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DEVELOPMENT OF THE COMPLEX NUMBERS 


In this chapter, we shall try to motivate how the structure of the 


complex number system developed. We shall investigate this develop- 


ment both from an algebraic and a geometric point of view. We shall 


not be concerned with the practical applications of the complex num- 


bers here in the sense that these will be stressed as they occur 


throughout this block. 


A 


Complex Numbers From an Algebraic Viewpoint 


When only the natural numbers were considered to be real, it turned 


out that there could be polynomial equations with real (i.e., natural) 


coefficients that did not possess real solutions. For example, using 


the language of sets, if our universe of discourse is the set of 


natural numbers, the solution set of the equation 


is the empty set. More symbolically, 


Now suppose we decide that we would like equation (1) to have solu- 


tions. Why we would make such a decision is quite subjective, but, 


for example, we might be interested in knowing what the temperature 


is if when it warms up 4OF the new temperature will be 1°F. 


Be this as it may, once we elect to extend the number system so that 


(1) has a solution, we wind up inventing the integers. 


If we now look at the integers, we see that the integers include the 


natural numbers, and of even greater importance, the rules of arith- 


metic for the integers agrees with the previous rules of arithmetic 


for the natural numbers in all those cases where the integer also 


happens to be a natural number. Indeed, this is the meaning of an 


extended number system. It must not only be a super-set of the ori- 


ginal number system, but it must preserve the structure of the origi- 


nal system. 


At any rate, if we agree to consider the integers as being the new 


real number system (i.e., we extend our universe of discourse to be 


the set of integers rather than the set of natural numbers), we now 




find that equation (1) does have a solution (that's why we invented 


the integers), and in fact the solution set is given by 


Ix: x + 4 = 3) = 1-11. 

Notice that equation (3) is not a contradiction of equation (2) since 


the equations are in reference to different universes of discourse. 


If we now look at the equation 


we see that this equation has real (integer) coefficients but it does 


not have a real solution since the double of an integer cannot be odd 


while 3 is odd. 


By the way, to emphasize how we preserve structure, notice that in 

trying to solve equation ( 4 1 ,  we use the rules of arithmetic which 

apply to the integers, and we conclude that 2x - 3 = 0 is equivalent 

to 2x = 3 (since we just add -3 to both sides of the equation), and 

that this is equivalent to x = 3 t 2 since we just divide equals by 

equals. Thus, if we decide to invent a new number which is denoted 

by 3 4 2, we must make sure that these new numbers obey the old rules 
since the expression 3 + 2 was arrived at by using the old rules. 

To make a long story short, the solution of equation (4) yields the 


invention of the rational numbers. Summarized in terms of sets again, 


Ix: 2x - 3 = 0) = g 

if our universe of discourse is the integers, while 


Ix: 2x - 3 = 01 = Izl3 

if the universe of discourse is the rational numbers. 


Proceeding in this way in the last chapter we finally came to a new 


batch of numbers which we called the real number system. By defini- 
-
tion, these were the set of numbers defined by 


Ix: x2 >, 0). 

Notice that the test for membership given in (5) is basically no more 


real than any of the previous number systems, except, perhaps, in the 




sense that (5) includes all those numbers which we previously called 


real; namely, the natural numbers, the integers, the rational numbers, 


and the irrational numbers. 


Suppose now we look at the equation 


Equation (6) has real coefficients (where now for the first time, 


real means "real" as defined in (5); in other words, it is in a sense 


a quirk of vocabulary that the term "real" ultimately came to rest 


upon the set (5) rather than upon any other set of numbers), but 


according to the criterion established by (5), equation (6) cannot 


have a real solution since from equation ( 6 ) ,  it follows that 


and there is no real number which can satisfy ( 7 ) .  

In summary, if our universe of discourse is the set denoted by equa- 


tion (5) [we hate to use the term "realn numbers because it seems 


prejudicial] then 


(x: x2 + 1 = 01 = g. 

BUT IT IS CRUCIAL THAT YOU NOTICE THAT A SOLUTION OF x2 + 1 = 0 IS 


NO MORE "UNREAL" THAN WAS A SOLUTION OF x + 4 = 3 WHEN THE ONLY "REAL" 


NUMBERS WERE THE NATURAL NUMBERS. 


Now based on our "real-life" experience, it is probably more diffi- 


cult to rationalize why we would like x2 + 1 = 0 to have solutions 


than it was to rationalize why we would want, say, 2x - 3 = 0 to have 


solutions. Nevertheless, if we should decide that x2 + 1 = 0 should 


have solutions (and we hope that the lecture was sufficient motiva- 


tion for you to feel that such a decision is justified, but even if 


not, the fact remains that from a purely philosophical view we have 


this right), then we must have more numbers. Moreover, since the 


existing numbers are being called "real," any new number is, to say 


the least, non-"real." 


