
SOME NOTES ON DIFFERENTIAL OPERATORS 


A 


Introduction 


In Part 1 of our course, we introduced the symbol D to denote a func- 


tion which mapped functions into their derivatives. In other words, 


the domain of D was the set of all differentiable functions and the 


image of D was the set of derivatives of these differentiable func- 


tions. We then, as usual, introduced the notation D(f) = f'.* 

Recalling that if f is any function and c is any number, we define the 

function cf by [cf I (x) means cf (x) ; and that if f and g are any two 

functions which have the same domain, we define the new function 

[f + gl by [f + gl (XI = f (x) + g (x) ; we notice that D is a linear 
mapping. That is, if f and g are both differentiable functions de- 

fined on the same domain and if a and b are any (real) numbers then 

Notice that (1) is the special case of our notation L(f) or more 

familiarly;L(y) where L(y) = y'. 

The key point is that if we restrict the domain of D to the set of all 


analytic functions**(where by analytic we mean that the function is 


infinitely differentiable which in turn means that the function pos- 


sesses derivatives of every order) we can, in a natural way, invent a 


structure on D that is very analogous to the arithmetic structure of 


polynomials. 


Aside from this structure giving us some very convenient notation 

and aside from its being interesting in its own right (in fact, the 

set of analytic functions is a very nice example of a more general 

vector space which we shall talk about more in Block 3 ) ,  it is very 

helpful to us in handling linear differential equations and systems of 

linear differential equations. These ideas will be discussed in the 

following sections. 

*It i s  c o n v e n t i o n a l  t o  w r i t e  f  r a t h e r  t h a n ,  s a y ,  f ( x )  b e c a u s e  t h e  
v a r i a b l e  u s e d  t o  d e n o t e  t h e  " i n p u t "  i s  i r r e l e v a n t .  F o r  e x a m p l e ,  i f  f 
i s  t h e  r u l e  w h i c h  d o u b l e s  a number i t  makes no  d i f f e r e n c e  w h e t h e r  we 
w r i t e  f ( x )  = 2 x  o r  f ( t ) =  2 t  o r  f ( $ )  = 2 $  e t c .  T h i s  i s  why we o f t e n  make 
r e m a r k s  l i k e  " D e f i n e  f by  f ( t )  = 2 t  f o r  a l l  r e a l  number s ,  t . "  The 
p o i n t  i s  t h a t  i t  i s  f w h i c h  we a r e  s t u d y i n g .  

**In many p r a c t i c a l  c a s e s ,  o n e  i s  i n t e r e s t e d  i n  a s p e c i f i c  doma in ,  s a y  
t h e  i n t e r v a l  [ a , b ] . In t h e s e  c a s e s ,  we o n l y  r e q u i r e  t h a t  t h e  domain  
of  D i n c l u d e  f u n c t i o n s  w h i c h  a r e  a n a l y t i c  on [ a , b ] .  



Some Notes on S t r u c t u r e  

In  o rd ina ry  m u l t i p l i c a t i o n ,  w e  accept  wi th  l i t t l e  i f  any d i f f i c u l t y  

t h e  n o t a t i o n  t h a t  an denotes  t h e  product  of n f a c t o r s  of  a. This 
no t ion  i s  extended t o  any mathematical s t r u c t u r e  i n  t h a t  w e  o f t e n  use  

t h e  exponent n o t a t i o n  t o  i n d i c a t e  t h a t  a c e r t a i n  opera t ion  i s  being 

c a r r i e d  o u t  success ive ly  a c e r t a i n  number of times.* 

One p lace  t h a t  t h i s  n o t a t i o n  i s  used e x t e n s i v e l y  i n  mathematical 

a n a l y s i s  i s  when w e  r e f e r  t o  composition of func t ions .  For example, 

suppose t h a t  f  i s  a f u n c t i o n  t h a t  maps a set  S i n t o  i t s e l f .  Then, f o r  

a  given SES, it makes sense  t o  t a l k  about ,  say ,  f ( f  ( f ( s ) ) )  . That i s ,  

s t a r t i n g  wi th  s ,  w e  compute f ( s ) .  Then, s i n c e  f ( s )  i s  again  i n  S,  w e  

may compute t h e  e f f e c t  of f on f ( s ) ;  i .e. f ( f ( s ) ), etc. 

