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INVENTED NUMBER SYSTEMS

A

Introduction

There are many mathematical quotations to the effect that God gave
man the whole numbers, but that the rest of the number system was
invented by man. The meaning of this notion is that it was rather
natural for man to be aware of the need to count. Indeed, even in
the most modern mathematical vocabulary these "counting" numbers

are called the natural numbers.

Negative numbers were unnatural in this context in the sense that it
was not possible to have a collection with fewer than no members. In
fact, even zero was considered an unnatural number because one would
not need to use a symbol to indicate that nothing was present. This
idea is carried through in a trivial way in the usual place-value
notation. We write 107 to indicate the number one hundred seven

with the zero serving as a place holder telling us that no

tens are present. We need the zero only because we have no way of
keeping track of the various denominations in place value notation
other than by the position of a digit. For example, the Romans
would write one hundred seven as CVII and the fact that no tens
were present was apparent from the absence of the concrete (visible)
symbol X. In this same sense, when we write the number one hundred
thirty seven in place value, we write 137 - not 0137 to indicate
that there are no thousands. In other words, zero was invented
when place value was invented, but man was dealing with arithmetic

long before the invention of place value.

In any case, when the natural numbers are augmented by zero, the
resulting system of numbers is referred to as the whole numbers,

and when we allow negative numbers as well as positive, the
resulting system is called the integers.

The aim of this chapter is to create the mood for understanding why
man invents new numbers. In this sense, we shall revisit the
integers, the rational numbers, and the irrational numbers. The
union of the rational numbers and the irrational numbers is called
the real numbers, and what we would like to do is to make it seem
natural that the word "real" in this context is not very appropriate.
Once this is done, we shall devote the next chapter of these notes

to the discussion of the complex numbers, a number system which




somehow seems unreal to the student, yet is as real as any of the

previously studied number systems.

B

A Note About Number Versus Numeral

In any artificial (man-made) language there is a difference between a
concept and the words used to denote the concept. In mathematics
this problem usually is first encountered in the study of elementary
arithmetic. We learn about the concept of number, but we denote
numbers by symbols called numerals. Thus, for example, X, 10, 7 + 3,
5 x 2, and IIIIIIIIII are each numerals which denote the number ten.

Now while the natural numbers might have been "God given", the
numerals to denote these numbers were invented by man. It is fair
to assume that man found the simplest symbols that would suffice
and only invented more complicated symbols when the simpler ones
proved to be inadequate or cumbersome. For example, tally marks are
a very visual system of numerals. That is, somehow or other it is
easier to visualize the concept of "three-ness" looking at the
numeral III than at the numeral 3, but by the same token tally
marks would be extremely awkward as a numeral system if we wished
to denote the number one billion (a number rather easy to denote in
ordinary place value numerals, namely, 1,000,000,000).

Looking at tally marks, it is not difficult to see that the concepts
of addition and multiplication lent themselves very nicely to this
system of numerals. For example, to add two natural numbers*

we had only to "amalgamate" the tally marks that represented each

of the two (natural) numbers.

By way of illustration, to denote that the sum of three and four

is seven, we write 3 + 4 = 7. 1In the tally system we would not
write that III + IIII = IIIIIII. Rather all we would do is write
III IIII, the sum obviously being the total number of written tally
marks. Notice that this explains very vividly why the natural
numbers are commutative with respect to addition. That is, while
it may not seem self evident that 3 + 4 = 4 + 3**, it surely seems

*We say "natural" since tally marks would not be used in any other
context.

** In fact if 3 + 4 = 4 + 3 seems natural because all we did was
change the order, notice that 3+ 4 and 4:3 represent different
numbers even though "all" we did was change the order.

1.2
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clear that IIT IIII and IIII III represent the same number of tally

marks.

In a similar way, one could view multiplication of natural numbers
very nicely in terms of tallies, and this idea is reflected in the
fact that we read 3 x 4 as 3 times 4 even though the word "times"
does not appear in the artificial expression 3 x 4. That is, we view
3 x 4 as three, four times (or as four, three times). Thus, in

terms of tallies we have

FEE LEFE TEEL LT

or

LIII: ITII: TIII

We could pursue the advantages of tally systems to great extremes

and while such a discussion is highly informative and very interes-
ting, it is not necessary to make the point we are hitting at in this

chapter. Rather, with the preceeding remarks as an introduction, notice

that neither subraction nor division lent themselves too well to a
tally-mark interpretation. For example, in terms of tallies we
could take three from five but we could not take five from three.
That is, in terms of our modern notation 5 - 3 = 2 would be written
very nicely in tally notation (and notice here that we actually
seem to capture the feeling of what it means when we say "take
away"; that is, in the tally system we actual take away [delete]
some tallies from the rest). On the other hand, 3 - 5 could not

be interpreted in terms of tallies.