Let us invent the symbol (numeral) i to denote solution of the 


equation x2 + 1 = 0. (As an interesting aside to the number-versus- 


numeral theme, one often uses the numeral j rather than i in electri- 


cal engineering since i is usually used in that field to denote 




c u r r e n t .  A s  a f u r t h e r  a s i d e ,  n o t i c e  t h a t  i n  e i t h e r  c a s e ,  i f  one i s  

a l s o  us ing p lana r  v e c t o r s  i n  Car tes i an  coord ina tes ,  t h e  "numerals" i 
-F 

and j a r e  a l s o  p r e s e n t ) .  


I f  we now impose t h e  usua l  r e s t r i c t i o n  t h a t  our extended number sys-  


t e m  must obey t h e  same s t r u c t u r e  a s  t h e  system it extends ,  we f i n d  


t h a t  s i n c e  i2= -1 (by d e f i n i t i o n  of being a s o l u t i o n  of x2 + 1 = 0) 


then  ( - i I 2  = -1 a l s o .  


Namely, 


Notice t h a t  whi le  every s t e p  may have seemed vobvious" i n  going from 

(9)  t o  (9.51, w e  w e r e  assuming c e r t a i n  s t r u c t u r a l  p r o p e r t i e s .  For 

example, whi l e  it is t r u e  t h a t  -a = - l ( a )  f o r  any r e a l  number a ,  w e  

were a l s o  assuming t h a t  t h i s  r u l e  a p p l i e d  t o  our  extended number 

system when w e  wrote -i = (-l)is i n c e  i i s  n o t  a r e a l  number. 

Thus, i n  t h e  extended number system t h e  equat ion  x2 + 1 = 0 has  two 

r o o t s  ( a c t u a l l y  w e  have only proved t h a t  it has  a t  l e a s t  two r o o t s ,  i 

and -if b u t  w e  do n o t  want t o  become any more r igorous  a t  t h i s  p o i n t ) .  

I f  w e  e l e c t  t o  c a l l  t h e  extended number system i n  t h i s  case  t h e  com-

p lex  numbers, w e  a r e  saying t h a t  

i f  our  un ive r se  of d i scourse  i s  t h e  complex numbers. 

Before w e  dec ide  t o  pursue t h e  computat ional  a s p e c t s  of t h e  complex 

numbers any f u r t h e r ,  l e t  us observe t h a t  w e  could nex t  c a l l  t h e  com-

p lex  numbers t h e  new " r e a l "  numbers, and it appears t h a t  w e  could 

con t inue  t h i s  sequence of ex tens ions  of t h e  number system ad inf in i turn  

(ad nauseum?). An amazing r e s u l t ,  which s h a l l  be  d i scussed  a s  a 



prelude to the solution of Exercise 1.3.7 in the next unit, is that 


complex numbers end the chain! In other words, any polynomial equa- 


tion which has complex numbers as coefficients has all its roots as 

complex numbers. In other words, there is no need to extend the com- 


plex numbers if all we want to be able to do is express the solution 


set of each polynomial equation with complex coefficients! 


Complex Numbers From a Geometric Viewpoint 


Very early in Part 1 of our course, we established the theme that a 


picture is worth a thousand words. We would now like to revive this 


idea in terms of the development of the complex number system. We 


began this chapter with an algebraic treatment of the complex numbers 


in order to emphasize another central theme of our course - namely, 

that of mathematical structure, but we feel that a geometric develop- 


ment might make things a bit easier to visualize. 


To begin with, notice that when we used the number line, we were in 


effect visualizing numbers either as points on the line or else as 


lengths (and notice in this respect the notion of vectors; that is ii 


we assume that a line segment originates at 0 it terminates at the 


point which names its length). 


To motivate the complex numbers from the number line motif, all we 


need ask is whether a point should be denied the "privilege" of naming 


a number simply because it was not located on the number line? In 


other words, since a point in the plane which is not on the number 


line is as "legitimate" a point as one which is on the number line, 


shouldn't these points also be allowed to name numbers? 


Stated in terms of lengths, shouldn't a length drawn from the origin 


to any point in the plane be as valid a way of denoting a number as a 


line drawn from the origin to a point on the x-axis? 


Once we agree to answer the question in the affirmative, we have 


agreed to extend the number system, at least from a geometrical point 


of view. This means that we must also extend the geometric versions 


of the rules of arithmetic from the x-axis to the plane. 


For example, two numbers were said to be equal if as lengths starting 


at the origin, they terminated at the same point on the number line. 


We would now define two of our new numbers to be equal simply by de- 


leting reference to the number line and replacing it by reference to 


the plane. That is, if we agree to view lengths in the plane as 




denot ing  t h e  complex numbers, w e  d e f i n e  two complex numbers t o  be  

equa l  i f  when they o r i g i n a t e  a t  t h e  o r i g i n  they t e rmina te  a t  t h e  same 

p o i n t  i n  t h e  plane.  

