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PREFACE

The analysis of complex static and dynamic problemsin-
volves in essence three stages: selection of a mathematical
model, analysis of the model, and interpretation of the results.
During recent years the finite element method implemented on
the digital computer has been used successtully in modeling
very complex problems in various areas of engineering and
hassignificantly increased the possibilities for sate and cost-
effective design. However, the efficient use of the method is
only possible if the basic assumptions of the procedures
employed are known, and the method can be exercised
confidently on the computer.

The objective in this course is to summarize modern and
effective finite element procedures for the linear analyses of
static and dynamic problems. The material discussed in the
lecturesincludes the basic finite element formulations em-
ployed, the effective implementation of these formulationsin
computer programs, and recommendations on the actual use
ofthe methodsin engineering practice. The courseisintended
for practicing engineers and scientists who want to solve prob-
lems using modern and efficient finite element methods.

Finite element proceduresfor the nonlinear analysis of
structures are presented in the follow-up course, Finite Element
Procedures for Solids and Structures - Nonlinear Analysis.

In this study guide short descriptions of the lectures and
the viewgraphs used in the lecture presentations are given.
Below the short description of each lecture, referenceismade
tothe accompanying textbook for the course: Finite Element
Proceduresin Engineering Analysis, by K.J. Bathe, Prentice-
Hall, Inc., 1982.

The textbook sections and examples, listed below the
short description of each lecture, provide important reading
and study material to the course.
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Some basic concepts of engineering analysis

LECTURE 1 Introduction to the course. objective of lectures
Some basic concepts of engineering analysis,
discrete and continuous systems, problem
types: steady-state, propagation and eigen-
value problems

Analysis of discrete systems: example analysis of
a spring system

Basic solution requirements

Use and explanation of the modern direct stifi-
ness method

Variational formulation

TEXTBOOK: Sections: 3.1 and 3.2.1, 3.2.2, 3.2.3, 3.2.4

Examples: 3.1, 3.2, 3.3, 3.4, 3.5. 3.6. 3.7, 3.8, 3.9,
3.10, 3.11, 3.12, 3.13, 3.14




Some basic concepts of engineering analysis

INTRODUCTION TO LINEAR
ANALYSIS OF SOLIDS AND STRUCTURES

® The finite element method is now
widely used for analysis of structural
engineering problems.

® [n civil, aeronautical, mechanical,
ocean, mining, nuclear, biomechani-
cal,... engineering

® Since the first applications two
decades ago,

- we now see applications
in linear, nonlinear, static
and dynamic analysis.

- various computer programs
are available and in significant
use

My objective in this set of

lectures is:

e to introduce to you finite
element methods for the
linear analysis of solids
and structures.

[“linear’” meaning infinitesi-
mally small displacements and
linear elastic material proper-
ties (Hooke's law applies)

e to consider

- the formulation of the finite
element equilibrium equations

- the calculation of finite
element matrices

- methods for solution of the
governing equations

- computer implementations
eto discuss modern and effective

technigues, and their practical
usage.
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Some basic concepls of engineering analysis

REMARKS

©® Emphasis is given to physical
explanations rather than mathe-
matical derivations

o Techniques discussed are those
employed in the computer pro-
grams

SAP and ADINA
SAP= Structural Analysis Program

ADINA = Automatic Dynamic
Incremental Nonlinear Analysis

©® These few lectures represent a very
brief and compact introduction to
the field of finite element analysis

e We shall follow quite closely
certain sections in the book

Finite Element Procedures
in Engineering Analysis,
Prentice-Hall, Inc.

(by K.J. Bathe).

Finite Element Solution Process

Physical problem

¥

Establish finite element
- —— = model of physical

' problem

.

Revise (refine)
the model?

Solve the model

¢

————— Interpret the results
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Some basic concepts of engineering analysis
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Some basic concepts of engineering analysis
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Some basic concepts of engineering analysis

Segment of a spherical cover of a
laser vacuum target chamber.
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Some basic concepts of engineering analysis

| Finite element idealization of wind
I tunnel for dynamic analysis

SOME BASIC CONCEPTS
OF ENGINEERING
ANALYSIS

The analysis of an engineering
system requires:

- idealization of system

- formulation of equili-
brium equations

- solution of equations

- interpretation of results




Some basic concepts of engineering analysis

SYSTEMS
DISCRETE CONTINUOUS_
response is response is
described by described by
variables at a variables at
finite number an infinite
of points number of
et pOintS
set of alge- set of differ-
braic ential
equations equations

PROBLEM TYPES ARE

® STEADY -STATE (statics)
® PROPAGATION (dynamics)

® EIGENVALUE

For discrete and continuous
systems

Analysis of complex continu-

ous system requires solution of

differential equations using

numerical procedures
——— o ———

reduction of continuous

system to discrete form

powerful mechanism:

the finite element methods,
implemented on digital

computers

ANALYSIS OF DISCRETE
SYSTEMS

Steps involved:

- system idealization
into elements

-evaluation of element
equilibrium requirements

- element assemblage

~solution of response

1-9



Some basic concepts of engineering analysis

Example:

steady - state analysis of
system of rigid carts
interconnected by springs
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Some basic concepts of engineering analysis

Element interconnection
requirements :

P 4 p(2) 4 p{3) 4 p () g,
ng) + F£3) + F£5) =R,

4), -(5) _
i+ egP) =

These equations can be
written in the form

KU=R

Equilibrium equations

Ku=R (a)

(o
"

T
- [u'l u2 U3] s

T hy :
R' =[R, R, R,] ’ : :
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Some basic concepts of engineering analysis

and we note that

5 .
k=3 k1)
S
where

k] 0 0
kM=lo 0 o
L0 0 0
k2 —k2 0
(2)
0 0 0

etc...

This assemblage process is
called the direct stiffness
method

The steady- state analysis is
completed by solving the
equations in (a)




Some basic concepls of engineering analysis
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Some basic concepts of engineering analysis

Ky+Kp+ K3 i=Kp ~Kg
K= ] -Ka K3 :K+Kg
| N
- : -
+ Kyt
Ky +Ka+ K3:i-Ky =Kz ~Kq
K= ] -Kz ~Kz 1K+ Ky
i —Kq Ka
*Ka! :
KitKa+K3i-Ky =Ky © -k,
5 = —Kz K3 5K2+ K3+ K5 —K5
~Kq ~Ks i Kg+Kg
5
52,
|=

Uy
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Some basic concepts of engineering analysis

In this example we used
the direct approach; alternatively
we could have used a variational

approach.

In the variational approach we
operate on an extremum
formulation:

n=uU-w
U = strain energy of system
W= total potential of the

loads

Equilibrium equations are obtained
from

oll  _
S0 o

In the above analysis we have

Invoking (b) we obtain
KU=R
Note: to obtain U and W we

again add the contributions from
all elements

1-15



Some basic concepts of engineering analysis

PROPAGATION PROBLEMS

main characteristic: the response
changes with time => need to
include the d'Alembert forces:

K U(t) = R(t) -M U(t)

For the example:

m 0 O
M=1]20 m, 0
0 0 m3

EIGENVALUE PROBLEMS

we are concerned with the
generalized eigenvalue problem
(EVP)

Av=ABy

A , B are symmetric matrices
of order n

v is a vector of order n
A is a scalar

EVPs arise in dynamic and
buckling analysis
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Some basic concepts of engineering analysis

Example: system of rigid carts
Mi+ku=0

Let
U=¢ sin w(t-1)

Then we obtain

Hence we obtain the equation

Ko=w Mo

There are 3 solutions

®y » 9, ¢ eigenpairs

In general we have n solutions

1-17



ANALYSIS OF
CONTINUOUS SYSTEMS;
DIFFERENTIAL AND
VARIATIONAL
FORMULATIONS

LECTURE 2

59 MINUTES

2-1



Analysis of continuons systems; differential and variational formulations

LECTURE 2 Basic concepts in the analysis of continuous
systems

Differential and variational formulations

Essential and natural boundary conditions

Definition of C™" variational problem

Principle of virtual displacements

Relation between stationarity of total potential, the
principle of virtual displacements, and the differ-

ential formulation

Weighted residual methods, Galerkin, least
squares methods

Ritz analysis method

Properties of the weighted residual and Riiz
methods

Example analysis of a nonuniform bar, solution

accuracy. introduction to the finite element
method

TEXTBOOK: Sections: 3.3.1, 3.3.2, 3.3.3

Examples: 3.15, 3.16, 3.17, 3.18, 3.19, 3.20, 3.21.
3.22, 3.23, 3.24, 3.25




Analysis of continuous systems; differential and variational formulations
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2

BASIC CONCEPTS

OF FINITE ® Some additional
ELEMENT ANALYSIS — basic concepts are

CONTINUOUS SYSTEMS used in analysis of

continuous systems

® We discussed some
basic concepts of
analysis of discrete
systems

Y A L L i e i i e L

o/

N 7 2 s 7 70 7 222 2 22

LI LIS SLI S PILLLI2L 11158 L1 LSS I LIS SIS ILSL LIS SLS S P LL LS 7S 2L 2L ALS LSS LIS LS L 117 2SS LIS SIS S S 7 P21 1A S e

CONTINUOUS SYSTEMS
differential variational

- - -
formulation formulation

i i

Weighted residual Ritz Method
methods

Galerkin —-—<«——>

least squares

— e

finite element method
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Analysis of continuous Systems; differential and variational formulations

Example - Differential formulation

y wulzt)
y [ Ro
At A b
g e L S TS SR © " M &
1 Young’s modulus, E
/ R(t)  mass density,
'J cross-sectional area, A
Ra
K
The problem governing differential
equation is
ST
ax2 ¢ at? e

Derivation of differential equation

The element force equilibrium require-
ment of a typical differential element
is using d’Alembert’s principle

o ‘_—;+%:- dx
bl

Area A, mass density p .

2
o u
oAIX + A —gi xdx - oAIX =pA ——z—at

The constitutive relation is

_pdu
O_Eax

Combining the two equations above
we obtain

% _ 1 3f
3x2 CZ 2




Analysis of continuous systems; differential and variational formulations

The boundary conditions are
u(0,t) = 0 > essential (displ.) B.C.
EA g—:: (L,t) = Ry = natural (force) B.C.
with initial conditions
u(x,0) =0

au -
5{ (X,O) 0

In general, we have

highest order of (spatial) deriva-
tives in problem-governing dif-
ferential equation is 2m.

highest order of (spatial) deriva-
tives in essential b.c. is (m-1)

highest order of spatial deriva-
tives in natural b.c. is (2m-1)

Definition:

We call this problem a ¢™"1
variational problem.




Analysis of continnous Systems; differential and variational formulations

Example - Variational formulation

We have in general
I=u—w

For the rod

and

u0=0

andwehave 8IT = 0

The stationary condition 6II = 0 gives

L L
ou ou
_/(;'(EAE)YHGK) dx—./.o suf® dx
=0

—6uLR

This is the principle of virtual
displacements governing the
problem. In general, we write
this principle as

fa_gT_‘[_dV = [suT£Bdv
v
+

Vv T
fal_Js 5ds
S

or
feTTdV = ngdev
\')
+Vfgs £S ds

(see also Lecture 3)




Analysis of continnous systems; differential and variational formnlations

However, we can now derive the
differential equation of equilibrium
and theb.c.at x=1L .

o adu Sau
Writing 5—)—(— for %
calling that EA is constant and

using integration by parts yields

, re-

L 32u B ou
-j(;(EA et oudcr AN L RIa

ox X=L

Ju
- EAé—;

x=0

Since 6u0 is zerobut Su s
arbitrary at all other points, we
must have

2

EASY s+ f
X

B=0

and

u _
EATY)?'x=L_ R

2
Also, fB= -Ap a_g and

hence we have

2 2
ou_ 1 3°u . _‘/E
2 72 @>c-" )
99X ¢ ot
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Analysis of continuous systems; differential and variational formulations

The important point is that invoking
$II = 0 and using the essential
b.c. only we generate

e the principle of virtual
displacements

e the problem-governing differ-
ential equation

o the natural b.c. (these are in
essence ‘‘contained in” 1] ,
i.e., inw).

In the derivation of the problem-
governing differential equation we
used integration by parts

o the highest spatial derivative
in T isoforder m.

sWe use integration by parts
m-times.

Total Potential I

Use S8II=0 and essentialb.c.

{

Principle of Virtual solve
Displacements problem
Integration by parts
Differential Equation
of Equilibrium — » Solve
and natural b.c. problem




Analysis of continuous systems; differential and variational formulations

Weighted Residual Methods

Consider the steady-state problem

L2m[¢] =r (3.6)

with the B.C.

