Solutions
Block 1: An Introduction to Functions of a Complex Variable

Unit 8: Complex Integration, Part I

1.8.1(L)

At first glance the solution to this exercise seems trivial.
Most likely we would proceed just as in the real case and invoke
the result that

b
f £(x)dx = F(b) - Fla),

a
where FP' = £, We would then simply replace x by z to obtain

b
f £(z)dz = F(b) - F(a) (1)

a

where F'(z) = £(z); and a and b are now complex rather than real.

Using (1) in the present exercise we obtain, since

d(% z%)
—t—
2i 2
1.2 Lpney2 o Logs2
2dz = ¥ 2 = »x(2i)" - %(0)

Jg 5 ) i 6] Z

= 3 (4%

= -2, (2)

Now, unless a very specific warning to the contrary were given,
we might be tempted to argue that the result given in (2) was
valid for the same reason that we were allowed to do this in our
study of calculus of a real variable. In other words, at just
about every turn in our treatment of complex variables we seemed
to invoke the result that the complex numbers have the same
structure as the real numbers.

The trouble is that our definition of the definite integral in
complex variables is modeled after the concept of the two-
dimensional line integral. That is, our limits of integration,
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a and b, are complex numbers, and hence points in the z-plane.
Accordingly there are many paths that join a to b. Accordingly,
the left side of equation (1) will, in general, depend on the
path that joins a to b.

Now it happens, as we showed in the lecture, that if f(z) is
analytic the value of the integral does not depend on the path
that joins a to b; and in this case, the value of the integral
is given by equation (l1). The crucial point, however, is that
if f(z) is not analytic the integral on the left side of (1)
is ambiguous and its value depends on the path that joins a to
b. This, in fact, is what the purpose of part (b) of this
exercise is for. Namely, we shall show that fozi z dz depends
on the path which joins 0 to 2i.

Recall that by definition

t
ff(z)dz - _[ L ezt 2" (p)ae (3)
“ o
where c is given in complex form by z = z(t), t < t < t*

Now in the present exercise f(z) = z. Moreover, the curve cy
is given by

z=3it, 0 < t < 2. (4)
There are other parametric forms to describe Cqv but as we
mentioned in our earlier treatment of line integrals, the value

of the integral does not depend on the choice of parameter.

Thus, with equation (4), equation (3) becomes

*Recall that if ¢ is given in the xy-plane by the equation

x = x(t)

y = y(t)

the complex interpretation in the z-plane is obtained by identi-
fying x with the real part of z and y with the imaginary part.
Thus, for example, the circle

X = cos t
y = sin t
1.e., the set of complex numbers {z:z = cos t + 1 sin t, 0 < ¢t < 27w},

0 <t < 2w becomes z = cos t + 4 sin €, 0 < t < 27 ,
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l'z'd

1
or

In othe

provided we are referring the straight

to 21.

On the other hand if c, is the set {z:
i.e., the semi-circle centered at i of
to 2i in the counter-clockwise direction, then f£(z) is still z

but since z =i + e*", zisnow i + e or i+ e

-i + e

)

r

ie

continued

At Bvis
ffﬁ 3t dt = jo.-xt(z)dt

2 2
Ltdt=%t2| -
0

words, equation (5) tells us that

i@

Using (6) with (3) we now see that

z=1+e

i

1

or

line path which joins 0

(5)

9:-; <0 % %) *
radius 1 and joining 0

(6)

*z = a + be

ie

centered at a, and use vector rotation.

3
LY

o oy

in the Argand diagram is the circle centered at
a with radius b. To see this, draw the circle of radius b
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z - .. _ie
[f(z)dz = L zZ dz = f (-{ + o108y dli + e ) g0
2 2 _% de

2
3
= f (ei°+i)d9
-'ﬂ'
>3
3
=118 4 49
i ool
Zz
.M .
-3 A ) X

- [% e+ i H-Ife i3

=1 (i) +if- %(-i) +1%

| e

=2 + im. (7)

From (7) we conclude that

21 .
J{ 2dz =2+ imn
0

provided we are talking about the semi-circular path c, which

joins 0 to 2i.

Comparing (5) and (7) we see that

21 _
Jr z dz
0

depends on the path that joins 0 and 2i.

It is crucial to observe that

i-
z dz
0
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exists for each path but the value depends on the path. Moreover
Z is a continuous function. Hence, for

fbf(z)dz
a

to be well-defined, independent of path, f(z) must be analytic.

Continuity is no longer enough (as it was in the real case).
By way of review, the proof that

fbf(z)dz
a

was independent of path if f(z) is analytic was a direct con-
sequence of the Cuachy-Riemann conditions. Namely, in Cartesian
form

ff(z)dz - f(u + iv) (dx + idy)
a C

= [[(udx - vdy) + i[vdx + udy].

Hence,
ff(z)dz = fudx - vdy + 1 fvdx + udy
(o C " \grd (o
exact <+ exact «—
u

These are the
Cauchy-Riemann conditions.

As a check on part (a), let us compute
21
Jr zdz
0
along the two paths c, and c, given in part (6).

We have f(z) = z and for Cyr 2 = ti 0 < t < 2. Hence,
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zdz =
2 |

which checks with equation (2).

continued

2
d(ti)
(ti) dt
fo dt

Similarly, with ¢y given by z

2

‘é. zdz =

n
] (i + e
m
B3

m
ff (1 + 19 jei%%p
_7[

2

m
05-2-

9 < % we obtain,

10,d (i + el

——ay

(3)
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in _im
= [ie 2+ % &Y . fia 2% % &Y
= [L() + F(-1)] = [i(=1) + F(=1)]
= 232
= =2 (9)

which again checks with equation (2).

As a final note if we want to see why the answer to part (a) is
-2 without making reference to a specific path and without re-
ferring to real and imaginary parts, we have:

t c be given by z = z(t), 2 Ex t where z(to) = 0 and
z(tl) = 2i, Then
i dz
.ékdz = Z 3¢ dt

o

t=to

Flz2(e)) - 22 (¢ )

and since z(tl) = 2i and z(to) = 0, we obtain

1 o - 2
zdz = =[(21)° - 0°] = -2,
-[ z |
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2z

since 2e%% is analytic (i.e., 3z[2¢°%] = 4e?%) and since

gi(ezz) = 2e22, we have that

i i
f 202232 = @22 (1)
1 z=]

independently of the path which joins z = 1 to z = i. That is
from (1),

i .
f ZeZZdz = e"2 - e2
1

2

(cos 2 + i sin 2)* - e

(cos 2 - e2) + i sin 2 (2)

where (2) holds for each path (in particular, the given path)
that joins 1 to i.

1.8.3

Since z 2 is not analytic we must be prepared to have)ii z2az
depend on the path which joins z =1 to z = i.

Suppose the path c is the straight line which joins 1 to i. We
then have

y
4} B 1
"X_i__- = -1| x varies
\(o.n
i y ==-x+1 from 1 to 0.

(1,0)

N\

#As usual keep in mind that sin 2 and cos 2 use 2 as a number.
Thus, if an angular interpretation is required sin 2 and cos 2
refer to sin (2 radians) and cos (2 radians).
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Therefore,

z=x+ (=-x+ 1)1

dz = dx - idx= (1 - i)dx
z=x+ (x-1i

22 = %2 Foxix =104 + x = 1)%4?

x2+2x(x-1)i-x2+2x-1

(2x - 1) + 2x(x - l)i.

Hence,

f Ezdz
(e}

0
f [{(2x - 1) + 2x(x = 1)i] (1 - i)dx
1

- fl {[2%x = 1 + 2x(x - 1)] + i[2x(x - 1) - (2x - 1)]}ax

0
=2 b 3 2
dez=-f(2x - 1) -1 (2x"= 4x + 1l)dx
0 0
1 1
=-§-x3-x| -%-x3+2x2-x 8
x=0 x=0
=%—(1+i).
: ie m
b. If c is now given by z = e ,05952- we have
dz=iei°d9
PP L
2 -i20
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Hence,

lT. ™
<[2 z2az=[ 2 e7120;,1049
0

[}

[N
&

o

|
1
)

|

|
®
N

1.8.4(L)

Our main aim in this exercise, other than to supply more drill on
the technique of integrating complex-valued functions, is to show
how a knowledge of complex integration sheds light on certain
"mysteries" of the calculus of a single real variable,

For example, in Part I of our course we saw that the improper

integral
dx
L

(improper because x = 0 is included in the interval of integration
diverged). Yet, if we failed to notice this and applied the
Fundamental Theorem (which didn't apply in this case since the
integrand was discontinuous at x = 0) we obtained

2
! dx 1 1 3

X X==1
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We knew that (1) was preposterous in the sense that since 12 could
x

not be negative,

2

Jr ax
L1 X%

could not be negative; and thus, the right side of (1) could not
be correct. What we did not know at the time was what was signi-
ficant about —%; that is, where did it come from and what did not
mean? We shall now use complex integration to solve the "mystery"!

We have already seen thatjabf(z)dz is unambiguous provided that
(i)a and b are points in a region R in which f is analytic and
(ii) the smooth path that goes from a to b lies entirely within
R. Moreover, in this case, just as in the real case,f;bf(z)dz =
F(b) - F(a) where F'(z) = f(z) for all zeR.

Applying this to the present situation we see that

f2 dz _ _ 1 Izg_l_lﬂ_J )

-1 ;7 % 2=-1 Z 2

provided that the path from -1 to 2 lies in a region which does

not include z = 0 (i.e., f(2) = lz is analytic everywhere except
z

Notice that (1) and (2) appear to be identical except for the
symbols x and z. The big difference is that in (1) our path
(which must be along the real axis since f is a [real] function
of a real variable) passes through a singularity* of £ while in
(2) it does not since in (2) our path avoids z = 0.

*In talking about derivatives of a function f (whether real or
complex) we refer to a point at which f does not exist as
a singular point (or singularity) of f.
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For example, equation (2) apyolies for each of the paths, c, shown

below

Equation (2), however, does not apply to c where

y O

-1 2

since then c passes through the singular point z = 0.

More analytically, in terms of the definition

o
ff(z)dZ= / flz(t)z'(t)dt.
c t,

Suppose c is any curve which joins -1 to 2 without passing
through 0. Say, c¢ is given by
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2 =.2{t), to <t < tl
where (3)
z(tO) = -1 and z(tl) =2
Then,
dz _ [F1 1 dz 4
b7 e 2 dt
z t z
o
¢, al- 3l
= dt
L5
(o)
or
1

Jf dz _ _ 1
c 22 Z(E) e

- sty = sy
=~ 3tE)” © Eyy

a 1 1
- zlto) - z!tl)

So that by (3),

L A - L - = -3 )
z

In other words, we also see from (4) that

.I'2 dz _ _ 3
ST

along any path joining -1 to 2 provided only that the path does
not pass through the origin.
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1.8.4(L) continued

We have
|
|
|
- > Ve > A )
-1 < *Cy 2
Therefore, letting c = c1 Uc2 Uc3 we have
dz dz dz dz
= 5)
f-—z- f ‘7+f —2‘+ -5 - (
c: 2 c, z c, 2 cy 2
Now, ¢, is given by 2=t -1l< t < =€
Hence,
a8 . 7F 18,
2 1 “2 dt
1 z - t
=f'€dt
S
=_l. t=-¢
t
t=-1
ST S S 23
(=€) 1)
s
= -1. (6)
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Next we observe that c, is the circle z = e19 where 8 varies
from » to 0 [or, in other words, c, = -c, where c, = {z:e2 = eelg.
2 4 4

0 <@ < 7). Hence

j‘ dz 0 1 d(eeie) ae
k. 22 2216 ~ a8
m € e

2
i j‘"e:iej'o ae
0 e:!e:i0
Thus,
o
f ae.. .- j‘ %e-lgde
c, Z 0
n
_ %[_e-xo
6=0
’n
- % =i
0
- Lami® o o™i0;
£
(-1 - 1)
€
- £
o=
Finally, cy is given by z = t,e < t < 1 so that
dz _ % 1 aw) 4
2 2 dt

N
"lJEr'
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il
|

1
t

(8)

M|

Adding the results of (6), (7), and (8) we obtain from (5) that
-é' dz |
z Z

3
R

|
Il
M|+
1
o
1
miN
+
™=

(9)

which agrees with (2).

