o O S 69 fMa O 0 U e M

il & & fa e

ol &a &8 e

3

LINEAR INDEPENDENCE

A

Preface

The concept of linear independence (and linear dependence) transcends
the study of differential equations. For example, in studying systems
of n linear algebraic équations in n unknowns, we saw that there was
"trouble" if one of the equations was a linear combination of some of
the others in the system. By way of brief review, we saw that the

system

X+ 2y +3z=a
4x + 5y + 6z = b
7x + By + 92 = ¢

either had infinitely many solutions or else no solutions depending
upon whether or not ¢ = 2b - a. That is, in the given system of equa-
tions, the third equation was a linear combination of the first and
the second; in particular (and we used row-reduced matrix techniques
for carrying out these computations), the third equation is twice the
second minus the first.

Now, in this portion of our course (see, for example, Exercise 2.4.5),
we again see the danger of one function being a linear combination of
some others when we seek the general solution of a linear differential
equation. We shall dwell on this point in a moment. For now, how-
ever, let us admit that the concept of one element being a linear
combination of others plays an important role in any topic that can be

described as a linear system, and the study of linear systems is a

major topic of investigation in the study of (n-dimensional) vector
spaces. In Block 3, the final block of our course, we shall study
vector spaces a bit more thoroughly than we have up to now, and at
that time, we shall revisit linear independence from a more general

point of view.

Since this topic is rather subtle and often requires much experience
on the part of the student, we prefer to introduce it with some of the
general ramifications that apply to all vector spaces. In this way,
not only will we get a better understanding of the structure of linear
differential equations, but we shall be better fortified to discuss
the structure and behavior of any vector space when we get to this
study in Block 3.
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Introduction

Based on loose intuition, if one were trying to formulate a definition
of what is meant by the general solution of an nth order differential
equation, it is natural to assume that one would have begun with a
much less sophisticated definition than the one chosen by us (replete
with initial conditions, etc.). Most likely, we intuitively view an
nth order differential equation as one which we must integrate n times
in order to obtain the solution [and, indeed, this intuitive approach

is perfectly accurate in the ultra-simple case in which the equation

n
has the form Q—% = f(x)]. Each time we integrate, we get another

dx
arbitrary constant of integration. Thus, we might have been tempted

to define the general solution of an nth order differential equation

as any solution which contains n arbitrary constants.

What we showed in Exercise 2.4.5 was that such a definition failed to
capture the difference between arbitrary and independent arbitrary
constants. For those who have not looked at Exercise 2.4.5 or who
have but do not wish to interrupt this reading to return to it, let us
give another example. Clearly,

y = X + cq -+ 02 (1)
contains two arbitrary constants. That is, how we choose cqy in no way
2° On the other hand, it should be clear
that (1) is, in a somewhat disqguised form, a l-parameter family of

restricts how we may choose c

curves, not a 2-parameter family. That is, since the sum of two arbi-
trary constants is an arbitrary constant, we may replace the sum

c; + c, in (1) by the single arbitrary constant c, to obtain
V=X k@ (2)

Equation (2) represents a l-parameter family of curves which is
equivalent to the family represented by equation (1), even though two
arbitrary constants appear in (1).

To make this discussion more pertinent to our present study of linear
differential equations in general, we have seen in the present lesson
that if

L(y) =0 (3)

is any nth order linear differential equation, and if ¥y = ultx}, & wravy
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and y = un(x) were each solutions of (3), then so also was any linear
combination of Uyr eeey and u . (In the lecture, we stressed the case

n = 2, but the result holds for any order.)

In other words, under the given conditions,
g 1= clul(x} I cnun{x) (4)

is also a solution of (3), where Cpr wenr and cn are n arbitrary
constants.

The question that we wish to address ourselves to in this section is
under what conditions can we tell that the constants in (4) cannot be
"condensed," or from the opposite perspective, under what conditions
can a family of curves defined with less than n-parameters be the same
family as that named by (4) with its n arbitrary constants.

