Solutions
Block 1: An Introduction to Functions of a Complex Variable

Unit 7: Complex Series

1.7.1(L)

Our aim here is to emphasize the point made in the lecture that
the structure of the limit concept is the same in the complex case
as it was in the real case.

Recall that in the real case, our proof went somewhat as follows:
Given £ >0 we can find Nl and N, such that

nooN) 4Ly - oaf< 3

and (1)
n >Ny +ay - Lyl< 3

Hence, letting N = max {Nl,NZ} we see that

n >N +|L, - anl + |an - Ly« %+~% = £, (2)
But,

[L1 - Lzl = I(Ll ooy e ) ¢ L2)| < |Ll -a_| + Ian - L2| :

n

so by (2),
n>N=+|L; - L2|< & (3)

Since ¢ >0 was arbitrarily chosen, equation (3) tells us that
for sufficiently large n, IL1 - L2| is less than any prescribed
positive number. Hence, since |L; - L,|is a constant which is
independent of n, we may conclude that, since |L; - L,|is less
than any prescribed positive amount and since |L; - L,| > 0,
that |L; - Ly|= 0, or L; = L,.

The point is that every statement in our above proof remains

valid when the an's, Ll' and L, are complex numbers.

Even the flavor of the geometric proof is preserved provided
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only that we remember that intervals are replaced by discs.

For example, in the real case the geometric proof went as follows:
Assume L, # L, and let |1.1 - L2| =k > 0, Pick € > 0 arbitrarily
subject only to the condition that

ek |

We then have,

n > N1 +a, n > "2 vay
is in here is in here
L L
L1 - £ 1 L2 i L2 - € 2 Lz + €
« k =+

X e<§ (L1 - €, Ly + £) N (L2 - €, Ly + ) =@

2, Hence n > max {Nl'Nz} +a  is in two mutually-disjoint

intervals at the same time,which is a contradiction.

In the complex case, our domain is the z-plane rather than the
Xx-axis, but we still begin as before, namely, assume Ll # L,
and let |L1 - Ly| = k > 0. Pick £>0 arbitrarily subject only
to the condition that

k
E< 5.

we then have
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n> N, + |a, - Lyl <&~
a, is in here

w

no>Ny+ Ly - a f<e >
a, is in here

k
2. n> max {Nl,N2}+ a.€e slr‘s2 = @ + contradiction.

With this exercise as a specific illustration we now hope that
it's clear as to how the structure of limits is transmitted
(extended) from the real numbers to the complex numbers
verbatim except that,pictorially, intervals are replaced by
discs.

1.7.2(L)

a. Here we make use of the fact that our proofs, in the real case,
for absolute and/or uniform convergence involved only |f(x)]| .
The point is that even though £(z) need not be (a non-negative)
real number, |f(z)| is! Consequently, since f(x) and f(z) share
the same crucial properties concerning absolute values, we may
again mimick the procedure used in the real case. Namely,

suppose

o

f(z) = Z (-1)%(n + 12",

n=2~0
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To test for absolute converge we apply the ratio test to the
positive series,

ZI(—I)"(n + 1)z")

n=0

- :E:.(n + 1) 2| ™ . (1)

n=0

Equation (1) denotes a real positive power series (i.e. |z|> 0),
s0 we may apply the ratio test to

2 %

n=0

with a_ = (n + 1)|z|". This leads to

¢l _ (n 4+ 2)|z|" S
%n (n + 1)|z|™
Hence, for z # 0
a‘n+1_n+2|
z|
a n+ 1
n
so that
1 2
,ﬂ.«lﬁ_\ 7z
. %4l . om o+ 2y 4
p = lim — = lim (z—7) lim|z|
n-+w - n-e n-+o
= |z| (2)

and since to have convergence we must have that p<l, we may

conclude from (2) that

p<l ++|z| <1.
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Therefore, the radius of convergence for
w0

E (-1)%(n + 1)2"

n=0

is R = 1. That is f(z) converges uniformly and absoclutely for
all z such that |z| <1 and f(z) diverges for all z such that

|z|> 1. As for what happens on the circle |z|= 1, all we know
is that there is at least one point z such that f(z) diverges.

Note
The more astute reader may have recalled

2 3 = 1
1- 2x+3x - 4)‘ + '..:_——2. (3)
(1 + x)

Thus, by replacing x by z in (3) we obtain

1 .= 1 - 22 + 322 - 423 &+ ...
(1 + z)
i |z |< 1 (4)
= 2 -1%m+ 12"
n=0
In this form we observe that "trouble" occurs when z = -1 (which

is, as claimed above, on the circle [z|= 1).

We picked an example in which

would be expressed in closed form only to emphasize the theory
more concretely. The key point is that we did not have to
recognize that

Z (-1)" (n+1) z"

n=0

was

:

(L + z)2
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to obtain the required result.

Here again we only wish to re-emphasize the property of absolute
convergence that we may add terms in any order we wish.

In particular,

E(rh =1 - 2(gh + 3P - agp’ 4. (5)
i 3(-1) 4(-i)
=l =gt yqe Tt e
: 1 i
ML =g Y (6)

and the error in using (6) cannot exceed the magnitude of the
next term in (5). That is, equation (6) yields f(%z) with an
i 4 5
- .00025.
error no greater than IS(H ) I m %0

Regrouping the terms in (6) we see that

F(N 35 - 137 i (7)
In the present example we can check the accuracy of equation (7)

because we know that in closed form, for |z|< 1, £(2) = ?I_l__ff .
“N . + z

=

144
(12 + i)

_ 144
143 + 241

144 (143 - 24i)
(143 + 241) (143 - 241)
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144 (143) o 144(24)i
(143)2 + (24)2  (143)2 + (24)°

20592 3456 i (8)
21025 =~ 21025

Rewriting (7) and (8) in decimal form we have
i + '
£( I?JB 0.9791 - 0.16441 (7')

£( L) = 0.9794 - 0.1643i. (8")

Hence to three decimal place accuracy

0.979 - 0.164i.

