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Block 1: An Introduction to Functions of a Complex Variable

Unit 6: Conformal Mapping

1.6.1(L)

In the same way that one can mechanically take a derivative in the
real case without having a feeling for what the answer means, one
can in the complex case know that a mapping is conformal without
realizing the full impact of the result. In this exercise, we
hope to make it clear just what a conformal mapping really is. We
begin by using the formal result without interpretation, after
which we look at a specific configuration to see just what is
actually meant.

Since f(z) = zz, f'(z) = 2z. In particular, then, when z = i,

£'(z) = 2i. Thus, in a sufficiently small neighborhood of z = i
in the z-plane the mapping f(z) = zz transforms a region R into
the region S of w-plane in the following way: (1) If R is "cen-
tered" at i, then S [= £(R)] is centered at £(i) = i% = -1. (2)
Since the magnitude of f'(i) is 2, the size of S is twice that the
size of R. (3) Since the argument of £'(i) is 90° [i.e., in
polar form 2i = (2,90°)], S has the orientation obtained by rota-
ting R through (+)90°.

Thus, for example, if R is a sufficiently small rectangle centered
at i, then S is a rectangle centered at (w =) -1; each side of §
has twice the length of the corresponding side of R; and S has the
orientation obtained by rotating R through 90°. More "pictorially"
if R is any sufficiently small neighborhood centered at z = i,
"l1ift it up" and put it down in exactly the same orientation cen-
tered at w = -1. Then "blow R up" by uniformly doubling its size.
Rotate the resulting region through a counter-clockwise rotation
of 90°. This final configuration is S.

Here our main aim is to emphasize the meaning of "sufficiently
small." What we are doing is taking a specific region R centered
at z = i and looking at its image under the mapping f(z) = zz. We
have described R in terms of the parameter h, where h is a posi-
tive real number, and what we shall show is that the size and
shape of f(R) certainly depends on h. The technique we shall use
is a review of Unit 4 in which we talked about mappings (graphs)

of complex functions of a complex variable [and the mapping
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f(z) = z2 was discussed in great detail in both the text and the

exercises].

By way of review, f(z) = 2? is equivalent to

i xZ s YZ
. (1)
v = 2xy
Hence, the line segment x = a, ¢ £ y £ d is mapped onto
2
u=a -y
c<y<gd (2)

v = 2ay

which is the parametric form of a parabola. Namely, from v = 2ay,

we conclude that y = f% and putting this result into u = a2 - y2
yields

oed® - ()

or

4a2u - 4a4 = v2

or

v? = 4a? (a% - w). (3)

From equation (3), we see that the image of the line x = a is the
parabola with vertex at (az,o), v intercepts at (0,2a2) and
(0,-2a2). and with the u-axis as axis of symmetry. Pictorially,
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y v
A A
2
y TN (28 10)
al-3s(a,a B' (a® - d?,2ad)
c.—: A(a,c) Al (az - 32,233)
> TG
(a“,0)
X = g
.= X2 = 4a’ (a2 - u)
(-2a2,0)
w = z2
z-plane > w-plane

Figqure 1

Since we want only the portion of x = a between ¢ & y £ d, we see
from equation (1) that the end points of our image are given by

u= a2 - c2 u = az - d2

and
v = 2ac v = 2ad

and this is also indicated in Figure 1.

In a completely analogous manner, we observe that the line y = k
is mapped onto the parabola defined parametrically from equation
(1) by

u = x2 - k2

v = 2xk

That is,
2
v 2
U= (EE) =%

or
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4k2u = v2 - 4k4

or

2

ve = 4k2

(u + k2). (4)

Equation (4) represents the parabola in the uv-plane described by

having its vertex at (-kz,O) and its v-intercepts at (0,2k2) and
2

(o'-zk ).