In order not to make this discussion too abstract, let us start with a
more concrete illustration. Suppose that equation (3) represented a
third-order linear differential equation, and that by "hook or crook"
we had somehow discovered that y = sinzx, y = coszx, and y = cos 2x
were each solutions of (3). Certainly then, we could conclude that
and c

for any choice of constants c c

l! 2! 3!

_ o i 2
y = ¢ sin"x + ¢, cos"x + c3 cos 2x (5)

was also a solution of (3).%*

However, if we now introduce the trigonometric identity
= 2 2
cos 2X = cos“x - sin“x, (6)

into (5), we obtain

. z E : = 2 2
*Do not try to find the specific linear equation for which sin“x, cos“x
and cos 2x are solutions. It is often a difficult job, but more impor-
tantly, it is irrelevant to our present discussion. It is shown in

Exercise 2.5.6 and reinforced in Section C that sinzx and coszx cannot
be solutions of (3) if (3) has constant coefficients. Notice also
that it is important to stress linearity. For example, it is simple
to construct non-linear differential equations which have given solu-
tions. By way of illustration, the trivial zeroth-order non-linear

equation (y - sinzx)(y - ccszx)(y - cos 2x) = 0 admits sinzx, coszx
cos 2x as solutions, but in this case, (5) is not a solution. That
is, keep in mind the fact that for linear combinations of solutions to
again be solutions requires that the equation be linear.




y = ¢ sinzx + c, coszx + c3fc052x - sinzx)
= (c; - ¢ )sinzx *: ey . 8 )coszx (7)
1 3 2 3 S

Since Cyr Cps and ¢y are arbitrary constants, so also are c and

1~ %3
cy - Cy- Letting k1 =cy - ¢y and k2 =c, + Cys equation (7) becomes

y = k1 sinzx + kz coszx. (8)

Thus, we see that (8), an equation with two arbitrary constants,

names the same family of curves as does (5), an equation with three
arbitrary constants. In other words, the constants in (5), while
arbitrary, are not independent in the sense that they may be condensed.
That is, there is an equation with fewer than n constants [e.g. equa-
tion (8)] which defines the same family of curves as does equation (5).

Our central question is what caused this to come about? Hopefully,

the answer is clear at least in terms of our concrete example. Namely,
one of our solutions (in this case, uy = cos 2x) was a linear combina-
tion of the previous* solutions (ul = sinzx, u, = coszx). In parti-
cular,

in our present illustration.

In other words, returning to the more general case, if any specific
member, . of [ul, % un} may be expressed as a linear combination
of the preceding members of the set, then the term ckuk(x} is "redun-

dant" in equation (4).

*The term "previous'" suggests that the solutions are ordered. For
2
example, had we ordered the terms by u; = cos X, u, = cos 2x, and
u3 = sinzx, our identity tells us that Uy, = u; - u3. Now, however, u,

is not a linear combination of "previous" solutions since u, is listed

after u, - Notice, however, that since u, = u; - u,, we may write that
Uy = uy - ou, (S R sinzx = coszx - cos 2x) and now ug is a linear com-
bination of terms which come before it. 1In other words, if any member
of {ul, simin un} is a linear combination of some others, we can always

rewrite the equality so that one member is a linear combination of the
preceding ones, no matter how the members are listed.

3.4




Gn A &5 M S 0 M O & e e MM

3% © ©3 M i M

[

Namely, if

w (%) = aju;(x) + ...+ a qu g (x) (9)

[where one or more of the a's may be 0], then by (9),

y =cqu(x) + ...+ _yu ,(x) +cu (x)+ ... +cu (x)

may be written as

y = cqu (x) + woo 4 ¢ qu (x) + ¢ laju(x) + ...+ a qu (X)) 4+
R cnun(x)
or
y = (e + a;c)u (x) + ... + (e 4 *+ a _;0)0u & +
+ ...+ cpu (x), (10) I

where in (10) there are only n-1 arbitrary constants since the term

involving uk(x} has vanished.