B;[¢] = q; i=1,2,...

at boundary (3.7)

The basic step in the weighted
residual (and the Ritz analysis)
is to assume a solution of the
form
n
6= af; (3.10)

i=1

where the fi are linearly indepen-
dent trial functions and the a;

are multipliers that are deter-
mined in the analysis.

Using the weighted residual methods,
we choose the functions f; in (3.10)
so0 as to satisfy all boundary conditions
in (3.7) and we then calculate the
residual,

n

The various weighted residual methods
differ in the criterion that they employ
to calculate the a; such that R is small.
In all techniques we determine the a,

s0 as to make a weighted average of

R vanish.




Analysis of continuous Systems; differential and variational formulations

Galerkin method

In this technique the parameters a; are
determined from the n equations

JfiRdD=0 i=1,2,...,n  (3.12)
D

Least squares method

In this technique the integral of the
square of the residual is minimized with

respect to the parameters a; .

) 2 N .
a*ai— fRdD—O 1 ],2,...,”
D

[The methods can be extended to
operate also on the natural boundary
conditions, if these are not satisfied
by the trial functions. ]

RITZ ANALYSIS METHOD

Let 1T be the functional of the

c™-1 variational problem that is

equivalent to the differential
formulation given in (3.6) and (3.7).
In the Ritz method we substitute the
trial functions ¢ given in (3.10)
into II and generate n simul-
taneous equations for the para-
meters a; using the stationary
conditionon I ,

oIl .
3a_i_z() i=1,2,...,n  (3.14)

2-10



Analysis of continuous systems; differential and variational formulations

Properties

® The trial functions used in the
Ritz analysis need only satisfy the
essential b.c.

® Since the application of 81I=10
generates the principle of virtual
displacements, we in effect use
this principle in the Ritz analysis.

®Byinvoking &I =0 we minimize
the violation of the internal equilibrium
requirements and the violation of
the natural b.c.

® A symmetric coefficient matrix
is generated, of form

KU=R

Example
- Y2 2

Area = 1 cmz Area = (1 +?l'0') cm
A
A
7/
/ R=100 N
/‘——»x’u — G—— - —— 5  —— — ——— Ce—— . —
AA B C -
/]
/ L\

y

I~ om N - 1

Fig. 3.19. Bar subjected to
concentrated end force.




Analysis of continuons systems; differential and variational formulations

Here we have

180
- 1 du,2
0

and the essential boundary condition

is ul,_o=0

Let us assume the displacements

Case 1

u = a;x + a, x2

Case 2

u = XTOEO& 0<x<100

u = (-l _Xé.(l)OO) uB (X ]00) U
100<x <180

We note that invoking S8II=0
we obtain

180
i =/ (EA £3) 8(2%) dx-100 8uj, ;g0
0 -0

or the principle of virtual
displacements

180
adu ’au _
/(; (3x —) (EA ) dx =100 §u =180




Analysis of continuons systems; differential and variational formulations

Exact Solution

Using integration by parts we

obtain
0 duy _
X (EA 5)?) =0
ou _
EA Y = 100
x=180

The solution is

u=10x 5 0<x<100

, .10000, 4000 4000
E E Ty o X100
50

100 < x <180

The stresses in the bar are
o=100; 0<x<100

o= — 0, 5100<x<180
+

(1 —7[0—)

2-13



Analysis of continuous Systems; differential and variational formulations

Performing now the Ritz analysis:

Case 1

100 180
_E 2 E x-100,2
H_7f (a;+2a,x) dx + 7 / (1+ i)

0 100

2
(a]+2a2x) dx - 100 u’x=180

Invoking that &§1=0  we obtain

[0.4467 116 :l l:a]] 18
E =
116 34076 a, [3240]

Hence, we have the approximate

solution
_ i2G.6 X - 0.341 2
E F X
o =128.6 - 0.682 x

2-14



Analysis of continuous systems; differential and variational formulations

Case 2

Here we have

100 180
- 12 E x-100,2
I zf Too Ug)” dxtgm | (145
0 100
1 1 2

Invoking again SIT= 0 we obtain
2 {15.4 -13} [UBJ _ [o ]
“0 Lz sl Lugd Lo

Hence, we now have
_ 10000 | . = 11846.2

Ug = g > U T

o=100 ;3 0<x<100

Q
|
N
w
o
co

x>100
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Analysis of continuons systems; differential and variational formulations

ul
EXACT
15000 |
E
10000 | Solution 1 ==
- Solution 2
5000
E
I — X
180
CALCULATED DISPLACEMENTS
|
AN
]00-=—__ém_f_—_
\\ /‘/EXACT
N
N SOLUTION 1
50. | /
| SOLUTION 2
LoD o/
T T —
100 180
CALCULATED STRESSES




Analysis of confinuons systems; differential and variational formulations

We note that in this last analysis

o we used trial functions that do
not satisfy the natural b.c.

e the trial functions themselves
are continuous, but the deriva-
tives are discontinuous at point
B.
fora variational problem
we only need continuity in the
(m-1)st derivatives of the func-
tions; in this problem m=1.

cm'1

edomains A-B and B-C are
finite elements and
WE PERFORMED A
FINITE ELEMENT
ANALYSIS .

2-17



FORMULATION OF THE
DISPLACEMENT-BASED
FINITE ELEMENT
METHOD

LECTURE 3

58 MINUTES
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Formulation of the displacement-based finite element method

LECTURE 3 General effective formulation of the displace-
ment-based finite element method

Principle of virtual displacements

Discussion of various interpolation and element
matrices

Physical explanation of derivations and equa-
tions

Direct stiffness method
Static and dynamic conditions
Imposition of boundary conditions

Example analysis of a nonuniform bar, detailed
discussion of element matrices

TEXTBOOKXK: Sections: 4.1, 4.2.1, 4.2.2

Examples: 4.1, 4.2, 4.3. 4.4

3-2



Formulation of the displacement-based finite element method

R e e 2 2

N

FORMULATION OF
THE DISPLACEMENT - ®The formulation is

BASED FINITE really a modern appli -
ELEMENT METHOD cation of the Ritz/

Galerkin procedures
® A very general discussed in lecture 2

formulation

eConsider static and
® Provides the basis of dynamic conditions, but
almost all finite ele- linear analysis
ment analyses per-
formed in practice

LSS S P LII LS PSS SI LIS SIS PSS SIS LSS SIS SIS S 2110

SLLIS L ESLLLL LSS TS TLL LS LS J IS AL LS SIS LS LSS LSS SLS LS AL SIS LSS LSS S SIS LSS LS PSS LI SIS SPIL SIS SIS S S 1S SIS P 1SS

N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N

irigiiiaiauiiiiiaiaiiuiiiiiiiiiiiiibbaiidiiialidddd i izt

/)
2

Fig. 4.2. General three-dimensional body.
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Formulation of the displacement-based finite element method

The external forces are

r~ — o - - -

—h
>
—’,
>N
x|

D

-n

B_|mB]|. = S1. i_ i
i'fysi' fY:_F_- Y (4.])

The displacements of the body from
the unloaded configuration are
denoted by U, where

uh=[u v W] (4.2)

The strains corresponding to U are,

T— -
€ = [€yy €yy €77 Yxy Yyz Yzx] (4.3)
and the stresses corresponding to €
are
TT=[T Tuy T79 Tyy Tvr Tyl (4.4)
- XX YY “ZZ XY YZ "ZIX '
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Formulation of the displacement-based finite element method

Principle of virtual displacements

/§T1‘1v= fdv+/u £5ds
v
T 5
+2 0 F (4.5)
:
where
._T_ .
U'=[0 V W (4.6)
€ =€, €y €17 Tov Yvo Tou] (4.7)
€ xx vy Szz Yxy Yvz Yzx y

Finite element

Fig. 4.2. General three-dimensional body.
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Formulation of the displacement-based finite element method

zwy
X,U
Finite element
For element (m) we use:
g(m)(x.y,2)=ﬂ(m)(x,y,2) 0 (4.8)

AT _ ]

QT=[u]u2u3 cee U] (4.9)
E(m)(x,y,2)=§('“)(x,y,z) 1] (4.10)
o) - gmgtm) 1) (4.11)




Formulation of the displacement-based finite element method

Rewrite (4.5) as a sum of integrations
over the elements

Z € _(m)dv(m) =

m V(m)

| gm 7"y m
m

Zm/v( (m)T <(m)
smT M m)
£ ds
' %fs(m) g -
+ .giTg" (4.12)
1

Substitute into (4.12) for the element
displacements, strains, and stresses,
using (4.8), to (4.10),

: — \E("')T
T (m) T (m)g(m) gy (M) 5
,Z m & }9,‘ (m) _ (m) _(m)
I \___/‘.— - -
’Z U / H("‘) g (m) v(’“): (g)(m) =§(m)(ﬁ)
(m) | )T
- B} _S(m)Tf—S(m)dS(m): M _ym §
m ~ 1 Us(m)T
. (m)T I( m) (m); =
Z[/(m) e =(m)T
———— =

+ E] (4.13)




Formulation of the displacement-based finite element method

We obtain
KU=R (4.14)
where
R=Rg + R - Ry + R. (4.15)
(m)T (m)g (m) (m)
K=, B\ ¢ dv
- 25,40n) - (4.16)
(m)T B (m)
§/v("‘ H dv (4.17)
i 4 (m)T (m)
Rg j%;.<km) ” (4.18)
=2/ B("‘)TI '™ (.19)
m A
Re=F (4.20)

In dynamic analysis we have

~nm)
_R.B= Z/(m) ﬂ(m)T[fB "
m 7y fB(m)= '{;B(m)_ pﬁ(m)

mMymiiav(m  (a.21)
e L g(m - y(m g

MU+KU=R (4.22)

M E/ oMy (m)Tyy(m) gy (m)
A (4.23)




Formulation of the displacement-based finite element method

To impose the boundary conditions,
we use

Maa Mab ya Eaa Bab !a
+
Mba Mbb lJlo Eba Ebb gb
R,
= (4.38)
Ry
Mia Ya"Xaa Y Ra-Kap Y- Map Yy
(4.39)
Bb::Mba l—Ja-l'l\—’lbb LJb'FEba !a'kﬂbb gb
(4.40)
| \—
\ Transformed
degrees of
G]oba] degrees - freedom
of freedom
<:f | \% U (free)
(restra1ned§\\t //1;/
— / ok

|—
1]
f—-_ﬂ

><
=

1
}—

u

sina

U

cosa -sina

cosa

Fig. 4.10. Transformation to skew
boundary conditions
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Formulation of the displacement-based finite element method

column
For the transformation on the _]
total degrees of freedom we use °.
=T0 -th 1
Uu=TU (4.41) T_JoW o cosa -sino
so that 1
T= .
- T -th . ]
MU+KU=R (4.42) j——w=sina cos o
1
where
L
H=T'MT;K=T'KT ; R=T'R (4.43)
Y
a
Spring __—* v @

element

Fig. 4.11. Skew boundary condition
imposed using spring element.

We can now also use this procedure
(penalty method)
Say U; = b, then the constraint

equation is

kUs=kb (4.44)

-.3-10




Formulation of the displacement-based finite element method

Example analysis

== - - —= 100

LY
X Y / | ~area = 9

1

100
|
Q) 80 !
element @
Finite elements
U
1
Y U2
= - - - -
l‘ ’I
100
U
- ‘y - —_— — .
| h
80
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Formulation of the displacement-based finite element method

Element

interpolation functions

y
F T
Ly 1.0
— 4—
|= -]
L
T » -7
1o I
— y T
| ——— —o |
Displacement and strain
interpolation matrices:
(1) y y
BV =[(1-+55) 5= 0]
= 100° 100
NOBMOR
(2) . Yy Y
i Lo (@ 80) 80:|
(1) _ 1 1
BV oL L 0]
- 100 100 v, B(m)U
= 80 80
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Formulation of the displacement-based finite element method

stiffness matrix

- 1]
100
0
-1 ]
K= (])(E)Z) . [m T00 O]dy
. 0
0 ¥]

Y2 1 1 1
+E0 (.H"m) 80 [0 " 80 %-:Idy
1
| 80 ]

Hence
1 -1 0 0 00
_E 13E
l_(_—ﬁ -1 10 +2—-46- 0 1 -1
.0 0 0 0 -1 1
F 2.4 -2.4 0
E
“7ig |-2-4 15.4 -13
[ 0 -13 13

Similarly for M, Rg , and so on.
Boundary conditions must still be

imposed.
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Generalized coordinate finite element models

LECTURE 4 Classification of problems; truss, plane stress, plane
strain, axisymmetric, beam, plate and shell con-
ditions; corresponding displacement, strain, and
stress variables

Derivation of generalized coordinate models

One-, two-, three- dimensional elements, plate
and shell elements

Example analysis of a cantilever plate, detailed
derivation of element matrices

Lumped and consistent loading

Example results

Summary of the finite element solution process
Solution errors

Convergence requirements, physical explana-
tions, the patch test

TEXTBOOK: Sections: 4.2.3, 4.2.4, 4.2.5, 4.2.6

Examples: 4.5, 4.6, 4.7. 4.8, 4.11, 4.12, 4.13, 4.14,
4.15, 4.16, 4.17, 4.18




Generalized coordinate finite element models

R 2 g7 3
N

DERIVATION OF SPECIFIC
FINITE ELEMENTS

o Generalized coordinate

finite element models In essence, we need

V(m)

B{" - ,/ ﬂ‘""Tf_B("‘)dv(m)

vim)

T ® Convergence of
E&m) = [ ) I_Is(m) ; g(m) gs (m) analysis results
sim -

SIS SIS IS ISIS IS I SIS IS S SSIS IS SIS IST IS SIS LSS LSS L SIS LSS AL LSS AL 1 A7 2111

etc.

