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SOME NOTES ON DIFFERENTIAL OPERATORS

A

Introduction

In Part 1 of our course, we introduced the symbol D to denote a func-
tion which mapped functions into their derivatives. In other words,
the domain of D was the set of all differentiable functions and the
image of D was the set of derivatives of these differentiable func-
tions. We then, as usual, introduced the notation D(f) = f' *

Recalling that if f is any function and ¢ is any number, we define the
function cf by [cf] (x) means cf(x); and that if f and g are any two
functions which have the same domain, we define the new function

[f + g] by [f + g]l(x) = f(x) + g(x); we notice that D is a linear
mapping. That is, if f and g are both differentiable functions de-

fined on the same domain and if a and b are any (real) numbers then
D(af + bg) = aD(f) + bD(g). (1)

Notice that (1) is the special case of our notation L(f) or more
familiarly, L(y) where L(y) = y'.

The key point is that if we restrict the domain of D to the set of all
analytic functions** (where by analytic we mean that the function is
infinitely differentiable which in turn means that the function pos-

sesses derivatives of every order) we can, in a natural way, invent a

structure on D that is very analogous to the arithmetic structure of
polynomials.

Aside from this structure giving us some very convenient notation

and aside from its being interesting in its own right (in fact, the
set of analytic functions is a very nice example of a more general
vector space which we shall talk about more in Block 3), it is very
helpful to us in handling linear differential equations and systems of
linear differential equations. These ideas will be discussed in the

following sections.

*It is conventional to write f rather than, say, f(x) because the
variable used to denote the "input" is irrelevant. For example, if f
is the rule which doubles a number it makes no difference whether we
write f(x) =2x or f(t) =2t or £($§) =2§ etc. This is why we often make
remarks like "Define f by f(t) =2t for all real numbers, t." The
point is that it is f which we are studying.

*#%In many practical cases, one is interested in a specific domain, say
the interval [a,b]. In these cases, we only require that the domain
of D include functions which are analytic on [a,b].
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Some Notes on Structure

In ordinary multiplication, we accept with little if any difficulty
the notation that a” denotes the product of n factors of a. This
notion is extended to any mathematical structure in that we often use
the exponent notation to indicate that a certain operation is being

carried out successively a certain number of times.*

One place that this notation is used extensively in mathematical

analysis is when we refer to composition of functions. For example,
suppose that f is a function that maps a set S into itself. Then, for
a given seS, it makes sense to talk about, say, f(f(f(s)” . That is,
starting with s, we compute f(s). Then, since f(s) is again in S, we

may compute the effect of f on f(s); i.e. f(£f(s)), etc.

Pictorially,

[Notice that it is crucial that the image of f be contained in S since
if £(s;) = t¢S, then £(f(s;)) is not defined because £(£(sy)) = £(¢)
and t ¢ domain of f. Again, pictorially,

t4S, dom £ = 5 » f(t)
is not defined

*An interesting note on notation is that when we use + rather than
X to denote the operation, it is conventional to write na rather than

n - - - -
a . For example, with respect to ordinary addition, to indicate that

n
we want a + a + ... + a, we write na, not a .
J

i\

Y

n terms

In other words, for any real number a and any positive integer n, na

. denotes the sum a + ... + a.

¥ J
L]

n times
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In terms of specific illustration, let S be the set of integers and
define f by f(s) = % for each seS. Then, 6&S and f(6) = % = 3. Now,

f(£(6)) means f(3) and this is undefined if we insist that f:S+S since
£(3) = 3 ¢ s.]

In any event, as long as f:5*S, we may talk meaningfully about

fo ... of where fo ... of means [fo ... ofl(s) = £(£(... £(s)...)).
) — SIS -
n times n times n times n times

As an illustration, let S denote the set of all integers and define f
on S by f(s) = 2s + 3 for each seS. Since 2s + 3 is an integer if s
is an integer, we have that f:5+S. Now, for each stS, we have

f(s) = 2s + 3;

hence,
f(f(s))=£([£(s)]) = £(2s + 3)
= 2(2s + 3) + 3%
= 4s + 9;
hence,
£(£(£(s))) = £(1£(£(s))1)
= f(4s + 9)

2(4s + 9) + 3

8s + 21, etc.

For example,

£(4) = 2(4) + 3 = 11

£(£(4)) = £(11) = 2(11) + 3 = 25

£(£(£(4))) = £(25) = 2(25) + 3 = 53.

*Again, keep in mind the irrelevancy of the symbol used to denote the
"input." f(s) = 2s + 3 means f([ ]) = 2[ ] + 3 so that when
[ 1 =25+ 3, £([ 1) = 2[2s + 3] + 3.