P i c t o r i a l l y ,  

[Notice t h a t  i t  i s  c r u c i a l  t h a t  t h e  image of  f  be  conta ined i n  S s i n c e  

i f  f (sl) = tts, then  f (f (sl)) is  n o t  de f ined  because f  (f (sl)) = f (t) 

and t 4 domain of f .  Again, p i c t o r i a l l y ,  

t t s ,  	dom f  = S + f (t) 

i s  n o t  def ined 

*An i n t e r e s t i n g  n o t e  on  n o t a t i o n  i s  t h a t  when we u s e  + r a t h e r  t h a n  
x t o  d e n o t e  t h e  o p e r a t i o n ,  i t  i s  c o n v e n t i o n a l  t o  w r i t e  n a  r a t h e r  t h a n  

n -a . F o r  e x a m p l e ,  w i t h  r e s p e c t  t o  o r d i n a r y  a d d i t i o n ,  t o  i n d i c a t e  t h a t  

we w a n t  a + a + ... + a ,  we w r i t e  n a y  n o t  a 
n . 

n t e r m s  

I n  o t h e r  w o r d s ,  f o r  any  r e a l  number a and  a n y  p o s i t i v e  i n t e g e r  n - na  
. d e n o t e s  t h e  sum a + . . . + a .  -

n t i m e s  



- - - - 
In terms of specific illustration, let S be the set of integers and 

define f by f(s) = for each s&S. and f(6) = 6 3 .Then, ~ E S  T = Now, 

f (f (6)) means f (3) and this is undefined if we insist that f :S+S since 
f(3) = 33 & S.1 

In any event, as long as f:S+S, we may talk meaningfully about 

fo ... of where fo ... of means [fo ... of1 (s) = f(f (... f(s) ...)). 
n times n times n times n times 


As an illustration, let S denote the set of all integers and define f 

on S by f(s) = 2s + 3 for each SES. Since 2s + 3 is an integer if s 
is an integer, we have that f:S+S. Now, for each SES, we have 

hence, 


hence, 


= 8s + 21, etc. 

For example, 


*Again, keep in mind the irrelevancy of the symbol used to denote the 
"input." f(s) = 2s + 3 means f([ I) = 2 [  ] + 3 so that when 
[ I = 2s + 3, f([ I) = 2[2s + 31 + 3. 



Rather than write, say, (f f (f (f (s)))), it is conventional to abbreviate 

this by fn(s), where fn means fo ... of-
n times 


Important Note 


This new notation is somewhat unfortunate since it now gives us two 


entirely different meanings for the same symbol. Namely, we have 

2
previously used, say, f (x) to denote [f(x)l 2  and now we are saying 

that f 2(x) could also mean f (f (XI) . Clearly, If (x) I and f (f (x)) are 

entirely different concepts. For example, if f(x) = 2x + 3, then 
[f(x)12 = (2x + 312 = 4x2 + 12x + 9 while f(f(x)) = f(2x + 3) = 

2(2x + 3) = 4x + 6. This same problem occurred as a special case when 

we first introduced f-l to denote the inverse of f in the sense that 

fof-I = f-1of = identity function, i .e. [f of -11 (x) = x for all x. In 

this context, we saw that if f (x) = 2x + 3, then [f (x) ] -1 = 1 
2x + 3x - 3 
while f-I (x) = -2 -

Hopefully, whether fn(x) means [f (x)ln or whether it means 

f (f ... f 1 ) . . . will be clear from context, but for the remainder of 
C 4 

n times 

this chapter. fn (x) shall mean f (f . . . f(XI ) . . .) . -

n times 


With this discussion as background, we are now in a position to 

define D2, D3. D4, etc. Namely, suppose f is in the domain of D. 

Then by definition of the domain of D, f possesses derivatives of 

every order. Since D(f) = f', we see that f' also belongs to the do- 

main of D (i.e. if f has derivatives of all orders, f' must also pos- 

sess derivatives of all orders since the nth derivative of f' is the 


(n+l) th derivative of f etc. . 
Hence, 


Proceeding inductively, D" is defined by 


~"(£1= f(n' , 



for each f E dom D. We may also define cD for any constant c. 

Namely, cD is defined by 

[cDl (f = cD (f) 

We may now invoke the linear properties of D to define what we mean by 

a polynomial in D. In particular, if a o1 al' ..., and an are constants 
we define anO" + an-lD n-1 + ... + a D + a. to mean 1 


n n-1
= anD (f) + an-lD (f) + ... + a D(f) + aof =1 

The connection between this definition and our previous study of lin- 

ear differential equations with constant coefficients should seem 

rather obvious. Specifically, if we replace f by y in ( 2 ) ,  we obtain 

Now certainly we would not have gone through all this discussion just 


to show that we can express linear differential equations in a new 


notation which involves polynomials in D! What is really important 


is that in terms of the new polynomial notation, there is a fantastic 


resemblance between polynomial properties and derivative properties. 


Rather than launch into an avalanche of formal proofs, let us begin 


with a few concrete examples. 


Example #1 


Consider the expression 


* T h i s  i s  why we r e q u i r e  t h a t  f b e  a n a l y t i c .  O t h e r w i s e  f  ( n )  need n o t  
e x i s t  f o r  e a c h  n .  