The crucial point in part (b) is that our result holds for
every € >0. In particular, if we recognize that our contour c
depends on & by writing c. instead of c, we see from (9) that

1im f‘ij-=-%.
Cez

e+0

We view lim c¢_ as beimgy an indented contour. That is, we delete
a tiny 1ﬁ§2rval (a dot, so to speak) [-£,e] and replace it by the
upper half of the semi-circle having -t and ¢ as endpoints of a

diameter.

If we then agree to identify

J[Z

with

/

for sufficiently small e> 0 then we may say that

f ax _ 3
A

[
xdg

o

"
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without any reference to

= W

i
2

when x = 0. In other words, using an indented contour we say

that

jz dxf\.f dz _ _ 3
-1 ;7 " c, ;? z
Pictorially,

PRSP iy

=5 | 0 2

v

1. Along the given curve, ¢

dz . 3
j' 21- is exactly - 5 .
“e

2. We view

jJ 9’2‘- as being approximately f Q_;_'
-1 x C. 2

but remembering that in the real case the semi-circle is “"imaginary"
since the only numbers that exist are along the x-axis.

To indicate that we obtained the answer by the indented contour
technigue we usually use the notation

- dx e 3
Ly w2
and this is called the Cauchy Principal value of the improper

integral.
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The main point is that when e write
sz ax _ _ 3
£ R

we are using a very natural definition in the z-plane which doesn't

exist if the domain of f must be the real axis. It is in this
sense that we have exhibited still another example in which the
complex plane allows us to deduce real results which were not as
obvious when all we had to work with were the real numbers.

1.8.5

We view
[ 2%
0 (x - 1)
as the limiting position of ¢ as ¢ + 0, where

b'§

T me
N 5

0

N \x
“ 1 -¢ 1 1+e?7 2 7

Then, since for any curve c which joins z = 0 to z = 2 without
passing through z = 0,

./"2 dz s 1
0 (z - 1)2 z -1

we have, in particular, that

z=0

Jf dz e
C. (z - l): 2

Hence,

dz

2
3
lim f—————z-dz=- :pf___,
e+0 . (z - 1) z 0 (x - 1)2
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In summary,
sz dx
0 (x-1)°
would be - % if we could view the path of integration as being

N > A

-~ A
L o rd
0 1 2
rather than
1 ; _=4
0 2

P f2 — & = 1im f——zd’
0 (x - 1) e+0 Je (z - 1)

f(zd-z- 1d '

€

where c is any path which joins z = 0 to z = 2 without passing
through z = 0,
2

1 -3
- 3x(z - 1)
3 z=0

3

- 32 -172) - [- 30 - 17
373
s 2
j.
Pictorially, again,
ijz dx
0 (x -1 :

)

is
.,' dz
e (z - 1)
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where

i
0 J 1 = 2
1.8.6(L)

Here we are deriving a result which is extremely crucial in help-
ing us estimate the size of a complex integrals. The proof is
exactly the same as the proof in the real case from an algebraic
point of view, but geometrically the complex case is not as easy
to picture.

Recall that in the real case our approach was along the idea that

n
’ f(x)dx = lim Z;f(ck)Axk,
a max k=

Axkoo
hence,
b n
IL f(x)dx =| lim 2 f(ck)Axk
max
Ax +0 k=1
k
n
= lim f(c, )A
il Do Ui
Ax> 0 k=1

but since the absolute value of a sum is no greater than the
sum of the absclute values,

n n
sz(ck)Axkl < Zl f(ck)Axkl.
k=1 k=1

Then, since the absolute value of a product is the product of
the absolute values, we saw that |f(c )ax | = |£(c ) |]|ax, |, so
that

n
Ij;b f(x)dx| < 1lim Z|f(ck)||Axk| : (1)

max k=1
Axg90
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1.8.6 continued

If in (1) we now take into account that [f(x)| < M for x [a,b] we

see that
n
L(l f(x)dx| < 1lim ZMIAku
max k=1
Axk¢0

and since M is a constant it may be taken out of the summation
sign. Thus,

n
f f(x)dx|< M 1lim X!Axkl. (2)

max k=1
Axk+0

Finally since

n
:Eijkl =b-a=1L
k=1

T— ’
[i.eo, = = N s

o Axl sz‘ Ax3'....1. Axn b

we concluded from (2) that

|fbf(x)dx| < ML. (3)
a

Pictorially, for £ > 0, all (3) means is that the area under
the curve cannot exceed that of the greatest rectangle. That is,

ML is area of rectangle abcd.
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Now even though the geometry in the complex case is more "complex"
since our diagrams invelve higher dimensions, the point is that
algebraically things remain the same (or at least, almost the
same) as in the real case. Namely, among other things the
absolute value properties are the same.

Thus we obtain

n
*
|f £(z)dz | =| 1lim Zf(ck)Azkl 2 (4)
max k=1
Azk+0
Hence,
n
|ff(z)dz| < lim 2.|f(ck)||Azk|
max k=1
Azk+0
n
<M 1lim Zl oz | . (5)
max k=1
Azk+0

The only difference (5) and (2) is that there are many curves
c which join a and b when a and b are viewed as arbitrary
points in the z-plane. The key property, however, is that for

any such curve c,
n

2 8zl

k=1

cannot exceed the length, L, of ¢. This follows simply from the
axiom that a straight line is the shortest distance between two

points. Pictorially,

P PllAzkl

*Since f(z) need not be analytic bE(z)dz is ambiguous. Thus,
we should write |/ f(z)dz| but we prefer the notation of (4)
to emphasize the similarity of structure to that of the real

case.
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1. Az, is the vector Pk_le. Hence,lAzkl is the length of the

line segment pk-lpk‘

2. In any event, |4z,| + ... +|Azn| < length of c since |Az | is
the approximation of a segment of this curve by a straight line

chord.

iz
|[ ——z—dz < max{ 2 —t}TR

ZECR z

(i.e., "R = L = length of cR) .

Now eiz = ei(x + iy)
lieix-y
o o Yei¥.
Hence,

g e
|e*®| = |e7¥||e™|

= &Y

a ¥

-

On Cpr¥ varies from 0 to R, hence

b & 1 i
—C — ¢ =—=1
eR ¥ = °

so that

le*#]< 1

(6)

(7)

*For any real x, eix - cos x + i sin x implies that

|e1x| - /:;szx + sinzx =1



Solutions
Block 1: An Introduction to Functions of a Complex Variable
Unit 8: Complex Integration, Part I

1.8.6 continued

on CR.

We also know that for all z on cp, |z|= Rr. Hence on cp
2| = |2|? = g2, (8)

Putting (7) and (8) into (6) we have that

iz
1
|[ eT dz| < =, (wR)
R = %

z

or
iz
[ Sreelc ©)
R V4

From (9) we have that

iz
lim | S5-4dz| < lim X =0 (10)
R+ cR z R+=

and since
eiz
I-ZT —E—dZI > 0,
R z

we conclude from (10) that

Loz w
1im dz| = 0 11
R+= R z
but since |w ’ = 0¢a>3w = 0, we conclude from (1l1l) that
iz
2_725 + 0 as R* w,
Cp z
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If ¢ is the straight line joining z = 0 to z = 3 + 4i then the
length, L, of c is

V3% + 4% = 5,

Now if £(z) = [Re(z)12 + i[Im(2)]%; i.e., £(z) = x° + iy then
x2 + i 1%5— . Hence on c,

on ¢, since y = % x, f(z)

VX o+ == x

£(z) 1

2

\Dlx

V337 R B A (1)

Therefore, the maximum value of |f(z)| occurs when x = 3 in
which case (1) tells us that

|£(z) | < /337 .

Hence,

3441, .
|.l' (x2 + iy2)az| < 5 /337
0

along the straight line joining z = 0 to z = 3 + 4i.

1.8.8(optional)

We have

F(z) = sz £(c)dc (1)
2

o

where the value of F(z) does not depend on the path between
z and z since f is analytic and we use [ rather than z to
emphasize that z is a chosen point whereas f generally names
all points on the curve joining z, to z. [This is analogous

to our writing, say,

x
F(x) = J{ £(t)dt
xo

in the real case rather than
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X
F(x) = ff(x)dx.l
X
o
We then have

Z
Fl(z + AzZ) = f f(z)dg

%o

so that

F(z + Az) - F(z) = Jr e
Zz

p2 + AZ
- f £(z)dr.
2

Hence,

F(z + Az) - F(z)
Az

/

To utilize our conjecture
integral in (z) by adding

-

F(z + A2z) - F(z) _ 1 f‘
Az Az 2

=§E[

Since z is fixed, f(z) is

2
f(g)dr - Jr f(r)dr
%5
z + Az
f(r) dc. (2)

that F'(z) = f(z) we rewrite the
and subtracting £(z). Thus,

+ Az
{f(z) + [f(z) - £(2)]} dt

+ Az
f(z)dz +

=
N

z + Az
j; (£(z) - £(z)]dz,
(3)

a constant (z is the variable of

integration) and accordingly,

£(z)
Az

Dru
N

2z + Az
f f(z)ds
z

f(z)

Az

z + Az
[ =

z + Az

(z 1= £ 1z + 42) - 21 = £(2).

=2
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Thus, (3) becomes

z + Az
Pz v dulic PIE) & (5 &4 j.‘ [£(z) - £(z)]dz (4)

and from (4) we see that the conjectured result would hold
provided

1 + Az
lim [ 3 f (£(z) - £(z)1dz ] = 0.
Az~+0

But from Exercise 6.8.6 we know that

+ A2z
|f [£(c) - £(2)1dg|< max{| £(z) - £(2)] | Az] (s)
(where we pick the straight line path which joins z to z + Az,
i.e.,
vz/ﬁi//”’a BFE
e, )
Hence,

i

z + Az 1 z + AZ
f [(£(z) - £(2)]dz| < | A—z_"f [(E(z) - £{z)]dz
z z

< max{| £(z) - f(z)|} [by (5)](6)
Since f is continuous* lim f(z) = £(z), so that
Az+0

lim { max[|£(z) - £(2)]} = 0O,
Az~>0

* We have not actually proved that an analytic function is
continuous, but the proof is the same as in the real case,
namely we write

f(z + Az) - f(z)
Az 14z

f(z + Az) - f(z) = [

to conclude that

lim [f(z + &4z) - f(z)] = £'(z)Az = 0.
Az+0 Az+0
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so from (6)

[

lim

z +Az
J{ [£(t) - £(z)]d = 0, and (4) yields
Az+0

Az

N

Flz + Az) - F(z)] - %)

F'(z) = 1im [ R

Az+0

1.8.9(L)

Since f(2) is analytic so also is géé)

region which excludes z = a. In particular if Cr denotes a
circle of radius R centered at z = a such that Cgr has entirely

provided we are in a
within c, we have that

P Loz, g oo
C (o

R

TITE ©
( N £(2), —
'A o8 s analytic
I’ in here.