Rather than write, say,(f f(f(f{s)”), it is conventional to abbreviate

this by f%(s), where f" means fo ... of.

n times
Important Note

This new notation is somewhat unfortunate since it now gives us two
entirely different meanings for the same symbol. Namely, we have
previously used, say, f2(x) to denote [f(x)]2 and now we are saying
that £2(x) could also mean £(£(x)) . Clearly, [£(x)]? and f(f(x)) are
entirely different concepts. For example, if f(x) = 2x + 3, then
[£(x)]12 = (2x + 3)% = 4x% + 12x + 9 while £(f(x)) = £(2x + 3) =

2(2x + 3) = 4x + 6. This same problem occurred as a special case when

we first introduced f-l to denote the inverse of f in the sense that

fc>f--l i f_lof = identity function, i.e. [fof_l](x} = X for all x. 1In
this context, we saw that if f(x) = 2x + 3, then [f(x}]_l e .
€ = 3 2x + 3

white € ). -

2

Hopefully, whether f"(x) means [f(x)]" or whether it means
£(f ... f(x))...) will be clear from context, but for the remainder of
—_—
n times
this chapter, £"(x) shall mean £(f ... £(x))...).

S

n times

With this discussion as background, we are now in a position to
define Dz, D3, D4, etc. Namely, suppose £ is in the domain of D.
Then by definition of the domain of D, f possesses derivatives of
every order. Since D(f) = f', we see that f' also belongs to the do-
main of D (i.e. if f has derivatives of all orders, f' must also pos-
sess derivatives of all orders since the nth derivative of f' is the

(n+1) th derivative of f etc.).

Hence,

p2(f) = DID(£)]
= D(f")
= £,

Proceeding inductively, D" is defined by

pR () = £,

4.4
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for each £ € dom D. We may also define cD for any constant c.
Namely, cD is defined by

[eD] (£)

I

cD (f)

cE" .

We may now invoke the linear properties of D to define what we mean by

a polynomial in D. In particular, if Agr 837 seny and a  are constants

n-1

we define anDn + a L PR alD +* ao to mean

n—lD

n =

[anD +a ;D + ...+ aD+ aol(f) =

_ n n=-1 »

=ap (£) + a,_qP (£} F o & alD(f) + aof =

= anf(n) + an_lf{n-l) *# w5 4 oF alf' + aof.* (2)

The connection between this definition and our previous study of lin-
ear differential equations with constant coefficients should seem

rather obvious. Specifically, if we replace f by y in (2), we obtain

n —
[anD +a 4D + ... taD+ aoI(y) =

(3)
B F aly' + ay

Now certainly we would not have gone through all this discussion just
to show that we can express linear differential equations in a new
notation which involves polynomials in D! What is really important
is that in terms of the new polynomial notation, there is a fantastic
resemblance between polynomial properties and derivative properties.

Rather than launch into an avalanche of formal proofs, let us begin

with a few concrete examples.

Example #1

Consider the expression

*This is why we require that f be analytic. Otherwise f(n) need not
exist for each n.




2
ay dy _
2l | 4 % ~ W (4)

Using our new notation, (4) would be expressed as

{Dz + 4D - 3)y.* (5)

If we were to look at Dz + 4D - 3 as a "normal" polynomial in D, we

would be tempted to "factor" it by writing

p2 + 4D -3 = (D - 3)(D - 1). (6)
The only problem is what do we mean by

(b - 3)(D - 1)y, (7)

which we get by using (6) in (5).

In terms of multiplication meaning composition of functions, a natural
interpretation of (7) would be

(D-3)(D-1)y= (D - 3)[(D - 1)yl
= (D - 3) [Dy - yl
— d C—
=0-3NFE -

*

d d *
pEE-y -3 -y

d
LE-y -3E-wn. (8)

As a check that (4) and (8) are equivalent, notice that (8) may be
written as

*#For brevity, it is conventional to write (D2 + 4D - 3)y rather than
(0% + 4D - 31(y).
**%Notice that if y is analytic, so also is o y. Thus, we may view

dx
dy 3 ; -
ax ~ Y as a simple function (say, u) and apply D - 3 to u. That is,

M®-3HEL-y) = @-Nu=Ddu-3u=0E -y -3GE-n.

4.6
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2 2
d d d _d d
(E_% - _l) -3E - ¢) = __% - a% + 3y

which is (4).

In other words, "factoring" {D2 - 4D + 3)y into (D - 3) (D - 1) shows
us specifically how the 2nd-order equation

2
1y -4 +3y=0
dx

may be viewed as the first order linear eqguation in {g% - y); namely,
a gy _ -3 -y =
dx{dx y) 3(dx ¥y =1

Example #2

Consider (D - 1) (D - 3)y which we obtain by permuting the "factors" of
(D - 3)(D-1)y. We obtain

(D -1)(D - 3)y

1]

(0 - 1D - 3)y]
=o-1E- 3w

d d
=L - 3y) - G - 3y)

- 4 dy _ - Sy _
- dx{dx 3y) (dx 3y)

so that
(B = 1)ip — 3) = (b= 3) (D = L)
and our multiplication is commutative.