(2]

<

-~
I

If equations (8) and (8') were not available to us, we could still

have concluded that if we had drawn a circle with radlus 25—735
centered at the point (1_ r - %%? ) in the z-plane, f(If)

would have to be within this circle.

Again we may view this result pictorially by observing that

i 1
R B, TR 137 represents the vector sum (not drawn to scale):

Y
A
z-plane
0 1 A
.
7
1
D 1
1
L—J
c 1 B
i/ % - §
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1. OD =0OA + AB 4+ BC + CD = 1 - i-- %ﬁ Z%I The next vector
in our sum would have been 55—733-and each remaining term has a
smaller magnitude than its predescessor, so the entire sum is

within m of D.

2. Notice that this parallels our treatment of the real case,
except that our vectors are in the plane now, rather than along
the x-axis.

¢. Here we are emphasizing the property of uniform convergence
whereby we are allowed to compute f'(z) by differentiating

L anzn term by term within the circle of convergence.

Since f(z) converges uniformly to 1 - 2z + 322 - 422 4+ e 1N
|z|< 1, we have that for all z such that |z|< 1,

£'(2) = -2 + 6z - 1222 + z°z3. (9)
From (9) we see that

N e i WY
£'¢ II) x -2 + 6(I7) - IZ(II) (10)
with an error no greater than [20(%7)3| l- 201 EK‘ so that
from (10),
£rd = 2+ 1+ L+ k where |k|<g or £ = -3+ 1 (11)

From (11) we may conclude that f'(I—) is located within the circle

23

centered at (- i3 7) with radius

so that our answer has one decimal accuracy.

Again, as a check in this exercise we know that

1

f(z) = —_— -
(1 + z)
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Hence
f'(z) = _-—21. '
(1L + z)
so that
I -2
B —p—x
(L + Tf)
_ =2 (1728)
(12 + i)°3

-3456
1728 + 4321 - 36 - i

-3456
+ i

-3456 (1692 - 431i)
(1692) % + (431)2

, etc,

A Note on Analytic Functions
If the function £(z) may be represented by the power series

:E: f‘“’(O) _n

we say that f(z) is analytic or regular. That is, in the present
context, an analytic function is one which possesses an nth deri-
vative for all (integral) values of n. Now in our earlier treat-
ment of differentiation, we agreed to call a function analytic if
it obeyed the apparently-less-stringent condition that f'(z) exist.
Thus, it would appear that we now have two difinitions of analytic,
one of which is more "powerful" than the other.

The interesting point, which we shall not prove here but rather
in the next Unit, is that for a complex function of a complex
variable to be differentiable a very strict condition is imposed
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(Hoas; Mg [t Az; - £(z),

Az-»0

must exist and be the same in each possible direction). The
upshot of this condition is that it is so restrictive that once
a complex function of a complex variable possesses a first deri-

vative it possesses derivatives of every order. This is a very
glaring difference between differentiable functions of a real
variable and differentiable functions of a complex variable.

In summary, if f'(x) exists there is no guarantee that £"(x)
will exist [e.g., if £(x) = x>/?, the £'(x) exists when x = 0
but not £"(x)]. On the other hand, if f'(z) exists so also will
f(n)(z) for every positive integer, n.

i 1 I: 1 i 1
=1+i-3-§*3x* 120~ 730 ~ 5040 ' 0,320
- G-} bt ot - F Y T - sow &
Y .5403 + .8414i. (2)

on the other hand, el? = cos z + i sin z with z = 1 implies

e’ = cos 1 + (sin 1)i (3)
and from the tables

cos 1l(radian) % .54
sin 1% ~ .84

so that (3) becomes
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el % .54 + 844

which checks very well with our result in (2).

It is also worth noting that when we collected terms to form

equation (1), the real part is cos 1 (< %. + %, - %. + %,
and sin 1 % 1 - %, + é, - %,, etc. so that equation (1) is the

(turncated) equivalent of equation (3).

Again, pictoriallyv,eguation (1) is egquivalent with

Y
N
-1
2
X
(3
1
+ ﬂetC.
and we see our answe i
is never here
1
7x
1.7.4(L)

Here we are showing other examples of how complex variables are
used in real situations.

In an earlier unit we mentioned that if f and g were integrable
functions of the real variable t then the complex-valued
function f£(t) + i g(t) was also integrable, and, in fact

b b
fb[f(t) + ig(t)lat = f £(t)at + i fg(t)dt. (1)
a a a

x :
In the present exercise we observe that e*®cos bx is the real part

of e(a + ib)x'
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Namely,

a + 1 + 1
e( ib)x _ o3X ibx

& eaxelbx

e [cos bx + i sin bx], (2)

where equation (2) was derived by using the usual exponential

properties.
From (2), we conclude that
j;(a 4 j‘b)dx =_/;ax[cos bx + i sin bx]dx
=j[eaxcos bx + ie®*sin bx]dx (3)
and by (1) we conclude from (3) that
fe(a + ib)xg, o ﬁucos bx dx + ifeaxsin bx dx (4)

( =_/;e[e(a + ib)x]dx 4 ij'lm[e(a + ib)x]dx).

Now the left side of (4) yields

j;(a abiag L L G la+ib)x g
PR, ib eaxeibx (+ ).
a“ + b
Thus,
fe(a +ib)xgy o 13‘;% [e®*cos bx + ie®sin bx] (+ ¢)
a + b
= e®*(a cos bx + b sin bx)
a2 + bz
+ jedX% (@ sin bx - b cos bx) (4 <) (5)
2 2
a“" + b
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Replacing ./;(a * 1b)xdx in (4) by its value in (5) and equating
real and imaginary parts, we conclude that

ax :
e“"(a cog bx ; b sin bx) ¢)) = Jf;axcos —
a”~ + b
and (6)
eax(a sin bx - b cos bx) ax
3 3 (+ ¢y) = Jf; sin bx dx
a“ + b

To be sure, we could have obtained (6) [as we did in Part 1 of
our course] by integration by parts; but what we wanted to show
here was a rather elegant, fairly simple application of complex
numbers.

b. This identity is a bit tougher to handle directly (although we
did do it in Part 1 during our treatment of the definite integral).