As for division, certainly 633 = 2 could be viewed pictorially as
IIT IIT indicating that if six tallies are divided into groups of
three we get three such groups. Yet we cannot view 533 in the same
way, since we cannot "break up" five into a whole number of groups
of three. To be sure, we would get one such group and two of the
necessary three to form another, but the fact remains that if all
we have is the tally system, we must invent new numbers (not just
numerals) to represent the type of number named by 3 - 5 or 5%3.

In the remainder of this chapter we shall emphasize number concepts
and introduce systems of numerals only for the purpose of high-
lighting certain remarks. We may also tend to get a bit careless

in our colloguial use of "number" when we mean "numeral", etc., but




we hope that if this should occur it will be clear from context what

it meant.

C

The Rational Numbers

Why did man invent numbers other than whole numbers? Often one

answers this question by giving excuses rather than reasons. Among

the various excuses are that we must often take fractional parts
of the whole (a frightening statement to beginning students). Yet
it is more common to refer to one ounce than to one-sixteenth of a
pound, or to one dime rather than to one-tenth of a dollar.

Even the practical side is often misunderstood. For example, the
existence of the fraction % would hardly help the father figure
out how to bequeath three race horses to two sons! Most likely
the father would give each son one horse and distribute the profit
from the sale of the third horse.

In essence, the concept of division was not always meaningful in
problems that lent themselves to a tally-mark interpretation.
However, there arose applications of numerical problems in which
only natural numbers were mentioned but the solution required more
than natural numbers. Such problems could not be viewed effecti-
vely in terms of tally marks. For example, suppose we have a 5
inch length and we want to cut it into three parts of equal length.
Notice that we either know how to trisect a line segment or we
don't, and that once we know how to divide a length into

three parts of equal length it really makes no difference what the
length of the origianalsegment is (except in terms of the actual

answer) .

In a similar way, one could encounter the same kind of problem in

the sense that it is no more meaningful for a particle to travel six

feet in two seconds than to travel five feet in two seconds, and
that in each case we want to compute the average speed of the
particle. Notice, in other words, that there are meaningful prob-
lems which involve knowing only the natural numbers, but whose
solution can not be obtained within the framework of the natural
numbers.

To rephrase this idea from a more algebraic point of view, notice

1.4
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that one does need any number system more extensive than the natural

numbers for the equation
2x = 3

to be meaningful. Namely the equation asks us to find a number such
that when it is multiplied by 2 (a natural number) the result is 3

(also a natural number). However, since twice any natural number is
an even natural number and since 3 is odd, we see that the meaningful

equation 2x = 3 cannot have a solution which is a natural number.

In any event, we now arrive at a crossroads that is the very crux of
scientific investigation. We have the choice of saying that we don't
care whether the equation 2x = 3 has a solution or saying it is
imperative that 2x = 3 have a solution. Should we decide that we
want 2x = 3 to have a solution, we must invent new numbers, and until
they are invented the equation has no solutions, or, if we wish to
give into the fact that we are comfortable only with that which

we believe exists, we may say that the solutions of the equation

are imaginary. Hopefully, it is clear to you that the word "imaginary"

is used in this context only to denote a concept that does not appear
to be meaningful to the use. That is, it is in this sense that

realness is in the eyes of the beholder.

Moreover, to make sure that the rational number system (recall that
system implies structure) was a "legitimate" extension of the natural
number system, one had to make sure that whatever rules were invented
for combining rational numbers they had to be consistent with the
rules for how these numbers would be combined had they been natural
numbers. For example, one might have like to add common fractions
(by the way, common fractions are but one form of numeral for
denoting rational numbers; another well-known numeral system for
denoting the rational numbers is in terms of decimals and this

will be discussed in more detail in the next section) by adding
numerators and adding denominators. Had we done this, then the

sum of two and three would depend on how we wrote the numbers.