Example #3

The property of commutativity requires that the coefficients of the
"powers" of D be constants. For example,




(xD + 1) (D - x)y = (xD + 1) (Dx - xy)

= fsp 1)(%§ - xy)

= xD(%ﬁ-- xy) + (%% - Xy)

de dx
a? 2, d
=x2L 4+ 1 x®7) 5% - 2xy
dx
= [xD2 + (1 - xz)D - 2xly. (9)

On the other hand,
(D - x)(xD + 1)y = (D = x) (xDy + y)

N _ d
= (D - x) (x H% +y)

= D(x g% +y) - x(x gﬁ + y)

= é%(x%% + y) - x2 dy _ Xy

dx
d®y ,ay ,dy _ 29y
Tr vt ax tax TX oax T
x
a’y 2, dy
=: X 5 + (2 - x7) ax Xy
dx
= [xD2 + (2 - x2)D - x]y. (10)

Comparing (9) and (10), we see that (xD + 1) (D - x) # (D - x) (xD + 1),
and, moreover, neither (xD + 1) (D = x) nor (D - x) (xD + 1) is equal

to the "usual" product xD2 + (1 - xz)D = 3k

In summary, this new arithmetic loses its nice structural appeal if we
do not restrict its usage to constant coefficients, and this strongly
affects our ability to handle nicely linear equations with non-

constant coefficients.




ol 9 o9 @9 68 N 9 S 9 om

s o

) om o N 68 e

In summary, then, if we introduce the notation of differential opera-

tors whereby we rewrite

Y(n) P annly(nwli +ooo b ay' +agy,
where agr «eer a,_, are constants as
(" + an—an-l + ... +a;D+a)y
then

p" + an_an_l ® ouew R agb + &

possesses the same structure as does the "usual" polynomial arithmetic.

In particular, if Pl(D), PZ(D}, and P3(D) denote three polynomials in
D with constant coefficients, it is true (but we omit any formal

proofs) that

(i) Pl(D)Pz(D) = P2(D)P1(D)

(ii) [PI(D)PZ(D)IP3(DJ = P1(D)[P2(D)P3(DJ]
and

(iii) Pl{D)[Pz(D) + P3{D)] - Pl(D)Pz(D) + Pl(D)P3{D).

Thus, we may manipulate polynomials in D in the "usual" way, as illu-
strated in the following examples.

Example #4
(> + 20 + 2) (D - 1) = D> + 202 + 20 - D2 - 2D - 2
=pd +0° - 2,
Hence, we may view
3 2
$Y428% 2y (11)
3 2
dx dx




as

(> + p? = By,
and this in turn is

(% + 2D + 2) (D - 1)y

(02 + 2D + 2) (Dy - vy)

(Dz+2n+2)(g§-y)

Dz(%_ y) 2ch-§-— 7 # 2(% - )

I

d = d ‘ ady:
(a%—y) +2(a§-y) +2{a-§- y) (12)

which is second-order and linear in (gﬁ = ¥ &

By commutativity, we may also rewrite (11l) as

(D - 1) [(D% + 2D + 2)y]

(D - 1) D%y + 2Dy + 2y]

]

2
d d
(D - l)(d—x'% + 2&% + 2Y)

]

2

2 2
d d d d
D('—%+Za'§+25f)‘(—x+za§'+23’)
dx dx

2 g 2
(Q__z $ 23 2y) - (d—% + z% + 2y) (13)
dx

which is first order and linear in (y" + 2y' + 2y).

The main point is that by (12) and (13), we have that

3 2
Q_% + ZQ—% -2y =0
dx dx

is equivalent to either of the lower order equations
u" + 20' + 2u = 0,

where u = y' - y, or

4.10
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where v = y" + 2y' + 2vy.

Hopefully, this analysis supplies some insight as to how we solve lin-
ear differential equations, structurally, by reducing them to equiva-
lent lower order equations.

Example #5

Suppose we want to solve the equation

1]

(D - 1)(D + 1)(D - 2)y 0. (14)

By our "new" algebra

O -1)(D+1)( - 2)y = (D> - 1) (D - 2)y

I

(3 - 20%2 - D + 2)y

I

=y = 2" ='y* + 2y,

Hence, equation (14) is equivalent to
y" - 2y" - y' + 2y = 0. (15)

Letting y = e™ in (15), we obtain

r3erx - 2r2erx - re™® + 2™ = ¢ (16)

and since e™® # 0, (16) implies that

£ - BER - ® 4 B = O

Since r3 - 2r2 -r+2=(r -1 + 1)(xr - 2), we see that the gen-
eral solution of (15) is

3¢, (17)

The main observation here is that the "roots" of (14) are also 1, -1,
and 2. More generally, using the D-notation, if the nth order homo-

geneous linear equation with constant coefficients can be represented
in the "factored" form




(D - a;) (D - az) ... (D = an)y, where a, # ay if 1 # 3 (18)

then the general solution of the equation is simply

x a_ X
n

Example #6

Sometimes the a's in (18) are not all distinct. An interesting ques-

tion concerns solving, say
3
(b -1)" yv = 0. (19)

Of course, we have learned to solve (19) by other methods. For
example, (19) is equivalent to

> - 302 + 3D - 1)y = 0
or
y"™ - 3y" + 3y' -y =0,

for which the substitution y = ar s yields

r2-3:r2+3c-1=0,0r (r-1>=0
whereupon
y=(c_.+c,x+c xziex

o 1 2

is the general solution of (19).