Now Cr being a circle of radius R centered at z = a is described

by

Pictorially

z2=a+ Re19 , 0 < 8 < 27,

] ig

Hence, dz = iRe'” @0 and z - a = Re™ .
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1.8.9(L) continued

Hence,

f(z)dz 3 ?— f(z)dz
SZ? z - a zZ - a

R

ﬂ -
_ lf £(a + re'®) i Re'Pan
Re19

™
i f fla + Reie)do.

(2)

b. Since (2) holds for all R >0 (provided only that c, has within c¢)

we may look at (2) as R+ 0 to obtain

£(z)dz 2% i0
lim ¢‘ =3 = linll L‘f(a+Re )de].
R+0 (o} R+0

Since

f(z)dz

zZ -
e a

does not depend on R we have that

lim ¢f(f)dz - @, f(f)dz >
R0 Kz -a z a

and since f is continuous (because it's analytic)

217 {0 27 ie 2T
lim ? fla + Re'")d0 = f lim f(a + Re” )de = f f(a)de,
R0 0 0 R+0 0

equation (3) becomes

2T
glb Eiilgi = 3 Jr f(a)de
z - a 4

27
|

i f(a)[®

2mi £(a),

(3)

(4)
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or,

o f(z)dz
f(a) VIS & - T w (4)

From (4) we see that f(a) is computed by a line integral which
involves only that we know how f behaves on c¢. In other words,
the behaviour of an analytic function at some point z = a in a

region R is determined once we know how f behaves on the boundary

of R. That is, an analytic function has its behaviour in a
region determined solely by how it behaves on the boundary of
the region. This is one of the reasons that analytic functions
play such a large part in boundary value problems.

ezdz
2 - 1

is equation (4) with f(z) = e and a = i. Hence, in this case,

flz)dz _
?z—_a—— 2mi f(a)

implies
z ;
gzb g—gEI = 21i et
and since e® = e* = cos 1 + i sin 1, we have that

z
S;B 2 gzl = 2Tif[cos 1 + i sin 1] = - 21sin 1 + i 2rcos 1*.
c

Letting f(z) = sin z and a = 0, equation (4) yields

sin zdz _ R _
é ey 2 ni sin (0) 0.

This shows that Sﬁif(z)dz may be zero even if £ is not analytic
everywhere within® c. For example, here, Ei%—i is not

analytic at z = 0.

*Where 1 is a number. 1If we wish to use sin 1 and cos 1 with
1 being viewed as an angle we must remember that sin 1 means

sin (1 radian) not sin (1°) etc.
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Block 1: An Introduction to Functions of a Complex Variable

Unit 9: Complex Integration, Part 2

1.9.1(L)

As seen in the previous unit, we know that

dz _ dz
g? (z - a)n ‘gg (z - a)”

R

(1)

where Cp is the circle centered at z = a, with radius R, and lying

within c.

For any such choice of R, we have that Cr is defined by

2z =a+ Rej‘9 0 ¢ 8 € 27

so that

dz = iReiede

and
z - a= Rele, or (z - a)n = Rnelne.
Thus, we obtain from (1) that

ﬁ dz fz“ irel®ap
c (z - a)n 0 RneIne

n-

§ j-Z‘" e-i(n—l) Bda
= - .n-1_ '
0 R

The integral on the right side of (2) suggests two cases.
if we integrate the right side of (2), we obtain

(2)

Namely,
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1.9.1(L) continued

27
ai i e-i(n-l)ﬁ
g (z - a)® - gn~1| -i(n-1)
6=0
2n
. e-i(n-l)e -
-(n-l)Rn_l .
A=0

which is fine except when n = 1, in which case the right side of
(3) has a zero denominator.

We observe from (3), however, that if n # 1, then

¢ dz e“i (n-1) 2w o eiO
c (z - a)® -(n—l)Rn"1

n-1
Le-i2ﬂ] -1

-(n-1)R®"

= =1 S (4)

= 0. (5)

[Again, by way of review, if n = 1, (4) takes on the form %.]

If n=1, (2) becomes

¢ dz fzne"
——— =] = dg
o A a 0 R
2m
s P
0

2mi.* (6)

*This may be checked as a special case of our result in Exercise

1.8.9. Namely, :J-_ZTLB dz = 2wif(a); and letting f(z) = 1, this
(

dz %
yields ¢ e 2mi(l)

c

2ni.,
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1.9.1(L) continued

Combining (5) and (6), we have

Séi (z fza)n :

where ¢ is any closed curve which includes z = a in its interior.

0, n#1

21i, n =1

b. The result of part (a) is often used to compute integrals of the
form

f(z)dz
T
c (z - a)
where ¢ is a closed curve in a region R in which f is analytic.

The general idea is that we expand f(z) in a power series about
a, divide term-by-term by (z - a)k and integrate term-by-term.
In this particular example, we have that

Zz

sin z
z3 z> z7
converges uniformly and absolutely to z - srrtsT ot e -
Hence,
3 5 7
ST (L S A - 22
sin z - 27 = |z 31 + 51 71 R z

w
w
~

2 - e zZ__ Z_
sin 2 =2 =273 z i + 5 71 = ezeien @ (1)

Then, since we may divide uniformly convergent series term-by term
we conclude from (1) that

1 1z
e e A b Sl v TR (2)
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Since the order of summation and integration may be reversed when
we have uniform convergence, we may conclude from (2) that

¢____sinz-zzdz=¢d_z__¢d_z__}_¢d_z_+_1_¢d_z_
6 z5 s 24 3! o z3 51 o z

c z C

1 gﬁ
- = zdz + ... & (3)
7! i

Since for any positive integer n, z" is analytic, ¢ z%dz = 0.
c
dz

= =0 for any integer n

Moreover, from part (a) (with a = 0), St;
c

N

except n = 1 in which case ¢.d_sz =¢d—:- = 27ni.
z
Putting this information into the right side of (3), we see that
every term is zero, except g%-st; %f, which is g% (2mi) = %%.
c

That is, we see from (3), that

2 ;
¢sinz-zdz=16r_5_
c z°

where ¢ is any closed curve which contains z = 0 as an interior

point.
1.9.2
2 3

e’ =1 +u + %T + %T ¥ ..
implies that

2 4 6 8

z _ 2 Z_4+ 2 _ 4L Z
=) =1+ 2z + 37 + EX) + Yl * e .
Hence,
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1.9.2 continued

ezz 1 1 1 ) 1
-;7 = ;7 + ;3 . 2123 tafg t AT Bt eee o
Therefore,
ezzdz dz dz , 1 dz , 1 dz , 1
Q __27_. @ 74-@ ;.54-2—1@ :54“3_{@ —z—+ﬁ@ 2dZ ¥ ..

and since ¢~ d_zz_ = 2ni* and ¢ z%dz = 0 if n # -1, equation (1)
c c

yields

z2

e” dz 1 _ 1
?—27—=-§T(2ﬂi) —-3-T'Ii.

1.9.3 (Optional)

(1)

We already know from the last unit that if £(z) is analytic in R
and ¢ is a closed curve lying in R that for any point atR

1 f(z)dz
fla) = g; R (1)
(o

271 2 - a

To indicate that z = a is any point in R, we prefer to write (1)
in the form

£(z) = 27i 5 L - 2

where in (1') z denotes a point on the contour ¢ while z denotes

the general point inside c.

1 £(z)dg (1%)

dz

*Just a reminder, if c doesn't enclose the origin St;-:; = (0 since
C

dz

then —z]= is analytic inside ¢. It is in concluding that ¢ S 2mi

c
where we use the hypothesis that ¢ contains z = 0 as an interior
point.
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Pictorially,

c g
+—UC is reserved for
J/ n

in oints on c
Zz names LT R

points in R

The official "trick" now is to pick a point aeR and draw a circle,
Cqr centered at a which lies inside ¢ and includes the given point

z. Thus, for example,

{ o
Ga )

Referring to (1'), we may now view

L - z

¢ f(z)deg
(S

as

1
f(c)[ = ]dc.

We then set up

as a convergent geometric series as follows.

L -z
1 . 1 (2)
t=-2 (T-a) - (z~a) (z-a) |, _{z-a)|
(¢ - a)

Now since z lies inside c and no point 7 on ¢ lies inside Cyr We
have that as long as z is in Cyr @ is closer to z than it is to .

That is, |z - a| < |z - a|; i.e., f - :I < 1, hence,
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1.9.3 continued

z a
T = a <
But
1 2 3 n

+u + + P oo
1—_—u'l=l u u W= ki T

provided |u| < 1.

Z — a

Hence, for IC —| % L

it s
ety -
1 - (=D

converges uniformly (and absolutely) to

(z - a)3
5 ¥
(z - a) (z - a)

Lz - a)?

= X
+
1 a

K4
r -

Therefore, from (2).

2
e R 2 RCER LN
: (z - a)
1 zZ — a (z - a)
= + + +: e »
o (c-a)z (z - a)°
Accordingly,

@"z ? n=0 (c-a)“*l

and by uniform convergence,

L - 2 n+1

96..21519_.- :E: St; __£i£Q£EL__ (z - a)™.
c -
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Hence,
1 f(g)dz _ S 1
f(z) = T ¢ C—_-—ES- = 2 An(z a) (3)
(o] n=0
where
1 ¢ f(z)de

A = : (4)
n 271 r (¢ - a)n+1

Equation (3) supplies us with what is perhaps the most outstanding
feature of an analytic function. Notice that in deriving (3), we
assumed only that f(z) possessed a first derivative; but from
equation (3), we see that the assumption that f'(a) existed led to
the conclusion that f(z) could be expanded in a series involving
powers of (z - a). The convergence of this series, as our proof
indicated, followed from the convergent properties of the geomet-
ric series - not from the circular-reasoning that f(z) could be

expressed in a power series.

o
In still other words, since the series 2: An(z - a)t® converges
n=0

uniformly to £(z) in some neighborhood of z = a, we may differen-
tiate term-by-term to obtain that

£'(z) = E naA (z- a3
=1

f"(z) = Z n(n-l)An(z - a)n—z, etc.
n=2

where each series again converges uniformly to the appropriate
derivative of f(z).

The next key observation is that once we know that f(")(a) exists
for all whole numbers n, then f£(z), if it has a power series ex-

pansion about z = a, must be given by
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1.9.3 continued

— . (n)
i) w2 fT(il (z - a)". (5)

n=0

Since the power series representation is unique, we may compare
(3) and (5) to conclude that

£ a) _
n! = A, (6)

for all whole number, n; and now using the value of An given by
equation (5), we see from (6) that

£(0) (a) 1 ¢ £(0)dr
n! 2mi = ¢ - a)n+l

or

(n) n! f(z)dc

Finally, if you feel more comfortable using z than z, equation (7)
may, of course, be written as

£ (4 = Dt ¢ f(z)dz

2mi X (g = a)n+l

(8)
where z refers to points on c.

In summary, then, if £(z) is differentiable at z = a then the nth

derivative of f(z) exists at z = a, and in fact

(n) n! f(z)dz
f (a) = —_
211 g? FI——

Moreover, for each z in a sufficiently small neighborhood of z = a,

= (n)
f(z) = :E: E—ETLQL (z - a)™,

n=0
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In particular, this proves the very important property of a diff-
erentiable complex function of a complex variable. Namely, if f
is differentiable at z = a then f possesses derivatives of every
order at z = a. For this reason, we are justified in defining
"analytic" to mean either that f is differentiable or that it
possesses derivatives of all orders (i.e., can be expressed in a
power series). This is quite different from the real case in
which a function f can possess one or more derivatives at x = a
but not be expandable in a power series about x = a. For example,
if £(x) = x5/2 f'(x) and f"(x) exist at x = 0, but f cannot be
expanded in a power series about x = 0 since f(n)(O) does not
exist once n 2 3.