For example, we would have

2 4 3J =5
2 .3 _5
TTES®
etc.




At any rate, since the ancient Greeks were primarily interested in
geometry and since the concept of length and distance were so crucial
to this study, it should not seem too strange that the ancient Greeks
were the first to develop the rational numbers in the form of a
logical science.

Of course, the tally system became inadequate as a model for the
rational numbers and for this reason the number line replaced the
tally system as a model for the "new" real number system, that is,
the system of rational numbers.

D

The Irrational Numbers

Once the rational numbers were invented, the ancient Greek believed
that no other numbers would ever have to be invented. He believed,
in other words, that every (real) number was expressable as the
quotient of two whole numbers and accordingly he never thought

much about the need to invent other (extended) number systems.

Now, in order for us to appreciate the fact that it seemed natural
that the rational numbers completed the number system, let us
review the type of reasoning the ancient Greek used in arriving

at his decision.

In terms of the number line, let us look at a segment of unit
length. If we bisect this segment, the midpoint is a rational
number (guite in general, the average of two rational numbers is
again a rational number). If we then bisect each of the two new
segments the new points of division also denote rational numbers.
If we continue in this way it seems that we eventually fill in
the entire segment. Of course, we never do really fill in the
entire segment philosophically-speaking but it is in reality
filled in because a physical line has thickness and eventually
the distance between two points of subdivision is less than the
thicknessof the line drawn with our pencil. Nevertheless, we

get the feeling that we can make our lines thinner and thinner

and that in this way we can neglect the thickness of our lines;
and eventually the entire segment does get filled in.
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Well, what we can say for sure is that even if the line is not
filled in completely, any errors can be made arbitrarily small;

but the fact that we do not fill in the line completely can be seen
very dramatically from the following observation. If we assume that
our segment extends from 0 to 1, then the midpoint of the segment is
at the point %. If we now bisect each of the two new segments we
obtain the points % and %; and if we then bisect each of these new

segments we obtain the additional points %1 %¢ %, and %. Pictorially,

1 3
7 T 1

oo~

1 1
I 5
2 8

oo| Wi~

1
g

Notice then that the only points we can obtain in this way are those
which when represented as common fractions have denominators equal
to 2, 4, 8, 16; and in general, 2". 1In other words, not only don't
we fill in the entire line in this way, but we even miss most of the
rational numbers - in particular those with denominators 3,5,6,7,9,
10,11,12;13,;14,15; etc.

Certainly, this result does not prove the existence of numbers which

are non-rational, but it does demonstrate that the given proof is
inadequate.

Perhaps the easiest way to see why there should be irrational numbers
is in terms of decimals. It should be noted that when represented
as a decimal every rational number either terminates or else repeats
the same cycle of digits endlessly (in this sense, all rational
numbers are represented by repeating decimals since a terminating
decimal such as 0.5 may be viewed as the repeating endless decimal
0.50000000.....). The easiest way to see this is that if we try to
convert % into a decimal, we either eventually obtain a remainder of
0 in which case the decimal perminates or else we have the same
remainder occur twice in which case the entire cycle between the
repeated remainders also repeats. For example if we write % as a
decimal we obtain




0.142857

7 AD.0000000

-
30
28
20 The remainder 1 repeats.
14
60
56
40
35
50
49
@ so we again have 1 followed by endlessly many 0's,
just as when we began.
[Notice, of course, that the first repeated remainder need not be
the first remainder. For example in writing %g as a decimal we have
0533 5%
15 Kﬁlgooo First remainder

7
TGOt TT~<First repeated remainder
45
136’/ 1.

The fact that a remainder must repeat when E is written in decreased
from follows from the profound, but simple, observation that since
there can be but n remainders (0 through n - 1) when a number is
divided by n any set of more than n numbers must have the property
that at least two* have the same remainder when divided by n. Hence
no later (but it may happen sooner) than after the (n + 1}th 0 a

remainder must repeat.

Therefore, if we admit that any decimal should name a real number
and if we agree that we can invent decimals that are neither ter-
minating nor repeating, then we have admitted that there must be
numbers other than rational numbers. That is, if every rational
number is represented by a terminating or a repeating decimal and
there are decimals that neither terminate nor repeat, then there

must be numbers which are not rational.

As an example of a non-terminating, non-repeating decimal consider

0.4949949994999, ...