Using our new notation, (4) would be expressed as 


( D ~+ 4D - 3)y.* 

If we were to look at D~ + 40 - 3 as a "normal" polynomial in D, we 

would be tempted to "factor" it by writing 

The only problem is what do we mean by 


which we get by using (6) in (5) . 

In terms of multiplication meaning composition of functions, a natural 

interpretation of (71 would be 

= ~ ( 2 - * * 
y) - 3($ - y) 

=d(*-y) - 3 ( 2 - y).dx dx 

As a check that (4) and (8) are equivalent, notice that (8) may be 


written as 


*For  b r e v i t y ,  i t  i s  c o n v e n t i o n a l  t o  w r i t e  + 4D - 3 ) y  r a t h e r  t h a n( D ~  

[D
2 + 4D - 31 ( y ) .  

* * N o t i c e  t h a t  i f  y i s  a n a l y t i c ,  s o  a l s o  i s  2 - y .  T h u s ,  w e  may v i ew  

2 - y a s  a s i m p l e  f u n c t i o n  ( s a y ,  u) and a p p l y  D - 3 t o  u .  T h a t  i s ,  

(D - 3 ) ( 2  - y )  = (D - 3 ) u  = Du - 3u = ( - y )  - 3 - y ) .  



which is ( 4 )  . 
In other words, "factoring" ( D ~- 4D + 3)y into (D - 3)(D - 1) shows 

us specifically how the 2nd-order equation 

may be viewed as the first order linear equation in ($ - y); namely, 

Example # 2  

Consider (D - 1) (D - 3)y which we obtain by permuting the "factors" of 

(D - 3)(D - 1)y. We obtain 

so that 


and our multiplication is commutative. 


Example #3 


The property of commutativity requires that the coefficients of the 


"powers" of D be constants. For example, 




(xD + 1) (D - x)y = (xD + 1) (Dx - xy) 

= xD(2 - xy) + (2- xy) 

On the other hand, 


Comparing (9) and (lo), we see that (xD + 1)(D - X) # (D - x) (xD + 

and, moreover, neither (xD + 1) (D - x) nor (D - x) (xD + 1) is equal
2
to the "usual" product X D ~+ (1 - x )D - x. 

In summary, this new arithmetic loses its nice structural appeal if 

11, 

 

we 


do not restrict its usage to constant coefficients, and this strongly 


affects our ability to handle nicely linear equations with non- 


constant coefficients. 




In summary, then, if we introduce the notation of differential opera- 


tors whereby we rewrite 


where a. , . . . , a are constants as n-1 


then 


possesses the same structure as does the "usual" polynomial arithmetic. 


In particular, if P1 (Dl , P2 (D) , and P3 (Dl denote three polynomials in 
D with constant coefficients, it is true (but we omit any formal 

proofs) that 

(i) P1 (Dl P2 (Dl = P2 (Dl P1 (Dl 

and 


Thus, we may manipulate polynomials in D in the "usual" way, as illu- 


strated in the following examples. 


Example # 4  

3 2 (Il2 + 2D + 2) (D - 1) = D + 2D + 2D - D~ - 2D - 2 

I 

= D~ + D~ - 2. 

Hence, we may view 




and this in turn is 

(D2 + 2D + 2)(D - 1)y = (D2 + 2D + 2)(Dy - y) 

= (D2 + 2D + 2)(2 - y) 

- y + 20($- y) + 2 ( % - y)= D (dx 

-- (dx2- y)" + 2($ - y). + 2 ( 2  - y) 

dwhich is second-order and linear in y). 

By commutativity, we may also rewrite (11) as 

which is first order and linear in (y" + 2y' + 2y). 

The main point is that by (12) and (13) . we have that 

is equivalent to either of the lower order equations 


where u = yt - y, or 

(2-



where v = y" + 2y' + 2y. 


Hopefully, this analysis supplies some insight as to how we solve lin- 


ear differential equations, structurally, by reducing them to equiva- 


lent lower order equations. 


Example #5 


Suppose we want to solve the equation 


By our "new" algebra 


Hence, equation (14) is equivalent to 


y"' - 2y" - y' + 2y = 0. 

rx Letting y = e in (IS), we obtain 

3 rx - 2r2erx - rx r e re + 2erx = o 

rx and since e # 0, (16) implies that 

Since r3 - 2r2 - r + 2 = (r - 1) (r + 1) (r - 2 ) ,  we see that the gen- 

eral solution of (15) is 

The main observation here is that the "roots" of (14) are also 1, -1

and 2. More generally, using the D-notation, if the nth order homo- 

geneous linear equation with constant coefficients can be represente

in the "factored" form 


, 





d 




(D - al)(D - a2) ... (D - an)y, where a i # aj if i # j 

then the general solution of the equation is simply 


Example #6 

Sometimes the a's in (18) are not all distinct. An interesting que

tion concerns solving, say 


Of course, we have learned to solve (19) by other methods. For 


example, (19) is equivalent to 


for which the substitution y = erx yields 

r3 - 3r2 + 3r - 1 = 0, or (r - 113 = 0 

whereupon 


is the general solution of (19) . 
To handle (19) by the method of differential operators, we have the

structural property that 


We may prove (20) by induction, observing that for n = 1, 2, etc., 

obtain 

mx
*Mechanica l ly ,  ( 2 0 )  t e l l s  us  t h a t  we may " f a c t o r  out" e and r e p l
D by D + m .  