As a partial check of equation (8), notice that when n = 0, we get

the Cauchy Integral Formula (discussed in the previous unit),
1 f(z)dz

f(a) X quumm— - -
271 e Z a
4
1 e + 2
27i ¢ 3 dz

c (z - 2ni)

has the form

1 95 f(z)dz
— 7\t 3 (9)
2ri S (= a)n+1

with

£(z) = e + 2%, a = 2ni, and n = 2. (10)

To utilize equation (8), we rewrite (9) in the form

1|n! 95 f(z)dz
n!|27i e lz - a)n+1

(n)

n!

and replace 5—+ ¢
271 B (2 =)

f(z)dz

L by £

(a) to conclude that



B2 R 2 o & D S I I S D I o O & Ee

Solutions
Block 1: An Introduction to Functions of a Complex Variable
Unit 9: Complex Integration, Part 2
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St; f(z)az _ £ (a)

hd ’
E (2 - a)n+1 n!

e -
2ni

so that from (10)

dzsez + 242J
1 ¢ (% + z%yaz _ az®  lz=2mi
Ml 5z - 20d)° -
Hence,

z ZJ
1 ¢ (e? + z4)dz _ &= 123 z = 2wi
c (z - 2ni)3 &

e2™ | 15 (2ri)2
2

_ 1+ 12(-4n%)
2

(11)

As a check of (11), we may use the procedure of Exercise 1.9.1 and

expand e? + 24 in powers of (z - 2wi). This yields

o dfe?) _
(i) e? = E dz :!= 218 (, - 2pi)P
n=0
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3

(ii) g(z) = z4 + g'(z) = 427, 2

g"(z) = 12z°, g" (z) = 24z,
q“) (z) = 24 and g(")(z) =0 for n > 4,

Hence,

g(2ni) = (2ri)?, g'(2ri) = 4(2rD)% g"(2ni) = 12(2ni)2

g™ (2ri) = 24(2ni), ¢‘* (2r1) = 24, ¢ (2r8) = 0, n > 4.

Thus,

= (n)
g - Z 9__(2_'"1_ (z - 27i) ™

;2 g
= (2r)? + aani) (z - 2ni) + 22EZEL (5 o pqy)2 4 240211)

(z - 21ri)3 + %% (z - 2ﬂi)4

= 1G0T = 32L(z - 27i) = 242 (z-=-2xi)? + Bwils = 2ni)>
+ (z - 2n1)d.
Hence,
2 3 .4
z 4 _ B . (z = 27i) (z - 27i) (z = 27i)
e +z =1+ (2 2mi) + 3T - 31 + T -
(z = 2ni)> 4 3 2
+ _S_l_+ eee + 167 = 3277i(z - 2mi) - 24nm
tz - 2ni)2 + Bwi(z - 2m7i)S + (z - 27i)d
& (1 1EnYy e (1 = 32n) (2 - 2wi) + (-— - 2412) (z - 27i) 2

— e )|
+ (31—1 + 8wi) (z - 2nil3 + (ﬁ+1)(z-2n1)4+ 2 {z-2ni)

n=>5 B
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1.9.3 continued

Therefore,
z 4 L. 24w2 a "bunch" of other terms
e” + z a1
bz 2"1)3 z - 2731 whose integral around c is 0%
Hence,

z 4
e’ + z'dz 1 2 dz 1 2 A
95——1--(—-2417) ¢—T=(—-24n)(2n1)
c (z - 27i) 2! . B W 2

4 2
1 ¢ ez + z 1 2 1 - 48m
271 AN 2wi)3 2 2

!
The major advantage of (7) in many applications is that we no lon-
ger have to look at the term-by-term power series expansion of

f(z)
f(z) to evaluate ? s dz.

(z - a)

1.9.4

e? + cos z + z3 is analytic everywhere in the z-plane. Hence, we

may compute

Zz 3
e” + cos z - 2
dz
2is
(= (z - 1)

by means of the recipe

¢ £(z)dz _ _ 2mi £"(a) (1)
= (i = a):'1-6~1 n!

2ni, if n= <1

*Recall from the first exercise thatst;(z- 211)"dz =
C 0, otherwise
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In our example; n = 3, a =i, and f(z) = e + cos z - 23.
Therefore,
3, 2 3
f(n)(z) =4 (8 cog z z) - e’ +sinz - 6
dz
S0,
e a) = £3(4) = e + sin i - 6.
Putting these results into (1) yields
st; e? + cos z - 23 A 2ni(ei + sin i - 6) (2)
) S 31 .
c (z - i) :
We may make u;e of the identity eiz = cos z + i sin z (and, conse-
iz -iz
quently, sin z = e 2ie ) to rewrite (2) as

c

and in

§

+ cos %.— 2°) dz = 27 [ei ” el (1) - e 1 (1) _ 6]
(z - i) & 4%

= (21 & + w(e™Y - e¥) - 12wi)/6

(27i(cos 1 + i sin 1) - 27 sin h 1 -127i) /6
= (=27 sin 1 =27 sin h 1 +i(27 cos 1-12mn))/6

this way the integral is expressed in the form a + bi with

a and b real.

1.9.5(L)

¢ =

C

——~— dz does not have the formﬁ —£(2) _ 3; which we have

+ 1 c (z - a)

handled before. That is, our denominator z2 + 1 is not a power of

Z - a.
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What is true, however, is that

ﬁ zdz  _ zdz (1)
= z2 PEE - (z + 1) (z - 1)

The right side of (1) shows us two "trouble spots"; namely, z = i
and z = -i, where our integrand is not well behaved. The point is
that we may choose contours = and c, which do not intersect; one
of which, say Cyr encloses i and the other, -i.

Pictorially,

Yy [c1 and c, do not have to be

circles, although we may choose
c them to be if we so wish.

The key point is that if Cy is a
(:;) circle centered at z = i and Cy

©1 lies within c then

1'

> x
\ @1 zgd: 1 ) % zzid: 1
CDcz /

B < since —3—5—— is analytic (on
z ¥ 1
and) between ¢y and c3.l

The key step now, as in our discussion of simply-connected regions
in Block 5 of Part 2, is to observe that

¢ 2zdz _ ¢ ;dz % ﬁ ;dz ) (2)
+ 1 (o] z” + 1 + 1

c z 1 Cz z

To see this, we "slit" our region to make it simply-connected.
Thus,



Solutions
Block 1: An Introduction to Functions of a Complex Variable

Unit 9: Complex Integration, Part 2

1.9.5(L) continued

I.e..;
This region R oy and o,
is simple-connected
and _zz_ is
2zl
analytic in R.

(as do Cg and

-cs) really co-

incide, but we
spread them
apart to em-
phasize the
simply-
connected re-
gion in
question.

c=cuc4u-c1U-c4Uc5U-c2U-c5

and since (i) the integral along cy cancels the one along -Cy
(i.e., the paths are the same but with opposite sense), (ii) the

integral along Cg cancels the one along -Cg, and (iii) —;gz—-=o
Z il
because —331—— is analytic in and on c, we conclude that
z" + 1

¢ zdz X ¢ zdz + ¢. zdz
2 7 1 P 2 1

c zZ7 o+ 1 -c1 z c2 z

o
I
(¥
N
+ &
N
st
" |
N
2
N
]
NN
(o N
N
NN
o
+ [N
-
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or,

¢ zdz ¢ zdz ¢ zdz
2 ~: 2 2
(s + 1 (o] 2 +:1 + )

2 1

This method generalizes as follows.

Suppose £(z) is defined in a region R whose boundary is the sim-
ple closed curve c; and suppose that f is analytic everywhere on
the boundary curve c, while in R it is analytic everywhere except
at the n isolated* points Ayrenny and a, in R.

Then if we surround Byr e and a, by non-intersecting contours
Cyr wons and c, (the fact that Ayrenns and a, are isolated means
that we can surround them by disjoint contours) all lying within
c, it follows that

¢ f(z)dz = ¢ f(z)dz + ... + ¢ f(z)dz.

c Cl Cn

Pictorially,

Returning to the main stream of our discussion, the advantage of

equation (2) is that the integrals around c; and c, are of the
type discussed in the previous exercises. For example, inside Cqr
3 z is analytic except at z = 1. Thus, if we write —5JL—— in

z" + 1 2" + 1

the form

*See note at the end of this exercise.
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2 [l

z + 1) (z - 1) z - i

we observe that Z__ is analytic in and on c, so that ¢ —zdz
z + 1 z § 2
c Z. -l
has the form gi%l%i where f(z) = ;—%—I is analytic in and on
o1
Cy-
wWe may, therefore, use the formula gﬁ' g(f = 2ri £(i) to con-
“1
clude that
95 L0204z = 2v5 £(4)
e o
1
. 4 i
= 2ni (I—:_T>
= ni.
That is,
¢ 2z - &)
c, Z + 1
Similarly,

zdz 2= zdz
St; 2 = SE; (z = 1) (z + 1)
2

c, =z + 1

z

- ﬁ [z- i]dz
- z +1i

2
. g(z)dz
- z - = B
2
h (z) = —=2
where g il
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1.9.5(L) continued

Since g(z) is analytic in and on Cy we have that

95 S EZ - 2ni g(-1)

$2
= 27i [-i-i ]
= 7i
so that
@2 ;—gﬁ—‘:—; = 7i. (4)

Combining (3) and (4) with (2), we conclude that

¢ 32— - 2.

c 2z- 4+

A NOTE ON SINGULAR POINTS

It should be clear by now that in the study of complex variables
functions which are not differentiable (or if they are differenti-
able only at isolated points in the plane) are of very minor im-
portance compared with those which are differentiable (analytic).

Yet there are "shades of gray" between the extremes of being ana-
lytic and being non-analytic. One type of non-analytic function
is one that is analytic everywhere in a region, except at most at
a set of points of measure 0.* If such a function exists, we
refer to the points at which the derivative fails to exist as

singular points.

#*This tells us that we don't even have to limit our discussion to
a finite number of "bad" points, but that rather we can include
infinite numbers provided only that the order of infinity is not
too great. We do not wish to make too big an issue over this
point, but we do want to mention it in connection with our dis-
cussion of essential singularities which follows immediately.
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1.9.5(L) continued

Singular points are of two types. There is the isolated singu-
larity in which we can draw a contour around the singularity such
that the function is analytic everywhere else within (and on) the
contour. This was the type of singularity discussed in the pre-
sent exercise. Then there is the essential singularity in which

no matter how small a contour we draw about the singularity, other
singular points exist within the contour.

For example, if we define f by

£lz) = —E,
s1n(;)

we see that our denominator vanishes whenever % = k1 for any inte-
ger k. That is, f(z) is infinite (hence, non-analytic) whenever

z = f%. In particular, £ has a singularity at z = 0 [since

sin %
isn't even defined]. Moreover, if we enclose z = 0 by any circle,
say, with arbitrarily small non-zero radius, R, this circle con-

tains points of the form f% in it. That is, if the radius of the

circle is R, then for positive values of k,

%<R“i<“

-k > =
Thus, if R = 10-6, k > ———l;——-then-l; € R, In this illustration,

-6 km
m(10 )
6
L - 10 < 10° hence, k > 10° (for example) implies that

Tm(10 )
1 -6
o < 10 o
Pictorially,
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1.9.5(L) continued

b 4
A

£(3) = 1 (:) No matter how small R > 0

- 1 ¢ g
sin (E) is chosen, k > — implies

:
that z = En €cp and for all

Cr such z, f(z) is non-analytic,

/(\\ having the form %—
R
\-/ X @ Thus, we cannot isolate

z = 0 from other singulari-
z-plane

ties of f(z).