Again, more concretely, suppose we let n =5 and u, = u, + 2u

4 1 3
(= lu1 + Ouz + 2u3). Then

y = cyu + c2u2 F 03u3 B c4u4 *+ c5u5 +

y = cju; + cyu, + cyug 4 c4{u1 + 2u3} + cgug >

L
Il

(cl + c4}u1 + c,u, + (03 + 2c4}u3 + Cglg (11)

Letting kl =cq t ¢y k, = Cyr k, = cy + 2c4, and k5 = c (11)

2 3 5"

becomes

y = klul + k2u2 + k3u3 + k5u5

and this equation has four, not five, arbitrary constants.
The preceding discussion is usually formalized as follows.

Given the set of functions of x ful, § S un}, the set is called

linearly dependent if at least one member of the set is a linear




combination of the others. (Whenever this happens, it is also true
that the one member can be chosen to be a linear combination of the

preceding members, no matter in what order the members are listed.)

If the set is not linearly dependent, then it is called linearly
independent.*

From an esthetic point of view (i.e. because the definition doesn't
depend on how the set is ordered), many authors prefer to begin with
a definition of linear independence and then define {ul, oy un] to
be linearly dependent if it is not linearly independent. When this is
done, the usual definition is:

The set [ul, sraasp un} is said to be linearly independent if and only

if cqu; *+ ... +cu = 0 -+ Gy = so@ ™ Gy = 0.*¥* That is, {ul, i el un}

is linearly independent ++ the only way a linear combination of

Uys e+, 4 can be 0 is if all the coefficients are 0.

n

Trivially, if Cqr = «e. =C = 0, then c19 ¥ s ¥ eu = 0, but the

converse must also be true for linear independence.

For example, returning to {sinzx, coszx, cos 2x}, clearly
. 2 2 -

0 sin"x + 0 cos™x + 0 cos 2x = 0.

However, the fact that cos 2x = coszx - sinzx means that

4h D 2 -
sin"Xx - cos"™x + cos 2x = 0

or
A 2 _
(1)sin“x + (-1)cos“x + (l)cos 2x = 0. (12)
4 + +
% €2 3

From (12), we see that we have a linear combination of sinzx, coszx,

*As a matter of semantics, one sometimes says that Uy Ugy weey and u

are linearly independent (dependent) rather than {u vy un} is

1’
linearly independent (dependent). We shall not worry about the choice
of wording and will use whatever expression seems more comfortable at
the given time.

**Recall that u = 0 means u(x) = 0, i.e. u = 0 means u(x) = 0 for
every X in the domain of u. Thus, what we really mean is that

_ _ _ B 2 _
clul(x) F oo« F cnun(x) =0 % Gg 0w B G = 0. For example, x 4x

+ 3 =0+ x =1 90or x = 3. Hence, if we let u(x) = x2 - 4x + we

3,
0.

would not say that u = 0 since it is false that x2 - 4x + 3
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and cos 2x which is identically zero but not all the coefficients [in
fact, in this illustration, (12) shows that none of the coefficients]
is 0. Hence, {sinzx, coszx, cos 2x} would still be linearly dependent

under the new definition.

In summary, the two methods of defining linear dependence are equiva-

lent, but by beginning with the one for linear independence, we do not
have to become involved with the discussion of the order in which the

members of the set are listed.

Which ever definition we choose, the point is that our constants are
"condensable" in (4) if and only if {ul, & ¥ un] is linearly
dependent.

Of course, with our more sophisticated definition of "general solu-

tion," we are still not sure that the mere fact that {ul, S un} is
linearly independent is enough to guarantee that we can meet the ini-
tial conditions. Thus, at this stage of the game, all we can say is
that linear independence is necessary (but perhaps not sufficient) for
(4) to be the general solution of (3). We shall talk about this in
the next section, but for now, we would like to point out one very

major property of a linearly independent set.

