

Hence

p(A) det (~- A!:1) = 0

,,,

Newton Iteration

p(A) 2 n
aO + alA + a2A + ... + anA

bO (A-Al) (A-A2) '" (A-An)

Implicit polynomial iteration:

Explicit polynomial iteration:

eExpand the polynomial and
iterate for zeros.

eTechnique not suitable for
larger problems

- much work to obtain ai's

- unstable process

p (Pi) = det (IS. - Pi !y!)

= det L D LT = II d ..
-- - . II

I

e accurate, provided we do not
encounter large multipliers

e we directly solve for Al, ...

e use SECANT ITERATION:

Pi+l = Pi -

e deflate polynomial after
convergence to A1
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Solution methods for calculations of frequencies and mode shapes

]J. 11-

p (A) / (A-A,)

I
I

II
I

Convergence guaranteed to A1 ' then
A2 , etc. but can be slow when we

calculate multiple roots.

Care need be taken in L D LT factor­
ization.
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SaI.liOi .6Jds for calculali. of freql8cies iIIld ole shapes

3) STURM SEQUENCE METHODS

1 2 3 4

t
:::}· . .. ..

! <p = A!11 9· ~ ; ; .· . .. . -. .. .· . .· .. .· . .

Number of negative elements in
D is equal to the number of
eigenvalues smaller than J.1 S .

3rd associated
constraint problem

2nd associated
constraint problem

1st associated
constraint problem
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Solution lDethods lor calculations 01 frequencies ud lDode shapes

3) STURM SEQUENCE METHODS

T
Calculate ~ - ].lS. ~=h Qh,
Count number of negative elements
in Q and use a strategy to isolate
eigenvalue(s) .

interval

,
,,

,/

].ls
1 ].lS2

T f ..• Need to take care in L D L aetonzatlon---
• Convergence can be very slow

4) TRANSFORMATION METHODS

j
<PTK<P=A

~!=A~!--T-- ­
<P M<P = I
- - -

Construct <P iteratively:

_
n =[Al ... 'n]<P = [~,... ~J; H A

--- --......
"
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5oI1tiOi .elhods for calculations 01 frequencies ad .ode shapes

T T T
~ ... ~ ~l ff1 ~ ... ~-~

T T T
~ ... ~ f 1 !i f 1 ~ ... ~-l

e.g. generalized Jacobi
method

• Here we calculate all eigenpairs
simultaneously

• Expensive and ineffective
(impossible) or large problems.

For large eigenproblems it is best
to use combinations of the above
basic techniques:

• Determinant search
to get near a root

• Vector iteration to obtain
eigenvector and eigenvalue

• Transformation method for
orthogonalization of itera­
tion vectors.

• Sturm sequence method to ensure
that required eigenvalue(s) has
(or have) been calculated
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Solution methods for calCl1atiou of frequencies and mode sJlapes

THE DETERMINANT SEARCH METHOD

p(A)

A

1) Iterate on polynomial to obtain
shifts close to A1

P(l1;) =det (~- 11; ~)

T=det L D L = n d ..
--- ; 11

11;+1 = ].1; - n P(l1;) - P(11;_1)

11;-11;_1

n is normally =1.0

n=2. , 4. , 8. ,... when convergence
is slow

Same procedure can be employed to
obtain shift near A; , provided
P(A) is deflated of A1' . . . ,A; _1

2) Use Sturm sequence property to
check whether 11 ; +1 is larger
than an unknown eigenvalue.

12·12
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Solution lOethods for calculations of freqoBcies ud lOode shapes

3) Once lJ i +1 is larger than an
unknown eigenvalue, use inverse
iteration to calculate the eigenvector
and eigenvalue

lJi+1

k =1,2, ...

• ~+l
~+l = - T - ~

(~+l !i ~+l)

- T

p (~+l) = ~+l !i ~k
- T ~

~+l !i ~+l

4) Iteration vector must be deflated
of the previously calculated
eigenvectors using, e.g. Gram­
Schmidt orthogonalization.

If convergence is slow use Rayleigh
quotient iteration
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Solution methods lor calculations oIlrequencies ud mode shapes

Advantage:
Calculates only eigenpairs actually
required; no prior transformation
of eigenproblem

Disadvantage:
Many triangular factorizations

• Effective only for small banded systems

We need an algorithm with less
factorizations and more vector iterations
when the bandwidth of the system is large.

SUBSPACE ITERATION METHOD

Iterate with q vectors wher:' the
lowest p eigenvalues and eigen­
vectors are required.

inverse {K
4+1 = ',1 4 k=1,2, ...

iteration --

~+1
-T

K -~+1= 4+1

~+1
-T

~1 4+1
= 4+1

~+1 ~+1 = ~+1 ~+1 ~+1

4+1 = ~+1 ~+1
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Solution methods for calculations of frequencies and mode shapes

"Under conditions" we have

CONDITION:

starting subspace spanned
by X, must not be orth­
ogonal to least dominant
subspace required.

Use Sturm sequence check

eigenvalue

p eigenvalues

T
!5. - flS t1 = ~ Q ~

no. of -ve elements in D must
be equal to p.

Convergence rate:

flS

convergence reached

when
< tal
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Solution methods for calculations of frequencies and mode shapes

Starting Vectors

Two choices

1) ~l x. = e.,
~ ~

j=2, ... ,q-l

2.

x = random vector
4

2) Lanczos method
Here we need to use q much
larger than p.

Checks on eigenpairs

1. Sturm sequence checks

11~!~Q,+1)_ A~Q,+l) ~!~Q,+1)[12
E:.=

1 [I K ¢~9,+l) II
- -1 2

important in!!!. solutions.

Reference: An Accelerated Subspace
Iteration Method, J. Computer
Methods in Applied Mechanics
and Engineering, Vol. 23,
pp. 313 - 331,1980.
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