s- 


 


we 

a c e  



-- ern(% + my)

mx = e  ( D + m ) y  

= em d (9+ m y  + mem (dx9 + my)
dx dx 

mx 
= e [ ( D ~+ 2mD + m2)yl 

mx 
= e ( D  + 2 m) y ,  etc. 

and t h e  i n d u c t i v e  d e t a i l s  a r e  l e f t  t o  t h e  i n t e r e s t e d  reader .  

3 Returning t o  Example #6, s i n c e  D (e-Xy) = e-X(D - 3 1) y [ i . e .  t h i s  i s  
3

(20) wi th  n  = 3 and m = -11 ,  w e  have t h a t  (D - 1) y = 0 impl ies  t h a t  

t h a t  is ,  

3Since  D3 (e-Xy) = e-X(D - 1) y ,  it fol lows t h a t  



whereupon we may integrate (21) successively to obtain 


It is not our purpose here to teach the differential operator method 


in detail. Our main aim for now is to help you get acclimated to this 


new language so that later, in Section D, we can show a very nice non- 


trivial application of this discussion to the fairly sophisticated 


concept of systems of linear differential equations. For this purpose, 


Section C may be omitted without any loss of continuity, but the more 


involved reader may prefer to study Section C if only to gain a little 


further insight to how the arithmetic of differential operators is 


further developed. 


Inverse Differential Operators 


Given 


we already know that 


Namely, (1) nay be written as 


whereupon an integrating factor of ( 3 )  is e-ax. Multiplying both 

sides of ( 3 )  by e'ax, we obtain 



Hence, 

from which ( 2 )  fo l lows.  

On t h e  o t h e r  hand, suppose w e  wanted t o  s o l v e  (1) " a l g e b r a i c a l l y "  

t r e a t i n g  (D a )  a s  a " f a c t o r , "  r a t h e r  than a s  an opera to r ,  i n  t h e  

express ion (D - a ) y .  We would "d iv ide"  both  s i d e s  of (1) by D - a t o  

o b t a i n  

What w e  have r e a l l y  done i n  ob ta in ing  ( 4 )  from (1) i s  t o  have "com- 

posed" both  s i d e s  of (1) wi th  t h e  i n v e r s e  of t h e  opera to r  (D - a ) .  I n  
-1 1e f f e c t ,  we a r e  w r i t i n g  (D - a )  a s  where (D - a )  - i s  de f ined  

by t h e  r e l a t i o n  

The p o i n t  i s  t h a t  w e  may now compare (4) [which w e  would l i k e  t o  mean 

t h e  va lue  of yl wi th  equat ion  ( 2 )  [which w e  know i s  t h e  va lue  of y (up 

t o  an a r b i t r a r y  constant11 and conclude t h a t  i f  ( 4 )  is going t o  y i e l d  

t h e  s o l u t i o n  of (1), then  we have no cho ice  b u t  t o  d e f i n e  I 
f (XI  , 

o r ,  (D  - a)-'£ ( X I  by 

D-a f (x)  = eaxJe-axf (x)  dx. 

Example #1 

4To e v a l u a t e  x 4 ,  w e  u s e  (5)  wi th  a = 3 and f ( x )  = x . This  

-

y i e l d s  



c an a r b i t r a r y ,  bu t  f i xed ,  constant.  

"Inverting" ( 6 ) ,  we a r e  saying t h a t  

To show t h a t  (7 )  i s  co r r ec t ,  we could evaluate  iXe-3tt4dt e x p l i c i t l y ,  

bu t  t h i s  i s  no t  necessary f o r  our purposes. Namely, by t he  product 

r u l e  and the  f a c t  t h a t  dx g ( t ) d t  = g (x), we conclude t h a t  

X 


= x4 + 3e3.l -3t t d t .e .  4 

Computing t h e  l e f t  s i d e  of (7) and using (8)  , w e  have t h a t  



which checks wi th  t h e  r i g h t  s i d e  of (71,. 

Example # 2  

Let us use  i n v e r s e  o p e r a t o r s  t o  s o l v e  

W e  have 

Hence, 

I f  we now use  (5)  wi th  a = 6 and f (x)  = e5X, (10) becomes 

= -e5X + ce6 x . 