In particular, the image of the lines x = a and ¥y = ¢ is given,

pictorially, by

AY A
vZ = 4a2(a2 =) 2 2 2
R(a,c) \Avv = 4c" (u + ¢“)
y=auo
X /// >u
X = a
All
z-plane w-plane
Note #1 Note #2
The parabolas are orthogonal The mapping is only locally 1-1.
at A' by virtue of the mapping A" is the image of (a,-c) and
being conformal. That is, the unless ¢ = 0, (a,c) and (a,-c)
angle between x = a and y = c are not "sufficiently close" in
is 90° so the image also has the z-plane.

the same angle.
Figure 2

With this general discussion in mind, we turn our attention to the
rectangular region R centered at z = i [i.e., at P(0,1)] with
vertices at A(-h,1-2h), B(h,1-2h), C(h,1+2h) and D(-h,1+2h).

Under the mapping f(z) = 22, or,
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u=x° -y
v = 2Xy
we have that
£(P) = £(i) = i% = -1 = P'(-1,0)
in the uv-plane

£(A) = £(-h,1-2h) = [(-h)2 - (1-2m)%, 2(-h) (1-2h)] =

2

(-1+4h - 3h2,-2h + 4n?) = A’

£(B) = £(h,1-2h) = [h2-(1-2h)2,2h(1-2h)] = (-1+4h - 3n2,

2h - 4h?)

= B'
£(C) = £(h,1+2h) = [h2-(1+2h)2,2h(1+2h)] =
(-1-4h - 3h%,2h + 4n3) = o'
£(D) = £(~h,142h) = [(-h)2-(1+2h)2,-2h(142h)] =

(-1-4h - 3h2,-2h - 4h2) = D'

Thus, recalling the images of the lines x = constant and y =
constant, we see pictorially that

(5.1)

(5.2)

(5.3)

(5.4)
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Yy
| % |
| ' T
| A
| i f
| |
D) IC
= ——y = 14+2h
./‘
R//y\
P, G e
Yy ¥}0o41) o
|
= g "y = 1-2h
I |
I I
] | e "
: : P'(-1,0)
| |

Figure 3

[Note: Our diagram in Figure 3 is based on h = %.l

What we hope is clear from Figure 3 is that we do not get the
result predicted in part (a). The reason for this is that R, as
given, is not a "sufficiently small" neighborhocod of z = i. We
do see that S has the same orientation as R; and we also perhaps
suspect that S is about double the size of R; and, granted that S
is a "distortion" of R, it does seem to be a 90° rotation of R.

The key to the mapping centers about the meaning of "sufficiently
small" and this is the topic of the next part of this exercise.

Let us interpret "sufficiently small" to mean that powers of h
greater than 1 are negligible. That is, we assume that R is
sufficiently small so that we may assume that f behaves like a

linear mapping on R. What this means more specifically is that we

may return to eguations 5.1, 5.2, 5.3, and 5.4 and conclude that
for such a choice of h,
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A' ~ (-1 + 4h, -2h) = A"

B' = (-1 + 4h, 2h) B"

c' = (-1 - 4h, 2h) oyl

D' = (-1 - 4h, -2h) = D"

and with this in mind, Fiqure 3 becomes

v
y A
A
D C
R
)
Cll B”
A B
sll
> X > U
(-l ’0)
Dll A"
Figure 4

From Figure 4 we see that S" is obtained from R in exactly the
same way as we described in part (a). That is, we 1lift R, center
it at (-1,0) in the z-plane, double its size, and then rotate the
resulting figure through an angle of (+)90°.

The problem is that unless h is sufficiently small [i.e., unless
the hz-terms are negligible in equations (5)] S§" and S are guite
different as regions. In other words, the fact that we may view

S" rather than S as the image of R depends on h being sufficiently
small, in the sense that higher powers of h can be neglected.