In our brief treatment of singularities, we shall concentrate only
on isolated singularities. Even more specifically, we shall con-
cern ourselves with those isolated singularities which are called

poles.

More mathematically, the isolated singularity at z = a of the
function f(z) is called a pole if there exists a positive integer
k such that (z - a)k f(z) is analytic at z = a. If k is the
smallest integer for which (z - a)k f(z) is analytic at z = a, we
say that z = a is a pole of order k.

z
For example, if f(z) = ——ji——g, then f has an isolated singulari-

(z = i)
ty singularity at z = i, and this singularity is a pole of order 3
since
z
(o = 3)Yesl8

(z - 1)°3

is analytic at z = i, and k = 3 is the smallest exponent for which
z
(z - i)k -e—g is analytic at z = 1i.
(z - 1)

Notice that not all isolated singularities are poles. For example,

if f£(z) = cos E—%—T, then f is analytic everywhere except when

z = 1. Thus, cos ;—%—T-has an isolated singularity at z = 1.
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Now, since

cos u = (_l)nuZn
(Zn) ! '

n=0

we see that

o 1 \2n w
NPT P i e I T

(2n)1(z - 1"

n=0 n=0
That is,
cos (-Fll-)=l— ! 2+ : 4' 1 6+..- (1)
21 (z - 1) 41(z - 1) 6! (z - 1)

and there is no finite power k of (z - 1) which makes (z - 1)k
cos (E—%—T) analytic since our denominators in (1) are endlessly
increasing powers of z - 1. Therefore, z = 1 is not a pole of

cos (;—%&TJ even though it is an isolated singularity.

The point is that in our discussion of

¢ f(z)dz
c (z - a)n

where f(z) is analytic in and on c where c¢ is a closed contour

containing z = a; we are dealing with the function g(z) = __ELEL_H
(z - a)

which has a pole of order n at z = a [since then (z - a)® g(z) =
f(z), which is analytic at z = al.

At any rate, relative to the discussion in the present exercise,
if ¢ is a simple-closed curve which is the boundary of a region R
and if f£(z) is analytic on ¢ and in R (except for at most a finite

number of poles in R), then we may evaluate SZ} f(z)dz by the
C

method used in the solution of this exercise.
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1.9.6(L)

3 3
£(5) z = z

(- 1) (22 + ﬂf (z - 1) [(z + i) (z = 1)]

3
- z 3 (1)
(z - 1)(z + 1)%(z - i)

From (1), we see that £ has three (isolated) singularities in the
z-plane and these are

(i) a simple pole (i.e., a pole of order 1) at z = 1
(ii) a pole of order 2 at z = -i

(iii) a pole of order 2 at z = i.

Since c is the circle of radius % centered at z = 0, we see that

<y encloses no singular points of f.

Pictorially,

£(z) is analytic in and on ¢,

3
z

Since 5 is analytic in and on Cyr

(z - 1)(z2 + 1)
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zadz SV

<
By mo<-1yla®s 1)
b Since c., is the square with vertices at (1 -l) (2-1) (1 1) and
o 2 a 7'20 215’: 'f:'i':
(%,%), we have

y
A

[
-
|
-
w
[

Thus, c, encloses only the singularity at z = 1. 1In this case,

3
- dz

2
€ (z -1 (22 + 1)

may be viewed as

P Hiy e

©2
where
3
glz) = % 3
2
SR 1)

is analytic in and on Cye
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1.9.6(L) continued

Therefore,
ﬁ 202042 - 25 g(1)
(<3
2
3
= 2ni 1 )
2
(1 + 1)
= 1
= 27i 4]
S 7 8
2.
That is,
zadz _ mi
5= 5 (2)
c 2 )
2 (z - 1)(z + 1
Since Cy is the circle centered at z = i with radius %, we see
3
z

that the only singularity of 3 in or on c4 is z = 1i.
(z - l)(22 - 1,

With this in mind, we write

23d2 - ¢ Z3dz
2 .2 5
€3 (z - 1)(22 + 1) (z = L)(z-+1)"(z -~ 1)
z3
and letting h(z) = 5, we see thak
(z - 1)(z + i)
2 dz 5 ¢ h (z)dz
’ 2 S
€3 (2 - 1)(2% + 1) CI i)?2

where h(z) is analytic in and on c,.
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Hence,

gﬁ- -2131935 = 27i h'(i).

cq (z --1)
Since
h(z) = 2 >
(z - 1) (z + i)
gy o Lz =Dz 121322 - P - V2t 2 )Y

(z - D2z + 1)?

(z + i)22[3(z - 1) (z + i) - z{2(z = 1) + (z + i)}]
(z - 1)2(z + 1)°

- lz + 1)22[322 - 3i - 3z + 3zi - 322 + 2z -~ iz])
(z - D%z + 1)?

(z + i)2%(-2(1 - 2i) - 3i]
(z - 1)2(z + 1?8

In particular,

(21)i%[-i(1 - 2i) - 3i)
(i - 1)22i)4

h' (i) =

-2i[-4i - 2]
i - 12 16

4i (1 + 2i)
-2i 16

_ 1+ 2
T

(3)
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1.9.6(L) continued

Hence, from (3), we conclude that

z3dz ¢ h(zldz_ _ , ( 1+2i)
(s 2 2 (z - i)2 8
3 (z=-1[22 +1)

_o_mi(l + 2i)

- 4

T, R +

= s (4)

1 4+ i -+ &

Since

3 is the average of 1 and i, z = 5 is the midpoint
of the segment joining i to 1. Thus, the circle centered at
1+ i with radius 1 encloses the poles at z = i and z = 1, but not

2
the pole at z = -i.

Pictorially,

We now enclose 1 by the small contour Cq and i by Cg+ Say,
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1.9.6(L) continued

C4

Then

z3dz 5 ¢ zde X
3 7]
Sy iz =2y(e% + 1) C (21 (22 + 1)

z3dz (5)

5.
S (z - 1) (22 + 1)

+

We may now "cheat" by utilizing some previous results as follows.

3
With c, as in (b), Cq lies within c, and since z 5 is
(z - 1)(22 + 1)
analytic on the region enclosed between c, and Cgr We conclude
that
zadz - z3dz
(o) 2 2 (o 2 2
s (z-1(z2 + 1) 2 (z-1l(z2 +1)
=5 by (1. (6)

Similarly, with cy as in part (c), since Cg is contained within €q
3

and z 5 is analytic on the region bounded by 4 and

z - 12?2 % 1)
Cgr We conclude that
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1.9.6(L) continued

z3dz z3dz

3 3
6 (z - 1) (2% + 1) °3 (z - 1)(22 + 1)

=2-5 py (a1. N

Substituting (6) and (7) into (5) yields

z3dg -

Mo,r_mo_mi
o o

2 4

N =

3
4 (z - 1) (22 +1)

1.9.7

Since ¢ is the circle |z| =1, f(2) = 5%5::357 is analytic on and
within ¢ except for a simple pole at z = 0, Thus, letting
gl(z) = %—;—%, we have that

(1 + z)dz _ g(z)dz
g? z(2 - z) g? z (1)

and since g(z) is analytic in the region enclosed by c, we may
conclude that

(z)dz |_ (z)dz | _ 5.
@ laldz |- f 2l9g ] - 2nt goo

1 0
2ﬂi[2 —_ 0]

= 1. (2)

Combining (2) and (1) yields

St; (1 + z)dz _ _.
z(2 - z) :

C



Solutions
Block 1: An Introduction to Functions of a Complex Variable
Unit 9: Complex Integration, Part 2

1.9.8(L)

Obviously (we hope!) one would not need the calculus of complex
functions to solve this problem. Indeed

J. -—95—5 = arctan x J = % - (-%) = 7.
_w1+x e

What we want to do in this exercise is start with a problem which

is computationally easy and whose answer is already known to us by
other techniques (to serve as a check), but which will illustrate

how the use of complex variables helps us evaluate certain types

of real definite integrals.

The techniques which we shall employ here works in general to
evaluate any integral of the form

f P(x)dx
N Q)

where (i) P(x) and Q(x) are polynomials in x, (ii) the degree of
Q(x) is at least 2 greater than that of P(x), and (iii) Q(x) =0
has no real roots.

w

‘I. -—25—5 is a special case of the general result with P(x) =1
0 1+ x

and Q(x) =1 + xz. Both 1 and 1 + x2 are polynomials; the degree

of 1 + x2 is 2 while the degree of 1 is 0; and 1 + x2 = 0 has no

real roots.

What we do is replace x by z and look at ¢ _dz__z_ We observe
(o I N 2

L 1 :
1+ z2 (z + )z - 1)+

simple poles at z = 1 and z = -i.

that s analytic everywhere except for

We then evaluate ¢ _dzj_ around the special contour shown
¢ L'+ 2
below.
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Y
Y
b

23

That is, ¢ = ¢y Yeg where cq is the portion of the real axis from
-R to R and g is the upper half of the circle centered at z = 0

and going from R to =R.

More mathematically,

c, = {z: 2z =x, -R & x £ R}
c, = {z: 2= Reie, 0 <8 < mh.

(1)

(2)

In our present example, we observe that once R > 1 (since the only
pole [singularity] of '_—L-f in the enclosed region occurs at

1l + 2

z=1iand |i| = 1), 96 -395—- is a constant.
c zZ& #=1
R>1,

¢ dz = dz
c 1+ zi . (2 +1)(z - 1)

- s

c

where g(z) = is analytic in and on c.

z + 1
Hence,

In particular, for

(3)
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¢ (z)dz _ 505 g(i)
%=
C
T i
= an[i e i]
= 7. (4)

Combining (3) and (4), we conclude that

¢&5-v (R > 1). (5)
¢ 1+z
But there is a second way to compute gﬁ -—93—7 as a function of
e 1+ 2

R. Namely,
dz _ _ f dz " f dz (6)
Sz; 1 + 22 1+ z2 (o] 1l *+.2

dx and we have that

From (1), dz

f dz s = j:R ax (7)

cq 1 + 2z R 1 4+ x

Hence, for every R > 1, we see by substituting (7) into (6) that

R
¢ dz__ _ f dx dz ) (8)
g ) W f T

o L+ 2 R 1 + x Cr

By equating the expressions for ¢ -i—z- given in (5) and (9),

c 1+ 2
we conclude that for every R > 1,

R
f d_x2+f d_zz.,,_ (9)
-R 1 + x c 1 + 2z
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In particular, then, the equality in (9). should still hold when we

let R*=,
Since
R ™
. dx dx
IIMI -—ﬂ-m f e ——
R+ Y=R 1 + x -= 1 + x2

and since lim 7 = 7 (because 7 is a constant), we see from (9)

R
that
o
ax dz
[( i [ g2, 10y
- ] 4+ X R+ cp 1l + 22
and since we are interested in evaluating Jr __§§_5, we rewrite
- ] + X
(10) in the form
f %=w-umf e (11)
-o 1 + X% R+ SR 1+ 2z
. R . dz -
Our claim now is that lim f — 0.
R+ cR 1 +2

This is not a coincidence. 1In terms of the general result stated

previously, if cp is the upper half of the circle |z| = R from R

- P(z) R
to =R and Cr encloses all the poles of GT;T»which lie in the upper

half plane (i.e., those poles whose imaginary parts are positive)

P(z)dz
then lim Jf BT O T 0 provided only that degree of Q exceeds
R+ cR Qlz

the degree of P by at least 2., However, we shall demonstrate the
result only for the given exercise.

f f(z)dz
C.