SIS,

Z lllscliiliiiiiiiiiiliiiiiiiildddidiii 2 A IR ks

})

 —
O

. T

Y Across section A-A:
I T is uniform.

A11 other stress components
are zero.

Fig. 4.14. Various stress and strain
conditions with illustrative examples.

(a) Uniaxial stress condition: frame
under concentrated loads.




Generalized coordinate finite element models

Hale

\

y U IIREY!
A
y a ‘> M
A
A
!
_ P
lLsu )
4 Ty Tyx * Tyy » Tyxy are uniform
A e across the thickness.
____th
T A1l other stress components
are zero.

Fig. 4.14. (b) Plane stress conditions:
membrane and beam under in-plane
actions.

u(x,y), v(x,y)
are non-zero

w=0 ,ezz=0

Fig. 4.14. (c) Plane strain condition:
long dam subjected to water pressure.
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Generalized coordinate finite element models

Structure and loading

are axisymmetric. x
y O3
/] /
Kt — Y

. .

| ' ' )
/
! I z_i%_h

L

A
’Tnl ! Cb %
Tyz = Tax T 0
Ty Ty A1l other stress components

— are non-zero.

Fig. 4.14. (d) Axisymmetric condition:
'Tu cylinder under internal pressure.

I
g
*
&z?
5o
M
L

(before deformation) mid- PLATE
surface %

Fig. 4.14. (e) Piate and shell structures.




Generalized coordinate finite element models

Displacement

Problem Components
Bar u
Beam w
Plane stress u, v
Plane strain u,v
Axisymmetric u, v
Three-dimensional u,v,w
Plate Bending w

Table 4.2 (a) Corresponding Kine-
matic and Static Variables in Various

Problems.
Problem Strain Vector g"
Bar [Exx]
Beam [Kxx]
Plane stress [€xx €, 7,]
Plane strain [€xx €y Pxl

Axisymmetric

[€xx € Y2y €il

Three-dimensional {€,, €,, €., Y., Py Vil

Plate Bending

[’cxx Kyy xx;]

[, _ du . dv _ du , dv
Notation: €, = Y €, = _dy' Pry = a__y + T
9w w0
s Kax = = K = — g Ko =255,

Table 4.2 (b) Corresponding Kine-
matic and Static Variables in Various
Problems.




Generalized coordinate finite element models

Problem Stress Vector ki
Bar [Txx]
Beam [Mxx]
Plane stress [Txx Tyy Txy)
Plane strain Txx Ty Tul
Axisymmetric [Txx Ty Tay Tail

Three-dimensional

Plate Bending (M, Myy Mxy]

[Bxx Ty Tar Tay Tyr Tail

Table 4.2 (c) Corresponding Kine-
matic and Static Variables in Various
Problems.

Problem Material Matrix C

Bar E
Beam EI
1 v 0
Plane Stress ——— | 1 0
I—v 1—v
00 3

Table 4.3 Generalized Stress-Strain
Matrices for Isotropic Materials
and the Problems in Table 4.2.




Generalized coordinate finite element models

ELEMENT DISPLACEMENT EXPANSIONS :
For one-dimensional bar elements

u(x) = Gy *+opX oc3x2 +... (4.46)
For two-dimensional elements

- 2
u(x,y) =0 FaoX FOgy Faxy HopX L.

V(Xa,Y) = B'I + 82X+ 83)"*' B4Xy+ 85X2+ e

(4.47)

For plate bending elements

W(Xoy) = g ¥ Yox + ygy + v xy + y5x2 LI

(4.48)
For three-dimensional solid elements

u(x,y,2) = oy + ooX+ ogy + oyz + agxy + ...
V(X3Y3Z) = B'I + 82X+ B3Y+ B4Z+ B5xy+ e

W(X,Y52) =Y+ VX +Y3Y + Y2+ Ypxy + ...
(4.49)




Generalized coordinate finite element models

Hence, in general

u=2%a (4.50)

i=Au;a=A"0 (4.51/52)

€=Ea; 1=C(C€ (4.53/54)

- -1 _ -1

H=¢A ; B=EA (4.55)

Example
£ P

7/ 3 Nodal point 6 ’g
Z Element@ @
e
Z N| 2 5 8
Z
_ ® ®
é Y.V Ay, v I %)
é ENLUTN 4 7
A xu XU p

{a) Cantilever plate {b! Finite element idealization

Fig. 4.5. Finite element plane
stress analysis; i.e. Ty7= Tyy = Tzx 0
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Generalized coordinate finite element models

V2= U, vi=U,

U1=U5-—3L i’—» w=U

= structure nodal point
« no. 5 .

U=z - U=
3U3-3‘r f; 4= \q

V= U+ Vs Up

Fig. 4.6. Typical two-dimensional
four-node element defined in local
coordinate system.

Element nodal point no. 4

For element 2 we have

u(x,y) (2)
]
v(x,y)
where

T_
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Generalized coordinate finite element models

To establish H (2) we use:

u(x,y) = Qy +0pX + 0y + oy Xy

V(x:.Y) = B-I + Bzx + B3_Y+ B4X_Y

or
[u(x,y)}
=% a
v(x,y)
where
¢ 0
9=[— _];9= [1 x y xy]
0 9
and

o =[a) a, oz ay 8y B, By ;]

Defining

/\T-
u =luy vy uz uy vy vy v vyl

we have

4-11



Generalized coordinate finite element models

Hence
(1+x) (1+y)r 0 !
o=k L !
-4 0 I (1) (14y)!
2x8
and
u, v, u, T, u, v,

U Uy Uy Uy Us Usg Uz Ug Us Uy
HY - [ 0,0 5}1,, if,,i H,, H, ; 0 o ; H,, H,:
- 0 0 ;Hu Hyy ' Hyy Hiyt 00 Hp, HZ.;

u, v, —element degrees of freedom
Uy Uy Ups Ugy Uy g-—assemblage degrees
'Hy, Hyy: 0 0 !...zeros... 07 offreedom
P Hy, HI,SO O.E...zeros...OZI
2x18

(b) Local-global degrees of freedom

(a) Element layout

Fig. 4.7. Pressure loading on
element (m)

4-12



Generalized coordinate finite element models

In plane-stress conditions the
element strains are

T _
€ = [y €y vyyl
where
B e LAV _du, dv

exx_ax’eyy y’ny 8y+ax
Hence
B=EA
where

01 ¢ ysO 00 0
E={0 00 0'0 0 1 x

0 0 1 xio 10y
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Generalized coordinate finite element models

ACTUAL PHYSICAL PROBLEM

GEOMETRIC DOMAIN
MATERIAL

LOADING

BOUNDARY CONDITIONS

MECHANICAL IDEALIZATION

KINEMATICS, e.g. truss
plane stress
three-dimensional
Kirchhoff plate

etc.
MATERIAL, e.g. isotropic linear YIELDS:

elastic

Mooney-Riv1in rubber ( GOVERNING DIFFERENTIAL

etc. EQUATIONS OF MOTION
LOADING, e.g. concentrated €.g.

centrifugal

etc. ] ou ) _

. 3% (EA 57) = - px)

BOUNDARY CONDITIONS, e.g. prescribed

displacements

etc. ,J

FINITE ELEMENT SOLUTION

YIELDS:
CHOICE OF ELEMENTS AND APPROXIMATE RESPONSE
SOLUTION PROCEDURES SOLUTION OF MECHANICAL
IDEALIZATION

Fig. 4.23. Finite Element Solution
Process
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Generalized coordinate finite element models

SECTION
ERROR ERROR OCCURRENCE 1IN discussing
error
DISCRETIZATION use of finite element 4.2.5
interpolations
NUMERICAL evaluation of finite 5.8.1
INTEGRATION element matrices using 6.5.3
IN SPACE numerical integration
EVALUATION OF use of nonlinear material 6.4.2
CONSTITUTIVE models
RELATIONS
SOLUTION OF direct time integration, 9.2
DYNAMIC EQUILI-| mode superposition 9.4
BRIUM EQUATIONS
SOLUTION OF Gauss-Seidel, Newton- 8.4
FINITE ELEMENT Raphson, Quasi-Newton 8.6
EQUATIONS BY methods, eigensolutions 9.5
ITERATION 10.4
ROUND-OFF setting-up equations and 8.5

their solution

Table 4.4 Finite Element
Solution Errors
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Generalized coordinate finite element models

CONVERGENCE compatible
layout
Assume a compatible

element layout is used,
then we have monotonic incompatible
convergence to the layout

solution of the problem- |_
governing differential exampie P

equation, provided the
elements contain:

PILLL SIS LTS LIS LS SIS SIS A 7 LS 7SS ILJ SIS 2110 L

SIS SIS

1) all required rigid
body modes
2) all required constant

strain states
no. of elements

{f an incompatible element
layout is used, then in addition
every patch of elements must

be able to represent the constant
strain states. Then we have
convergence but non-monotonic

convergence.
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Generalized coordinate finite element models

'

N
A%

L———J N A

L

l
|
|
i
'

(a) Rigid body modes of a plane
stress element

v

Rigid body
translation
and rotation;
element must
‘ be stress-

1 free.

(b) Analysis to illustrate the rigid
body mode condition

Fig. 4.24. Use of plane stress element
in analysis of cantilever
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Generalized coordinate finite element models

1.0

-1

|
]
i
!
!

..
e .

- —_d
Rigid body mode A, =0

Rigid body mode A, = 0

Young's ——————— o]
modulus = 1.0 : i

Poisson’s
ratio = 0.30

Flexural mode A, = 0.57692

Fig. 4.25 (a) Eigenvectors and
eigenvalues of four-node plane
stress element

(AN

Flexural mode A; = 0.57692

S DRNEDUR N

r~——""—""17

—_————

Stretching mode A, = 0.76923

. \

\\\4

Shear mode Ag = 0.76923

Uniform extension mode Ay = 1.92308

Fig. 4.25 (b) Eigenvectors and
eigenvalues of four-node plane
stress element
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Generalized coordinate finite element models

1600 Nfem® 1068 Njem?
D) A
® @ B
17
-C
g -
<D
@ @— ® xE L
&
20
@ 13
® ©®
a) compatible element mesh; 2 b) incompatible element mesh;
constant stress o__=1000 N/cm node 17 belongs to element 4,
in each element. Y¥ nodes 19 and 20 belong to

element 5, and node 18 belongs
to element 6.

Fig. 4.30 (a) Effect of displacement
incompatibility in stress prediction

oyy stress predicted by the
incompatible element mesh:

. 2
Point ny(N/m )

1066
716
359

1303

1303

m o O o I>»

Fig. 4.30 (b) Effect of displacement
incompatibility in stress prediction
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Implementation of methods in computer programs; examples SAP, ADINA

LECTURE 5 Implementation of the finite element method

The computer programs SAP and ADINA

Details of allocation of nodal point degrees of
freedom, calculation of matrices, the assem-
blage process

Example analysis of a cantilever plate

Out-of-core solution

Effective nodal-point numbering

Flow chart of total solution process

Introduction to different effective finite elements

used in one, two, three-dimensional, beam,
plate and shell analyses

TEXTBOOK: Appendix A, Sections: 1.3, 8.2.3

Examples: A.l1, A.2, A3, A.4, Example Program
STAP




Implementation of methods in computer programs; examples SAP, ADINA

R e e rrrrrarrrrrrrrrrzzzrarrzairiiaiaidiirruiiaiiibdadds

IMPLEMENTATION OF T
THE FINITE ELEMENT K (m} -4 )g""’ clmig(m) 4y (m)
METHOD vim

T
gim) - I H(m) 13('“) dv(m)
—B vim)
We derived the equi-

librium equations ﬂ(m) E(m) N = no. of d.of.

kxN Ax N of total structure
+...