To handle (19) by the method of differential operators, we have the
structural property that

D™ (e™y) = ™ (D + m)y.* (20)

We may prove (20) by induction, observing that for n =1, 2, etc., we
obtain

*Mechanically, (20) tells us that we may "factor out" e™ and replace
D by D + m.

4.12
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mx
D(e y) dx

™ (g% + my)

emx(D + m)y

I

D2 (e™y) D([D (emxy} ]

1]

D™ (D + m)y]

D[emx(g% + my) ]

™ a (c—lx

dx ‘dx

+ my) + me™ (g% + my)

2
mx |d dy dy 2
= e X +m 3 + mi + m y}

2
= ghe ax + 2m g% + mzy}

emx[(DZ + 2mD + mz)y]

I

emx(D + m)zy, e,

and the inductive details are left to the interested reader.
Returning to Example #6, since D3(e_xy) =e ¥ - l)3y [i.e. this is

(20) with n = 3 and m = -1], we have that (D - 1)y = 0 implies that

e (D - 1)3Y -X

=e 0 = 0;
that is,
e Np = l}3y = 0.
Since D3(e_ny = e_x(D - l}3y, it follows that
p3(e™¥y) = o0, (21)




whereupon we may integrate (21) successively to obtain

e—xy - + clx + czx2

or

_ 2, x
¥y = (co + cyx + cxT)e”.

It is not our purpose here to teach the differential operator method

in detail. Our main aim for now is to help you get acclimated to this
new language so that later, in Section D, we can show a very nice non-
trivial application of this discussion to the fairly sophisticated
concept of systems of linear differential equations. For this purpose,
Section C may be omitted without any loss of continuity, but the more
involved reader may prefer to study Section C if only to gain a little
further insight to how the arithmetic of differential operators is
further developed.

C

Inverse Differential Operators

Given
(D - a)y = £(x), (1)

we already know that

y = ea"fe"axf (x)dx. (2)

Namely, (1) may be written as

- ay = £, (3)

whereupon an integrating factor of (3) is g o, Multiplying both
sides of (3) by e-ax' we obtain

e—ax g§ _ ae—axy _ e—axf(x}'

or
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=ax
dle_¥) - ™¢(x)

Hence,
e_axy = j‘e-axf(x)dx,

from which (2) follows.

On the other hand, suppose we wanted to solve (1) "algebraically"

treating (D - a) as a "factor,"”

rather than as an operator, in the
expression (D - a)y. We would "divide" both sides of (1) by D - a to

obtain

1
= a

Y =5 f(x). (4)

What we have really done in obtaining (4) from (1) is to have "com-
posed" both sides of (1) with the inverse of the operator (D - a). 1In

1 1

effect, we are writing (D - a) — as = where (D - a)-l is defined

D_
by the relation

{D. - a)-l[(D - a)yl = vy.
The point is that we may now compare (4) ([which we would like to mean

the value of y] with equation (2) [which we know is the value of y (up
to an arbitrary constant)] and conclude that if (4) is going to yield

the solution of (1), then we have no choice but to define ) E = £ix) ;
or, (D - a)-lf{x) by

1 _ ax —-ax
== f(x) = e fe £ (x)dx. (5)
Example #1

x4, we use (5) with a = 3 and f(x) = x4. This

To evaluate ——3

yields




1 4  3x -3x 4
-3 X = ./; X dx
-3t,4
e

o
X
3x J'
= e
c

c an arbitrary, but fixed, constant.

tdt, (6)

"Inverting" (6), we are saying that

X
(D - 3) e3"f e 3tedar| = 4. (7)
C

X
To show that (7) is correct, we could evaluate.j. e“3tt4dt explicitly,
c

but this is not necessary for our purposes. Namely, by the product

X
rule and the fact that %f g(t)dt = g(x), we conclude that
c

X X X
d | 3x -3t, 4 _ 3% d -3t, 4 d 3x -3t, 4
= = fc e t dt] = e a;{"fc © +°dt + a"(e }1; £ tdt

>4
e3x[e_3xx4] & 3e3xf e_3tt4dt
C

x
x4+ 393xf e teday, (8)

c

Computing the left side of (7) and using (8), we have that

X b4 > 4
(D - 3) e3xf e %%l = e3xf e P4 ] < 3 e3xf e 3t 4a
C C (o

X X
dix e3xj grotglaul 3e3xf e Tt A4
C Cc

B ®
= x4 + 3e3xf e-3tt4dt - 393xf e_3tt4dt
c c

4.16
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which checks with the right side of (7).

Example #2

Let us use inverse operators to solve

dy _ _ 5x
o B 8 4 (9)
We have

5x

(D - 6)y = e ™.

Hence,

v = (B - ) L%, (10)

If we now use (5) with a = 6 and f(x) = eSx’ (10) becomes

y = eﬁxfe-GXESxdx
esxfe_xdx

- e6x(_e—x + c)
= waP % cesx. (11)
5% 6x . .
As a check of (11), v = -e + ce implies
5 6

gﬁ = -5¢”" + 6ce”;
whence,
g% - by = _5e5x + 6ceGx + GeSx = SceGx = esxr

which agrees with (9).