R
value of |f(z)| on cg and L is the length of c

We use the fact that & ML where M is the maximum

Since Cr is the

”

upper half of the circle |z| = 1, we have that L = wR. Therefore,

[ 2] e fo —2) )
g 1+ 2z zecp |1 + 27|
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Now ————L—iT is greatest when |1 + zzl is least,

|1 + 2
There are several ways of estimating |1 + zzl. One way is to in-
voke the property of absolute values that |a - b| > [|a| - |bl]|,

whereupon
1+ 22 = |1- (28] 3 |1 - |2/ = |1 -R®| =R® -1 (if R>1)
2 2 2
Then, since |1 + z°| > R* - 1,
1 1
$ .
X & 25 © Bracd
1 1
Hence, max 5~ € , 80 that from (12)
zecy |1 + z°| R® -1
/‘ dz2 < ZWR
Cr 1 + z R" =1

and since lim [—515——] = 0, it follows that
R 1

R+=

lim = 0. (13)

R+

-/' dz
2
Cr 1l + 2z

But the only way the magnitude of a complex number can approach 0
is if the number itself approaches 0. Thus, we may conclude from
(13) that

nmf —dz _ - o. (14)
R+ Cr 1l + 2z

Putting the result of (14) into (11), we conclude (as we already
knew by a more elementary method) that
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1.9.8(L) continued

w0
f —"Lf= T. (15)
-= 1 + X

Before pursuing (15) further, let us hasten to say that if you
feel uncomfortable with inequalities involving absolute values, we
could "bludgeon out" the required inequality more basically by
observing that with 2z = Reie,

2 i286

2| = |1 + R%'2%| = |1 + R%(cos 26 + i sin 20) |

il

|1 + =

2

| (1 + R%cos 268) + i R%sin 28|

JQI7+ chos 28)2 + (stin 26)2

A + 2R%cos 28 + RYcos?26 + R¥sin?20

2cos 20 + R4

A+ 2R

2

and since 2R2cos 28 » =2R“ (since min cos 286 = -1),

IL+22 s A-22+r' = /R -1%=RrR? -1 (ifR>1).

The point is that the latter approach can become very messy if our

expressions are more involved than ———1—5.
1l + 2z
Returning to (15) we notice that since -——}-5 is an even function,*
1 + x

a a
f =8 o 2 f __d_x__z_ Hence, we may conclude from (15) that
-a 1l + x 0 1. 4-x

*Recall that f is even means that f(x) = f(-x) [i.e., f is symmet-
ric with respect to the y-axis].
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pl
However, in general, since 67;% need not be even we cannot use

oo
this method to evaluate Jr P (x)dx because it need not equal

o Q)

2 Qx)

tion requires much experience. Namely, we must be clever enough
to choose a contour part of which under suitable limits yields the
given real integral and the other part must either by "easy" to
evaluate when the limit is taken (such as in this exercise where
the limit is 0).

3 j. P {x)dx This leads into why the theory of contour integra-
-0

Thus, while the general theory is rather simple, the ability to
"invent" the right contour as well as the right form into which we

b
translate JP f (x)dx requires the kind of experience which one
a

usually can obtain only by taking a complete course in the subject.
Our aim is only to open the various avenues of exploration to you.

1.9.9 (Optional)

a. The singularities of —E—L——

AT S5 §

6
occur whenever z + 1 = 0. Thus, we

are looking for those values of z such that 26 = ],

Using polar coordinates, we have z = reiB while -1 = e

so that z° = -1 implies that

i(n + 27k)
’

(6168 _ 1 i(m + 2mK)

from which we conclude that

and

k=0,1,2,3,4,5
668 = 1 + 2rk {since 66 ranges from 0 to 12m as & ranges from
0 to 2n

orx
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0 = -611 + !%: k=20,1,2,3,4,5.

Thus, the roots of 26 + 1 =0 are given, in polar form, by
wh, b, a.3h, oD, a3, aa a1
or with z = rele, we see that —g—l——-has simple poles at
z +1
m LT 5 L7 3m 11w
2, = e16 zZ, = e13 Z, = ei J z, = e1 o z ei and z, = ei 6
1 ) Rl A | L d 6
In Cartesian form,
m wee = T 1 P
zy = cos g+ 1sing= 5(/§ + i) [By way of review,
notice that the
- - roots occur as pairs
z, = COS 3 + i sin o k! of complex conju-
gates; a fact that
must be obeyed be-
5T i ST 1 .
zy = cos & + i sin I = 3(-V3 + i) SaiEE 50 L g
is a polynomial
_ n X v _ 1 equation with real
2y = cos g +1isin & = 2(/3 +4) coefficients.]
3n . 3m
zg = cos & + i sin T -i
= 11w v po A o L e ‘
zg = cos =g~ + i sin = 2(/— i —
Pictorially,
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Y

\ ]

Figure 1

w

\
=\

:
L

z-plane

b. With z;, ..., z¢ as in part (a), we see that ;1 = 2¢, 52 = zg,

and zy = 24.

26 + 1

(z - zl)(z

Thus,

[(z - zl)(z - zG)l[(z - 22)(2 -

[(z - z,)(z - El)l[(z - z,) (2

Now for any complex number, c,

(z - c)(z - ©)

Applying (2) with c =

2
z

(c +c)z +cc

2Re(c)z + |c|2.

N
I

zs)ll(z -

zl, 22, z3, we have that

- zz)(z - z3)(z - z4)(z - zs)(z - 26)

23)(2 - z4)1

- Tz - 29) (z - 2] (1)

(2)
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(i) (z - z,)(z - Z,) = 2% - 2Re(z,)z + |z Iz
1 1 1 o S

(/3 + 1),

o=

or, since z, =

(z - 2zy) (z - Ei) =22 - /3z + 1. (3)

(11) (2 - 2,) (z - Z,) = 2° - 2Re(z,y)z + |z,|?,

or, since z, = > I

(z - 2,)(z - Z,) = ¢ + 1, (4)

(131) (2 - z3) (z = Zy) = 22 - 2Re(zy)z + |z,4]?,

or, since z, = %(-J? + 1),

2

(z - z3) (z - 55) =2+ /3z + 1, (5)

Substituting the results of (3), (4), and (5) into (1), we obtain

2° + 1 = (z2 - J3z + 1)(z2 + 1)(z2 + 3z + 1). (6)
Note
Without a knowledge of complex numbers we could write z6 + 1 as
3
(zz) + 13 to obtain the factorization
2% 4 1w @t 2+ . (7)

By fairly elementary methods, we see that 24 - 22 + 1 has no ra-

tional factors, but this does not mean that it can't have real but
irrational factors. In fact, if we compare (6) and (7), we would
conclude that

(z2 - 3z + l)(z2 +/3z+1) =z - 2z° + 1. (8)
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As an independent check, notice that

2

(22 = Bz + W22+ A+ 1) = [(z° + 1) = /A2 22 + 1) + V3z]

2
(22 + 1) - (/3212

= z4 + 222 +1 - 322

- z4 - 22 + 1,

Yet the factorization in (8) seems far from obvious. Thus, our

derivation of (8) shows yet another application of complex numbers

to the algebra of real numbers.

¢. If we use the technique of the previous exercise, we pick any

R > 1 [since all the singularities of —EJH- are simple poles
z + 1
which lie on the circle [z| = 1.]

Since Zyr Zys and z, are the only singularities in the given re-
gion, we may isolate them by the contours Cyr Cpr and C3 which lie

within c, where

Figure 2
dz _ dz dz
ﬁs ‘f 3 *fe :
e 2 4k c, 2 + 1 cp 2 + 1
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Since ¢, = {z: z=1x, -R £ x £ R , we may rewrite (9) as

z

R
¢ dz f dx f dz
—2% _ = —_—_ } _— (10)
(o] 26 + 1 -R x6 + 1 cR + 1

Since ¢ Gd_z is constant once R > 1 and since
C

Z= ok
lim f —623— =0 [i.e., just as in the previous exercise, for
Ré= “c. |z” + 1]
ZGCR,
1 = 3 & 1 soes 1
128+ 1] 12° - ul o [l12]® - |-l 1R -1
Thus, for R > 1
f -—ng—- < TR max ‘—6—1—
cp 2z *+ 1 zecp|z” + 1
TR
\( ————
B 1
whence
dz TR
lim f - —| = lm = 0, etc.]
R+ ch+1 R*WRG-].
we may let R+= in (10) to conclude that
ﬁ —G‘i—z—=f -+ 0. (11)
o 2 1 - x + 1

We may now compute the left side of (11) by observing that
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gs -ng—z = 96 —ggf—z B gs -ng—z-+ 9i ;ggf—I (12)

where Cyr Cye and c5 are as shown in Figure 2 (the exact shapes
are irrelevant; all that is required is that they separate Zyr Zys
and z4 and be within c).

All that happens when we try to evaluate the right side of (12) is
that the algebra gets a bit messy unless we can find some clever
ways of doing the computations. [This quest for clever computa-
tional techniques is part of any course in the calculus of complex

variables.]

For example, if we try to use brute force in computing, say,

dz A dz h(z)dz
= TR find that T— ——=— where
'zi T 4 ‘Zi z +1 'zi * =3

1
(z - zl) (z - 23) (z - 24)(2 - zs) (z - 26)

h(z) =
is analytic in and on c,. We would then obtain

$ 2= = 2ni n(z,) (13)
c, z +1

and while (13) is correct, the right side is difficult to evaluate.
Using (6) helps somewhat, but even this is cumbersome.

It turns out that when all we have are simple poles (i.e., poles
of order 1) there is a complex-analog of L'Hopital's Rule which we
may use. [See the note at the end of this exercise.]

Recognizing that —EJL-— has a simple pole at z = Z, = i, we write
z- # L

1 <
A the form
z + 1

1 W | ( 1 )
z6 + 1 z6 + 1 z - 1
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Letting h(z) = -%—:—l, we see that h is analytic in and on c,
%)
except at z = z, = i in which case h(zz) = %.
hy(z)
Recalling that by L'Hopital's Rule, that if lim FizT -~ 0 then
2>z 2
2
hl(Z) hl'(zz) )
lim h(z) - lim m, we see that if we define h(zz) to be
z->z2 2 27z, 2 2
lim h(z) and recall that z, = i, then
z+Zz
2
h(z,) =h(i) = lim 2=1
z*i z- + 1
= lim [LS]
z+i |62
-
61°
_ 1
61
. -
T-
Hence,
ﬁ dz__ _ h(z)dz
6 z -
c, 2 L oo | <,
= 27i h(i)
= 218 ()
= %’- . (14)
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in
6

In a similar way, since zy =e

AN
N

(=]

o
4+ IN
=

]
AN
N
~N

N |
+ |
._.O'\
-
I
aqd

o
N

where
im
z - e 6
hl(z) = 3 . (15)
AUk R

1T

—

Since hl is analytic in and on ¢ except at z = e 6 where it is

olo

we may use L'Hopital's Rule to conclude that

(%) i
hl e 6 — 1lim .z_g_e—
in|l 2" + 1
z+e B
= 1im LS
in|6z
z- e 6
= 1
. 57
1_.
6 e 6
51
_1 T¥§
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Hence, from (15),

b -l Luse o)
c, z *+ 1

-% Ti(/3 + i)

3 Ti, (16)

1
5" "

3

6

Finally, we evaluate ¢ _G_d_z_ by observing that
Cy 2 + 1

az h,(z)dz (z - z,5)
e T reag el m

3 Z + 1 3 z +1

or, since zy = e 4

51
¢ 22— = 2mi hz(e 6)
(& z

3 + 1 )
151
6
= 2ri lim z-ﬁ-e
S|l z” + 1
z*iT_
= 2ri lim -1—5]
57|62z
z+i gL
— =
= 2ni ——1-5-5-;
6 e 6
= 2wi 1
iX
j e 6
s
= % i e 16
- L~ 1
—§'ﬂ12 2].]
= ﬁ%ﬁ i+ % . (17)