*This apparently simple observation is known under the ominous name
of Dedekind's "Chest of Drawers Principles'". For example, given
400 people at least two must celebrate their birthday on the same
day of the year (but we can't be sure which day (or days) it will
be, since there are only 365 (or at most 366) days in a year.

1.8
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where © means that each time another 9 is added to the cycle.
Certainly the above decimal cannot repeat the same cycle endlessly

since each cycle contains one more 9 than the previous cycle.

Notice of course that we can approximate an irrational number by

a suitable chosen rational number to as great a degree of accuracy
as we desire. For example, with respect to our above irrational
number notice that the rational number 0.49499 (which is rational
because it terminates) is accurate to five decimal places as an

approximation to the given irrational.

If this seems abstract, recall that we were often told in high

school that = %-2 . Yet without proving the point here, the fact
remains that is an irrational number (in fact it is transcendental*)

while %3 is rational.

What is meant in this context was that while wand %3 were not equal,
as decimals they were represented as

T o= 3.14:158... If we can't measure beyond
: the nearest hundreth we cannot
¢ ; 22
%g — 3.14,2857 14385 distinguish between 7 and ==.

The fact that we can approximate any irrational number by a rational
number to as close a degree of accuracy we desire means that from a
practical point of view we never need irrational numbers (since they
can always be replaced by "sufficiently close" rational numbers).
Nevertheless, we hope that our discussion has shown that there are

certain "real" numbers which seem unnatural.

What may be even more alarming is that we cannot even say that there
are relatively few of such disturbing numbers as the irrationals.
While we do not want to enter into a discussion of different orders
of infinity at this time, the fact is that there are more irrational
numbers than rational numbers. As an intuitive device to help sense
what this means immagine a device that allows us to pick a digit from

*See Note #3 at the end of this chapter for a definition of
transcendental.




0 through 9 at random.

Suppose we then agree to construct an endless decimal by using our
random device to pick a number which we shall use for our first
decimal place, a second number for our second decimal place, etc.
It would seem that the chances of this device yielding an endless
chain in which the same cycle of digits was ultimately always re-
peated is very small (in fact, from this point of view, it seems
like a miracle that there should even be one rational number). Yet
unless the same sequence of digits is ultimately repeated, the
decimal cannot represent a rational number.

At any rate, we shall continue with the more guantitative aspects of
irrational numbers in the notes at the end of this chapter. But for
now we would like to conclude with the observation that once he dis-

covered that not all numbers were rational, the ancient Greek invented

the term irrational to mean all numbers that were not rational, and
in this way, he apparently completed the entire number system.

Yet he had not reckoned with the negative numbers, if only because
he had not thought about directed lengths. The idea of directed
lengths was due mainly to Descartes in the sixteenth century, and
once this was accomplished the real number system (at least as we
define "real" today) was completed. Geometrically the real numbers
were the set of all points on the number line.

Algebraically, they were the set of all numbers whose squares were

non-negative, i.e., {x:x2 > 0}

Are there numbers which are not "real". Well, in the same way that
the solution of 2x = 3 is "non-real" if the only "real" numbers are
the integers, the solutions of x2+ 1 = 0 must be "non-real" if the
only "real" numbers are those whose squares are non-negative; for
clearly from the rules of algebra, if x is a number such that

x2+ 1l = 0 then x2= -1, Since a real number cannot have a negative

square, if we want x to be a number it must be a "non-real" number.

It is this topic that we shall discuss in the next chapter.

1.10
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Note #1

The Ancient Greek Proof That ¥2 is Irrational

Obviously the ancient Greek didn't discover the irrational numbers by
his knowledge of decimals if only because he knew about the irra-
tionals by €00 B.C., and decimals were not invented as such until

many hundreds of years later.

The ancient Greek's approach was that he identified numbers with
length. In particular, therefore, he felt that any length he could
construct (at least by the principles of plane geometry) denoted a
real number (and indeed so it was since the length existed).

Now consider the isosceles right triangle each of whose legs is 1
unit of length. Then by the Pythagorean Theorem the length of the

hypotenuse must be v2. That is, the length must satisfy 124 122 xz,
or x2= 2
1
X
&

1
Now, if x is rational it has the form x = % where m and n are whole

numbers, and we may further assume that we have chosen % to be in
lowest terms (i.e., m and n show no natural number except 1 as

common factor).