KU=R:R=Rg
In practice, we calculate compacted

where element matrices.

m) o _ (m)
= ’EB_E,BB ... n=no.of

element d.o.f.

K =3
m

il 2 s

N
N
N
N
N
N
N
R
N
§
N
N
\
N
N
\
N
N
N
N
§
N
N
N
3
N
N
N
N
N
§
N
N
N
N
N
N
N
N
N
N
R
N
N
N
N
N
N
N
N
X
N
N
pZ

N
R e PP TN

The stress analysis process can be
understood to consist of essentially
three phases:

1. Calculation of structure matrices
K,M,C,and R, whichever are
applicable.

2. Solution of equilibrium equations.

3. Evaluation of element stresses.




Implementation of methods in computer programs; examples SAP, ADINA

The calculation of the structure
matrices is performed as follows:

1. The nodal point and element in-
formation are read and/or generated.

2. The element stiffness matrices,
mass and damping matrices, and
equivalent nodal loads are calculated.

3. The structure matrices K , M,
C,and R, whichever are
applicable, are assembled.

*ez =6
fws=3s
JA
— i
Y Vv=2 GYES
X
rd'E)
/ oy =4 Fig. A.1. Possible degrees of
X= freedom at a nodal point.
— nodal point
ID(1,0) = [~ .
L _J
Degree of
freedom




Implementation of methods in compnter programs; examples SAP, ADINA

Temperature at top face = 100°C

L 60 cm / N 60 cm o

l3 e”s 5 9‘ "
v / ~ r——n

T N @ Elembe;t
num
40.cm £ =108 N/em? 145:33586 N/em? 10
21’30.15 __3 8 T__.g
A\
| ® ®
40cm Y E=108 N/cm2 |2 £=2x10% N/em2
l v =0.15 T v =0.20 18
1\ 4 i 1 7 —
L \%/ X / N 7
\
Node  Temperature at _ Degree of
bottom face = 70°C freedom
number
Fig. A.2. Finite element cantilever
idealization.
In this case the ID array is
given by
(111000000
1 11 0 006 0 00
D = 1 1' T 1T 1 1 1 1 1
I T N I O T B S
T 1T 111 1T 111
1T 1T 1 11T %1V 1 11 _J




Implementation of methods in computer programs; examples SAP, ADINA

and then
[0 001357 911]
000246 81012
-0 00000000
0 0000O0TO0TO0O
000000000
(00000000 0]

Also

xXT=[ 0.0 0.0 0.060.060.0 60.0 120.0 120.0 120.0]
v'=[ 0.0 40.0 80.0 0.0 40.0 80.0 0.0 40.0 80.0]
7T=[0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0]
1T = [70.0 85.0 100.0 70.0 85.0 100.0 70.0 85.0 100.0]




Implementation of methods in computer programs; examples SAP, ADINA

For the elements we have

Element 1: node numbers: 5,2,1,4;
material property set: 1

Element 2: node numbers: 6,3,2,5;
material property set: 1

Element 3: node numbers: 8,5,4,7;
material property set: 2

Element 4: node numbers: 9,6 5,8:;
material property set: 2

CORRESPONDING COLUMN AND ROW NUMBERS

oo |

4. o] o' o' ol 1‘ 2

For compacted
matrix

(#3)

For 5]

M =34 0000 1 2]
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Implementation of methods in computer programs; examples SAP, ADINA

Similarly, we can obtain the LM
arrays that correspond to the
elements 2,3, and 4. We have for
element 2,

LMT=[5 6 0 0 0 0 3 4]
for element 3,

tM=[9710 3 4 1 2 7 8]

and for element 4,

LM =[1112 5 6 3 4 910]

mye=3
}"_‘_—T‘— Skyline

kaz | k23
————————m =
Mg | kaa | 0| ksg |NO O °
\ ~
K= “kag Llﬁs kae 0 \0‘
Y
kss\ ksg | 0 { ksg ) Fig.. A.3. Storage scheme used for a
kes | k2| O typical stiffness matrix.
Symmetric
Nkyr | kg
. \\k
_ (a) Actual stiffness matrix 88 |
Al21) stores kqg
- - .4
A1)  A(3) A(9) 1
A(2) A(5) A(8) 2
A4} A7) A(15) 4
A= AlB) A(11) A(14) 6
A(10) A(13) ap21)) MAXA=! 44
A(12) A(17) A(20) 12
A{16) A(19) 16
(b) Array A storing elements A(18) 18
- of K. - | 22




Implementation of methods in computer programs; examples SAP, ADINA

— 7 COLUMN HEIGHTS
| |

X

><><><><OOOO><OOJ

X = NONZERO ELEMENT
0= ZERO ELEMENT

x x x|[o oo oo
x X X O X|]O O OO
X % X X|O O O O 00

SYMMETRIC

ELEMENTS IN ORIGINAL STIFFNESS MATRIX

Fig. 10. Typical element pattern in
a stiffness matrix using block storage.

SKYLINE
—— | l | -
0 00000
0 00lo 00
X x'o{o o[x
X X010 O|X
x x|o[x]o]|x
BLOCK 1-— x x x| x|o|x
X X|X X|x
BLOCK 2 X[ X BLOCK 3
XTX
x:: |__BLOCK 4
- |

ELEMENTS IN DECOMPOSED STIFFNESS MATRIX

Fig. 10. Typical element pattern in
a stiffness matrix using block storage.




Implementation of methods in computer programs; examples SAP, ADINA

{b) Good nodal point numbering,
mk +1=16.

Fig. A.4. Bad and good nodal point

numbering for finite element
assemblage.

§1 2 3 4 5 6 7 8 9 10 11 12 13
\

NG 15 16 17 18 b 19 20
N

21 22 23 24 25 26 27 28 29 30 31 32 33

(a) Bad nodal point numbering,

y' 4 6 9 11 14 16 19 21 24 2% 29 3
§2 97 912 b 17 22 27 32
N3 5 8 10 13 15 18 20 23 25 28 30 33




Implementation of methods in computer programs; examples SAP, ADINA

START

READ NEXT DATA CASE

'

Read nodal point data
(coordinates, boundary
conditions) and establish
equation numbers in the

1D array.
Calculate and store load Tape
vectors for all load cases. ILOAD

Read, generate, and store
element data. Loop over alf
element groups.

1

Read element group data, and
assemble global structure
stiffness matrix. Loop over
all element groups.

l

Calculate L.*D*LT factorization
of global stiffness matrix(*}

W @

FOR EACH LOADCASE

{

Read load vector and calculate Tape
nodal point displacements. 1LOAD

A 4

Read element group data and
calculate element stresses.
Loop over all element groups.

G

END

Fig. A.5. Flow chart of program
STAP, *See Section 8.2.2.




Implementation of methods in computer programs; examples SAP, ADINA

1] - -‘4

ONE - DIMENSIONAL . RING ELEMENT
ELEMENT

Fig. 12. Truss element
p. A.42.

Fig. 13. Two-dimensional plane
stress, plane strain and axisymmetric

elements.
p..A.43.




Implementation of methods in computer programs; examples SAP, ADINA

X
Fig. 14. Three-dimensional solid —
and thick shell element
p. A44,

24

—
Y

Fig. 15. Three-dimensional beam

element

p A.4b,
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Implementation of methods in computer programs; examples SAP, ADINA

3-16 NODES

TRANSITION
ELEMENT

Fig. 16. Thin shell element
(variable-number-nodes)
p. A.46.
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Formulation and calculation of isoparametric models

LECTURE 6 Formulation and calculation of isoparametric
continuum elements

Truss, plane-stress, plane-strain, axisymmetric
and three-dimensional elements

Variable-number-nodes elements, curved ele-
ments

Derivation of interpolations, displacement and
strain interpolation matrices, the Jacobian
transformation

Various examples; shifting of internal nodes to

achieve stress singularities for fracture me-
chanics analysis

TEXTBOOK: Sections: 5.1, 5.2, 5.3.1, 5.3.3, 5.5.1

Examples: 5.1, 5.2, 5.3, 5.4, 5.5, 5.6, 5.7, 5.8, 5.9,
5.10, 5.11. 5.12, 5.13, 5.14, 5.15, 5.16, 5.17




Formulation and calculation of isoparametric models

FORMULATION AND
CALCULATION OF ISO-
PARAMETRIC FINITE

ELEMENTS .
interpolation matrices

and element matrices
eWe considered earlier

(lecture 4) generalized
coordinate finite
element models

eWe now want to discuss isoparametric
a more general approach => isoparametric
to deriving the required elements

Isoparametric Elements
Basic Concept: (Continuum Elements)

Interpolate Geometry

N = number of nodes




Formulation and calculation of isoparametric models

1/D Element Truss

2/D Elements Plane stress Continuum
Plane strain Elements
Axisymmetric Analysis

3/D Elements Three-dimensional
Thick Shell

(a) Truss and cable elements

{b) Two-dimensional elements

Fig. 5.2. Some typical continuum
elements
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Formulation and calculation of isoparametric models

(c) Three-dimensional elements

Fig. 5.2. Some typical continuum
elements

Consider special geometries first:

S M

=-1 —r r=+]

Truss, 2 units long




Formulation and calculation of isoparametric models

1
o
Y
1
X
2/D element, 2x2 units
Similarly 3/D element 2x2x2 units
(r-s-t axes)
1 - D Element
2 Nodes: 1
1.0
' T h1 = %(1 + l')

1.0 hy =%(1-r1)

']
|
—

r
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Formulation and calculation of isoparametric models

1.0
hy=%(1+1 - %(1-r2)

hy =%(1-r) - %(1-r2)

11.0
hg =1-r2

2 -D Element .
4 Nodes:

hq =%(1+1)(1+3)

3 4

Similarly
hy = %(1-r)(1+s)

hy= %(1-r}{1-5)
hg = %1+ r)(1-5)




Formulation and calculation of isoparametric models

Construction of 5 node element
(2 dimensional)

first obtain h5 :

2//
//// A’/z(1-rz)(1+s)
3 / 4

Then obtain h1 and h2:

—
5

hy = %(1+1)(1+5)
- ¥%ehg

Sim. hy= Ya(1-r)(1+5)
~%shg




Formulation and calculation of isoparametric models

s=+1
-
s -7
) \5 Node 1
3
y
5=
T e
6 8 r
s=—1
3\ 7\\ 4/\\\
\ 1 ) r=0 r=+1
r=—
x

{a) Four to 9 variable-number-nodes

two-dimensional element

Fig. 5.5. Interpolation functions of
four to nine variable-number-nodes
two-dimensional element.

140 (1+5)
H1=n(1+s)
=19
HM+n(1-ys
O =r2) {1+
1 -s2)(1=r)

%(1 —-r2) (1 —5s)

'5(1 —5§2) {1 +r)
C=-ro) Q-5

Include only if node / is defined

i=6

i=7

(b) Interpolation functions

i=8

.= 1hg

2

Fig. 5.5. Interpolation functions of
four to nine variable-number-nodes
two-dimensional element.

=7

L

~4hq
~he
~¥he
-k hqg

P

_s

2
4
2

hq

. _-L;,q

hq
hq




Formulation and calculation of isoparametric models

Having obtained the h; we can
construct the matrices H and B:

- The elements of H are the h.
{or zero) '

- The elements of B are the
derivatives of the h; (or zero),

Because for the 2x2x2 elements
—_
we can use ‘—'

x

<
Ww

r
S
t

N

EXAMPLE 4 node 2 dim. element

u(r,s)

v(r,s)

Uy
| : : i
h] 0 :h2 0 :h3 0 =h4 0
| : : "2
Y ol )
H Y4




Formulation and calculation of isoparametric models

B_h]_ 0 | i ﬂ 0 Uy
or ! | ar
€ | |
re ah, i | ahy || V1
e. =/ 0 —1...1 0 —
ss s | } 8s | [u,
y L -
A R R RV |
ds  or | }ds  dr 4
— I I e
“ ~— J
B
We note again r=x
S=Yy

GENERAL ELEMENTS

* y.v

r=-1
s=+1
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Formulation and calculation of isoparametric models

Displacement and geometry inter-
polation as before, but

0 9x 3y |o-
ar | _|ar  Br [|3x
9 9X 3y || Aside:
9s 9s  9sJ|dy cannot use
) 3 or
or 9 .9 9ar
X or 3X -
by o
ar = 3x [(ingeneral)
9 _ -1 9
3%~ ar (5.25)

Using (5.25) we can find the matrix
B of general elements

The H and B matrices are a
function of r,s, t; for the
integration thus use

dv =detJ drds dt
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Formulation and calculation of isoparametric models

Fig. 5.9. Some two-dimensional elements

Element 1
“&
2
¢ *T_‘
_-—o-——:x 4—CM
Vo3 +—-
D 4 ; [3 0]
« 6em = 0 2
Element 2
Y
2. A i
X 600 | em
. |4 3 0
G om = J =

|_.