A s  a check of (ll),y = -e5x + ce6x impl ies  

9 = -5e5X + 6ce6X;
dx 


whence, 

which agrees  w i t h  ( 9 )  . 
I n  more advanced c o u r s e s ,  one pursues t h e  i d e a  of i n v e r s e  d i f f e r e n t i a l  

o p e r a t o r s  i n  more computat ional  d e t a i l ,  b u t  f o r  o u r  purpose of t r y i n g  

t o  show how t h e  d i f f e r e n t i a l  o p e r a t o r  n o t a t i o n  i s  used, t h e  d i scuss ion  

i n  t h i s  s e c t i o n  should be  s u f f i c i e n t .  



In the next and final section, however, we shall present an applica- 


tion of differential operators in which we really reap the rewards of 


the structural similarity between differential-operator polynomials 


and "ordinary" polynomials. 


Systems of Equations 


In the study of numerical algebra, the student begins by practicing on 


single equations with a single unknown. As he gains experience, he 


then is exposed to the idea that in many real situations, there is 


often more than a single variable with which he has to contend. 


An analogous situation prevails in the study of differential equa- 


tions. We first learn to handle equations where we are dealing with a 


single function of, say, t. We learn to solve such equations as 


2
d++*+ 9y = sin t, 
dt
dt2 


etc. Now a natural extension of this problem occurs when we begin to 


realize that we may have an equation which involves two or more func- 


tions of t. 


Consider, for example, the equation 


where x and y are assumed to be functions of t. 


What do we mean by a solution of (I)? Obviously, we mean that we want 

explicit functions x (t) and y (t) which satisfy (1) . 
Finding such solutions is, in a way, child's play. Namely, we may 


pick x or y arbitrarily and then solve (1) for the other. By way of 


illustration, suppose we let 


in (1). 


In this case, (1) simplifies into 




e-3t is an integrating factor of (31, so that (3) may be rewritten as 


whereupon it follows that 


3t 
x = c e  . 

As a check, we may use (2) and 14) to show that 

so that 


is one family of solutions of (1). 

We may generalize our treatment of (1) by allowing y = yo(t) to be any 

(integrable) function of t, whereupon (1) would become 

Once yo(t) is specified, equation (5)  is a linear first order differ- 

ential equation in x, which may be solved by rewriting (5) as 



whereupon 

Obviously, t h e  chore  of express ing t h e  i n t e g r a l  on t h e  r i g h t  s i d e  of 

(6)  depends s t r o n g l y  on t h e  cho ice  of y o ( t ) ,  b u t  what should be  c l e a r  

i s  t h a t  (6) shows us  how t o  determine x a s  a 1-parameter fami ly  once 

y = y o ( t )  i s  g iven s o  t h a t  w e  o b t a i n  a "genera l"  s o l u t i o n  of (1) f o r  

each choice  of yo (t). 
Before con t inu ing  f u r t h e r ,  n o t i c e  how t h i s  d i s c u s s i o n  r e l a t e s  t o  o r d i -  

nary  a lgebra .  When w e  ask f o r  the s o l u t i o n  of x + y = 7 ,  w e  may p ick  

y a r b i t r a r i l y  and then determine x i n  t e r m s  of y .  What happened h e r e  

was t h a t  w e  had an e x t r a  degree  of freedom t o  "play with."  The same 

t h i n g  happens i n  our  d i s c u s s i o n  of equa t ion  (1). W e  have two func- 

t i o n s ,  b u t  only  one equat ion .  Thus, w e  expect  t o  have a degree  of 

freedom a t  our  d i s p o s a l .  

I n  o t h e r  words, given two func t ions  of t ,  w e  expect  t h a t  w e  need two 

d i f f e r e n t i a l  equat ions  i n  o r d e r  t o  determine t h e  two func t ions .  

Suppose, then ,  i n  a d d i t i o n  t o  equa t ion  ( I ) ,w e  a r e  t o l d  t h a t  our func-

t i o n s  x ( t )  and y ( t )  must a l s o  s a t i s f y  

That is ,  w e  wish t o  s o l v e  t h e  system of equa t ions  

Since  t h e  theme of t h i s  chap te r  is d i f f e r e n t i a l  o p e r a t o r s ,  l e t  u s  re-

w r i t e  t h e  g iven system i n  t h i s  form. Namely, 



Since differential operators obey the same arithmetic as do poly- 


nomials, we suspect that we may be able to solve (8) by treating the 


coefficients of x and y as polynomials and then eliminating variables 


just as we do in the algebraic case. 


For example, to eliminate y in (8), we "multiply" the first equation 

by (D - 3), the second equation by 6, and then add the two equations. 

Thus, 

We now invoke the definition of the differential operator as well as 


its algebraic properties to rewrite (9) as 




Equation (10) r e p r e s e n t s  9 s i n g l e  equat ion  wi th  "one unknowntt which 

can be  solved e a s i l y  by t h e  method of  undetermined c o e f f i c i e n t s .  