Recall that in our study of partial fractions, we often invoked the
technique that if

2 n _ 2 n
ag S 5 alx + azx F oawa F anx = bD + blx * bzx o R bnx
then
a, = bo' a; = bl’ a, = b2, s ey AN a, = bn'

While this may seem very natural, its validity depends on the fact

that {1, x, x2, ssop %03 48 a linearly independent set. [As mentioned

in Part 1, the easiest way to prove that {1, x, xz, % wia x"} is lin-
early independent is by successive differentiation. By way of review,

let's analyze the particular case n = 3. If

. 2 3 -
(i) a, + a;x + a,x + ajx” = 0
then

.. b
(ii) a; + 2a2x + 3a3x = 0




(iii) 2a2 + 6a3x =0
and
(iv) 6a, = 0.

3

From (iv), a; = 0. Setting aj = 0 in (iii) yields that a,
knowing that both a, and az = 0 implies, from (ii), that a

= 0, and

i 0. Once
a; =a, =a;=0, (i) implies that Ay is also 0. Hence, we have shown
that the only linear combination of 1, x, x2

0 + ox + ox2 + ox3.]

, and x3 which is 0 is

The crucial point is that we may equate like coefficients if and only
if {ul, wcw un} is linearly independent. For example, suppose

2

A sinzx + B cos ' x + C cos 2x 0 =0 sinzx + 0 coszx + 0 cos 2x.

If we equate coefficients of like terms, we would conclude that
A=0, B=20, and C = 0,

but this need not be true!

In particular, since cos 2x = coszx = sinzx, it follows that
o 2 2 _
sin"x — cos"x + cos 2x = 0
from which we see that
2

A sinzx + Bcos"x +Ccos 2x =0

ifa=1, B= -1, and C = 1.

: : : - 2 v 2
More generally, in this example, since cos 2x = cos“x - sin“x, we may
always rewrite

A sinzx + B coszx + C cos 2x
as

A sinzx + B coszx + C{coszx - sinzx) = (A = C)sinzx + (B + C)coszx.

Consequently, if




s A S O @ S L S e a O B

ra M

s O Ea &

A-C=0
B+C=0
which is equivalent to A = C = -B, then

A sinzx + B coszx + G cos 2% = 0a
That is,

;2 2 _
A(sin“x - cos“x + cos 2x) = 0

for any value of A.

The key point is that if

auy * ... fau = blu1 e K bnun

then

(al - bl}ul * sew (an - bn)un =0, (13)
regardless of whether {ul, s 5 un} is linearly independent.

However, since (13) represents a linear combination of Upr o eeey and u,
which is identically zero, then all the coefficients must be zero if

and only if {ul, s 7 un] is linearly independent. In other words,
then, we conclude from (13) that

(al - bl) = (a2 - b2) = .. (an - bn} =0 (14)

if and only if {ul, T un] is linearly independent.

Clearly (14) is equivalent to

a; = bl' a, = bz, : ey And 8. = bn’

Thus, in any method involving undetermined coefficients, the success

of the method hinges on linear independence. In summary, then, if

n n
Zakuk B Zbkuk
=1 k=1




and if {ul, i sy un} is linearly independent, then

a; = bl' a, = bz, « sy and I bn'

We shall have more to say about this as a note at the end of the next
section.

Cc

Application to Linear Differential Equations

Up to now, our discussion has been rather general concerning the con-
cept of linear dependence. In Block 3, we shall try to prove theorems
about properties of linearly independent vectors, and we shall also
see what other properties are possessed by linearly independent sets of
vectors. For our present purposes, however, such a discussion takes

us too far a field of our immediate concern of differential equations.

Let us, therefore, return to our study of linear homogeneous differen-
tial equations.

Given the nth-order equation
L(y) = 0, (1)

let us assume that y = ulfo, wssy Aand y = un(x) are each particular
solutions of (1). What we would like to know is whether the set
{ul, se% g un} is linearly independent.

In general, this is a very difficult question to answer, but in this
particular case, we have some powerful calculus at our disposal. For
example, to be a solution of (1), a function must possess at least its

n

first n derivatives (since the term any occurs). For what we have in
dx

mind, even possession of the first (n-1) derivatives would be

sufficient.
Briefly outlined, our method of attack is the following.