N
)
Ny
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Formulation and calculation of isoparametric models

Element 3
¥s
leme A
I
lem |
2 A— ~<
| <m 3
S
3| 4
e -t 4 (1+s)
2 cm \l =
0 (3+r)
l 3 2
r="| L.bh r=+,
Natural space
—— X
] 3 2
- T
e 3u/4- -

Actual physical space

Fig. 5.23. Quarter-point one-
dimensional element.
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Formulation and calculation of isoparametric models

Here we have

3
_ _L 2
=3 hyx 2 xebien)
i=1
hence
_|L,r
2[5+ 1]
and
B=——— [h, . hy  hy ]
= L+£L 1,r "2,r 3,r
2 2
or
B = [(-a+r) (a+r) -2r]
—+L
2
Since
N
r=2 1 1
=[(§___3_ L) (?__]_ 1
=L vxDOL oo X
2 4
(—=— -+)]
JL/x L
We note




Formulation and calculation of isoparametric models

Numerical Integration

Gauss Integration
Newton-Cotes Formulas

K= _Z_:kaijk Fiik

Il'

F=BTCBdetJ




FORMULATION OF
STRUCTURAL
ELEMENTS

LECTURE 7
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Formulation of structural elements

LECTURE 7 Formulation and calculation of isoparametric
structural elements

Beam, plate and shell elements

Formulation using Mindlin plate theory and uni-
fied general continuum formulation

Assumptions used including shear deformations

Demonstrative examples: two-dimensional beam,
plate elements

Discussion of general variable-number-nodes
elements

Transition elements between structural and con-
tinuum elements

Low- versus high-order elements

TEXTBOOK: Sections: 5.4.1, 5.4.2, 5.5.2, 5.6.1

Examples: 5.20, 5.21, 5.22, 5.23, 5.24, 5.25, 5.26, 5.27




Formulation of structural elements

FORMULATION OF
STRUCTURAL
ELEMENTS -

@ beam, plate and
shell elements

® jsoparametric
approach for
interpolations

Strength of Materials
Approach

® straight beam
elements

use beam theory
including shear
effects

® plate elements

use plate theory

including shear

effects
(Reissner/Mindlin)

Continuum
Approach

Use the general
principle of virtual
displacements, but

-- exclude the stress
components hot
applicable

-- use kinematic
constraints for
particles on
sections originally
normal to the mid-
surface

** particles remain on
a straight line during
deformation”’

baam ) 2_ )




Formulation of strucfural elements

dw
dx
Neutral
axis
— -~  Beam
p——--x _— section Boundary conditions between

beam elements

Deformation of cross-section dw

. dw _dw
> dx

.o 9

+0
X

X

a) Beam deformations excluding
shear effect

Fig. 5.29. Beam deformation
mechanisms

dw
= Y=p
dw
cdx
X ~ Neutral
/ axis W - w
. X—O X+0
X 5
- Beam
e section B =B
_ =T T -0 +0
X { ) X X
Deformation of cross-section Boundary conditions between

beam elements

b) Beam deformations including
shear effect

Fig. 5.29. Beam deformation
mechanisms




Formulation of structural elements

We use
dw
Bzd—X-Y (5.48)
A
-V - - _S
T—As,y G,k A (5.49)
L 5 L
_EL [ (de GAK [ (dw )2
H”ZIX>dX+2 (dx>d
0 0
L L
—j pwdx—medx
0 0
(5.50)

o [ () o) o

[V

L
s GAk! (g—‘)’(i-s) 6(3—‘)’(“-8) dx

L L
-j p Sw dx -ijB dx=0

0 0
(5.51)
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Formulation of structural elements

(rfﬂ m

— e e
L
b

L

(a) Beam with applied loading

E = Young’s modulus, G = shear modulus

3
_5 A= - ab°
k=g A=ab. 1%

Fig. 5.30. Formulation of two-
dimensional beam element

S

A

-/ -/ ey

(b) Two, three- and four-node models;
6; =B; ,i=1,....q (Interpolation
functions are given in Fig. 5.4)

Fig. 5.30. Formulation of two-
dimensional beam element
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Formulation of structural elements

The interpolations are now

i=]

=
1=

|

Q

<

&)03
=

q
. B = Zhiei (5.52)

(5.53)

(5.54)

(5.55)




. Formulation of structural elements

So that

1
K=EI J‘ B! B, det J dr

] 28 =g
1’ T
+ GAK (B,-Hg) ' (B,-Hg)det J dr
-1 (5.56)
and
1
R= f W p det J dr
= “w
’
1
;
+f EB m det J dr (5.57)

Considering the order of inter-
polations required, we study

L 9 L ’ )
- ds aw _ .
I[-f (dx) dx+(xj (dx B) dx ;
0 0

eAk (5.60)

o = FT

E

Hence

- use parabolic (or higher-order)
elements

- discrete Kirchhoff theory

- reduced numerical integration
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Formulation of structural elements

W
LA
b,
Q%A e M_/
e, r:s ‘bﬁa/ﬂf ——»@} l: .
A ||~
o S
’x,u- r»’t/,//
/ gy
Ox b .~ ~

Fig. 5.33. Three-dimensional more
0 1 general beam element

Y,
Here we use
q q
QIX(P,S,t) =Z hk Q’Xk"'% E akhk Q/VIEX
k=1 k=1
i 2.,k
S ,
*2 Z bhy Ve
k=1
2 d d
y(r.s,t) =3 h 3 Zakhkzvty
k=1 k=1
q k (5.61)
s 2
+§Zbkhk Vsy
k=1
q q
Ya(risit) = 3 by Pz 4 30 A n MY,
k=1 k=1
i k
S '8
+§Z bkhl( Vsz
k=1
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Formulation of structural elements

So that
u (r,s,t) = x-Ox
_ 0
v (r,s,t) = y-"y (5.62)
w (r,s,t) = z—oz
and
d t o k
u(r,s,t)=2 hkuk+§ E aihy Vi,
k=1 k=1
q
S k
3 Z bhy Vex
k=1
d t o k
V(ras,t)=z hkvk+—2—2 akhk Vty
k=1 k=1
q
S k
t5 2 by gy
k=1
d t O K
w(r,s,t)=z hkwk+E E ahy Vi,
k=1 k=1
q
S k
330 by Vg,
k=1
(5.63)
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Formulation of structural elements

Finally, we express the vectors !'{
and y'; in terms of rotations about
the Cartesian axes x,y,z,

k _ 0,,k
Ve =8 < )
k
k _ 0
!s = Qk X lls (5.65)
where
r—ek -
X
o, = |e¥ (5.66)
% Yy :
k
_62 N
We can now find
£
nn q
B LR
k=1
Tng
where
T _ k .k .k
u = [uk Vi W 6 eyeZ] (5.68)
and then also have
T E 0 O e
mn nn
The =10 Gk O Yne
Tnc c 0 de _Yn?;_

(5.77)
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Formulation of structural elements

%, U
/ u=2z8(x,y) ; =-z8_(x,y)3
o, X y( y)
and w=w(x,y) (5.78)
Fig. 5.36. Deformation mechanisms
in analysis of plate including shear
deformations
Hence
- —
3
"_€ . _.BL
XX aX
BBy
Sy | T | T (5.79)
oB d
Y AR _B_y
| Yxy_] W X L
oW
Vyz 3y ~ Py
= 5 (5.80)
W
sz M + BX
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Formulation of structural elements

and
— 3@ ]

— 7 B = X

TXX 1 v 0 —B—X—

3B
_ E y
= 0 -
Tyy 21_\)2 v 1 3y
1-v 88X BY
| Ty ° 07 By
- - - - —
(5.81)

] Mg ]

yz y Yy

= ?—(T—E"'\)-)— (5-82)
aw

| Tzx_ T BXJ

The total potential for the

element is:

e
XX

h/2
21
I =7 / / [€XX Eyy ny] Tyy dz dA

A -h/2

h/2
+k // [Yzsz

A -h/2

dx dA
T

ZX

—prdA

A

(5.83)
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Formulation of structural elements

or performing the integration
through the thickness

A
where
8, | -
X oW _
oy vy
3B
K= |- Wx sy = (5.86)
ow
BBX B_Bl 5)'(“" BX
3y | _
1 v 0
3
Eh
C, = - V 1 0 s
D 120149 1oy
0o 0 ¥
n 2 _
1 0
- Ehk 5.87
G| (5-87)
0
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Formulation of structural elements

Using the condition 611=0 we
obtain the principle of virtual
displacements for the plate

element.
/‘a C .<dA+fSch dA
K Ly K Y XY
A A
-f&w pdA =20
A (5.88)

We use the interpolations

q q )
3
w—z hiwi ;Bx"zhiey
i=1 i=1
q .
_ i
By = E hy 8y (5.89)
i=1
and

q q
D ILIEEED PLN?
i=1 =1

1
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Formulation of structural elements

Mid-surface

Fig. 5.38. 9 -node shell element

For shell elements we proceed as in
the formulation of the general beam
elements,

N et
-
(=1}
=~

=
P

sy
<
= x
<

L _ '3
.Y(Y',S,t) _Z hk .yk+

k=1 k=1
. L t ] 2.,k
£ - =
z(r,s,t) = hk z, .+ 5 Z ahy VnZ
k=1 k=1

(5.90)
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Formulation of structural elements

Therefore,

k=1 k=1
where (5.91)
k _ 1,k 0yk -
!n = !n - y_n (5.92)
To express \_/lr: in terms of
rotations at the nodal - point k
we define
0,k _ 0,,k 0,k
0= (e 0n) /e, <1 5.9%)
O,k _0,k_0,k
y_2 = !nx !] (5.93b)
then
k _ 0yk 0,k
Vo= -V ot Yy By (5.94)
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Formulation of structural elements

Finally, we need to recognize the
use of the following stress - strain
law

(5.100)

€xx Eyy Ezz Yxy Yyz Yzx

— |
<
o
o
o
o
_1

(o]
o
o
o

J’O
=
1}
52
=2
P
—
2
N
——
av1 ]
1z
o
o
N—
J;O
>

1-v
2 0
. 1-v
symmetric =
(5.101)
16 - node parent element with cubic interpolation L 2 N
| s —
) ® [ ] 4
2
4 [ ] o ®
R S

Some derived elements:

ANYANG Y

f 7 EIN

Variable - number - nodes shell element
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Formulation of structural elements

a) Shell intersections

b) Solid to shell intersection

Fig. 5.39. Use of shell transition
elements
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MODELING
CONSIDERATIONS
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Numerical integrations, modeling considerations

LECTURE 8 Evaluation of isoparametric element matrices

Numercial integrations, Gauss. Newton-Cotes
formulas

Basic concepts used and actual numerical opera-
tions performed

Practical considerations

Required order of integration, simple examples

Calculation of stresses

Recommended elements and integration orders
for one-, two-, three-dimensional analysis. and

plate and shell structures

Modeling considerations using the elements

TEXTBOOK: Sections: 5.7.1, 5.7.2, 5.7.3, 5.7.4, 5.8.1, 5.8.2, 5.8.3

Examples: 5.28, 5.29, 5.30, 5.31. 5.32, 5.33, 5.34,
5.35, 5.36, 5.37, 5.38, 5.39




Numerical integrations, modeling considerations

NUMERICAL INTEGRATION ,
SOME MODELING CONSIDERATIONS

® Newton-Cotes formulas

® Gauss integration

® Practical considerations

@ Choice of elements

k=SB cBdv (4.29)
v

M=JSpH HdV (4.30)

-

_ T B

BB_Vf 2 dv (4.31)

R= SH £2dS  (4.32)

™S

R=SB  zldv  (4.33)
Ty




Numerical integrations, modeling considerations

In isoparametric finite element
analysis we have:

sthe displacement interpolation
matrix H (r,s,t)

othe strain-displacement
interpolation matrix B (r,s,t)

Where rs,t vary from —1 to +1.

Hence we need to use:
dV =det J dr ds dt

Hence, we now have, for example in
two-dimensional analysis:

+1 +1
5=//§Tg B detJd dr ds
-1 -1
+1 #1
M=/[p HT H detJ dr ds
<141
etc...
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Numerical integrations, modeling considerations

The evaluation of the integrals
is carried out effectively using
numerical integration, e.g.:

(- XXk,
-~ wd L J —ij
1
where
i,j denote the integration points
a:: = weight coefficients

ij
Fij =Bj' C Bjj detJ;;

r
r = 20577
s = X0.577
+0.775 s=*0.775
=0 s=0

2x2 - point integration




Numerical integrations, modeling considerations

- N

> Y 3x3 - point integration

Consider one-dimensional integration
and the concept of an interpolating
polynomial.

actual function F

15t order interpolating

polynomial in x.