In more advanced courses, one pursues the idea of inverse differential
operators in more computational detail, but for our purpose of trying
to show how the differential operator notation is used, the discussion
in this section should be sufficient.

4.17




In the next and final section, however, we shall present an applica-
tion of differential operators in which we really reap the rewards of
the structural similarity between differential-operator polynomials
and "ordinary" polynomials.

D

Systems of Equations

In the study of numerical algebra, the student begins by practicing on
single equations with a single unknown. As he gains experience, he
then is exposed to the idea that in many real situations, there is

often more than a single variable with which he has to contend.

An analogous situation prevails in the study of differential equa-
tions. We first learn to handle equations where we are dealing with a

single function of, say, t. We learn to solve such equations as

dx B

gg | oX =8

a2 a

SY 4 6L 4 9y = sin t,
dt2 dt

etc. Now a natural extension of this problem occurs when we begin to
realize that we may have an equation which involves two or more func-
tions of t.

Consider, for example, the equation

5= - 3x - 6y = t (& D

where x and y are assumed to be functions of t.

What do we mean by a solution of (1)? Obviously, we mean that we want

explicit functions x(t) and y(t) which satisfy (1).

Finding such solutions is, in a way, child's play. Namely, we may
pick X or y arbitrarily and then solve (1) for the other. By way of
illustration, suppose we let

g (2)

in (1).

In this case, (1) simplifies into

4.18




e» &5 N & oy o9 &9 om o

. o=

&3 oM o8 e &9 M e

dx 2 _ .2

e X+ £ =%

or

dx _

d'—t - 3x = 0. (3)
e—3t is an integrating factor of (3), so that (3) may be rewritten as
d, -3t _

a'E(e x) =0,

whereupon it follows that

X = ce3t. (4)

As a check, we may use (2) and (4) to show that

2
dx = 3t _ 3t _ .=t
TE 3x - 6y = 3ce 3ce 6(—5—)
=t2!
so that
3t
X = ce
_-t?
Yy =5

is one family of solutions of (1).

We may generalize our treatment of (1) by allowing y = yo(t) to be any
(integrable) function of t, whereupon (1) would become

dx - 2
a-?:-—Bx—t +YO“:)- (5)

Once yo(t) is specified, equation (5) is a linear first order differ-
ential equation in x, which may be solved by rewriting (5) as
-3t dx -3t _ -3tp2

=— - 3xe

T +y (£)]

or




=3E,

SixeTt) = e 4y (0]

or
xe 3t - f e Toped 3 v, (t)ldt + c,

whereupon

X = eBtf[tze_3t + e-3tyo{t)]dt + ce3t. (6)

Obviously, the chore of expressing the integral on the right side of

(6) depends strongly on the choice of yo{t), but what should be clear
is that (6) shows us how to determine X as a l-parameter family once

y = yo(t) is given so that we obtain a "general" solution of (1) for

each choice of yo(t].

Before continuing further, notice how this discussion relates to ordi-
nary algebra. When we ask for the solution of x + y = 7, we may pick
y arbitrarily and then determine x in terms of y. What happened here
was that we had an extra degree of freedom to "play with." The same
thing happens in our discussion of equation (1). We have two func-
tions, but only one equation. Thus, we expect to have a degree of
freedom at our disposal.

In other words, given two functions of t, we expect that we need two
differential equations in order to determine the two functions.

Suppose, then, in addition to equation (1), we are told that our func-
tions x(t) and y(t) must also satisfy

d dx . -
a%+d—g-3y—e. (7)

That is, we wish to solve the system of equations

1]
rf.

dx
dT-:‘!X Gy

dy , dx . -
ETaET

Since the theme of this chapter is differential operators, let us re-
write the given system in this form. Namely,
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dx =
(E-BX)'GY—t

dx dy _ t
+ (dt 3y) <3

I

dt
(D - 3)x - 6y = &2
. (8)
t
Dx + (D - 3)y = e

Since differential operators obey the same arithmetic as do poly-
nomials, we suspect that we may be able to solve (8) by treating the
coefficients of x and y as polynomials and then eliminating variables
just as we do in the algebraic case.

For example, to eliminate y in (8), we "multiply" the first equation
by (D - 3), the second equation by 6, and then add the two equations.
Thus,

(D - 3)%% - 6(D - 3)y = (D - 3)t2

t

6Dx + 6(D - 3)y 6e

(D - 3)2x + 6Dx (D - 3)t2 + Get. (9)

Il

We now invoke the definition of the differential operator as well as
its algebraic properties to rewrite (9) as

(D? - 6D + 9)x + 6Dx = D(t2) - 3t2 + et

or

2

DX + 9% = D(tz) - 3t7 + GEt

-4 ,.2 _
— + 9x = dt(t ) 3t° + 6e

QX i Oy o= FE. = L2 & gt (10)