The approach to use here is to observe that

cos k@ = Re(eikg). (7)

In other words,

ike _

e = cos k& + i sin k8.*
Thus,

n n

Z cos k8 = E Re(eike) (8)
k=0 k= 0

and because

n n

E Re(z,) = Rel( Z z ), we may rewrite (8) as
k=20 k=20

*In one form or another, this identity is used over and over to
allow us to express sines and cosines as exponentials,



Solutions
Block 1: An Introduction to Functions of a Complex Variable

Unit 7: Complex Series

1.7.4(L) continued

n n
Z cos k& = Re| Zeike ) R (9)
k=0 k=20
But,
n A
3 2 i(n + 1)8
:E: elko = 1 + e19 o + eine al® @ i
i = elO
k=20
= 1-cosi(n +1)8 - i gsin (n + 1)8
1 - cos 8 - 1 sin ©
_ [1 - cos(n + 1)8 - i sin(n + 1)8][1 - cos 6 + i sin 0]
- (1 —-cos 6 —-1sin @) (L - cos 8 + 1 sin 8)
_ [1 = cos(n + 1)8][1 - cos 8] + sin(n + 1)8 sin 6
(1 - cos 9)2 E sinze
+i[sin (1 - cosn + 118 - (l-cos 8)sin(n + 1)8 .
(1 - cos 9)2 + sin29
Hence,

n
: = = + ® sin O
Rel :E: e1k9] - [1 cos(n + 1)8][1 cos 8] + sin(n 1)8 sin

% B 1l - 2 cos 6 + c0520 S sin20

1 - cos(n + 1)8 - cos 8
2 - 2 cos ®

cos(n + 1)@ cos & + sin(n + 1)8 sin 6
2 - 2 cos @

+

1 - cos @ - cos{n + 1)@ + cos né
2(1 - cos 9)
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[l - cos 8] - [cos (n + 1)8 - cos né]
2(1 - cos 8) B

Substituting (10) into (9) yields

n

e B cos(n + 1)8 - cos n8)
2: cos k@ = 7= [ (T = co5 0) ], cos 8 # 1,
k=0

175

(10)

(11)

a. e'% = cos z + i sin z

-iz ei(—z)

e = = cos(-z) + i sin(-2)

= Ccos z - i sin z*,

Subtracting (2) from (1) yields er? - e71% = 2i sin z.

Hence

iz _ e-iz

sin z = 9——7I————— .
If we now write z = x + iy, equation (3) yields

ei(x + 1y)_e-1(x + iy)
21

w = sin(x + iy)

et b 2 ix _e-ix + y
= 21

e Y(cos x + i sin x) - e¥(cos x - i sin x)
21

(1)

(3)

*Note that from the power series definition

AP i (=2)? | (c2)* _ (-2)°
cos 2= 1-grtgr-grt TPt T T e

= cos (=-z), etc.
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_ —cos x(e¥ - e™¥) + i sin x(e¥ + &7Y)
21 *

Hence,

Y B §
w = sin(x + iy) g——;—g—— )1

1 eY - 7Y
T [ - cos X('__TY—_" 1+ i sin x(

Yy _ Y -y
= -i[- cos x(& ) + i sin x(E55-))

Y ¥
) + i cos x(———f———— ) (4)

= sin x cosh y + i cos X ginh ¥ . (4%)
— — N— —

u v

Therefore, w = sin z corresponds to the mapping of the xy-plane
into the uv-plane defined by

u = sin x cos hy (5)
v = cos X sin hy

Moreover, since w = sin z implies g; = cos z. [Here again notice

our reliance on the power series' def%nitign of the trigonometric
. : = z z z d(sin z) _

functions. Namgly, sin z =z - J7 + BT < T ¥ seiw o g

s %T + %T - %T ... = cos z.]

Our mapping is everywhere analytic.

Hence, the mapping defined by (5) is conformal except in
neighborhoods of those points z for which cos z = 0 (i.e., for
the mapping f to be conformed, f' must be unequal to 0).

From equation (5) we have

2
u

2% cos hzy

sin

(5')

coszx sin hzy
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or
2
.Lz_ = sinzx
cosh™y
2 (6)
¥ - cos’x .
sinh™y

Adding the two equations in (6) yields

2 2
+ . = sinzx + coszx s 3. (7)

sin hzy

u
cos hzy

From (7) we see that the line y = Y, maps into the ellipse

u2 v2
3 v
cosh s sinh ¥o

(unless Y= 0 in which case sin hzyo = 0 and hence,

2
v

R
sinh Yo

is not defined, However when y = 0, cos hy = 1, so equation
(5) yields

u = sin x
v=20 &

Since -1
[i.e., ¥
by -1 < u < 1).

sin x < 1, we conclude that the image of the x-axis

<

0] is the segment of the u-axis [i.e., v = 0] defined

We next observe that (5') can also be written in the form

2

.u = coshzy
sin"x (8)
2
v2 = sinhzy
cos X
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and since cos h2y - sin hzy = 1, equation (8) implies that the
image of the line x = x_ is the hyperbola

2 2
117 - ‘2’ = 1 . (9)
sin xo cos xo

unless sin X, Or cos X, is 0. Again from eguation (5) we have

that if sin x = 0 then

u=0 (since sin x = 0 «»cos x = + 1),
v = + sin hy

In other words, if sin X, = 0 the line x = X is mapped onto

the v-axis and if cos x = 0 it is mapped onto the u-axis.

Pictorially,
y s = sin z v
N
(image of (image of
be=- 1) x= 2
~
x
x =7
z-plane w-plane
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1.7.6 (L)

The overall aim of this exercise is to show how the use of power
series representations of analytic functions allows us to solve
some rather difficult problems. Just as in the real case, the
fundamental building block of much of the technique rests on the
fact that if two analytic functions are identical on a given
region then their coefficients, term by term, must be equal.