X
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Numerical integrations, modeling considerations

actual function F

2"4 o der interpolating

polynomial in x .

!

etc....

In Newton - Cotes integration we use
sampling points at equal distances,
and

b n
= n
I F(r)dr= (b-a) E C1. F1. +Rn
a i=0

(5.123)

n = number of intervals
C;" = Newton - Cotes constants

interpolating polynomial is of
order n.
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Numerical integrations, modeling considerations

Upper Bound on
Error R, as
Number of a Function of
Intervalsn Cj C7 C3 C3 C; Cy Cp the Derivative of F
! L . 10-1(b—a)*F1
= > (b—a)’F'X(r)
2 L £ ¥ 10-3(b—a)F™¥(r)
3 + 3 3 1 10-3(b—a)SF™(r)
7 32 12 32 7 ~
4 30 30 90 5 30 10-5(b—a)?FV(r)
19 75 50 S50 75 19 _
3 288 785 288 288 288 788 10-%b—a)"F¥i(r)
41 216 27 2712 27 26 A4l ~
6 840 840 B840 840 840 840 B840 10-%(b—a)*F ()

Table 5.1. Newton-Cotes numbers

and error estimates.

In Gauss nhumerical integration we

use

b
I F(r)dr= oc]F(rl) +a2F(r2) ...

a

+o¢nF(r'n)+Rn

where both the weights Qq,...
and the sampling points Fqees-

are variables.

(5.124)

n

"

The interpolating polynomial is now

of order 2n-1.




Numerical integrations, modeling considerations

n r; o,
1 0. (15 zeros) 2. (15 zeros)
2 4+0.57735 02691 89626 1.00000 00000 00000
3 +0.77459 66692 41483 0.55555 55555 55556
0.00000 00000 00000 0.88388 83888 88889
4 +0.86113 63115 94053 0.34785 48451 37454
+0.33998 10435 84856 0.65214 51548 62546
5 +0.90617 98459 38664 0.23692 68850 56189
4+0.53846 93101 05683 0.47862 86704 99366
0.00000 00000 00000 0.56888 88888 88889
6 +0.93246 95142 03152 0.17132 44923 79170
+0.66120 93864 66265 0.36076 15730 48139
+0.23861 91860 83197 0.46791 39345 72691

Table 5.2. Sampling points and
weights in Gauss-Legendre numeri-
cal integration.

Now let,
r be a sampling point and

a; be the corresponding weight

for the interval -1 to +1.

Then the actual sampling
point and weight for the
interval a to b are

atb , b-a 5,4 b-a,
2 2 i 2 i

and the f and @; can be
tabulated as in Table 5.2.




Numerical integrations, modeling considerations

In two- and three-dimensional analysis
we use

+1 at] +]
f f F(r,s)drds=z: o I F(ri,s)ds
4 R i 3
(5.131)
or
+1 +]
f f F(r,s)drds= Z O‘io‘jF(ri’sj)
-1 S 1.3
(5.132)

and corresponding to (5.113),
aij = o oej , where Q; and aj
are the integration weights for
one-dimensional integration.
Simitarly,

+1 41 &1
fffF(r,s,t)drdsdt

-1 -1 -1

= Ea_iajakF(r‘_i,sj,tk)
1,3,k
(5.133)

and aj = &% .




Numerical integrations, modeling considerations

Practical use of numerical integration

o The integration order required to
evaluate a specific element matrix
exactly can be evaluated by study-
ing the function F to be integrated.

e In practice, the integration is
frequently not performed exactly,
but the integration order must be
high enough.

Considering the evaluation of the
element matrices, we note the
following requirements:

a) stiffness matrix evaluation:

{1) the element matrix does
not contain any spurious zero
energy modes (i.e., the rank of
the element stiffness matrix is
not smaller than evaluated
exactly); and

(2) the element contains the
required constant strain states.

b) mass matrix evaluation:

the total element mass must be
included.

c) force vector evaluations:

the total loads must be in-
cluded.




Numerical integrations, modeling considerations

Demonstrative example * P
® o~ .
’ 9

2x2 Gauss integration 3x3 Gauss integration
"absurd” results correct results

Fig. 5.46. 8 - node plane stress
element supported at B by a
spring.

Stress calculations

I

~=CBU+T (5.136)

e stresses can be calculated at
any point of the element.

e stresses are, in general, discon-
tinuous across element
boundaries.




Numerical integrations, modeling considerations

thickness = 1 cm

4 "

-~ E = 3x107 N/cm?
2em | @ &é © ¢ v=0.3
———e——
o 900N/ 9e0 Njea®

i

) B T 8 0] sy T, = 0.
;\ dish:,':u*.icrt Xy
&

< ‘900 Njcw?

00 h,/cm.‘

(a) Cantilever subjected to bending
moment and finite element solutions.

Fig. 5.47. Predicted longitudinal
stress distributions in analysis of
cantilever.




Numerical integrations, modeling considerations

P
A )
£ E = 310 Nen®
2¢em ® 8 0] lj
R e N v =10.3
f—em——<=—=7 P = 100N
A o 75144 Nlew? A
TII ‘SOZNM‘ @
4 g . -
) B dhistribution 1502 Nfem®
£ <= | 744 N/Cm® <
A/ 29138 njewd 29648 —~ A
Nien™
q‘ ————
® 81 dtrbution ~18 O
< 1S Wfem® c
31800 Njcm®*

(b) Cantilever subjected to tip-shear
force and finite element solutions

Fig. 5.47. Predicted longitudinal
stress distributions in analysis of
cantilever.

Some modeling considerations

We need

e a qualitative knowledge of the
response to be predicted

e a thorough knowledge of the
principles of mechanics and
the finite element procedures
available

e parabolic/undistorted elements
usually most effective
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Numerical integrations, modeling considerations

Table 5.6 Elements usually effective

in analysis.

TYPE OF PROBLEM ELEMENT
TWO-DIMENSIONAL 8-node or
PLANE STRESS 9-node ¢ s
PLANE STRAIN -
AXISYMMETRIC *-
® Y ®
THREE-DIMENSIONAL 20-node t !
R
[} _- *
‘,—-___,-—:__—-\
3-D BEAM 3-node or
4-node 4
PLATE 9-node ) 4 o ;
SHELL 9-node or
16-node




Numerical integrations, modeling considerations

- 0— P
4 nhode 5 node . 8 nade
element element ; element
- —

a) 4 -node to 8 -node element
transition region

4- node
4 node element
element

4 node
element

Constraint up =(ug + ug)/2

equations:
9 Vp = (vc +vg)/2

b) 4-node to 4 - node element
transition

Lol

] ] 1

c) 8-node to finer 8 - node element
layout transition region

Fig. 5.49. Some transitions with
compatible element layouts
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Solution of finite element equilibrium equations in static analysis

LECTURE 9 Solution of finite element equations in static
analysis

Basic Gauss elimination
Static condensation
Substructuring

Multi-level substructuring

Frontal solution

L D LT . factorization (column reduction scheme)

as used in SAP and ADINA
Cholesky factorization
Out-of-core solution of large systems

Demonstration of basic techniques using simple
examples

Physié:al interpretation of the basic operations
use

TEXTBOOK: Sections: 8.1, 8.2.1, 8.2.2, 8.2.3, 8.2.4,
Examples: 8.1, 8.2, 8.3, 8.4, 8.5. 8.6, 8.7. 8.8, 8.9, 8.10




Solution of finite element equilibrium equations in static analysis

SOLUTION OF
EQUILIBRIUM
EQUATIONS IN
STATIC ANALYSIS

KU=R

® [terative methods,
e.g. Gauss-Seidel

® Direct methods

these are basically
variations of
Gauss elimination

static condensation
substructuring
frontal solution
— L D LT factorization
— Cholesky decomposition
— Crout
— column reduction
{skyline) solver

THE BASIC GAUSS ELIMINATION PROCEDURE

Consider the Gauss elimination

solution of

5 -4
4 6 -4
1 -4 6
0 1 -4

R
y] o

ul |

2.1 | (8.2)
Uy| |o

ul| o




Solution of finite element equilibrium equafions in static analysis

STEP 1: Subtract a multiple of

equation 1 from equations 2 and

3 to obtain zero elements in the

first column of K.

- _ _
5 4 1 0 Uﬂ N
A
I 14 16
0r 5t M| Y| | |63
[
1_16 29 _
0E 8 2 4|y |o
ol 1 -4 5|y, [0
| JL
5 4 1 0| _uﬂ [0
0 -2 |yl |
15750 | || s |
0 01 = =5~ U S
E 270 7 3 7
65 5
0 012 = U -
_ L7 T Y LT
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Solution of finite element equilibrium equations in static analysis

STEP 3:
5 -4 1 0| Tu]— 0]
1 16
o M Bl |
o o 18 2|y [T]e|®®
7 "7 3| |7
T
o o o0 | g U %
. SRR I R I I

Now solve for the unknowns U4 .
U3 , UZ and U1 :

7 8 20
U =_E_-=Z U, = 7—- (-7) U4 :E
1= 57535 U3 15 5
6 7
16
U =] - ("’5‘)U3'(])U4 =E (8 6)
2 i 5
5
19 36 7
. =0 - (-4)35- (1)35- (0) & _8
1 5 5




Solution of finite element equilibrium equations in static analysis

STATIC CONDENSATION

Partition matrices into

Kaa Kac|[U] [2a
Kea Kee)|%] |

Hence

e = Ke (R Key 0)

and

(8.28)

-1 _ -1
(Kaa = Kac Kee Kea) Ya=Ra-Kae Ko Re
——T T e
Kaa
Example
~cc Kea
- II T 1
51 -4 1 0 U 0
I 1
——_.:. ____________ R ——— —
4 6 -4 1 U | |1
|
11-4 6 -4 Us 0 so that
!
I
/ |ol 1 -4 5 u 0
4 _ —
K L ——d L L 1416
¢ K 5T "5 !
—aa
= 16 29
Hence (8.30) gives Eaa -5 5 -4
- - r -
6 -4 1 -4 [1/5] [-4 ] 0] 1 -4 5
L —
R.=|-4 6 -4f-]1
and we have obtained the 3x3
ELER ] B unreduced matrix in (8.3)




Solution of finite element equilibrium equations in static analysis

)

N U, YU, YU, m V2

5 -4 1 0] [y 0
1 -4 6 —4 U, 0
Rz=1“
p 1
W, ) U2 } Uz \ & %/,

14 ~16
1 1| |y, 1
-8 2 -a|l |u] o
1 -4 5| |u, 0
R |
ngg* ’R" ia

¥

Fig. 8.1 Physical systems
considered in the Gauss elimination
solution of the simply supported beam.
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Solution of finite element equilibrinm equations in static analysis

SUBSTRUCTURING

- We use static condensation on the
internal degrees of freedom of a
substructure

- the result is a new stiffness matrix
of the substructure involving
boundary degrees of freedom only

9
f.—f—o
50 x 50 32 x 32
Example
| L o
r | E = Young's
// modulus
> — S —-— - ———
-—(' U;— U, Us
A, 2A,
Fig. 8.3. Truss element with
linearly varying area.
We have for the element,
17 -20 3 U] R]
EA]
—EL— -20 48 -28 U2 = R2
3 -28 25 U3 R3




Solution of finite element equilibrium equations in static analysis

First rearrange the equations

EI-\] 17 3 -20 U] R1
T 3 25 -28 U3 - R3
- - [o]
20 28 48 U2 R2
Static condensation of Uy gives
< -| | [ggli-20  -28]
3 25 -28 U3
20
Ry * 38 K2
28
Ry + 78 Ry
or
7 I | LT R S T 1% Ry
135 - ;
9 L
-1 1 U3 R3 + 17 R2
and
_ 1 /(3L




Solution of finite element equilibrium equations in static analysis

Multi-level Substructuring

| L | t | L L
| 164
A ' l' 24 . l 4A ' | 8A ] '_—_—____1/ 1
— G = ! 1) m e e — (el —
5 (3 v, Ug Uy
Ul Uz ‘j3 U. 35
Bar with linearly varying area
U1 U:l
{a) First-devel substructure
——— (o & o~ - .
v, UJ’ Ug
v, Us
(b) Second-level substructure
Y, T e— Uy

(c) Third-level substructure and
actual structure.

Fig. 8.5. Analysis of bar using
substructuring.