We then have upon squaring that

m2

Sp = 2

n

or

% = 202, (1)

Since 2n2 is divisible by 2 and m2= 2n2 it follows that m2

is also divisible by 2. Now since 2 is a prime number, it follows
*
that m must itself be divisible by 2.

*A natural number n is called prime if (1) n > 1 and (2) n has no
natural numbers as factors except for itself and 1.




[Note: 1If a,b, and p are natural numbers and ab is divisible by p,
we cannot validly conclude that either a or b is divisible by p.

For example 4 x 9 is divisible by 6 yet neither 4 nor 9 is divisible
by 6. What happened was that since 6 = 3 x 2 we "used up" the 3 as

a factor of 9 and the 2 as a factor of 4. But a prime can't be
broken up into factors which can be used piecemeal. 1In the present
context notice tgat whole 6 is not divisible by 4, 62 is. The reason
again is that g-= %—x %. For a prime number p, however, it is true
that ab is divisible by p if and only if at least one of the numbers.
a or b, is divisible by p]

Now since m is divisible by 2 we can write it as m = Zkl where k

1
is a natural number, whereupon
2 2
m- = 4kl 3 (2)
Substituting the value of m? in (2) into equation (1) we obtain
2. 2
4k1 = 2n
or
n? = o (3)

From equation (3), by reasoning as we did above, it follows that
n2, hence n,is divisible by 2.

But the fact that both m and n are divisible by 2 contradicts the
given facts since we chose m and n so that % was in lowest terms,
hence m and n cannot have 2 as a common factor. Where did this
contradiction come from? Well, all of our mathematical arguments
were valid, so the fact that we have a false conclusion means that
we must have begun with at least one false assumption. Yet the

only assumption we made was that ,2 is rational (otherwise, we could
not assume that it could be written in the form g where m and n were
natural numbers). Hence it must be that our assumption that ,2 is
rational is false since it leads validly to a false conclusion;

but if it is false that V2 is rational, then by definition it is
irrational.

As a passing remark, the type of proof in which we show that some-
thing is true by showing that the assumption is false leads to a

112
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valid but false conclusion is known as the Indirect Proof and also

under the name Reduction ad Absurdem.

Note #2

The Unique Factorization Theorem

A well-known theorem of arithmetic is that any natural number can be
written uniquely as a product of powers of primes, except for the
order of the factors. (It is for this reason that 1 is not con-
sidered a prime since we can multiply as many factors of 1 as we

wish without changing the value of the product.)

For example while 24 can be factored in several ways into the product
of two or more natural numbers, such as 4 x 6, 12 x 2, and 2 x 2 X 6;

there is only one way in which we can break it down completely into
prime factors and that is as 2 x 2 x 2 x 3, or 23 X 3. We could
have written it in the order 3 x 23, but other than for this rather
trivial switch in order, we see that 24 can be factored uniquely

(i.e., in one and only one way) as a product of powers of primes.

The unique factorization theorem also supplies us with an indirect
proof that V2 is irrational. Namely the assumption that v2 is

rational leads to m2= 2n2 and this is impossible since m2 can have
only an even number of factors of 2 while 2n2 has an odd number of

factors of 2.

That is m2 has double the number of factors of 2 than does m and
since the double of a whole number (including 0) is even, m~ has
an even number of factors of 2 (or for that matter m2 has an even
number of any prime factor). In a similar way we see that n2 has
an even number of factors of 2 and since 2n2 has one more factor
of 2 than does n2, we see that 2n2 has an odd number of factors
of 2;

Thus if m2= 2n2 we have that the same number (i.e., the one denoted
by m2 and 2n2} has both an even number of factors of 2 and an odd
number of factors of 2 and since no number is both even and odd,
this assumption that m2= 2n2 contradicts the unique factorization

theorem.