Our approach in tackling this problem is to extend a result that
we already know to be true for both real and complex power series.
The idea is that we know that if

2 : n
anx

n=0

is identically zero and if the an's are real then a = 0 for each
n. In the same way that we proved this result, it also follows
immediately that if

E : n
anz

n=0

is identically zero and each of the a 's is complex then a = 0 for
all n.

Wwhat we are trying to do in part (a) of this exercise (as a
building block to the rest of the exercise) is to show that if

o

n
2 4

ni=0

is identically zero but now the an's are complex then it is still
true that a = 0 for each n. 1In other words, the aim of part (a)

is to show that if x is a real variable and
w0

n
2 oy

n=0

is identically equal to zero then each a is equal to zero regard-

less of whether we look at the domain of the an's as being the
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real numbers or the complex numbers. Notice that we do not have
to worry about the "companion" case of what happens when z is
complex and the an's are real. Namely, the real numbers are a
sub-structure of the complex numbers so that the case in which
the an's happen to be real is included in the general category;

o«

n
4
2%

n=0

where the an's are complex. In this context it is wise to dis-
tinguish between "complex" and "non-real". The complex numbers
include the reals as a subset. That is, by way of review, the

real numbers are those complex numbers a + bi in which b = 0.

on the other hand, a + bi being non-real means that b is not equal
to 0. In other words, if we specifically require that a number

not be real then we must call it non-real. It is not enough to

say that it is complex. Moreover, in this case, we should also
avoid saying that the number is imaginary since the term "imaginary
(or "purely imaginary") is often reserved for complex numbers of

the form 0 + bi.

Given that

Z cnxn = 0

n=0

where x is real and the cn's are complex, we write c, in the
form a, + ibn where a, and bn are real. We then have:

©

n

X =
LS

; n
(an + ibp)x". (1)
n=0 n=0

Notice now that it makes sense to ask whether the series in
(1) converges absolutely, etc. That is, since all real numbers
are complex, the terms anxn are complex numbers, so that

2 : n
anx

n=0
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represents a complex series; and we can talk about the convergence
of complex series. At any rate, assuming that our series in (1)
converges absolutely in some interval, |x|< R (the interval
possibly being the set of all real numbers) we may perform our
usual change of order in the terms to conclude that

oo

w «©
n=0 =0

n=0

Hence the fact that

«w

n—
:E:cnx = {

n=0

implies (by combining the information in equations (1) and (2))
that

o

w0
n L 2 .
E a x +12bnx =0 =0 + 0i. (3)
n=0 n=0 p
real real
(since an's (since bn's
are real) are real)

Comparing the real and imaginary parts in equation (3), we con-
clude that

«©

13 - 1 o
Y ax™ = 0 anda Qb = 0. (4)
n=0

n=0

Since the an's and bn's are real we may apply our theorems about
real series to conclude that Ko bn = 0 for each n.

Finally, since e, =ag* ibn' we may conclude from the fact that
AL bn = 0, that el = 0; and we have proven the reguired result,
The implication of the result in this exercise is more impressive
than the proof of the result. What we are going to show in this
exercise is that if an analytic function is identically zero on
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even one line (in the present example, the line is taken as the
real axis but this is not important) then it must be identically
zero in its entire domain of definition. The proof of this result
is word-for-word the same as the corresponding result in the real
case with the exception that we must now invoke the result of

part (a) to conclude that

implies that 8= 0. Namely, in the real case studied in Part 1

of our course, the an's were real, but now the an's are complex.

At any rate, the proof is straight-forward; namely assuming that

E anz" = 0 for all real z (5)
n=0

we may invoke the result of part (a) to conclude at once that
a, = 0 for each n. [If you wish to proceed a bit more slowly,
think of z = x + iy, so that if 2z is real we may write z = X.
In this way equation (5) becomes

z ann =0,

n=0

in which case our expression looks exactly the same as the one

we discussed in part (a).]
w©

The final step consists of the observation that since f(z) = E anzn

and each a, = 0,* then n=0

f(z) = Z 0z = o.
n=0

*Here it is important to realize that a_ is a constant. Hence,
the fact that a_ = 0 when z is real means that ay is zero for
all values of z since a, is independent of n.
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c. Here we wish to emphasize the importance of the assumption that
f(z) is analytic. We do this by exhibiting a non-analytic (yet
well-defined and continuous) function f(z) such that £(z) = 0
whenever z is real but f(z) Z 0. 1In particular, z being real
means that its imaginary part, Im(z), is zero.

Hence,
f(z) = Im(z) (6)
implies that f(x) = Im(x) = 0 whenever x is real. Yet it is clear

that £(2z)Z 0 since every non-real number 2z is, by definition,
of the form Im(z) # O.

As an aside, notice that we may write Im(z) as 535—5 i.e.,
z=x+ iy and z = x - iy implies z - z = 2iy]. Putting this
result in (6) yields

f(z) = &2

21
L 8
21 T 21

and we have already proven that if a # 0 , az is non-analytic.
Thus, this result does not contradict the result of part (b)
since part (b) requires the hypothesis that £ be analytic.

d. Parts (a), (b), and (c) of this exercise have been "preliminaries",
and part (d) now shows us how we may draw important conclusions
from our newly-acquired knowledge.