Solutions
Block l: An Introduction to Functions of a Complex Variable
Unit 9: Complex Integration, Part 2

1.9.9 continued

Combining the results of (14), (16), and (17) by substituting them
into (12), we obtain

c z +1
=24, (18)

Comparing the value of ¢ sz— in (11) with its value in (18),
G Sk 5 |

we conclude that

f"' _dax
- x6 ¥k

. 1 - §
and since ——— is an even function
x6 + 1

Wi
=

x + 1

w
dx =
L eia

A Note on L'Hopital's Rule

Suppose f(z) and g(z) are analytic at z = a and that f(a) =

g(a) = 0. Our claim is that, just as in the real case,

oo £ ()
= 1lim —_
) g A {3

The proof is not difficult. Namely, we know that near z = a,

E(z) = E(a) + £'(a) (2 ~ a) +f—;—!‘il(z-a)2+(z-a)3 [onnn. ]

and since f(a) = 0,

£(z) = £'(z) (z - a) + £%-i(--a-L(z - a)2 + (z - a)3 lisiaiétnse.]
= (z—a)[f'(a) +f—'2'—!12l(2-a) + (z-a)z {.....}]. (1)
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Similarly,

g(z) = (z - a)[g'(a) - Sgéél(z -a) + (z - a)2 {.....}]. (2)

With z # a, we may divide (1) by (2) to obtain

fra + 5 - a) 4 z-a? (L.l

GRS g'(a) + E%{El (z - a) + (z - a)2 {

. (3)

sesasl

Letting z+a [i.e., (z - a)»0] in (3) yields

£(z) _ £'(a)
g(z) g'(a)’

lim
z+a

unless f'(a) = g'(a) = 0, in which case we apply the rule again to

£'(z)
lim m etc.

zZ+a

The most important point is to recognize that while there are very
few basic ideas involved in the study of analytic functions, these
ideas are used with great subtlety and in considerable depth. Our
only hope in this block is that you get enough feeling for the
basic ideas to appreciate the great scope and realness of the com-
plex numbers, as well as a feeling for how the structures of the
real and complex numbers are in some ways similar and in other
ways very different.

when f£(z) is analytic in a deleted neighborhood of z = a and
f(a) % then we say that f has a removable singularity at z = a

if 1lim f(z) exists. 1In this case, letting h = lim f(z), we define
z+a z+a
a new function g such that

f(z), if 2z # a
g(z) =
L, if z=a
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In this way, g(z) behaves exactly like f(z) when z # a, but fills
in the "missing point" when z = a. g(z) is usually obtained by

using L'Hopital's Rule to compute lim £(z).
z+a

1.9.10 (Optional)

iz iz
Since EE_ is analytic everywhere except at z = 0, St; 3;- dz =0
c

around any simple closed path which excludes z = 0.* The given
path ¢ fulfills this requirement. Namely,

3 R
is analytic in any region which excludes z = 0], we may conclude
that

iz iz iz iz
/ e zdz 2 f e zclz + f e zdz + f e zdz =30 (1)
“3 “k <9 €Rr

(we use the minus sign, as shown below, to reverse the sense of C

iz iz
Since ¢ = c W) C U e, Uec, and since Sﬁ; E;— dz = 0 [because g;_
(o}

to agree with our diagram) where

*Notice, therefore, that unlike in the previous exercise, our con-
tour must exclude part of the real axis (i.e., z = 0). This was
why it was crucial in the previous that Q(x) have no real zeroes -

otherwise our integral Jf Eé%%%i would be improper once R was
A 3

1 P(z)

large enough to include a real singular point of Wz’
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c, = {z: z =%, -R ¢ x ¢ -k}

¢ ig
- {z: z = kele, 05 6 g 7} [%o g§'= 1521522 = ide]
ke

]
ey
A
N

|
o
o
A
@
/A
=
-

Cr

Putting this information into (1) yields

-k ix T ., 180 R _ix " ie
f €8x _ f e**® i + f e dx , f el iae = 0. (2)
R 0 k 0

o 1 ix
Now it seems like a good hunch that f §i—"—::—d—x [= Im f %]
0 0

R
is going to be identified with f 3—1“7"1*, taken in the limit as
k
“k o1Xgy
k+0 and R+», With this in mind, we rewrite f e by first
-R

letting u = =x to obtain

fk grin (=du) _ fk 2 ~iugy - _fR ety
R B R " k G

and this in turn, since u is simply a dummy variable, is

R -ix
-f g_dz"c That is'
k X

f-k et ¥ax - _fR e 1%gx
-R % k %

Hence
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:

Then, since e - e - 2i sin x, we see that (2) may be written

as
R w . m
R i@
21[ 5—12:—@-[ eike iap +f elRe" 1439 = 0. (3)
K 0 0
ikel® 10
If we now let k+0, we see that e e = 1 so that
m T
.o 19
limf etk jae = f ide = wi. (4)
x+0 70 0

Moreover, since R and k are independent (except that k < R)
i iReie
=) id® is independent of k.
0

However, we do know that

m . s
P ie
f elRe ido| € max eiRe i,
0 0<B <
and since |i| = 1, we may say that
m v
.10 ig
f Re idg| ¢ w max |eiRe |
0 0B s
Now
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i9 ;
is quite a mouthful, but recalling that ele

i sin 8, we see that

eiRe = cos O +

e i :
exRe e1R(cos 8 +1i sin 8)

= eiR cos B - R sin 8

- oiR cos 8 -R sin O
e e

Hence

if
|eiRe | = IeiR cos & ,-R sin e|

- IexR cos el Ie-R sin e|' (6)
but |e*®| = 1 for all real x, so since R cos & is real
IeiR cos el g (7)

Moreover, e is positive for all real x, so since -R sin 6 is

-R sin 8§

real, e is positive,

‘e-R sin OI o e-R sin 9. (8)

Putting (7) and (8) into (6) yields

|ire™®| o Rosin g 93

A0 covers just one special contour, it might be well
ei(x + iy) ix -y

Since z = Re
to generalize (9) by observing that e'? =
e* &Y, Hence

= e

letZ| = |e¥*| |e7Y|

« ¢ 2

e-Im z (10)
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and we see that (9) is a special case of (10).

e R 8iN 8 10 an interesting be-

Now on the interval 0 & 6 & m,
havior. Namely, if we pick eo e (0,7) [i.e., eo #0, eo # nwl,

we see that

. R
=R sin @ [ -sin @ ] R
o _ o . 1
. - . sin 8, ' (11)

e

Since 0 < eo < m, we know that sin 00 > 0 and hence that

sin 8
e © > 1., Therefore, —EI%—g— < 1 (and non-negative). Hence,
a o

1 R

[—sin—r] e B
o
e
In other words, we conclude from (11) that if 0 < B < w,
lim e R'8in 6 _ 0, or in terms of (9),
Ro+=
id

lim IeiRe | =0 if 0 < 6 < m. (12)
R+

However; if @ = 0 or 6 = w; e R sin 8 _ =0 _ 1 in which case

lim |eiReie| = 1.

R+>

Technically speaking then, all we can conclude from (3) is that

However, if we can exclude the exceptional behavior at 8 = 0 and
8 = 7, we could obtain from (3) that
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- i8
1im J elRe™ 49
0

R+0

i6
< vin | max |eR® || = 0. (13)
R+ |0<B<T

elzdz

If (13) is valid, it means that we may neglect J/. when we
R

let R»= in (3).
The validity of (13) stems from the refinement that

J{ f(z)dz| ¢ ML where M is the maximum value of |£(z)| on Cr
(

R
except possibly at a finite number of points on Cre That is,

changing the value of the integrand at a finite number of points
does not affect the value of the integral.

This was also true in the real case. For example, suppose

1
£(x) = x%, 0 € x ¢ 1, then f £(x)dx = % on the other hand, if
0

£(x), X # 5 3
g(x) = then Jr g(x)dx = % also. Pictorially,
100, x = 5 0

no effect on the area

{ "Lifting" one point has
: "under" the curve.

|
|

At any rate, using the results of (4) and (13) in (3), letting
k+0, and R*», we obtain

R
4 sin x dx _
211]‘.113[( —x—--ni—o

R—+w

so that
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R
limf sin x dx _ %, (14)
k+0 “k =
R»=

We may write the left side of (14) as

f sin x dx
0 x

provided we remember our discussion of the previous unit and re-

“ sin x dx

= , when

call that we mean the Cauchy Principal Value, P jﬁ
0

we write f M.
0 X

m »
sin x dx

- is convergent,

However, since the improper integral_[
0

its value must agree with the Cauchy Principal Value, so in this
case, we may, without ambiguity, write (14) as

w

I (15)
0

Again, since sxn_i-x) - 312 x, 51: X js an even function and we

may conclude from (15) that

f sin x dx .. _ o
-0 x
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L

By DeMoivre's Theorem, we have that for each whole number n,

(cos 8 + i sin )" = cos ng + i sin ne. (1)

Letting n = 7 in (1), we obtain

(cos 8 + 1 sin 8)7 = cos 78 + i sin 78. (2)
Expanding the left side of (2) by the binomial theorem, we have

7

(cos @ + i sin 9)7 =cos B + 7 cosee(i sin 8) + 21 cosse(i sin 9)2

+ 35 cos49(i sin 9)3 + 35 cos3e (i sin 634
2 K 5 z 6
+ 21 cos“8(i sin 68)” + 7 cos B(i sin B)

+ (i sin 8)7

= cos7e + 317 cosse sin 8 - 21 cosse sinze

4

-i 35 cos @ sin3e + 35 cosse sin4e

6 Y

5 A -1 sin'9

+i 21 C0829 sin8 - 7 cos 6 sin

5 3

= cos7e - 21 cos™ 6 sinze + 35 cos™ 8 sin‘O

- 7 cos @ sinee + i (7 cosse sin 6

- 35 cos‘& sinae + 21 cosze sinse - sin7e).

Comparing the right sides of (2) and (3) and recalling that two
complex numbers are equal if and only if their real and imaginary
parts are equal, we see by equating the imaginary parts that

sin 78 = 7 00966 sin 8§ - 35 cos49 sin3e + 21 cosze sinse - sin7e.

(3)
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2. (a) Perhaps the simplest approach here is to observe that

Noticing that

il i(Te2m) i(3+am i (Z+61)
] ] 3 ]
e , e P - , and e

all name the same number, and letting z = rele, we conclude that

24 = l—I—i-implies that

« oW
2 i(++2mn)
t‘elae = g T+ , wheren = 0,1,2,3.

Hence,

so that

e = 1“—6 + 1‘-211" n= 0'1'2'3.

(1)
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That is,
m 9m 171 25T
=16 16" T6 ' 16 (2)

Combining (1) and (2) and recalling that (r,8) = rele, we conclude

im 19T il7w 1257
g: g8 = Lt il ers'el6'e16'e16 )
vZ
Note #1
Since llvé—i| = 1, the roots all lie on the unit circle centered

at the origin. The "primitive" root has its argument equal to one-
fourth that of =1

(i.e. {%) and the four roots are then distri-

buted at 90° intervals. Pictorially

K
i9m
e16
im
16
s X
il7m
2 16
1250
I 16
Note #2

1f we prefer the a + bi form then, for example,

im
16 _ I X
e = cos y¢ + i sin 16

cos 11.25° + i sin 11.25°

= ,9808 + .1951i.
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In fact, the four roots are then given by (approximately)

. m . Al
.9808 + .1951i = cos 1€ + i sin i6

o

~] =
—

m s . n
-.1951 + .9808i1 + 5) + i sxn(Ig #

I
(o]
8
o

&)

S o AR OO b
-.9808 - .1951i = cos(16 +w) +1 sm(16 + )

o copbls+ ANy -4 ainlls & SX
.1951 .9808i = cos(16 + 2) + i sin(l6 t 3 )
(b) If
4 1+ i
= 3
2/2—1 ()

we may square both sides to obtain

8 _ (1+ )% _1+2i-1
% 2 2

z = 1i. (4)

216 + 1= 0.