Namely, t h e  s o l u t i o n  of t h e  reduced equa t ion  i s  x = c l s i n  3 t  +h 
C ~ C O S3 t  and w e  then  t r y  f o r  a  p a r t i c u l a r  s o l u t i o n  of (10) i n  t h e  form 

x = ~e~ + ~t~+ C t  + E ,  and w e  o b t a i n  t h a t  t h e  g e n e r a l  s o l u t i o n  of 
P 

(10) i s  

2 2x = c s i n  3 t  + c cos  3 t  + e t  - 5 t2 + p + -1 2 27 ' 

S i m i l a r l y ,  w e  can e l i m i n a t e  x from ( 8 )  by mul t ip ly ing  t h e  f i r s t  equa- 

t i o n  by - D ,  t h e  second by (D - 3) and then adding. Thus, 

Hence, 

Solving (12) by undetermined c o e f f i c i e n t s  y i e l d s  

y = c 3 s i n  3 t  + c4cos  3 t  - ?-
5 

et - -
9 
2 t. 

From (11) and (13) it s e e m s  t h a t  t h e  system (8) has a s  i t s  s o l u t i o n  

I n  ( 1 4 ) ,  n o t i c e  t h a t  w e  have f o u r  a r b i t r a r y  cons tan t s .  Namely, f o r  

example, t h e  c o e f f i c i e n t  of s i n  3 t  i n  (11)does n o t  have t o  be t h e  

same a s  t h e  c o e f f i c i e n t  of  s i n  3 t  i n  ( 1 3 ) .  



Note #1 

J u s t  a s  i n  t h e  a l g e b r a i c  case ,  w e  must check t o  s e e  whether ( 1 4 )  s a t -

i s f i e s  ( 8 ) .  The problem can be even more d i f f i c u l t  h e r e  s i n c e  "mult i-  

p ly ing"  by D involves  t ak ing  a d e r i v a t i v e  and s i n c e  t h e  d e r i v a t i v e  of 

a c o n s t a n t  i s  ze ro ,  w e  may l o s e  t e r m s  i n  t h e  p rocess ,  o r  i n  d i f f e r e n t  

p e r s p e c t i v e ,  u and u + c have t h e  p roper ty  t h a t  Du = D(u + c )  s o  t h a t  

u n l i k e  t h e  c a s e  of o rd ina ry  a l g e b r a ,  Du = Dv does n o t  imply t h a t  -
u = v. Thus, it i s  p o s s i b l e  t o  in t roduce  ext raneous  s o l u t i o n s  and 

c o n f l i c t i n g  c o n s t a n t s .  

While a proof i s  beyond our  p r e s e n t  need ( a s  w e l l  a s  s c o p e ) ,  t h e r e  i s  

an i n t e r e s t i n g  theorem which t e l l s  us  how many a r b i t r a r y  cons tan t s  our  

s o l u t i o n  should have i n  t e r m s  of t h e  "determinant  of c o e f f i c i e n t s . "  

More s p e c i f i c a l l y ,  i f  ou r  system has  t h e  form 

where P1, P2,  P3, and P4 a r e  polynomials i n  D ,  then  t h e  number of  

a r b i t r a r y  cons tan t s  i n  t h e  s o l u t i o n  of (151 i s  equal  t o  t h e  degree of 

t h e  polynomial o p e r a t o r  obta ined from 

For example, applying t h i s  r e s u l t  t o  [ 8 ) ,  w e  have 

Since  t h e  degree  of t h e  polynomial,  D .
2 + 9 ,  i s  2 ,  t h e  g e n e r a l  s o l u t i o n  

of (8)  should have 2, n o t  4 ,  a r b i t r a r y  c o n s t a n t s .  -
Let  us  t a k e  x and y a s  g iven by (11) and (13) and s e e  what happens, 

say ,  i f  w e  want equa t ion  (1) t o  be  s a t i s f i e d .  



We have from (11) t h a t  

Hence, (1)becomes 

Hence, 


(3cl - 3c2 - 6c4)cos  3 t  - (3c2 + 3cl - 6 c 3 ) s i n  3 t  = 0. 


Theref o r e ,  


3cl - 3c2 - 6c4 = 0 and 3c2 + 3cl - 6c3 = 0 


o r  


C1 C1 C2+ 

C = 
- C2 and c3 = 4 2 2 . 

P u t t i n g  (16) i n t o  (14) y i e l d s  

a s  t h e  g e n e r a l  s o l u t i o n  of ( 8 ) .  

Technica l ly  speaking,  we should s t i l l  check t o  s e e  whether (17) s a t i s -  

f i e s  ( 7 ) ,  however, u n l e s s  w e  have made an a r i t h m e t i c  e r r o r ,  o u r  above-

mentioned theorem guarantees  t h a t  (17) i s  t h e  g e n e r a l  s o l u t i o n  s i n c e  

t h e  g e n e r a l  s o l u t i o n  must have two a r b i t r a r y  c o n s t a n t s  i n  t h i s  

example. 