We proceed as follows. Since f(z) is analytic, we know that

o

£(z) = Eanzn. (7)

n=0
£ (0)
[In fact, we know much more. Namely, a, = —Fv— ]
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Since (by definition of analytic) f(z) converges uniformly and
absolutely to

E a_z"
n
n=0

the usual rules for "conjugation" apply and we may conclude from
(3) that

£(z) = Zani“ .

n=0

]
-~
N
S
Il
u
=
NI
b=

I
™
Wi
=
i
=}
»

= i anz“. (8)

=]
Il
o

*This 1s the key step. Namely we already know that a, +.oot a =
a; +...+ a . [Li: &5

n n_
2 et 2

k=1 k=

but this is for a finite number of terms. Just as in the real

case where we wanted to extend results from finite to infinite
sums [e.g.,

£ b
, n n
: a x dx = z; f a x dx]
a n= n= a

we need the fact that we have uniform convergence.
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When 2z is real equations (7) and (8) become

£(x) = Zanxn (7")

F@ =) a0 (8")

n=0

Now, since x is real x = X; and since f(x) is real (this is where
we use the given hypothesis that f£(z) is real whenever z is real)
we know that f(x) = £(x). Hence, £(x) = F(x) = £(x), so that (8')
becomes

£ix) = E 3" (8")

n=0

1f we equate the expressions given for f£(x) in equations (7')
and (8") we conclude that

o
:E : n - .n
ax - ax 0. (9)

n=0

Since our series are absolutely convergent we may add them term-
by-term, etc. so that eguation (9) becomes

Z(an - 3 )x" = 0. (10)
n=0

At this point we confess that parts (a), (b), and (c) were
invented by hind-sight so that we could solve equation (10)
without having to degress.

By part (a) we can conclude from (10) that

a - a =0 for eachn (11)

but R i 211m(an).
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Hence, a - Sn = 0 implies Im(an) = 0; so from the equation we

conclude that a, is real. Thus, we now have the valuable addi-
tional information that if

f(z) = Z anzn

n=0

and f maps the real numbers into the real numbers then each
a, is real (the converse is trivial. Namely, it is obvious
that if each a, is real then

w

2 : n
anz

n=0

is real whenever z is real).

At any rate, we now have that

£(z) = D apz” (12)

n=0

I
ol

where a is real and since ay is real, a, o

Thus equation (8) now beccmes

£(z) = E an'z'" (13)

n=0

and since

E anzn = f{z)
n=0

equation (13) allows to conclude that

f(z) = £(z) for all z (14)
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whenever f is analytic and f(x) is real for all real x. If f is
not analytic or if f£(x) is not real for all real x then it need

not be true, of course, that (14) holds. In the next exercise,

we shall give an example in which (14) is false.

In concluding this exercise it seems appropriate to interpret

our result geometrically. Indeed, in terms of complex functions
of a complex variable being an excellent vehicle for studying real
mappings of the xy-plane into the uv-plane, geometrical inter-

pretations are always valuable to us.

Let us observe that z and z are located
respect to the real axis (the x-axis).

symmetrically with
Similarly, f(z) and £(2)

are symmetric with respect to the u-axis. In this context,
simply by replacing z by z , we see that f£(2z) and £(z) are
symmetric with respect to the u-axis. Hence, since f£(z) = £(z)
we may conclude that f maps points which are symmetric with

respect to the x-axis into points which
respect to the u-axis. 1In the language
f is analytic and f is real on the real
conjugate pairs of complex numbers into
complex numbers.

Pictorially,

are symmetric with
of complex variables, if
numbers then f maps
conijugate pairs of

£(z) = £(2)
|
|
| 2
Y IR S TN SN P ) LN T e Y V. ¢ AR Y B N AR IIAu
7//;7///1// G il Wt ol v i O O P
- [u = f(x)]
I YO
\\\
z-plane 3 e
\\
- -— _ —
[f£(z) and £(z) are symmetric

with respect to the u-axisl

-
w=plane -

£1z)
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In summary, we have used the power series representation of analytic

functions to prove the following rather powerful result. If f is
analytic and f(x) is real whenever x is real, then £(z) = £(Z) for
every complex number z, Pictorially this means that if z and z
are complex conjugates, then their images under f will also be

complex conjugates.

As a final note on this exercise, let us observe that there is a
very special catagory of function f for which f(z) is real when-
ever z is real. Namely, suppose we extend a real function to the
complex numbers. For example, this is precisely what we have
done in this unit when we defined cos z, sin z, ez, etc. The
fact that f(z) was an extension of f(x) makes it a truism that
f(z) is real whenever z is real. Thus, whenever £(z) is an
extension of f(x) we can be sure, based on the result of this
exercise, that f(z) = ;TET for each complex number 2.

1.7.7
a. f(z) =iz =~ (1)
£(z) = iz -
£(2) = iz
= iz
= iz
= -iz. (2)

Comparing (1) and (2) we see that £(2) # £(Z). In fact in this

* . . -
example f(z) = £(2) ++ z = 0, what is true in this example is

that

£lz) = -£(3). (3)

This result does not contradict our result in the previous
exercise since we see from (1) that f(x) = ix = purely imaginary
whenever x is real; while the result derived in Exercise 1.7.6(d)
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reguired that £(x) be real whenever x is real. Geometrically

speaking, in the previous exercise the image of the x-axis was
required to be the u-axis while in this exercise the image of

the x-axis is the v-axis.

Here we are trying to generalize the conditions under which
equation (3) is true.

Since x is real x = X, but since f(x) is purely imaginary
f(x) = -F(x) [i.e., if z = ib, Z = -ib]. Thus,

f(x) = -f(x) = £(x). (4)
Therefore,
f£f(x) + £(X) = 0 whenever x is real. (5)

But f(z) + £(z) is analytic [i.e.,

£(z) = Z a_z" + £(2) = Z a "+ f(z) + £(2) = Zo(an+ 32"
n=0 n=0 n=

Since f(z) + £(z) is analytic and it is zero whenever z is real,
we may use the result of Exercise 1.7.6(b) to conclude that
f(z) + £(z) =0

or
FlRS = SED). (6)

Equation (6) reguired, in addition to f being analytic, only
that f(x) was purely imaginary whenever x was real.
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Y v
/P ; N
£ is analytic and
maps xX-axis into £(2)
v-axis T
f(z) = -£(z)
Z @ —
o /

L 4
»

(:>r -w are symmetric
/ | to the oridin]

e

/

£(2) K

Therefore, if z and Z are symmetric with respect to the x-axis,

f(z) and £(z) are symmetric with respect to the v-axis.