Solution of finite element equilibrium equations in static analysis

Frontal Solution

A

Element q Elementg + 1 Elementqg +2 |Elementq +3
e e — e - ] ]
i SR (1~
m }m +1 "m+2 m+3
Element 1 l Element 2 l Element 3 Element 4
1 I
]
Node 1 2{,__ 3h—0 4
Wave front Wave front
U for node 1 for node 2

Fig. 8.6. Frontal solution of plane
stress finite element idealization.

e The frontal solution consists of
successive static condensation of
nodal degrees of freedom.

e Solution is performed in the
order of the element numbering .

e Same number of operations are
performed in the frontal solution
as in the skyline solution, if the
element numbering in the wave
front solution corresponds to
the nodal point numbering in the
skyline solution.
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Solution of finite element equilibrium equations in static analysis

LD

T FACTORIZATION

- is the basis of the skyline solu-
tion (column reduction scheme)

- Basic Step
-1 _
|:4] ﬁ_ﬁ]
Example:
1 [—5 -4 1 OT 5 -4 1 0
‘ 14 16
v 1 -4 6 -4 1_ 0 5 E 1
1 16 29 _
5 0 1 1 -4 6 -4 O—5 c 4
0O 0 0 1 0 1 -4 5 0 1 -4 5
— - - _
We note
— _
1 1
4 4
415 5 |
L = ; Ly =
=1 1 — 1
: 0 1 T 0 1
C 0 0 1 0 0 0 1

9-12




Solution of finite element equilibrium equations in static analysis

Proceeding in the same way

-1 -1 -1 . -1, _
bt by oo Lo Ly k=S
X X X X ... X
X X X .... X
S - X vevennn x | {uPper
2 triangular
X «... X |\ matrix
xo
"X
L -
Hence

or

K=L S L=k by .o Lo Loy
Also, because K is symmetric

k=LDL';

where

D= diagonal matrix ; d.;=s.;
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Solution of finite element equilibrium equations in static analysis

In the Cholesky factorization, we use

k=1L1'
where
L-L0

SOLUTION OF EQUATIONS

Using

(8.16)

(8.17)

(8.18)

(8.19)

(8.20)
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Solution of finite element equilibrium equations in stafic analysis

COLUMN REDUCTION SCHEME

I
- < Vo] — w0 00"?. 5_?.
1 —
—_—
| <
wo =o 1 2o




Solution of finite element equilibrium equations in stafic analysis

X = NONZERO ELEMENT
O= ZERO ELEMENT

COLUMN HEIGHTS

X X X|O O O 0O
X X X O X|O O OO0
X XX X|O O OO0 OO0
><><><><OOOC)><OC)A|

SYMMETRIC

L —
ELEMENTS IN ORIGINAL STIFFNESS MATRIX

Typical element pattern in
a stiffness matrix

|

/SKYLINE

X X X|O O O OO0

X XX x X|O O OO
X X XX|OO0O O 00O
X X X X X X X X|/O O

x

e —

ELEMENTS IN DECOMPOSED STIFFNESS MATRIX

Typical element pattern in
a stiffness matrix




Solution of finite element equilibrium equations in static analysis

X = NONZERO ELEMENT
0= ZERO ELEMENT

ﬂCOLUMN HEIGHTS
l I

X

>-<><><>'<OOOO><OOJ

SYMMETRIC

X
X X X XIO O O O OO

e ——

ELEMENTS IN ORIGINAL STIFFNESS MATRIX

Typical element pattern in
a stiffness matrix using block
storage.
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SOLUTION OF

FINITE ELEMENT
EQUILIBRIUM
EQUATIONS

IN DYNAMIC ANALYSIS

LECTURE 10

56 MINUTES
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Solution of finite element equilibrium equations in dynamic analysis

LECTURE 10 Solution of dynamic response by direct
integration

Basic concepts used
Explicit and implicit techniques
Implementation of methods

Detailed discussion of central difference and
Newmark methods

Stability and accuracy considerations
Integration errors

Modeling of structural vibration and wave propa-
gation problems

Selection of element and time step sizes

Recommendations on the use of the methods in
practice

TEXTBOOK: Sections: 9.1, 9.2.1, 9.2.2, 9.2.3, 9.2.4, 9.2.5, 9.4.1,
9.4.2, 9.4.3, 9.4.4

Examples: 9.1, 9.2, 9.3, 9.4, 9.5, 9.12

10-2



Solution of finite element equilibrium equations in dynamic analysis

(il e e S

DIRECT INTEGRATION
SOLUTION OF EQUILIBRIUM
EQUATIONS IN DYNAMIC
ANALYSIS

MU+cU+KU=R

e explicit, implicit @ selection of solution
integration time step (At)

® computational ® some modeling
considerations considerations

i rrrrrrriyrzrrrrez

Equilibrium equations in dynamic
analysis

MU+CU+KU=R (9.1)

or




Solution of finite element equilibrium equations in dynamic analysis

Load description

Ri(t)

At Aty Aty time

He

|
t+ A1) hme

Fig. 1. Evaluation of externally
applied nodal point load vector
IR attime t.

THE CENTRAL DIFFERENCE METHOD (CDM)

At
ty _ 1, t-At, , t+At
_U_ - 2At(- l_J_+ H) (94)
Mmee toek tu = 'R (9.5)

an explicit integration scheme
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Solution of finite element equilibrium equations in dynamic analysis

Combining (9.3) to (9.5) we obtain

1 1\ttt 2 A\t
M+ 1 C R- (K-—5M\U
<At2 2t—> il <— Az—)

Computational considerations

o to start the solution, use
. 2

(9.7)

e in practice, mostly used with
lumped mass matrix and low-order
elements.




Solution of finite element equilibrium equations in dynamic analysis

Stability and Accuracy of CDM

e At must be smaller than Atcr

T
at. =N . T = smallest natural
cr il n . .
period in the system

hence method is conditionally stable

e in practice, use for continuum elements,

AL _.JE
Atic—, C—‘/;

for lower-order elements

AL = smallest distance between
nodes

for high-order elements

AL = (smallest distance between
nodes)/ (rel. stiffness factor)

e method used mainly for wave
propagation analysis

o number of operations
o no. of elements and no. of
time steps

10-6



Solution of finite element equilibrium equations in dynamic analysis

THE NEWMARK METHOD

ERty  ty by
(9.28)

(- a)t0 + oY at2

w TR o ¢ DALY Ly THAY teAty
(9.29,

an implicit integration scheme solution
is obtained using

R

g tHAty _ teAt

e In practice, we use mostly

which is the

constant-average-acceleration
method
(Newmark’s method)

e method is unconditionally stable

e method is used primarily for analysis
of structural dynamics problems

e number of operations

tunmé + 2nmt
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Solution of finite element equilibrium equations in dynamic analysis

Accuracy considerations

e time step At is chosen based
on accuracy considerations only

o Consider the equations

MO+ku=R
and
n
!. = g-i X'|(‘t)
i=1
where
_ 2
1<_$'| - w-i MSE]

Using
o ko=9"; oTMa=1
where
2
W

we obtain n equations from which
to solve for x;(t) (see Lecture 11)

. 2
X. + w: X. = 0.
1 1 ¢

i ¢ R i=T,...,n




Solution of finite element equilibrium equations in dynamic analysis

Hence, the direct step-by-step
solution of

MU+KU=R

corresponds to the direct step-by-
step solution of

3

Therefore, to study the accuracy of
the Newmark method, we can study
the solution of the single degree of
freedom equation

» )
X+wx=r

Consider the case

'>£+w2x=0




Solution of finite element equilibrium eqnations in dynamic analysis

19.0}F

15.0
é 11.0r
x
~
o
a
c
2
% 1.0F
g
o
[}
3 sof
o
a2
% Newmark
€ 3.0t method
and
&

AD
¥
1.0 A -
\N_J/
T 1 T
i 1
0.02 0.10 0.14 0.18

Fig. 9.8 (a) Percentage period elonga-
tions and amplitude decays.

19.0}

15.0}

7.0

5.0

T

3.0t

Percentage amplitude decay (AD x 100%)}

1.0!-

Houbolt
method

Wilson
0 method
0= 1.40 _J

TR

/11

N_2

TV

0.02

0.06 .10 0.14

0.18

Fig. 9.8 (b) Percentage period elonga-
tions and amplitude decays.

4
equation
X+ 2£w)'<+w2x= sinpt
3
§= o-
/N — §= [0-2
a 2
- //
° static
ha d response
g 5\
g \
a §=10

Fig. 9.4. The dynamic load factor
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Solution of finite element equilibrium equations in dynamic analysis

§. (e

——p—

2.00

DLF = 1.05
—— DYNAMIC RESPONSE
~~— STATIC RESPONSE

P _
= =0.05

POSITION
L —— g

)
:

g!
~d
'l
!
T
2
sll- i i e |
C.i0 a.n0 0. .00
TIME
Response of a single degree

of freedom system.

8__‘_ DLF = 0.50
#7 —— DYNAMIC RESPONSE
i --- STATIC RESPONSE
. = =30
3= w
- ~ T~ LN
8! S AN .7 ~
z o e - N
ST
==, ~ e N —— -
—_ ~ - ~ > -~ -
— -~ — ~— - -
n T - - -
[ =
a8’
N4
Y+
H
2
>4 . + N i
e.5¢ .25 5.5 oo 100 1.2 YMELSG 1.75 2.00 2.25 2.50 2.15 3,00

Response of a single degree
of freedom system.




Solution of finite element equilibrium equations in dynamic analysis

Modeling of a structural vibration
problem

1) Identify the frequencies con-
tained in the loading, using a
Fourier analysis if necessary.

2) Choose a finite element mesh
that accurately represents all
frequencies up to about four
times the highest frequency

Wy, contained in the loading.

3) Perform the direct integration
analysis. The time step At for
this solution should equal about

1 _
ﬁTu' where Tu = ZW/mu .
or be smaller for stability reasons.

Modeling of a wave propagation
problem

If we assume that the wave length
is L, . the total time for the
wave to travel past a point is

(9.100)

where c¢ is the wave speed. Assuming
that n time steps are necessary to
represent the wave, we use

t
At = TW (9.101)

and the “‘effective length” of a
finite element should be

Le = ¢ At (9.102)

10-12



Solution of finite element equilibrium equations in dynamic analysis

SUMMARY OF STEP-BY-STEP INTEGRATIONS

— INITIAL CALCULATIONS ---

1. Form linear stiffness matrix K ,
mass matrix M and damping
matrix C, whichever applicable;

Calculate the following constants:

Newmark method: § > 0.50, a > 0.25(0.5+6)2
ag=1/(est?)  a, = 6/(oAt) a,=1/(ont)
a,=68/a-1 a5=At(6/cx-2)/2 ag=ay
ag=-a, a9=At(1-6) ayq = St
Central difference method:

- 2 _ -

aq= 1/(20)-1

37= -3,

a3= 1/a2

2. Initialize Ou, 90,

For central difference method
only, calculate At from
initial conditions: —

3. Form effective linear coefficient
matrix;

in implicit time integration:

K=K+ agM+a,l

in explicit time integration:

M=aM+aC

b




‘Solution of finite element equilibrium equations in dynamic analysis

4. In dynamic analysis using
implicit time integration
triangularize K .

--- FOR EACH STEP ---

(i) Form effective load vector;

in implicit time integration:

tHatp = UAtp 4 mia, tu + 2, Y0+ a, )
- - =0 = 2 = 3 =
t te t;
+Cla; ‘U +a, 0+ ag )
in explicit time integration:
tE - tB + azﬂ(tg- t-AtH) +IC_1 t—AtH _ 1:E
(ii) Solve for displacement
increments;
in implicit time integration:
K t+at, o tHitp U = tHit, ’cg

in explicit time integration:

ﬁ t+At

U= "R
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Solution of finite element equilibrium equations in dynamic analysis

Newmark Method:

t+At: t t:
U=aglU+a; U+tag U

t+At, _ tr t t+At:
U="U+aq U+ay Y

t+AtU - tg s U

Central Difference Method:

£ - a](tmtg | t-bty)

(PRt oty 4 teat

ti _
U = ay ("™ - 2% u)




MODE SUPERPOSITION
ANALYSIS; TIME
HISTORY

LECTURE 11

48 MINUTES
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Mode superposition analysis; time history

LECTURE 11 Solution of dynamic response by mode
superposition

The basic idea of mode superposition
Derivation of decoupled equations
Solution with and without damping
Caughey and Rayleigh damping

Calculation of damping matrix for given
damping ratios

Selection of number of modal coordinates
Errors and use of static correction

Practical considerations

TEXTBOOK: Sections: 9.3.1, 9.3.2, 9.3.3
Examples: 9.6, 9.7, 9.8. 9.9, 9.10, 9.11
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Mode superposition analysis; time history