Note # 2  

I t  should be  pointed  o u t  t h a t  we never had t o  use  opera to r  n o t a t i o n  o r  

opera to r  methods f o r  s o l v i n g  system ( 8 ) .  Namely, having been given 

equat ions  (1)and ( 7 ) ,  w e  might have been ingenious enough t o  have 

looked a t  t h e s e  two equat ions  and decided t h a t  we could e l i m i n a t e  y ,  

we could d i f f e r e n t i a t e  equat ion  (1)and then s u b t r a c t  t h r e e  t i m e s  

equat ion  (1) from t h i s  r e s u l t .  [This i s  p r e c i s e l y  what it means t o  

mul t ip ly  (1)by t h e  d i f f e r e n t i a l  ope ra to r  (D  - 3 ) . 1 We could then 

mul t ip ly  (7)  by 6,  and then add t h e s e  two r e s u l t s  t o  o b t a i n  equat ion  

( 1 0 ) .  

The beauty of t h e  opera to r  method i s  t h a t  s i n c e  i t s  s t r u c t u r e  i s  s o  

s i m i l a r  t o  t h a t  of polynomials,  w e  may work wi th  opera to r  n o t a t i o n  

pre tending t h a t  w e  w e r e  d e a l i n g  wi th  polynomials and thus  a r r i v e  a t  

c o r r e c t  answers r a t h e r  e a s i l y  - even though when t h i s  method i s  t r a n s -

l a t e d  i n t o  t h e  more convent ional  language of d e r i v a t i v e s ,  t h e  s t e p s  do  

no t  seem near ly  a s  obvious. It i s  i n  t h i s  way t h a t  t h e  opera to r  

technique  i s  more than  j u s t  a t r i v i a l  type  of shorthand no ta t ion .  

We s h a l l  r e i n f o r c e  t h i s  i d e a  i n  t h e  form of some i l l u s t r a t i v e  

examples. 

Example #1 

Find x and y i f  

So lu t ion  

W e  r e w r i t e  ( 1 1  a s  

s o  t h a t  i n  o p e r a t o r  n o t a t i o n ,  we have 



We eliminate y in (2) by "multiplying" the first equation by D + 1. 
This yields 

and adding these two equations, we conclude that 


Hence, 


We can eliminate x from (2) by "multiplying" the second equation by 

(D - 1) to obtain 

Hence 


The determinant of coefficients in (2) is 


and since D~ - 2 is a polynomial of degree 2, our general solution 

must have 2 arbitrary constants. In other words, cl, c2, c3, and c4 

in ( 3 )  and ( 4 )  cannot be independent. 



What w e  can do i s  use  (3)  and ( 4 )  i n  (1) t o  see  what condi t ions  a r e  

imposed on our cons tan t s .  

From (3 , we have t h a t  

Hence, 

impl ies  t h a t  

Since { e  nt , e- 1 i s  l i n e a r l y  independent, (5 )  impl ies  t h a t  

and 

Replacing c3 and c4 i n  ( 4 )  i n  terms of cl and c2,  we ob ta in  t h a t  t h e  

genera l  s o l u t i o n  of (1) is 

If we d i d n ' t  want t o  use  opera to r  methods, n o t i c e  t h a t  i n  e l imina t ing  

y i n  (21, w e  w e r e  saying 



(i) Differentiate dx = x + y with respect to t. 1 This is what 

(ii) Add this result to dx = x + y. t "multiplying" by 

D + 1 means. 

(iii) Add this result to = x - y. 

In other words, 

which agrees with ( D ~- 2)x = 0. 


Notice, however, how much easier it seemed simply to apply the opera- 


tor method as we did in deriving ( 3 1 ,  at least in comparison with the 


originality required when the operator method is omitted. 


Example #2  


Find the solution of the system 


subject to the initial conditions that x (0) = 0 and y (0) = f i  



Solution 


In the previous example, we saw that the general solution of (1) was 


given by 


Since (2) contains two arbitrary constants, we may prescribe a pair of 


initial conditions. [In this exercise, we have done it by prescribing 
x(0) and y (0) . We could also have prescribed, say, x (0) and x' (0) , 
etc. I Letting t = 0 in (2) , we obtain 

and since we are given that x (0) = 0 and y (0) = fi, 'equation (3) 
becomes 

From (i), c2 = -cl, and making this substitution in (ii) yields 

-Therefore, cl - -c
2 

= - and our desired solution is 

- e nt) = sinh n t  



Example #3 


Find the general solution of 


2t
(ii) + 3 - 3x + 2y = e 

Solution 


In operator notation, (1) becomes 


We may eliminate y from (2) by writing 


Hence, 


(D2 + 4D + 4 - D2 + 4D - 3)x= (D + 2)et - (D - l)e2t I 

Thus, 


*Without o p e r a t o r s ,  we e l i m i n a t e  y adding t w i c e  ( i ) t o  t h e  d e r i v a t i v e  
of  ( i )  . We then  s u b t r a c t  ( i i )  from t h e  d e r i v a t i v e  of  ( i i )  . F i n a l l y ,  
we s u b t r a c t  the  l a t t e r  r e s u l t  from t h e  former.  