Note:

We have deliberately tried to avoid any "cute solution of this
exercise because it seems that the straight-forward approach
gives us much needed drill and experience with some new ideas.
There is, however, a rather simple, elegant technigue (in terms
of mappings) that may make this exercise a bit simpler. Namely,
if f maps the real axis onto the imaginary axis, we may think
of f as the product (composition) of two mappings; namely, a
mapping that carries the real axis into the real axis (for
example, if the given function is denoted by f then if we let g
be defined by g(z) = -if(z) then g is simply a -90° rotation of
the plane thus sending the imaginary axis into the real axis)
followed by a 90° rotation. Summarized more succinctly, we

write w = £(z) in the form
we= i[-if(z)]. (7)

The point is that since f maps the reals into the imaginaries,

/
/(:hi.e., w and |
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-i(f) maps the reals into the reals. Thus, the study of -if(z)
is a special case of our investigation made in the previous
exercise; and we see that (7) is the result obtained in part
(d) of the previous exercise - but rotated through +30°.

Pictorially,
Y
T
1. Given w = f(2z) where f(real) =
Z purely imaginary, map the z-
\x plane into the wl—plane by the
-
5 mapping w,= £(z) = -if(z).
v
z-plane 1
P N 2. As given in
Exercise 1.7.6(d)
e-if(2) this maps complex
conjugates into
> Uy complex conjugates.
o-if (Z)
w-plane, w, = -if(z)
¥ =5y,
h(-if(z))

= f(Z)'(\&M)) = £(z)
4. f(z) and £(z) are

symmetric with respect to

¥y —y u the v-axis.

3. Now map the wl-plane onto the w-plane by the mapping
w = h(wl) = iwl [i.e., w = i(ul + ivl) = =wy ¥ iul so

s -Vll = + 90° rotation]
v=ul’
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Since eio = cos 8 + i sin @, we now have the rather interesting
result that the complex number whose polar form was (r,8) =

r cos ® + ir sin @ may now be written as r(cos @ + i sin 8) = reio.
In other words, the complex number z may be written as !‘?.':Lo where
i arg z

r = |z| and ® = arg(z). 1In still other words, z = |z| e
which is quite consistent with the idea that when we multiply
complex numbers we multiply their magnitudes and add their
arguments. Indeed by the "inherited" structure of the complex

numbers

z, = rleiol ) 2y = 1'2e102 > 22, = (rleiel) (rzelez)

_ rlr2e191+ i8y _ rlrzei(°l+ 82)

Using polar notation, then

z = re19 (1)

Hence,

= . (reio)n

rn(exe)n

iné
= e .

Therefore

f(z) = E anzn (2)

n=0

implies that

£(z) = Z anrneino. (2')

n=0
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Similarly,

z = reio + z =1r cos 8 + ir sin 6.

Hence,

Z =1 cos 8 — ir sin @
r (cos 8 - i sin 8)

r{cos[-8] + i sin [-8])
= tei(-O)

re 19,

Geometrically, if z = (x,8) then z= (r,-8) = rei('O). Therefore,

n

— (re'le)n = rne-ino

’

so that, from (2)
£(z) = Z a_z o (3)
n=0

n -in#é
Zanr e . (3')

n=0

The fact that f(z) is analytic guarantees that the power series
representation of f(z), as given in (2) and (2'), exists.

Moreover, the fact that we are told that f(z)= flz) guarantees

that f£(3) must also be analytic [i.e., £(z) and £(2z) are synonyms],
so that the power series representation of £(z), as given by (3)
and (3') also exists.

Since f(z): £(z) we may equate (2') and (3') to obtain

o o0
n_in6 _ n_-in@
2 are = E are (4)
n=0

n=0

or
e -
n_iné n -in@ _ '
z are - E are = 0. (4v)
n= n= <
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Since the series in (4') are assumed to be uniformly convergent
(since f(z) is analytic), we may combine the series term by term

to conclude that

. e | *
E:anrn(elno e 11'19)E 0. (5)
n=1

But,

eine - e'ine = (cos n8 + i sin n8) - [cos n(-8) + i sin n(-8)]

(cos n@ + i sin n@) - (cos n@ - i sin né)

1l

2i sin né,

Hence, equation (5) becomes

w

Z anrn(Zi sin n8) = 0

n=0

or

w
2i E [an sin nO]rn
n=0

and since 2i ¥ 0, we conclude from (6) that

(6)

i
o

D la, sin nelx" = 0. (7)
n=0

Now r is real (since r = |z| ), even though a, sin n@ need not
be (i.e., sin n® is real but all we know about a is that it's
complex). Thus, the left side of (7) is a power series in which
the coefficients are complex but the variable, r, is real.

Accordingly, we may apply the result of Exercise 1.7.6(a) to

equation (7) and conclude that

*Notice ihat our sum begins with r = 1 noton = 0. When
n =0, e = e-100 = | 5o the ein® - e-in® = o,
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a_ cos ne = 0 for each n. (8)

The "trouble" with (8) is that we cannot conclude that each
& - 0. Namely, it is possible that we have chosen z reig
in such a way that cos n8 = 0, in which case a cos ne
if a, # 0.

0 even

We notice, however, that cos n® = 0 if and only if n@ = ; + 2k

where k is an arbitrary integer.

The point is that any number of the form % + 2k1 must be
irrational [because itself in irrational;in other words:

irrational . 3 _ :
nteger + integer {irrational) irrational]

So, for example, if we chose z such that & = 1 (radian) we

may conclude that né is never equal to % + 2km since

n®( =n) is rational while ;-+ 2kT cannot be rational.