-13




Note #3

The Fundamental Theorem of Polynomial Factorization

Suppose we have a polynomial whose coefficients are integers and that
we wish to investigate the solutions of the equation obtained when
the polynomial is equated to 0. For example suppose the polynomial
equation is given by

n
X F & s, F (A

- X + ag = 0 (1)

1

where g renns and a are integers. Then the amazing result is that
if there is a rational root of (1), say, x = g then it follows that

g must be a divisor of a_ and that p must be a divisor of a .

n o
For example if

3% 4 0x® - x> + 5 =0 (2)

has a rational root, say % then g must be a divisor of 3 (that is,
q is either 1, -1, 3, or -3) and p must be a divisor of 5 (so that
p=1, -1, 5, or -5). 1In other words unless g is one of the
numbers + 1, + 5, + %, or + % then % cannot be a rational root of
(2) =

[Notice that we are not saying that + 1, + 5, + %, and + % are
roots of (2) - only that they are the only possibilities]

To prove this result (known as the Fundamental Theorem of Polynomial
Factorization) we replace x in (l)by'g, where g is assumed to be in
lowest terms. We obtain

n —
an(gj + ..+ al{g) +a =0
or

n
agn+...+—-—+a=0 (3)

and if we now multiply both sides of (3)by g" we obtain

-1 -1 n
anpn - an_lpn g+ ... + alpqn +agq =0. (4)

Rewriting this as

n n-1 n
ap + ...+ a;pq = -aq (5)

1.14
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and observing that the left side of (5) is divisible by p (since each
terms is) we see that the right side is also divisible by p. Since
p and g are assumed to have no factors (other than +) in common, the

only way that -aoqn can be divisible by p is if a__ is divisible by p.

Similarly if we rewrite (4) as

n n-1

= n
ap =-(a, _p g9+ ... +aq)

we can conclude that anpn must be divisible by g. Hence, since p

and q have no factors in common, a_ is divisible by q.

The interesting case occurs when dy = 1 (in which case the polynomial
is called monic. In other words, a monic polynomial is one whose
leading coefficient is 1). 1In this case, since g must be a divisor
of a . g is either 1 or -1 and consequently g = + p which is a whole
number.

This tells us a great deal about how to establish what types of
numbers can be irrational. Namely, any rational root of a monic,
integral (integral means that the coefficients are integers),
polynomial equation must itself be an integer since its denominator

is a factor of a, which is 1.

Thus, any root of a monic, integral, polynomial equation which is not

an integer must be an irrational number.

For example ¢2 satisfies the integral, monic polynomial equation

Since this equation cannot have an integer as a root (i.e., 1 x 1
is too small to be 2 and 2 x 2 is too big, etc.), any root must be
irrational, but ¥2 is a root of this equation, so v2 is irrational.

[Another way of obtaining this result is to observe that if % is a
root of x2 - 2 = 0 then q must be a divisor of 1 and p a divisor of
-2. Hence g = + 1 while p = + 1 or + 2. Thus, the only possible
rational roots of x2 - 2 =0 are + 1 and + 2; and none of these
numbers equals /2. Hence /2 must be irrational since it is a root

of the equation but can't be a rational root.]

L.1l5




We should point out that "most" irrational numbers (believe it or not)
cannot be roots of integral polynomial equations. An irrational
number which is the root of such an integral equation is called an
algebraic irrational, while any irrational number which cannot be the
root of such an equation is called a transcendental number. For

example (and we do not prove these facts since the proofs are very
difficult as well not necessary for our purposes) among the trans-
cendental numbers are mand e.

Notice that any rational number is automatically the root of some
integral polynomial equation. Namely, the rational number m/n
satisfies the equation x = m/n, or nx - m = 0, and this equation,
since m and n are integers, is an integral equation which has m/n as

a root.

Notice also our emphasis on integral polynomial. For example T is
trivially a root of the linear polynomial equation x - 7 = 0 but
this equation is not integral, since no matter what else mw might be,

it is not an integer.

It turns out that any irrational number which involves nothing
worse than arithmetic combinations of roots of integers are algebraic
numbers. In particular /2 is algebraic since it satisfies xz - 2 =0.

As a not so trivial example notice that /2 + /3 is also algebraically
irrational. Namely, /2 + /3 satisfies the non-integral equation

X = 2 + /3
or
x - /2 = /3.

Squaring both sides yields

-2 YT H2=3

or
%2 = 1=2y3 .

Again squaring we obtain

1.16
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or

Thus, y2 + /3 is algebraic because it is a root of the integral
polynomial equation (6). Moreover, by the Fundamental Theorem,
any rational root, g, of (6) must have the property that g is a

divisor of 1 and p a divisor of -7.

Thus, no numbers other than + 1 or + 7 are even eligible to be
candidates for roots of (6). Since {2 +/? is not equal to + 1 or

to + 7 it cannot be a rational root of (6).
is a root of (6), it is irrational.

Thus, since /2 + /3

(6)
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