In fact, if we would like to dove-tail this discussion with our
discussion of linear algebra in Block 4 of Part 2, we are saying
that S" is obtained from R by the mapping
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only if we may assume that

A“tan = 2xAx - 2ydy
and
Avtan = 2yAx + 2xAy

are permissible substitutions for Au and Av.

d. If z=1+4i then £'(1 + i) = 2(1 + i) so that |f'(1 + i)| = 2/2
the argument of £'(1 + i) is 45°., Hence, in a sufficiently small
neighborhood of z = 1 + i, f(z) = 22 maps a region R centered at
(1,1) onto a region S in the uv-plane centered at

(0,2) [= £(1,1) = (1212

size by a factor of 2/2Z and then rotates the resulting region

through 45° to yield S.

Y
A

Step #1

Lift R and place’—
it centered at
(0,2) in the w-plane

> 0

, 2(1)(1)] in the w-plane, magnifies its

w-plane
Step #2
Enlarge S' Sz a
§"M = § = f(R) } factor Of 2v2
P Step #3 D" ;"
Rotate S" through 8",
o B 45° [about the /
point w = 2i = A
(0,2)] 5
A
‘_‘u An B"
\(Auo -
w-plane w-plane
Figure 5
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The key point to observe here and in part (c) is that while f(z)
is conformal in small neighborhoods of z = i and z = 1 + i, the
behavior of f near z = i is considerably different from its be-
havior near z = 1 + i. Thus, the conformal properties of f are of
a local rather than a global nature.

1.6.2(L)

The main aim of this exercise is to emphasize that the conformal
property of f depends not only on f being analytic but also on the
fact that f'(z) must be different from 0 at the point at which we
want to study the transformation.

In this exercise, notice that while f' exists for each z, the fact
that f'(z) = 2z implies that £'(0) = 0. Thus, there is no reason
to expect f to be conformal in any neighborhoed of z = 0.

One way of showing that f is not conformal here is in terms of the
example chosen in this exercise. We have that 22 has an argument
double that of z. Hence, the line 0 = c® is mapped into the line
@ = 2c°. On the other hand, if the ray 8 = c° is rotated through
90°, we have that the new ray is given in polar form by 8 = c® +
90°. Hence, under the mapping f£(z) = z2 this ray is mapped into
the ray whose argument is twice the angle ¢ + 90°. That is, it
is mapped into the ray, 8 = 2c® + 180°.

Pictorially, we have v
A
SZ: 8 = {
4
180° + 28
B c o o ¥

z=-plane

Figure 1

0

20 T

26

f(Sz)

\
éf. >=u
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From Fiqure 1, we see at a glance that while the lines S1 and Sz
meet at right angles their images meet in a straight angle. Since
the angle between S1 and 82 is not preserved under the mapping

z + zz, we have that f(z) = 22 is not conformal in any neighbor-
hood of z = 0 (since any neighborhoed of z = 0 must contain a
portion of both Sy and Sz).

Just as an aside, notice that we could have used the more familiar
Cartesian coordinates to obtain the same result (even though the
use of polar coordinates in this example was more conducive toward

seeing how f(z) = z? rotates any line through the origin).

For example, had we used the equation of the line S1 in the form
y = mx (where in this case m = tan ¢®) with X non-negative (to
indicate that our ray was in the first guadrant) we would have
obtained

2 2

u=x“- (mx)

2% (mx)

<
]

or
u = xz(l - m2)
v = x2(2m).

Therefore,

- 2m
u 1 - m2
: z A 2 tan 8 X
which is 2 arctan m [i.e., tan 28 = e ) that if tan 8 = m,
Hia 1l - tan"6
l-m

We thus see that if the lines are y = mx and y = -%:« (i.e., the
lines are perpendicular means their slopes are negative recipro-
cals) then they map into a straight angle. In fact, y =-%x
implies that its image is
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1 2

. 25) > m_ __=2m _ _ 2m

s (;)2 sl moel 1emt
- m

which agrees with the image of y = mx.