(i) To show that {ul, o SIS un} is linearly independent, we must prove
that if c9, o e E cu, = 0 then Cp T wwe S, = 0, or stated in
terms of identities, we must prove that if

1
o

clul(x) T cnun(x}

(2)

then

3.10




N & S G O m &em e

N &N & & a e e

& & & e

(ii) We, therefore, assume that

clultx) + czuzix) # oees F c3nn(x) = 0.

Since (2) is an identity, we may equate the derivatives of both sides
of the equation to obtain

viix) = & 2'(x] e E c3un'(x) = 0. (3)

clul 21.!

We may continue in this manner until we obtain

-1y 4 ...+ cu @Dy =9

u - =
o s n n b

1

at which time we obtain the system of equations

-

clul(x} + ... + cnun(x) =0
- . (4)
(n-1) (n-1) =
c Uy (x) + ... + cu (x) =0 J
Clearly, one solution of (4) is ¢; = ... =¢, = 0. How can we be sure

that there are no others?

Well, one thing we could do is replace x in (4) by some specific
value, say, x = X+ If we do this, (4) becomes a system of n linear
algebraic equations in the n unknowns Cpr weer and c, - That is, (4)

becomes
cquy(x ) + ...+ cnun(xo) =0 i
: L . (4")
clul(n_l)(xo) T cnun(n'l)(xo) =0 J
Since Gy = wes BC, = 0 is one solution of (4') and since a linear

system has a unique solution if and only if the determinant of coeffi-
cients in (4') is not zero, we need only check that the determinant of
coefficients in (4') is not zero.




Now, the determinant of coefficients in (4') is
ul(xo) alaita @ un(xo)

ul'(xo} s de un‘(xDJ

(n-1) (n-1)
(xOJ eieas A {xO)

1 n

and clearly its value depends on Xy-

However, if there is even one number, X for which this determinant
is not zero, then for this value of X the system of equations in
(4') has a unique solution, and since Cy = sue BlRL T 0 is one solu-

n
tion, it must, therefore, be the only one. But since Cpr weer and <,

are constants, the fact that Cp = .. =€y 0 for one value of X
means that Cq = +ov = cn = 0 for all =x.

In summary, then, if y = ul(x), ce.y and y un(x} are each solutions

of the nth-order linear equation
L(y) =0

then {u;, ..., u } is linearly independent as soon as there exists at
least one value of x for which

* # 0. (5)

The left side of (5) is given a very special name. It is called the
Wronskian (determinant) of {ul, P un} and usually abbreviated as
W(ul, s un}. In other words, the number W(ul, - un) is defined
by

ul(x) W i un(x)

W(ul, M : . (6)
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and since u and un are each

1; CRCEE

w(ul, s un}. [For this reason,

well as W{ul, i s un).]

Perhaps the best way to digest the
few examples.

Example #1

Suppose we solve y

. The
-x

_y'=0
so that y =1, y = ex, and y = e

functions of x, so also is

one also sees the notation W(x) as

previous remarks is by viewing a

s ’ . 3
auxiliary equation is r~ - r = 0,

are each solutions of the equation.

Letting ul{x) =1, uztx) = g, and u3(x} = e-x, we obtain ul‘ =
ul" =0, uz'(x) = uz“(x) = ex, u3'(x) = —e—x, and u3"{x) = e X,
Hence,
(+) -
1 ex e o
(=D % =
W(ul,uz,u3) = (9) e -e
0 ex e_x
X -X
e -e
. % -X
e e
= exe-x - e (—e-x}
=1+ 1

Equation (7) is stronger than what is actually needed.

(7)

All we needed

to show was the existence of at least one value of x for which

W(ul,uz,u3) # 0 and equation (7) shows that for every real x,

W(ul,uz.u3) # 0.

In any event, we conclude from (7)

independent.