Mode Superposition Analysis

Basic idea is:

transform dynamic equilibrium
equations into a more effective
form for solution,

using

Uu="r Xx(t)
nx1 nxn nx]

P = transformation matrix

X(t)=generalized displacements

Using

u(t) = P Xx(t) (9.30)

on

MU+CcU+KU=R (9.1)

we obtain

M K(t) + C K(t) + K X(t) = R(t)
(9.31)

where

M=pP MP ; C=P CP;

k=P kP ; R=PTR  (9.32)
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Mode saperposition analysis; time history

An effective transformation matrix P
is established using the displacement
solutions of the free vibration equili-
brium equations with damping

neglected,

Mi+kUu=0 (9.34)
Using

U=2¢ sinw(t-tg) (9.35)

we obtain the generalized eigenproblem,

Ko =wMé (9.36)

with the n eigensolutions (w? . 9_])

Qﬂ) , and

(U)g ’%)""’(wﬁ L]

(9.37)
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Mode superposition analysis; time history

Defining
_w] T
w2
_ . 2 _ 2
9_[9]a$23---9 gln]a Q“
.2
| W
(9.39)
we can write
_ 2
Ke=MegQ (9.40)
and have
T 2 T

ol Ko=0" 5 e Mo=1 (9.41)

Now using

u(t) = @ x(t) (9.42)

we obtain equilibrium equations
that correspond to the modal
generalized displacements

R(t) + ol € o k() + a°X(t) = o R(t)

(9.43)
The initial conditions on X(t) are
obtained using (9.42) and the
M - orthonormality of ¢ ;i.e.,
at time 0 we have
% =o"n%; %-90"n%
(9.44)




Mode superposition amalysis; time history

Analysis with Damping Neglected

X(t) + 22 X(t) = o' R(t)

(9.45)
i.e., n individual equations of
the form
X.(t) + wz.x.(t) = r.(t)
i i™i i
i=1,2,...,n
where
_ T
r'l(t) - 91 B(t)
(9.46)
with
x| = om%
Tli=0 i
(9.47)
% ‘ = om0
We=0 77 7

Using the Duhamel integral we have

t
x;(t) aLf ri(1) sinw,(t-)dt
1o (9.48)

+ 0. Si .t + R. .
ou1s1nw1t B1c05w1t

where o; and g, are determined

from the initial conditions in (9.47).
And then

1.x1-(t) (9.49)




Mode superposition analysis; time history

Dynamic load factor D

equation
%+ 28wk + wix = sinpt
static
/ response
P ————

Fig. 9.4. The dynamic load factor

Hence we use

- S

i=1

where
Py

The error can be measured using

CHIR(E) - (MUP(E) +k UP(D)) I,

eP(t
2 TRCOT,

(9.50)
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Mode superposition analysis; time history

Static correction

Assume that we used p
modes to obtain UP , then let

Analysis with Damping Included

Recall, we have

f(t) + o Cok(t) + 2®x(t) = o R(t)
(9.43)

If the damping is proportional

O Ch. = 2w, Es S (9.51)
) iz 7] :

and we have

Ko () + 2w, £, ko (£) + wlxs () = v (t)
i i=i 7 i i




Mode superposition analysis; time history

A damping matrix that satisfies the
relation in (9.51) is obtained using
the Caughey series,

p-1
c=M) am' k¥ (9.56)

k=0

where the coefficients a, , k=1,...,p,
are calculated from the p simultane-
ous equations

a
g. = l<—0+ aqws * azw? + .

i 2\w, i
2 p-3
T Apa1Y )

3
(9.57)

A special case is Rayleigh damping,

C=aM+ BK (9.55)

example:

Assume E;]=0.02 ; £2=0.10

w1=2 w2=3

calculate o and g

We use

of(aM+ 8K) g = 20, ¢
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Mode superposition analysis; time history

Using this relation for wy > €1 and
Wy gz , we obtain two equations

for oo and B :
a + 48 = 0.08

a + 98 = 0.60

The solutionis o = -0.336
and 8 = 0.104 . Thus the
damping matrix to be used is

C=-0.336M + 0.104 K

Note that since

2 _
o + Bwi "2‘”151

for any i, we have, once o and
R have been established,

2
oc+8w,i

g. = —_—
1 2w1.




Mode superposition amalysis; time history

Response solution

As in the case of no damping.
we solve P equations

.+ LEL X WL Xe =T
X] 2w1 €1 X'l 'lx1 1

with
_ T
r] _g-lﬂ
T, 0
. T 0.
X1~t=0:91M u
and then
b p
y —EQ1X1(t)
i=1

Practical considerations

mode superposition analysis
is effective

- when the response lies in a
few modes only, p << N

- when the response is to be
obtained over many time in-
tervals {or the modal response
can be obtained in closed form).

e.g. earthquake engineering
vibration excitation

- it may be important to
calculate Ep( t) orthe
static correction.




SOLUTION METHODS
FOR CALCULATIONS
OF FREQUENCIES
AND MODE SHAPES

LECTURE 12

58 MINUTES
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Solution methods for calculations of frequencies and mode shapes

LECTURE 12 Solution methods for finite element
eigenproblems

Standard and generalized eigenproblems
Basic concepts of vector iteration methods,
polynomial iteration techniques, Sturm
sequence methods, transformation methods

Large eigenproblems

Details of the determinant search and subspace
iteration methods

Selection of appropriate technique., practical
considerations

TEXTBOOK: Sections: 12.1, 12.2.1, 12.2.2, 12.2.3, 12.3.1, 12.3.2,
12.3.3, 12.3.4, 12.3.6 (the material in Chapter 11
is also referred to)

Examples: 12.1, 12.2, 12.3, 12.4




Solution methods for calculations of frequencies and mode shapes

SOLUTION METHODS FOR
EIGENPROBLEMS

Standard EVP:
Ko=Xr¢

nxn
Generalized EVP:

Ké=rMg =— ()=u
Quadratic EVP:

(K+AC+A2M)9:9

2

Most emphasis on the generalized
EVP e.g. earthquake engineering

11

Large EVP” n> 500 p=1,...,%n
m> 60

In dynamic analysis, proportional
damping

K¢ = uf

¢

If zero freq. are present we can
use the following procedure

Ko+uMo= (wf+u)Mo

or
(K+u Mo =x Mo
A =w2+ u
or )
w = A-U
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Solution methods for calculations of frequencies and mode shapes

p(A) |
|
|
|

In buckling analysis
Ko=2Kso

where

p(x) = det (K-2 Kg)

b p(0)

NN Ve
~ NV O N O\
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Solution methods for calculations of frequencies and mode shapes

Rewrite problem as:

> |

-K_GE)-:KK—Q K =

and solve for largest «:

Traditional Approach: Trans-
form the generalized EVP or
quadratic EVP into a stand-
ard form, then solve using
one of the many techniques

available
e.g.
Kg=xrMg
M=LLT 5 o=10"0
hence
Re=nrd; k=L"klT
or
2 .1

M=WD W  etc...
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Solution methods for calculations of frequencies and mode shapes

Direct solution is more effective.
Consider the Gen. EVP K ¢ = A M ¢
with

eigenpairs (A; , ;) i=1,...,p
are required or i=r,...,S

The solution procedures in use
operate on the basic equations
that have to be satisfied.

1) VECTOR ITERATION TECHNIQUES

Equation: 5 $=AM¢
e.g. Inverse It. K X.k+] - M %,
21 T = z'TM N
(X W Xypq)

® Forward Iteration
® Rayleigh Quotient lteration

can be employed to cal-
culate one eigenvalue
and vector, deflate then
to calculate additional
eigenpair

Convergence to ‘‘an eigenpair’’,
which one is not guaranteed
(convergence may also be slow)
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Solution methods for calculations of frequencies and mode shapes

2) POLYNOMIAL ITERATION METHODS

Ko=xrMp —(K-2Mg¢=0

Hence

p(A) = det (K - AM) = 0

p(Ui)
u =y, -
i+1 i .
p (U-i )
p(A) = ag + ajh + a,n® + +a A"
Implicit polynomial iteration:
p (uj) = det (K — u; M)
_ T_
Explicit polynomial iteration: =detLDL" = rll djj
® Expand the polynomial and ® accurate, provided we do not
iterate for zeros. encounter large multipliers
e Technique not suitable for ¢ we directly solve for A4, ...
larger problems ® use SECANT ITERATION:
- much work to obtain a;’s
' plu;)
- unstable process Mitq =8 — !
<P(Mi) - p(#i-1)>
Hi = K-
® deflate polynomial after
convergence to A\q
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Solution methods for calculations of frequencies and mode shapes

Picr M

1
1
(]
I

]
Convergence guaranteed to A; , then

Ao, etc. but can be slow when we
calculate multiple roots.

Care need be takenin L D LT factor-
ization.




Solution methods for calculations of frequencies and mode shapes

3) STURM SEQUENCE METHODS

)
) 3rd associated
&i/ constraint problem
\‘ 2nd associated
\x_\ constraint problem

1st associated
p(x) g constraint problem
|

I=
e
I
>
=
e
17
R=3
[}
>
=<
e

_ T
K-ugM=1DL

Number of negative elements in
D is equal to the number of
eigenvalues smaller than | S -




Solution methods for calculations of frequencies and mode shapes

3) STURM SEQUENCE METHODS

Calculate K-ug M=L D LT
j

Count number of negative elements
in D and use a strategy to isolate
eigenvatue(s).

interval

® Need to takecarein LD L

® Convergence can be very slow

factorization

4) TRANSFORMATION METHODS

o 'Ko =1

o
=
L]
I

| =
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T T,T
Py --B Py KPPy B—mh
T T,T

e.g. generalized Jacobi
method

® Here we calculate all eigenpairs
simultaneously

® Expensive and ineffective
(impossible) or large problems.

For large eigenproblems it is best
to use combinations of the above
basic techniques:

® Determinant search
to get near a root

e Vector iteration to obtain
eigenvector and eigenvalue

® Transformation method for
orthogonalization of itera-
tion vectors.

® Sturm sequence method to ensure
that required eigenvalue(s) has
(or have) been calculated

12-11
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THE DETERMINANT SEARCH METHOD

j p()
\

N | }/\\//\\/’/—

1) Iterate on polynomial to obtain
shifts close to >\]

p(u;) =det (K-u; M)

=det LD L' =qd..
=== i

P(U1) = P(U1_])
My M0

-n

n isnormally =1.0

n=2.,4.,8.,.. when convergence
is slow

Same procedure can be employed to
obtain shift near Aj , provided
p(r) is deflated of Aseeeshyg
2) Use Sturm sequence property to

check whether 15,1 is larger
than an unknown eigenvalue.
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3) Once Mj4q s larger than an
unknown eigenvalue, use inverse
iteration to calculate the eigenvector
and eigenvalue

xj Aj+1
Hia
(K-t W Xy =M% k=1.2,
o’ _ X+
%+l = Ty
(Riey M Xy4q)
= T
('— ) — 2(-k+.| M-)-(-k
P! = T =
Xer1 M Xy

4) Iteration vector must be deflated
of the previously calculated
eigenvectors using, e.g. Gram-
Schmidt orthogonalization.

If convergence is slow use Rayleigh
quotient iteration
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Advantage:
Calculates only eigenpairs actually

required; no prior transformation
of eigenproblem

Disadvantage:
Many triangular factorizations

o Effective only for small banded systems

We need an algorithm with less
factorizations and more vector iterations
when the bandwidth of the system is large.

SUBSPACE ITERATION METHOD

Iterate with q vectors when the

lowest p eigenvalues and eigen-
vectors are required.

inverse (¢ Y =M X k=1,2,...
iteration { = Tk =

Keyi = %o KX

—k+1 Skl = 2k
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““Under conditions’’ we have

CONDITION:

starting subspace spanned
by X4 must not be orth-
ogonal to least dominant
subspace required.

Use Sturm sequence check

eigenvalue bounds /~~

D\ /\ [\ N A~ N\

N

\f\/\/\_]\/\f\/\/\/u\/

E-Ugﬂ:

p eigenvalues Ug

T

LDL

no. of -ve elementsin D must

be equal to p.

Convergence rate:

convergence reached

2
As 2y i
%> *i$’< quﬂ> when [2{K) -5tk ]f) .
- S ROE

1

12-15



Solution methods for calculations of frequencies and mode shapes

Starting Vectors

Two choices

LR T I L T
i j=2,...,9-1
X _ = random vector
-q

2) Lanczos method
Here we need to use q much
larger than p.

Checks on eigenpairs

1. Sturm sequence checks

important in all solutions.

Reference: An Accelerated Subspace
Iteration Method, J. Computer
Methods in Applied Mechanics
and Engineering, Vol. 23,
pp. 313 - 331, 1980.
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