Notice that we choose the lines to be at right angles only for
o
"dramatic impact."” Had the lines met at an angle equal to &, then
o
the image of the lines would have met an angle egual to 25,.
Namely,
o o

O =¢c, * 0 = 2¢c,
The angle between these rays is
o o

o o
o o £ o ° (2c° + 280) =y 2C° - 299
B8 =c, + 0, + 0 = 2c, + 20,

In summary if Sl and 82 are lines through the origin, then f(Sl)
and f(Sz) are also lines through the origin but the angle formed
by f(sl) and f(Sz) is twice the angle formed by S, and S,.

Again pictorially,

v
A
9
o
c® +.0,
1
> 1
z-plane
1.6.3(L)

a. The main aim of this exercise is to emphasize a subtle point about
conformal mappings. Let us take it on faith that there is a one-
to-one correspondence between conformal mappings and analytic
functions (in neighborhoods of points at which the derivative is
not equal to zero). [We have proved one part of this result,
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namely, that if f is analytic and f’(zo) # 0 then f is conformal
in sufficiently small neighborhoods of z = Z,7 but we shall not
bother to prove the converse in our course.]

Now we saw in the lecture of the previous unit that if f(z) = z
then f was not analytic. Hence, f is not conformal. BUT in Unit
4, in our discussion of various complex functions of a complex
variable, we showed that the mapping f(z) = z is equivalent to a
reflection about the x-axis. Clearly then, if R is any (con-
nected) region in the xy-plane (z-plane) its image S with respect
to f is congruent to R since it is merely the reflection of R with
respect to the x-axis. Thus, R and S must have the same size and
shape, so that, in particular, it appears that the mapping would

have to be conformal.

The point that we would like to emphasize here is that "conformal”
means, in addition to preserving shape, that sense is also

preserved.

For example, let R be as in Figure 1. Then S is the reflection of
R about the x-axis. That is,

Y
1 [Notice that we have, in effect,
superimposed the uv-plane onto
D < ¢ the xy-plane in this example.
' R A This should cause no confusion
e since the regions R and § are
A == B non-overlapping.]
=X
A' s B '
Ak S Y
D' ¢
Figure 1

Notice however, that the sense of R is the opposite of the sense
of £(R) = S. Namely, to enclose R so that we pass it on our left,
we traverse its boundary ABCD in the counter-clockwise sense; but
the image of this path encloses S in the clockwise direction.
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Suppose f(z) = z. Then if f(z;) = f(z,) it follows that
it

and from this we may conclude that z2y = 2,-

In other words, £ is 1-1 since f(zl) = f(zz) if and only if

Zy = 2. [We could have deduced geometrically by observing that
no two distinct (different) points in the plane can have the same
image with respect to reflection about the x-axis.]

Thus, £(z) = z is not only locally 1-1 but it is globally 1-1 as
well.

This proves since £ is not conformal, that not all 1-1 maps are
conformal.* What is true, however, is that if f is analytic and
f'(zo) # 0 [so that £ is conformal in a sufficiently small neigh-
borhood of z = zol then f is also 1-1 in a sufficiently small
neighborhood of z = Z,. This was shown in our lecture and is
repeated as part (c) of this exercise.

Let us utilize our previous knowledge about the Jacobian. Suppose
f = u + iv where u = u(x,y), v = v(x,y) are continuously differ-
entiable. Then the mapping defined by f in a sufficiently small

: s afu,v) A
neighborhood of (xo,yo) is 1-1, provided that §7§f§7 # 0; that
is, if

l.lx uy # e

VX \.Vy

This is turn means that

uxvy - uyvx #0. (1)

Now suppose f is analytic. Then by the Cauchy-Riemann conditions

*Clearly, as we shall show in the next exercises, many other 1-1
maps are not conformal. In particular, every non-singular linear
mapping of the xy-plane into the uv-plane is 1-1 but only a "few"
of these are conformal. We chose to work with f(z) = % since it
was already being used in part (a) of this exercise,
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n, = VY and uy e (2)
and
£l (z) = u, + iv_. (3)