Equation (10) represents a single equation with "one unknown" which
can be solved easily by the method of undetermined coefficients.
Namely, the solution of the reduced equation is X, = clsin 3 =+

c,cos 3t and we then try for a particular solution of (10) in the form

xp = Aet + Bt2 + Ct + E, and we obtain that the general solution of

(10) is

. 3k _a Zy 5 2
X = cysin 3t + c,cos 3t + T e 3 £t + 9t + 57 (11)

Similarly, we can eliminate x from (8) by multiplying the first equa-
tion by -D, the second by (D - 3) and then adding. Thus,

-D(D - 3)x + 6Dy = -D(tz)
D(D - 3)x + (D - 3)%y = (D - 3)et

[(D - 3)2 + 6D]y = D(-tz) # D(et) = Fab

or
2 t
2 d(-t%) , d(e") ¢
[D® + 9]y = + - 3e .
s at
Hence ’
a2 t
-—% + 9y = -2t - 2e". (12)
dt

Solving (12) by undetermined coefficients yields

t

y = cysin 3t + c,cos 3t - £ et - 2 ¢, (13)

From (11) and (13) it seems that the system (8) has as its solution

t

2 2
e -

2
t+§t+——

€;sin. 3t + g.cos 3t + 57

1 2

x®
]
W

Ul w

. (14)

C-1[N}
o+

. 1
C5sin 3t + c4cos 3t - 3 e -

=<
I

In (14), notice that we have four arbitrary constants. Namely, for
example, the coefficient of sin 3t in (11) does not have to be the
same as the coefficient of sin 3t in (13).
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Note #1

Just as in the algebraic case, we must check to see whether (14) sat-
isfies (8). The problem can be even more difficult here since "multi-
plying" by D involves taking a derivative and since the derivative of
a constant is zero, we may lose terms in the process, or in different
perspective, u and u + c have the property that Du = D(u + c¢) so that
unlike the case of ordinary algebra, Du = Dv does not imply that

u = v. Thus, it is possible to introduce extraneous solutions and
conflicting constants.

While a proof is beyond our present need (as well as scope), there is
an interesting theorem which tells us how many arbitrary constants our
solution should have in terms of the "determinant of coefficients."
More specifically, if our system has the form

Pl (D)x + P2 (D)y

£ (t)
(15)

P3(D)x + P4(D)y g(t)

where Pl' P2r P3, and P4 are polynomials in D, then the number of
arbitrary constants in the solution of (15) is equal to the degree of
the polynomial operator obtained from

P, (D) P, (D)

P, (D) 94 (D)

For example, applying this result to (8), we have

D - 3 -6 5
= (D - 3)° - [-6D]
D D - 3
2
=D - 6D + 9 + 6D
=p% +9

Since the degree of the polynomial, D? + 9, is 2, the general solution
of (8) should have 2, not 4, arbitrary constants.

Let us take x and y as given by (11) and (13) and see what happens,
say, if we want equation (1) to be satisfied.




We have from (11) that

9% - 3c,cos 3t - 3c,sin 3t + Ze" - 2+ 2
Hence, (1) becomes
=
{3c1cos 3t - 3c25in 3t + %et - %t + %}
-3{clsin 3t + c,cos 3t + %et - %tz + %t + é%} > = tz.
—G{CBSin 3t + c,cos 3t -~ %et - %t}
J

Hence,

(3c1 - 302 - Gc4lcos 3t - (3c2 + 3c1 - 6c3}51n 3t = 0.

Therefore,

3c1 - 302 - 6c4 = 0 and 3c2 + 3c1 - 6c3 =0

or

"
I

. 3 1 2
c,sin 3t # c,cos 3t &+ §e - Et + §t +

2

c 20 - o] = i
o e

as the general solution of (8).

(16)

(17)

Technically speaking, we should still check to see whether (17) satis-

fies (7), however, unless we have made an arithmetic error, our above-

mentioned theorem guarantees that (17) is the general solution since

the general solution must have two arbitrary constants in this

example.
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Note #2

It should be pointed out that we never had to use operator notation or
operator methods for solving system (8). Namely, having been given
equations (1) and (7), we might have been ingenious enough to have
looked at these two equations and decided that we could eliminate vy,
we could differentiate equation (1) and then subtract three times
equation (1) from this result. [This is precisely what it means to
multiply (1) by the differential operator (D - 3).] We could then
multiply (7) by 6, and then add these two results to obtain equation
(10) .

The beauty of the operator method is that since its structure is so
similar to that of polynomials, we may work with operator notation
pretending that we were dealing with polynomials and thus arrive at
correct answers rather easily - even though when this method is trans-
lated into the more conventional language of derivatives, the steps do
not seem nearly as obvious. It is in this way that the operator
technique is more than just a trivial type of shorthand notation.

We shall reinforce this idea in the form of some illustrative
examples.

Example #1
Find x and y if

dx _
d—t——X'l'y

(1)
Y & % .=
at - * Y
Solution
We rewrite (1) as
dx _
-d'-E'—X—Y*-O
= dy =
REFTE=D
so that in operator notation, we have
(D-1x-y=20

(2)
-x + (D+ 1Dy'=20
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We eliminate y in (2) by "multiplying" the first equation by D + 1.
This yields

2 - 1)x - (D + 1)y = 0

-x + (D + 1)y =0

and adding these two equations, we conclude that
(D2 - 2)x = 0.