144 are a subset of the

in

sixteen 16th roots of -1. As a partial check, if z = e7, then
z16 = eiv & g3

(In other words, the four 4th roots of
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3. (a) Perhaps the most systematic way to proceed is by using the
fact that z z = |z|2. We could then multiply both numerator

denominator of J? by Z2 to obtain
z

L .
o2

= (1)

_j

If we now let z = x + iy, we have that z = x - iy and
|z|2 = x2 4+ y2.

Hence, equation (1) becomes

1. - iy)?
2
z (xz = yz)
- x2 - i2xy + 12y2
2
(x2 + v?)
_ (x2 = yz) - 2xyi
2 ’
(x2 + yz)
or
2 2
R SRS e gl IR (2)
z2 ( 2 2)2 ( 2 2)2
XN X" +y
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From (2), we have that

u=.__§_:_.17 (3)

v = ___:252__7, (4)
2 2
(x +y)
Note
The identity z z = |z|2 often helps us avoid much "dog work," but,

in relatively non-complicated cases, "brute force" works as well.
In terms of the present exercise, we could have converted at once

to x and y, and obtained

iecaalll o
(x + iy)2

1
.
z

1
(*27- yz) + i2xy

(x? - y%) - i2xy

[(x? - yz) +i2xyl [(x2 - y2) - i2xy]

2 s
(xz = yz) + 4x2y2

% 2
and since (x2 - y2) + 4x2Y2 ot 3y 2x2y2 + y4 _ (x2 4 yz) —
see that (5) agrees with (2). The major point is that this latter

approach becomes more tedious in computing Jﬁ for large (integral)
4
values of n. More generally, by our first approach
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=n
z

b
n n -n
z z z
z"

(z )"

‘ifl

& b ap?
)

(b) From (3) and (4), we see that u uy, Vr vy exist and are
continuous except when the denominators are zero. But

2
(x2+y2) =04—>x2+y2=0
q-oxnyzo

— z =X + iy = 0.

Hence, the Cauchy-Riemann conditions, virtually by default, are
not obeyed when z = 0.

As long as z # 0, we have from (3) that

2
= (x2 + yz) (2x) - (xz - yz) 2(x2 +<y2)2x
x ( 5 2)4
x“ + vy
= 2x(x? + y) (% + y?) - 20 - v
o+ )"
X" +y
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2

or, since x° + y2 #0,

_ 2x(3y2 - xz)

x 3
(x2 + yz)

Similarly,

2
_ kz + yz) (-2y) - (x2 - yz) 2(x2 ¥ y2)2j

Y 4
(xz + yz)

_ 02+ vd o e ¢ v+ 20 - y2))

2
(xz N yz)

)

-2y (3x2 - y?

3
(x2 + yz)

Now from (4), we conclude that

2
_ 2+ y2) o) + 2xy 1202 + yH2x]

x 4
(e
_ 2y x2 + v [-x% + y2) + ax?)
4
()
_ 2x(3x2 - yz)
3
(xz + yz)
and

(6)

(7)

(8)
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2
(x2 + yz) (-2x) + 2xy[2(x2 + y2)2y]

v =
Y 4
)
_ 2x(x2 4 y2) [-(x2 + y2) + 4){2]
4
e
e
X +y

Comparing (7) with (8) and (6) with (9), we have that for z # 0,

= -

u v
=

u v

which are precisely the Cauchy-Riemann conditions.

Hence, J% is analytic except at z = 0.
z

(c) In the study of real variables, we learned that

b
J. f(x)dx = F(b) - F(a) where F'(x) = f(x),
a

provided f is piecewise continuous on [a,b]. 1In the complex case,
the equivalent result is that

b
f f(x)dx = F(b) - F(a) where F'(x) = f(x),
a

provided f is analytic in a sufficiently small neighborhood of the
curve which joins a to b.

Since z = 0 is not on our curve C, we have
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2 z
fo z

i z=3i

Nln-
NN
n

o 1 _ _1
= -7 - 7

L
21

I
: I...

Pictorially, if C is any curve which does not pass through z = 0,
we may choose a region R which contains C, in which 35 is analytic.

For example, if we are given &

%4

Y
»®

we may view R as

o4




Solutions
Block 1l: An Introduction to Functions of a Complex Variable
Quiz

4.

3. continued

Since C excludes z = 0, we may always choose R so that it, too,
excludes z = 0. Then, since is analytic in R and z = i and z = 2i

2i 2i as 1 2i
are in R, f(z)dz = J{ =3 is determined to be -;I along
i i 2 z=i

any simple curve (of which the given curve C is but one) lying in
R and which originates at z = i and terminates at z = 2i.

For u + iv to be analytic, we must have that

v, = u (1)

v, = -u_, (2)

Given that

u = x4 - 6x2y2 + y‘, (3)

we have

u, = ax3 - 12xy? (4)

and

u, = -12x%y + 4y°. (5)

Putting (4) into (1), we see that

Ve = ax> - 12xy2, (6)
whereupon
v = xSy - dxy> + g(x). (7)

Notice that v is determined from (7) once we know g(x). To find
g(x), we compute Vi from (7) to obtain
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v, - 12x2y - 4y3 + g'(x). (8)

Since, by (2), v, must equal _“y’ we may use equations (5) and (8)
to conclude that

12x2y - 4y3 + g'(x) = -(-12x2y -~ 4y3)
or

g'(x) =0,

whence

g(x) = C, where C is any (real) constant.

Putting this result into (7) yields

vix,y) = 4x3y - 4xy3 #0% , (9)
Combining (3) and (9), we have that

(x? - 6x%y2 + y4) + 1(4x3y - 4xy3 + ©) (9")

yields a family (the particular member of which depends on the
choice of C) of analytic functions which have u = x4 - Gx?‘y2 * y4

as the real part.

Note

This exercise might have seemed more intuitive in the form
£(z) = 24, Clearly, f(z) is then analytic; in fact, f'(z) = 423.

Moreover, written in the form u + iv, we have

z4 = (x + iy)4
= x4+ 4x3(iy) + 6x2(iy)2 + 4x(iY)3 + (iY)4
= (x4 - 6x2y2 + y4)+ i(4x3y - 4xy3).

v 2 £

u V.

M. 2 N.T1A
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More generally, £(z) = z4 + C, for any complex
analytic. However, the real part of z4 + C is

4

£ zey2 + y + (real part of C).

From (10), we see that

4 2.2

u=x = 6x"y" + y4 ++ real part of C = 0.

constant C is

(10)

Thus, in this example, C must be a purely imaginary constant which

accounts for C being real in (9'); noticing in
multiplied by i.

(9') that C is

Suppose we follow the procedure of the previous problem. Since

u = xsy + ys,

we have

u, = 5x4y

5 4
= + S .
u X Y

(1)

(2)

(3)

By the Cauchy-Riemann conditions, we must have, by (2), that

4
5x'y vy

whence

v = % x‘yz + g(x).

(4)

To determine g(x), we differentiate (4) with respect to x to

obtain

o = 10x3y2 + g'(x).

(5)
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Again, by the Cauchy-Riemann conditions, we must have that

V- -uy, so from (5) and (3) we conclude that

10x3y2 + g'(x) = -(x5 + 5y4).

Hence,
g'(x) = -(x> + sy? + 10x°y?). (6)

But equation (6) is a contradiction since g'(x) is a function of x
alone while the right side of (6) depends on both x and y. Hence,
there is no g(x) with the required properties. In other words,

xsy + ys cannot be the real part of an analytic function.

Note

u(x,y) is the real part of an analytic function ++ L uyy = 0.

In the present example,

= myd — 5 4
B = 5y and uy = X~ + S5y .

Hence,

- 3 . 3
U, = 20x"y and uyy = 20y~.

Therefore,

- 3 3
P uyy = 20x"y + 20y~ Z 0.

On the other hand, in the previous exercise

B - 4x3 - lzxyz and uy = -12x2y + 4y3.
Hence,

2 2 i 2 2
W ™ 12x% 12y"~ and uyy = -12x" + 12y°.

R TERT PG ¥ ]
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Therefore,

The success of the method used in this problem and the previous
one requires that u(x,y) satisfies

uxx + uyy = 0.

6. Since sin z is the limit of the convergent series

3 5 7 n_2n+1 = n_2n+l
z-z +.2__.z_+...+('1)2 - (-1) 'z ;
37T 51 ! T (2n+1) ! T (2n+1) !
n=
we have that
B
2 2 (2n+1) 1
z Z° el
i (0 e
- —_2—
n=p (2n+l)!z
= 2n-1
= (-1) =z
- Z (Zn+1) ! (1)
=0
Note

More intuitively

w
1%
~J

2

sin 2z 1 ( Z Z z )
— = z - Y i + . o - + - .
22 22

1 z
2 AL T Y ®
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where the term-by-term divicion by 22 is justified by the absolute

convergence of the series.

We then obtain

3 5
sin z = 2 T PO SR
¢ -—ZT-dZ = ¢(z 37 + 51 77 + ...) dz (2)
C C
_ dz _ zdz z dz _ z°dz + (3)
z 3! 51 7! ane
(& Cc & c

where the term-by-term integration in (3) is justified by the fact
that the series in (2) is uniformly convergent.

- z3 z5 z2n—1
Now, since 317 5T 7T ¢ T2ns1)l (n=1,2,3,...) are each

analytic in the entire plane, we have that

22" 1g,
¢m = 0, for A= 1;2;3,400¢ o
c

Consequently, we conclude from (3) that

¢sinzdz-¢dz (4)
BT B K i

z

C

Cc

We have already seen as an exercise in this block that if z = 0
lies in C, then

d_Z = 2mni.

2
C

Hence, we see from (4) that

gjw_;_éz = 2mi. (5)
C z




D @D D S I S E S B D S D oG o &S &=

Solutions
Block 1l: An Introduction to Functions of a Complex Variable
Quiz

6. continued

Note #1

Had z = 0 been outside the region enclosed by C, then % would be

analytic in a region containing C, In this case,

dz
¢—z—’=0.

In summary, if C is any simple closed curve, then

2mi, if C encloses z = 0

sin z dz _
z
c =

0D, if z = 0 lies outside of C
(The integral is "improper" if z = 0 lies on C.)

Note #2

Had we remembered the formula given in Exercise 1.9.3; namely,

(n) n! f(z)dz
£ (@) = gﬁ '
271 2 (z-a)n+1

then we could let a = 0, n =1 and f£(z) = sin z to obtain

1! sin 2z dz
COS 2z J = 2"i ¢ ( _0)1+1'
z=0 c: &

or

1 sin z dz
coso—2ﬂ£¢ i
= ]

whence St}gig—g—gg = 2yi, which agrees with (5).
z
C

(6)
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Note 43

In case we have forgotten how to compute directly ¢ dz__Z_ where
C

z = 0 is inside C, recall that since % is analytic except at z = 0
th dz _ dz .
en = - = where C1 is any simple closed curve which con-
Cc Cc

tains z = 0 in its interior. In particular, we may pick C1 to be
the unit circle centered at z = 0. That is

C,:s z = e19 0 £ 8 £ 2.

Hence, on Cl,

i

az = iet%e.

Therefore,

27
dz _ f iel®ap
0 i8

]
N
-
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