X

that {1, e, e *} is linearly

As a footnote to this exercise, notice that in terms of our discussion

at the end of the previous section, we may conclude that if, for

example,




(A + B+C) + (20 + B - Qe

then

A+B+C=0

2A +B -~ C

3A- B + C

I

since we may

of functions

Example #2
Find three 1i

Solution

3
Fromr~ + r =

ul(x) =1, u,

ul‘{x) =05 uz'(x)

and

uln (x)

Therefore,

I

0, u

Fg (90 =B * e > =28 ~ 38 "

(= 0 + 2% - 3¢7%)

=3

-

equate the coefficients of "like" terms whenever our set

X

(in this case, {1, &%, e *)) is linearly independent.

nearly independent solutions of

0 = r(r2 + 1), we conclude that three solutions are

(x) = sin x; u3{x) = cos x. Hence,
= Cos X, u3'(x) = -sin X

2“(x) = -sin x, u3"(x) = ~C0Ss X.

1 sin x cos X

0 cos X -gin x

0 -sin x -cos X

cos X -sin X

-sin x -Cos X

2 )
-CcOos X - sin'Xx

=1
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In particular, then, W(ul,uz,u3} Z 0; hence, {1, sin x, cos x! is
linearly independent. Consequently, y = = + c, g8in: x < Cy COs X is

the general solution of y™ + y' = 0.

We now want to throw in a word of caution. All we have shown so far
is that if W(ul, T un} Z 0, then, {ul, i B un] is linearly inde-
pendent. We have not shown that if W(ul, SRR un) = 0 then

{ul, e un} is linearly dependent. One reason we have not shown
this is that it need not be true! (Quite in general, if p*qg, we can-
not conclude that if p is false, then g is also false.) We illustrate

this in our next example.

Example #3
3 3
Let ul(x) = x~ and uz(x} = |x|”. Compute W(ul,uz}.

Solution
By definition,

W(ul,u2)

The "major" problem here is to compute uz'(x). Recall that
x, if x >0
Ix| =

-x, i1f x <0

Hence, in this example,

x3, FEx 20
uz(x} = ]x|3 =
-x3, if x < 0
Hence,
3x2, i€ x 3.0
u,' (x) = g
-3x, if x < 0
Since ul'(x) = 3x? for all X, we may proceed by cases.

3.15




Case 1: x >0
Then
u, (x) o (%)
W(ul,uzl = & 2
ul'(x) u2'(x)
x3 x3
3x2 3x
= 3x5 - 3x5
= B
Case 2: x < 0
Then
u, (x) u, (x)
W{ul,uzj = 1 2
; 4 L
uy (x) u, (x)
x3 -X
3x -3x

i
o
.

Hence, in this example,

W(ul,uz)

= 0.

=

Yet, {u;,u,} is linearly independent!

That is, |x|3 is not a constant multiple of x3. Pictorially, the
graph of x3 is

3.16



while the graph of ixl3 is

Y
A
y = x>
> X

That is, for x > 0, lx|3 =x = 1{x3) and since 1 # -1,
and for x < 0, |x3| g o -1(x3) |x|3 7 ke
Example #4
Compute W{ul,uz,u3) where ultx} = sinzx, uZ(x) = coszx, and u3(x) =
cos 2x.
Solution
We have
ul'(x) = 2 sin X cos x = sin 2x; ul“(x) = 2 cos 2x
u,'(x) =2 cos x (- sin x) = - sin 2x; u,"(x) = -2 cos 2x
u3'(x) = -2 sin 2x; u3"(x) = -4 cos 2x.
*Recall that, in general, one obtains y = |f(x)] from y = f(x) by re-

flecting about the x-axis the portion of y = f(x) which lies below
the x-axis.




Hence,
sinzx coszx cos 2x
W(ul,uz,u3) = sin 2x - sin 2x - sin 2x
2 cos 2x =2 cos 2xX -4 cos 2x
sinzx coszx cos 2x|*
= 2 sin 2x cos 2x 1 -1 -2

1 =1 =2

2 sin 2x cos 2x [0]%*
= 0

The interesting thing about Example #4 is that we have previously seen
that the functions Uy, u,, and u, in this example are linearly depen-

dent. Yet, the faét that the Wronskian is zero does not help us come

to this conclusion, since in the previous example, we showed that

even when the Wronskian is identically zero, the functions may be

linearly independent.