Hence,

€ . (3)

We can eliminate x from (2) by "multiplying" the second equation by
(D - 1) to obtain

D-1)x-y=0

-(D - 1)x + (D® - 1)y = 0
Hence

0% - 2)y = o,

or

/2t

Y = cze + cye "N, (4)

The determinant of coefficients in (2) is

D= 1 =1

I

(-1} +1) -1

= D+ 1

and since D2 - 2 is a polynomial of degree 2, our general solution
must have 2 arbitrary constants. In other words, Cyr Cyr Cg and c4
in (3) and (4) cannot be independent.
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What we can do is use (3) and (4) in (1)

imposed on our constants.

From (3), we have that

dx _ /fcle/ft - /fcze-/jt.

dt

Hence,

dx _
S

implies that

/fcle/Zt - /?cze_/zt = e/it + c -2t

cy ,€

or
_ /2t

(/fcl - ¢ - cjle - (/fc2 +c, + cye
Since {eJit, e_/it
J?cl - €y -cy=0o0rc, = (V2 - e,
and
/702 +c, +c, =0o0r c,y = -(/Z + 1)02.

to see what conditions are

2t _ g, (5)

} is linearly independent, (5) implies that

Replacing c3 and ¢, in (4) in terms of c, and ¢,, we obtain that the

general solution of (1) is

T = 1ye 2t - (/8 4 1)cye "2t

)
]

J

. (6)

If we didn't want to use operator methods, notice that in eliminating

y in (2), we were saying
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(i) Differentiate %% = x + vy with respect to t.
This is what
"multiplying" by

. . dx
A —_— = + o -
(ii) dd this result to X Y D + 1 means.

dt

(1ii) Add this result to 9X = x - y.

In other words,

2

ax _ x _dx , ay
at - *ty” g2 at tae”
t

d2x dx dx dy
—_— e — = i

4e3 Bt x+ty+tagta”
&’x dy

= -

dtz X+ oy + at

2
g—% =x +y + (x -y) >
dt

2
d-_;( = ZX'
dt

which agrees with {D2 - 2)x = 0.

Notice, however, how much easier it seemed simply to apply the opera-
tor method as we did in deriving (3), at least in comparison with the

originality required when the operator method is omitted.

Example #2

Find the solution of the system

dx _
aE - * Y
(1)
B o s
at - * 7Y
subject to the initial conditions that x(0) = 0 and y(0) = /2.
4.28
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Solution

In the previous example, we saw that the general solution of (1) was

given by
x=ce'/§t+ce:"‘/it
1 2
(2)
y = (V2 - l)cle'/?c - (V2 + l)cze_/it

Since (2) contains two arbitrary constants, we may prescribe a pair of
initial conditions. [In this exercise, we have done it by prescribing
x(0) and y(0). We could also have prescribed, say, x(0) and x'(0),
etc.] Letting t = 0 in (2), we obtain

x(0) = c, + ¢,

(3)
y(0) = (/2 - 1)c; - (V2 + e,
and since we are given that x(0) = 0 and y(0) = V2, equation (3)
becomes

(4)
(ii) V2 = (/2 - e, - (VZ + e,

From (i), Cy = =Cq. and making this substitution in (ii) yields
V2 = (V2 - l)cl + (V2 + 1)01,
or
V2 = 2/2 cq-
Therefore, c, = ¢, = % and our desired solution is
j 1 . /2% -/2t :
x == (e - e ) = sinh V2t
-y=,/§£ /ft+/5;l—/§t
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Example #3

Find the general solution of

iy 9%+ W4 ok -y = et

(1)
2t

iy Gx . dy _ _
(ii) 3t + t 3x + 2y = e

Solution

In operator notation, (1) becomes

t

(D + 2)x + (D = 1)y e

(2)

(D = 3)x + (D + 2)y = et

We may eliminate y from (2) by writing

*
(D+2)[(D+2)x + (D - 1)y = el
(3)

-(D - 1)[(D - 3)x + (D + 2)y = e2%]

or

(D+2)%x + (D+2)(D - 1)y = (D + 2)et

(4)
-(D-1)(D - 3)x - (D+2)(D - 1)y = -(D - 1)e?t

Hence,

2

(D2 + 4D + 4 - D2 + 4D - 3)x = (D + 2)et - (D - 1)e?%,

or

t t 2t

(8D + 1)x = D(e%) + 2eb = p(e?t) + &°t.
Thus,
dx E 2t

SHE + x =3e - e 7,

*Without operators, we eliminate y adding twice (i) to the derivative
of (i). We then subtract (ii) from the derivative of (ii). Finally,
we subtract the latter result from the former.
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or
dx w . 1 t 2t
E+§—8(3e e ) 2 (5)
£
An integrating factor for (5) is ea, so that
t t
da (xes) _ eB get _ ;EZt
dt 8 8
9t 17t
8 8
Consequently,
t ot i
g _1 8 _ 1 _ 8
xe” = y e 17 © + Cq
or
-t
R I 1 .2¢® 8
x=3e i7 € tcje . (6)

Similarly, we may eliminate x from (2) by writing

(D -3)[(D+2)x + (D - 1)y = el

2t

-(D + 2)[(D - 3)x + (D 4+ 2)y e 7]

whereupon,
(D -3)(M-1)y-(+23% = (0 - 3)et - (0 + 2)e2t.