t 

An integrating factor for (5) is eii, so that 

Consequently, 


Similarly, we may eliminate x from (2) by writing 


r 

whereupon, 


Theref ore, 




-t 
An i n t e g r a t i n g  f a c t o r  f o r  ( 7 )  i s  again  e8 . Hence, 

s o  t h a t  

Therefore ,  

Using (6) and (7) i n  (i), w e  have 

s o  t h a t  

Hence, 



Using t h i s  v a l u e  of c2 i n  ( 8 )  , w e  o b t a i n  t h a t  

i s  t h e  s o l u t i o n  of (1). 
A s  a f i n a l  check,  we need only  see whether (9)  s a t i s f i e s  (ii). 
P u t t i n g  (9)  i n t o  (ii)y i e l d s  

The f a c t  t h a t  (9 )  has  b u t  one a r b i t r a r y  c o n s t a n t  checks wi th  t h e  f a c t  

t h a t  t h e  de terminant  of c o e f f i c i e n t s  i n  (2)  i s  

which has degree  1. 



Thus, as far as initial conditions are concerned, notice that (9) 


allows us to choose either x (0) or y(0) at random but not both. 


Example # 4  

(a) 	Show that the general solution of the system 


2
d x 
(i) 	- + * + x = y + s i n t  

dt2 dt 
 1 

has 4 arbitrary constants. 


Solution 


In operator notation, (1) becomes 


2
(D + l)x + (D - l)y = sin t 1 
The determinant of coefficients is 


which is a polynomial in D of degree -4. 

(b) Eliminate y from (2) and then explain what this means in (1) 


without use of operator notation. 


Solution 


We have 


( D ~- 1) [(D~ + l)x + (D - l)y = sin t] 1 



Hence, 

[ ( D ~- 1) - ( D ~- l ) ] x  = (D
2 - 1 ) s i n  t - (D - 1 ) ( 2 t2) 


o r  


( D ~- D2) x  = D2 ( s i n  t) - s i n  t - D(2t2) + 2 t2 . 


Therefore ,  

I n  terms of (1), (3) t e l l s  us  t o  do t h e  fol lowing.  

( I )  D i f f e r e n t i a t e  (i)twice  and then s u b t r a c t  (i)from t h e  r e s u l t .  

C a l l  t h i s  equat ion  (iii). 
(11) D i f f e r e n t i a t e  (ii)and s u b t r a c t  (ii)from t h i s  r e s u l t ,  c a l l i n g  

t h e  r e s u l t i n g  equat ion  ( i v ) . 
(111) Form t h e  equat ion  obta ined by s u b t r a c t i n g  ( i v )  from ( 3 ) .  

(c) What i s  t h e  most g e n e r a l  func t ion  x  = x ( t )  which can s a t i s f y  ( I ) ?  

So lu t ion  

We need only  f i n d  t h e  g e n e r a l  s o I u t i o n  of ( 4 ) .  We have 

D
2 (D + 1 ) ( D  - l ) x  = -2 s i n  t - 4 t  + 2 t2. 

Thus, t h e  s o l u t i o n  of t h e  reduced equat ion  i s  

W e  may then u s e  undetermined c o e f f i c i e n t s  t o  f i n d  a  p a r t i c u l a r  so lu-

t i o n  of  ( 4 )  i n  t h e  form 

x = ~t~+ ~t~+ ct4 + E s i n  t + F cos  t. 

This l e a d s  t o  

dx = 2At + 3Bt2 + 4 C t
3 + E cos  t - F s i n  td t  

4.35 



2 
d = 2A + 6Bt + 1 2 c t 2  - E s i n  t - F cos  t 
d t 2  

3
d = 6B + 24Ct - E cos  t + F s i n  t 
d t 3  

4 
- =  24C + E s i n  t + F cos  t 
d t 4  

s o  t h a t  ( 4 )  becomes 

24C + E s i n  t + F cos  t 
2 

= -2 s i n  t - 4 t  + 2 t  

-2A + E s i n  t + F cos t - 6Bt - 12Ct2 

Hence, 

Therefore, (6 yields 

and combining (7)  wi th  (5), w e  have t h a t  t h e  genera l  s o l u t i o n  of ( 4 )  

i s  

x = c + c t + c2et + c e-t - 2 t2 +; t2 - 1 t4 - s i n  t. o 1 3 6 
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