It would be nice to be able to use the Wronskian as a necessary and
sufficient condition to determine whether or not functions were lin-
early independent. Yet Examples #3 and #4 show us that this cannot be
done. However, let us also observe that up to now, nothing in our
examples has made it necessary for the functions to be solutions of a
linear homogeneous differential equation.

What is very interesting is the fact that if {ul, e un} is a set
each of whose elements is a solution of a linear homogeneous differen-

tial equation, then:

(1) {ul, ..., u_} is linearly dependent if and only if
0; and

n s

W(ul,  sieg un)

(2) W{ul, siraraip un) is either identically equal to zero or else it is
never equal to zero.

*In Block 3, we examine the various properties of determinants in
greater detail (such as factoring out a common factor of a row or that
the determinant is 0 if two rows are the same). But, if you do not
know these results, the same answer can be determined by computing the
3 by 3 determinant in the traditional manner.
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In other words, as long as Uy, ..., u are solutions of L(y) = 0, then
we may test the linear dependence of [ul, . un} simply by computing
W(ul, . un). If W(ul, ey un} = 0, then {ul, ey un} is linear
dependent, otherwise, not. Moreover, in this case, either

W(ul, wjisicn un) = 0, or else it is never equal to 0 for any value of x.

While any proof of these two remarks will be left as optional notes at
the end of this section, it should be pointed out that there is a
rather strong connection between the Wronskian determinant and the
definition of what is meant by a general solution of a differential
equation. In particular, if y = clul(x) + ee. + cnun(x) is the gen-
eral solution of L(y) = 0 on some interval I, then for any xOsI, we
must be able to determine the c's uniquely such that for given numbers

y (n-1)

¢y ses; and Yo , we can satisfy the conditions that when x = Xy

¥ =¥y y! = Yol’ -.-, and y(n-l) = yo(n_l). In terms of a system of

equations, this means that

(o]

Yo = clul(xo) F e ¥ cnun{xo)

u (l‘l—l) (x)

5 1Yy ) £ s #em

nn

(n-1) _ '(n-l)(x
o

-

must have a unique solution for Cyr wnns and Cr and this in turn
implies that

#0 (8)

where the left side of (8) is precisely W(ul, R un) evaluated at
X = X_.

Some Optional Notes

(I) Suppose that y = ul(x), y = uz(x), ee., and y = un(x) are solu-
tions (but not necessarily linearly independent) of

Y(n) (n-1)

+ an_llx)y +# s # al(x}y' + ao(x)y = 0.
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Let W denote the Wronskian determinant of {ul, ey un}. Then W

satisfies the first order linear equation

aw _
ax t 3 (VW = 0.

Since we have not studied n by n determinants in detail as yet,
limit our "proof" of (1) to the case n = 2, in which we may use
force" computation without too much inconvenience.

We have that y = ul(x) and y = uzfx) satisfy

b s al(x)y' + ao(x)y = 0.

That is,

" ] = " 1] -
Ui ®ajhyc taghy S8y Faust dan, =0
Then, since

u u

_ 1 2 _ 0o :

W = 5 o = uju, u; 'u,
1 2

we have from (4) that

gﬂ.:i(uu'—u'u)

dx dx 172 L. 52

|
)

" [ - 1 1 "
U+ ouy uz') (ul u,' + uy uz)

Using (4) and (5), we conclude that

aw "
I + alw ulu2

1

- u,"u, + a,u,u,.’ u, 'u

1 33 s e b AL L

ul(uz" - aluz'} - u2(ul“ + alul'}.
Now, from (3)

"oy T
u2 alu2 a0u2

(1)

let us
"brute

(2)

(3)

(4)

(5)

(6)
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and

" | g
ul + alul = aoul.