Therefore,

2 2t 2L

(% = 4D 4 3= DP ~ dp = @iy = &b = 3a% = 2%% = 2g

or




o (7)

t
An integrating factor for (7) is again e8. Hence,

_2 A 2
y=ge +ty7e  +cye . (8)

Using (6) and (7) in (i), we have

t
»'—'et
_t _t
2.k 2 2t 8 2 .t 4 2t 8
wgier = pyenT & 2eye g & =gy eT = Cgn
or
t 15 9 8t
e +(—8—Cl -é-cz)e = g,
so that

Hence,

9¢c, = 1501,

or
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Using this value of Cy in (8), we obtain that

x =1t - L g2t
-3 17
2 * 4 2t
y=ge ¥'oye

is the solution of

As a final check, we need only see whether (9) satisfies (ii).

-t

o A
lE

(1)

Putting (9) into (ii) yields
o
1t 2 2% 1 8
7€ -15e - § ce
2B
2 _t 8 2t 5 8
+ -9- e + 17 e Yy cle
-t
t 3 2t 8
= e + 17 © 3 c,e
L -
4 t 8 2t 10 8
rYee tige o oe
-t
0 et R 2t + 0 cle 8 _ 2t.

The fact that (9) has but one arbitrary constant checks with the fact
that the determinant of coefficients in (2) is

P =k 2 D= 1

D~ 3 D + 2

Il

D+ 2)2- -1 - 3)

D2 + 4D + 4 - D

8D + 1,

which has degree 1.

2

+ 4D - 3

(9)
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Thus, as far as initial conditions are concerned, notice that (9)

allows us to choose either x(0) or y(0) at random but not both.

Example #4

(a) Show that the general solution of the system

2 -
(i) 9——’2‘+g{-+x=y+sint
at
i (1)
a’y . dx 2
(1) SL+FE -y =2t°-x
at

has 4 arbitrary constants.

Solution

In operator notation, (1) becomes

(0% + 1)x + (D - 1)y = sin £

(2)
2

(D + 1)x + (D% - 1)y = 2t

The determinant of coefficients is

p2+1 D=1 5 ,
, =@+ 1> -1 - @+ 1)[D-1)
D+ 1 D™ -1
=p*s3=p®e
_pd _ p2

which is a polynomial in D of degree 4.

(b) Eliminate y from (2) and then explain what this means in (1)
without use of operator notation.

Solution

We have

(%2 - 1)[(D% + 1)x + (D - 1)y = sin t]
(3)
2 2
(D - 1)[(D + 1)x + (D% - 1)y = 2¢2]
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-l = e

Hence,

4

- 1) - 0% - 1)Jx = (02 - 1)sin t - (D - 1) (2t2)

[(D
or
(0? - p®)x = p?(sin &) - sin t - D(2t?) + 2¢

Therefore,

4 2
o é_g = -2 sin t - 4t + 2¢°. (4)
dt at

In terms of (1), (3) tells us to do the following.
(I) Differentiate (i) twice and then subtract (i) from the result.

Call this equation (iii).

(IT) Differentiate (ii) and subtract (ii) from this result, calling
the resulting equation (iv).

(III) Form the equation obtained by subtracting (iv) from (3).
(c) What is the most general function x = x(t) which can satisfy (1)?

Solution

We need only find the general solution of (4). We have

D2(D + 1) (D - 1)x = -2 sin t - 4t + 2t2.

Thus, the solution of the reduced equation is

4 ok

X = (c0 + clt) + c,e” + c,e . (5)

2

We may then use undetermined coefficients to find a particular solu-

tion of (4) in the form

% = 8% % BT + 06 4 B sih £ * ¥ cos b (6)
This leads to

g 2At + 3Bt2 + 4Ct3 + Ecos t - F sin t




g—’z—‘-:2A+63t+12c1:2-Esint-—Fcost
dt
d3x
—= = 6B + 24Ct - Ecos t + F sin t
3
dt
d4x
e 24C + E sin £t + F cos t
dt

so that (4) becomes

24C + E sin t + F cos t

= =2 sin t - 4t + 2t2.

-2A + E sin t + F cos t - 6Bt - 12Ct2

Hence,
24C - 2A =0 A= =2 %
E=-1
F =0
GB=4+B=-§—
-12¢ = 2 > C = -

Therefore, (6) yields

+28 -2t - sin e (7)

and combining (7) with (5), we have that the general solution of (4)

is

X =c_ + clt + c et + C e—t - 2t2 + 3 t2 - % t4

- > 3 3 - sin t. (8)
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