Thus, for example, along the ray 8 = 1 radian, eguation (8)
tells us that

a_cos né = a cosn = 0 forn=1,2,3 (9)

and since cos n ¥ 0 for n = 1,2,3,..., we conclude from (8)
that

TR 0 for n =1, 2, Jpees (10)
Egquation (10) puts no restriction on ao*; so combining the
result of (10) with the fact that a_ may be arbitrarily chosen,
we obtain

*In case you missed this point in our earlier footnote,
2

o w©

n -n - -2
Zanz Zanz ’ ao+alz + a2 + s B a, + az b L a,z + e
n=0 n=0

and the ao cancels when we combine terms.
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o«
E a_z"
n
n=0
o

n
= v
3+ D 2

n=1

Z : n
ao + 0z

n=1

f(z)

"

]

a, = constant. (11)

As another reminder, notice that the validity of our result
requires that f be analytic. For example, if f is defined by
£(z) = z + z, then f is not analytic (since z is not); yet

+ (2)

I
N

£(z)

It
N
+
Nl

£(z).

Geometrically, all this says is that the mapping f£(z) = 2 Re(z)
is not conformed (or even analytic) but since Re(z) = Re(Zz)for

every complex number z, f(z)= £(z), i.e.,

y

b

[

N
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1.7.9 (optional)

In the previous exercise we derived a rather interesting result
based on analyzing a suitable power series. Let us now show how an
understanding of conformal mappings can show us very guickly that
if f(z) is conformal then f(z) cannot be identical to £(2).

For example pick three points Zyr %y and 24 in the z-plane, not on
the same line.

~
"

Z

3

Notice that if R is traversed in the counter-clockwise sense,
the image of this path traverses R in the clockwise sense.

Thus R and R (where R = {z:z R} ) have opposite orientation.
Consequently, if f(R) = £(R) = S, then either R or R cannot have
the same orientation as S since R and R have opposite orientations.
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Again, pictorially, suppose

v f(zz) = f(zz)

z

2

[We have assumed a sufficiently small neighborhood so the R,
R, and S may be assumed to have the same shape.]

In our diagram the contradiction lies in the fact that R and
f(R) = S have opposite orientations, contrary to the fact that a

conformal mapping must preserve sense.

Despite our efforts to have you become more at ease with complex
functions of a complex variable, many of us still prefer to work
in terms of the real and imaginary parts. That is, we look at

f(z) in the form

w= flz) = fix + iy) = fix,y) = ulx,y) + i v(ix,y) (1)

and then feel more at home because u and v are real-valued functions

of the two real variables.
From equation (1) we conclude that

f(z) = f(x - iy) = f(x, -y) = ulx, -y) + i vix, -y). (2)
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The fact that f is analytic tells us, from (1), that

a\:»(x,)()E avix,y)
ax y

and } (3)

_du(x,y) _3vix,y)
iy ax

/

That is, the usual Cauchy-Riemann conditions imply that R, =Y

and uy = -vx.

Y

Now the fact that f(z) = f(z)implies that f(z) also satisfies
the Cauchy-Riemann conditions (sin f(z) does).

From eguation (2) this means that

and (4)

Notice the subtlety in (4). The Cauchy-Riemann conditions involve
derivatives with respect to the real and imaginary parts of the
variable and in (2) these are x and -y (not y).

We may use the chain rule to avoid this difficulty. Namely we
let, for example

X =5 (5)
Y ==t

so that
u(x,-y) = u(s,t) and v(x,-y) = v(s,t). Then equation (2)

becomes f(z) = u(s,t) + i v(s,t) from the Cauchy-Riemann conditions
allow us to conclude that
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B =g

and - (6)
Y T Vg

Clearly u, = oug and “¥, 8=V, since s = X. On the other hand, by

the chain rule

I

Vi = FY

(7)

u

t = Ux¥e t UV
and from (5) we know that x, = 0 and Y™ -1.

Thus (7) is equivalent to

v = =V
t b4 } (7*)

by =y
_uy ==V,
or
u. =v .
y __ X (8)
Voo SN

[Most liﬁely we could have written down (8) by inspection after
looking at (4) but we felt the review of the chain rule was

worthwhile]

1f we now combine the results of (3) and (8) we have

u = v = =u (9)

u, v, u, - (10)
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Equation (9) yields 2ux = 0 so that U= 0. Hence,

u = gly). (11)
On the other hand, equation (10) implies that

u = 0, (12)
But from (11)

v, = g'(y) (13)
and a comparison of (12) and (13) shows that g'(y) = 0 or

g(y) = constant. (14)
Putting this information into (11) allows us to conclude that

u(x,y) = constant. (15)

In a completely analogous manner we may show that

v(x,y) = constant. (16)
Namely,
V™ -uy - =¥
v o u - +vx=vy=0-v-constant.
Y X ¥

Combining the results of (15) and (16) we conclude that

f(z) = £(x + iy) = £(x,y) = u(x,y) + i v(x,y)
e, + ic2

(complex) constant

and we have now obtained a proof which is "pseudo-complex" in
the sense that we never referred to the complex numbers other
than in the sense of identifying the xy-plane with the z-plane
and the uv-plane with the w-plane.
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1.7.10(L)
mn
a. |L+4i| =T FT= 2

arg(l + i) = arctan % = 45° = ; radians

™
1+1i=V2 et I.
Hence,
im
log(l + 1) = log[vZ e K3 ] (1)
it
= log V2 + log e T (2)
.o
= 1n/2Z + i I (3)
so that

a=1n /2 = % in 2
log(l + i) = a + ib where

Notes:

1. when we write arctan x we imply that - %u:x < % , but there
are infinitely many aryles (numbers) which have the same tangent.
Thus, without the restriction to principal values arg(l + i) =
—%~+2nn where n is any integer. The principal value occurs when
we choose n to he 0. 1In any event, if we pick n to be any integer,
not necessarily 0, then arg(l + i) = %~+2nn gso that (1 + i) =

% ei("/4*'2"n), and

log (1 + i) = 1n/2 + i(% + 2nn). (4)

In other words, if z = 1nv/Z + i(%+2nn), then e? = 1 + i, That
is, log z is an infinitely-valued function, one value for each

integer n in (4).