Notice t h a t  t h i s  g ives  us  a  way of d e s c r i b i n g  what we have c a l l e d  t h e  

r e a l  and t h e  imaginary p a r t s  of a complex number i n  t e r m s  of t h e  

plane.  Namely, suppose w e  i d e n t i f y  t h e  x-axis  wi th  what we w i l l  c a l l  

t h e  r e a l  a x i s ,  and t h e  y-axis wi th  t h e  (pure ly )  imaginary a x i s .  Then 

t h e  p o i n t  ( a , b )  i n  t h e  xy-plane denotes  t h e  complex number a + b i .  

W e  may a l s o ,  i n  t h i s  c o n t e x t ,  view t h e  complex number a s  being t h e  

v e c t o r  from t h e  o r i g i n  t o  t h e  p o i n t  ( a r b ) .  When w e  use  t h i s  i n t e r -  

p r e t a t i o n  t h e  xy-plane becomes known a s  t h e  Argand Diagram. I n  o t h e r  

words, t h e  Argand Diagram i s  t h e  xy-plane viewed a s  d e p i c t i n g  t h e  

complex numbers. 

How s h a l l  we add two complex numbers? W e l l ,  i f  w e  had never invented 

t h e  concept  of v e c t o r  a d d i t i o n  p rev ious ly ,  w e  would have been tempted 

t o  do s o  now because t h i s  i s  p r e c i s e l y  how numbers a r e  added a s  

l eng ths .  I n  o t h e r  words, viewed a s  v e c t o r s ,  w e  add two complex num-

b e r s  a s  w e  would add v e c t o r s ;  and t h i s ,  t o o ,  cap tu res  t h e  f l a v o r  of 

what it means t o  add t h e  r e a l  p a r t s  and t h e  imaginary p a r t s  t o  form 

t h e  sum of complex numbers. 

I f  w e  now d e f i n e  m u l t i p l i c a t i o n  of complex numbers t o  be obta ined 

geomet r i ca l ly  by mul t ip ly ing  t h e  magnitudes and adding t h e  arguments 

( a s  desc r ibed  i n  Lecture  1.010) w e  see t h a t  t h i s  n o t  only  ag rees  wi th  

t h e  d e f i n i t i o n  given i n  terms of t h e  l a s t  s e c t i o n ,  b u t  t h a t  a l s o  it 

extends t h e  i d e a  of m u l t i p l i c a t i o n  i n  t h e  r e a l  case .  Namely, when w e  

mul t ip ly  r e a l  numbers, w e  mul t ip ly  t h e i r  magnitudes and add t h e i r  

arguments. The key p o i n t  f o r  r e a l  numbers i s  t h a t  t h e  argument i s  

e i t h e r  O 0  ( i . e . ,  when t h e  number i s  p o s i t i v e )  o r  180' ( i . e . ,  when t h e  

number i s  n e g a t i v e ) .  Thus, t h e  product  of two p o s i t i v e  numbers i s  

s t i l l  p o s i t i v e  s i n c e  O 0  + O 0  = 0'; p o s i t i v e  t i m e s  nega t ive  i s  nega-

t i v e  because 180° + O 0  = 180°; and nega t ive  t i m e s  nega t ive  i s  posi-

t i v e  s i n c e  180' + 180° = 360°, which is equ iva len t  ( i n  p o s i t i o n  i n  

t h e  p lane )  t o  0'. 

We a l s o  n o t i c e  t h a t  t h e  concept  of abso lu te  va lue  can a l s o  be  ex-

tended from t h e  x-axis  t o  t h e  p lane  by d e f i n i n g  t h e  a b s o l u t e  va lue  of  

a complex number t o  be  i t s  d i s t a n c e  from t h e  o r i g i n  (when viewed a s  a 

p o i n t )  o r  a s  i t s  l eng th  (when viewed a s  a  v e c t o r ) .  Again, w e  l eave  

t h e  computat ional  d e t a i l s  t o  t h e  e x e r c i s e s  i n  t h i s  u n i t ,  b u t  w e  would 

l i k e  t o  c l o s e  t h i s  b r i e f  d i s c u s s i o n  with t h e  same p o i n t  we brought up 

i n  t h e  previous  s e c t i o n .  



I t  i s  obvious t h a t  from t h i s  geometr ica l  p o i n t  of view t h e r e  i s  a 

n a t u r a l  ex tens ion  of t h e  complex number system ( t h e  Argand Diagram). 

Namely, i n  t h e  same way t h a t  a p o i n t  i n  t h e  p lane  i s  a s  worthy of 

being named a s  i s  a p o i n t  on t h e  x -ax i s ,  it i s  c l e a r  t h a t  any p o i n t  

i n  3-space i s  a s  worthy a s  being named a s  i s  a p o i n t  i n  t h e  p lane .  

Why, then ,  c a n ' t  w e  i n  t u r n  extend t h e  complex numbers, a t  l e a s t  geo- 

m e t r i c a l l y ,  t o  inc lude  t h r e e  dimensional  space? Again, a s  we s h a l l  

exp la in  i n  t h e  s o l u t i o n  of Exerc ise  1.3.7,  t h e r e  i s  no need, a t  l e a s t  

i n  terms of t h e  usua l  mathematical a p p l i c a t i o n s ,  t o  do t h i s .  
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