Putting these results in (6) vyields

dw

== - alW ul(—aouzl - uz(—aoul)

e e TR T

0.

What (1) implies is that W(x) is either identically zero or else it is
never zero. Namely,

Ian_l(x)dx
e

is an integrating factor of (1) whereupon we obtain

-Ja (x)dx
W(x) = ce n-1 = (7)

Since the exponential can never be zero, we see from (7) that
W(x) =0 «—+ c =0, but if ¢ = 0, W(x) = 0.

Egquation (7) establishes the result that if ul{x}, ..., and un(x) are
solutions of L(y) = 0 on [a,b] and if W(xOJ # 0 for even a single
point xoe(a,b), then W(x) = 0 for all xe(a,b).

(IT) In the special case of constant coefficients, we have seen that

the only solutions of L(y) = 0 .are those of the form xkeaxsin Bx or

xkeaxcos Bx. In fact, if we allow the use of non-real numbers, these

solutions have the form xkerx_ Moreover, if L(e"®) = 0 has no re-
peated roots, all solutions are of the form erx-

rx r,X r X
Suppose, then, that y = e r Y = e ; «ssp and y = e are all
solutions of L(y) = 0, where L(y) = 0 is an nth-order linear




homogeneous differential equation with constant coefficients. Then,
r X r X
W(e §oeeag ) is given by

rlx sz r x
= = P e
r.x r.x r x
1 2 n
rle rze PR r.e
(8)
B zerlx . 2 r2x . 2er X
1 2 o n
n-1 F1* o et a1 Tp*
r e «s I e
1 2 n
I, X
"Factoring out" e from the kth column of (8) [where k =1,2,...,n],

we see that (8) is equal to

1 1 3 _— i
riX r,X r X | ] 3 cEIU
e e i e B (9)
@ 2 2 2 " 2
1 X - T n
:n-l n-1 n-1 n-1
r, r, ry T8
The determinant
1] 1 . ne 1
rl r2 - rn
2 2 2
T, r, S -
# n-1 § n-1 . n-1
j i 2 = n

is given the special name of The Vandemonde Determinant. It can be

shown that the value of this determinant is given by the product
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[T (x5 - rj].* (10)
i>j

While we shall not prove this result here, we shall at least verify it
in the cases n = 2 and n = 3.

Namely,
1 1
= ¥ =
. 1
¥ T2
and
1 1 1
¥3 I3 Ty s 21 T3
o r r = - +
® . ? r 2 r 8 r 2 r 2 T 2 r 2
2 2 2 2 3 1 3 1 2
i | £ I3
_ 2 2 B 2 2 2 _ 2
= r2r3 r, ry r1r3 + ryr, + rlr2 r;'r, (11)

and a trivial check shows that (11) is equal to

(r3 = ry)lry - ry)r, - ry)

which is || (r. - r.).
i>j J

The key point is that once we assume the truth of (10), (9) reveals
that

(r, + ... + r )x
W(e 1 ; eees € Ny = e 1 2 rl (ri - r.). (12)
i>j J
[ THE. SERTNE. T D T <
Since e can never be zero and since IT (ri - rj) =0
i>j

if and only if r, = rj (i.e. the only way a product can be zero is if

n
*In the same way that one uses Lfak as an abbreviation for
k=1
n
(al + e an), one uses [] ay as an abbreviation for the product
k=1
aja, ... a.
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at least one of the factors is zero), we conclude from (12) that

rlx rnx)

W(e v oveei @ = ) +* r, = rj for some i # j; i, =1, 2, ..., n.

In other words, then, if Tiv wens and r_ are all different,
r.x r X .

fe * , +.., € %} is a linearly independent set.

More generally, it can be shown that the only way a set of terms of
the form {x*e™cos fx} can be linearly dependent is if k, o, and B are
the same for two different terms.

While we are being a bit skimpy about the details, our main aim is to
help you get a better idea of what we mean by linear independence and
how the Wronskian determinant plays a key role in determining whether
n solutions of an nth order linear equation generate the general
solution.
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