2. In going from equation (1) to equation (2) we used the fact
that log (ab) = log a + log b. This properly was true when we
dealt with real numbers; and since the properties of the log are
preserved in going to the complex numbers (i.e., these properties




Solutions
Block 1: An Introduction to Functions of a Complex Variable
Unit 7: Complex Series

1.7.10(L) continued

were derivable form the power series representation) we may still
use these results. The more theory-oriented student may wish to
derive these results a bit more formally.

3. 1In going from equation (2) to eguation (3) we used the fact
that log 2z was an extension of 1ln x. That is, when 2z is real log
z=1ln z.

4. We also use the fact that since log z is the inverse of the
exponential (at least when we restrict ourselves to principal
values), e-log Z = z for each complex number z.

X 3
Given ii we write it as eloq 1 . Then since log it =i log i
(i.e., just as in the real case log ¢ = ¢ log b) we have that
ii - ei log i_ (5)

Since |i|= 1 and the (principal value) argument of i is %

we have that

i n
log (le 2-)

log i

«
1

log 1 + log e

™
0+17

s |
= > .
Putting this result into (6) yields
: i(i 3
ilae %
12n
e 2
1

-z
=e

(a rather "weird" result).
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- e-(w/z + 2mn)

i

Let z = re'® where 0 < 0 <
Then,

log z = log reio

= log r + log e 19

In r+ i6.

From (1) we see that

u=1lnr = ln/x" + y: = %

v==0=tan " ¥ (0<0<2

Thus, as r ranges from 0 to », 1ln r ranges from -= to w[i.e.,
Hence u ranges from - «
Consequently,

Inr >0 +r > 1; as r+-= 1ln r+0].

-

Z2ma

)

to = ; and as @ ranges from 0 to 27
the mapping w = log z maps the entire xy-plane onto the horizontal

strip defined by

-0 < U< @
<y < 27 .

1n(x2 + yz)

so does V.

i(% + 27n)
Without restriction to principal values i = e
so that log i = i(;«o- 27n) and i log i = -(;-+ 2wn) so that
n=0,+1, + 2,...

(1)

(2)

That is,
\
X v
f(z) = log z
maps z-plane
into
W= 2T
> X 3 U
z-plane (Figure 1) w-plane
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We next observe that since (r,8) and (r,27 + ©) name the same

i L(0+ 2w are different names for the same

i(e + 2m)

point, re and re
complex number. Under the name re , 2 is mapped onto
In r + i(8 + 2w), rather than 1In r + i8. That is, if we look
449+ 2Tr)rather than in the form re19 we see

that the xy-plane is now mapped onto the strip

at z in the form re

-0 <] < @

2n< v < 4m,

Again pictorially,

// Imaée of z-pl%ne if
z = re19 2n < 8 <4y

g

Image of z-blaﬁe if

zZ = reie 0 < Q< 2m

\ Vo v\

U

' // Imaée of'z—plgne/if
z-plane /// z = re10 -2n < 8<0

S B S

~
®

(Figure 2)

Thus log z is an infinitely-valued function in the sense that
if log z = In r + i8 where 0 < O <2nthen log z = In r + i(8 + 2mn)

where n =0, + 1, + 2, + 3,...

We refer to the principal value of log z as being the value for
which n = 0. If, however, the principal value is not stressed,

log z has infinitely many values. They are all on the line



Solutions
Block 1: An Introduction to Functions of a Complex Variable
Unit 7: Complex Series

1.7.10(L) continued

u = ln|z| and spaced at distances of 2n from the point (ln|z|,

arg z).
g X
By way of illustration suppose z = e 4 then z is also named by
i(; + 2m) i(% + 4m)
e , e , etc.
Thus,
i T
T _ . o
log e =179 1(1 +2), i(; - 21),..
Pictorially,
Y v
m
w = log z i+ 2 )
R
1(3'4'2)/
B
z=e n
N1 F
\\\\\\\ i .
z-plane ~
ity-2)
(Figure 3)
Note:

This exercise shows at least one glaring difference between
logarithms of real numbers and logarithms of complex numbers.
Aside from the fact that logarithms of real numbers require that
the number be positive while the logarithm of a complex number
requires only that the number be different from O, the log
function is single valued (in fact, 1-1) in the real case but
infinitely-valued in the complex case. Thus, if we still want
to think of the log as being the inverse of the exponential,

we must agree that whenever we write eZ or log z, we are assuming
that arg z is between 0 and 2n radians. Unless we make this
convention (or an equivalent one) log z is multi-valued and
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1.7.10(L) continued
consequently it is not invertible.

In this context once principal values are stressed, we have that
the graph w = e? is given by

Y v
- These points have 1
(;)?’ he same image
27 w=e?
27
Yy = 2rn

This strip maps onto
entire w-plane

z-plane w-plane

(Figure 4)

e? and log z are inverses in the sense that Figure 4 is the
same as Figure 1 with the z-plane and w-plane interchanged.

z = sin~} 2 means
sin z = 2 (which is enough to tell us that z is non-real (1)
since |sin z| < 1 if z is real).
Since
iz -iz

sin z = =

iz -iz
(2)
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1.7.10(L) continued
iz =iz iz iz
From equation (2) we conclude that e "= e = 4i or e - e ‘= 4i

or (elz)2 - 4i e - 1 = 0. The quadratic formula now yields

fo AL+ J-40)% & &

e = 3
R O 4 V= 16 + 4
2
or
iz _ 4i + /=12
e =7
4i + 2i/3
_——?—
= 2i+i/3 .
Hence,

iz = log(2i%iV3)
or
z = -i log(2i+iv3). (3)

Finally, since |2i + iV3| = /@ + 3 = /7 and arg i (2 + /3) = %.
Therefore,

z2=-ilogi (2+ V3) =-i (2+ /3) + %.

Hence from (3) we see that the two principal values 2, and Zy such
that sin z; = sin 2z, = 2

. ™
zqg = -i (2 + /3) + 3

z, = -i (2 + /3) - %-
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