From (3) we see that

|f'(z)|2 = ux2 + sz (4)

and by (2), we see that (4) is equivalent to

[£ (2) |2

(ux)(ux) + (vx)(vx)

(ux)(vy) + (-uy)vx

= uxvy - “yvx’ (5)

Combining (5) with (1) allows us to conclude that f is 1-1 in a
neighborhood of (xo,yo) [z =x + iyol provided f'(zo) 0

[e] (&)
lice., |£'(z)|% = 0 < £'(2,) = 0] - and this is the desired
result,
Note

This result says that if f is analytic then f is 1-1 in a suffi-
ciently small neighborhood of z = Zg except possibly if

f'(zo) = 0. Notice that this result is completely analogous to
the real variable case in which f is 1-1 in a sufficiently small

neighborhood of x = X provided f'(xo) # 0.

1.6.4(L)

a. In Unit 4 we showed that the mapping f defined by

f(z) = az + b (1)

where a and b are complex numbers, and a # 0; was conformal - even
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though we didn't say so in those words. Namely, we showed that az
mapped z into the complex number (point) whose argument was the ar-

gument of z + arg of a, and whose magnitude was |a| times that of the

magnitude of z. Thus, as long as a # 0, the mapping g(z) = az
rotated the z-plane through the constant angle Bo and multiplied
each point by e where (r , 8 ) is the polar form of the complex
number, a. Then adding b (— b + 1b ) onto az simply translated

az by the constant amount b = bll + sz. In more "pictorial"
language, if R is any region in the z-plane centered at z = z, f
lifts R into the w-plane centered at w = W, = azg + b; magnifies

it by a factor of |a|; rotates it through an angle egual to

arg(a); and then translates (shifts) this region an amount b.
Clearly, such a chain of transformations must be conformal (except,

of course, if the magnification factor is 0).

In this exercise, we want to obtain this same result using the
idea of derivatives. The point is that from (1) we may conclude
that

f'(z) =a#0. (2)

Thus, from (2) we see that £ is analytic and f' is never zero.
Therefore, f is conformal. In fact, from (2) we see that the
magnification and rotation is constant; i.e., independent of z.
In other words, just as in the real case, f is "uniformly confor-
mal" when f is linear. That is, the effect of £ in this case is
the same for the entire plane.

If we go back to (1) and write a and b as ay + ia2 and b1 + ibz,
respectively, we obtain

f(z)

(al + iaz)(x + iy) + (by + ibz)

(alx - azy) + i(a2x + aly) + b, + ib2

(a;x - ay + bl) + i(azx + ay + bz). (3)

Writing £ in the form u + iv, we see that f is equivalent to the
real mapping defined by
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u = a;x - ay + b1
(4)
vV = ayx +ay+ b2

Hence, (4) denotes the conformal mapping which rotates the plane
a.*

through the angle arctan ;3, increases the distance of a point to
1
the origin by a factor /alz ¥ a22 and then translates the resulting

configuration through a displacement g = b1 + ibz.
The mapping defined by
u=3x -2y +5

(5)
v = 2x + 3y + 12

is equivalent to the mapping of the z-plane into the w-plane de-
fined by

f(z) = u + iv
= (3x - 2y + 5) + i(2x + 3y + 12)
= (3x - 2y) + i(2x + 3y) + 5 + 12i

(3x + i3y) + i2x - 2y + 5 + 12i

3(x + iy) + 2i(x + iy) + 5 + 12i

= 3z + 2iz + 5 + 12i

(3 + 2i)z + (5 + 12i), (6)

so that f£'(z) = 3 + 2i.

Notice that we could deduce that f'(z) = 3 + 2i without first con-

structing f. Namely, we see at once from (5) that u, = vy and

*This Is deflined unless a, = a,

and a # 0 guarantees that not both a and a, can equal 0.

= 0, but the fact that a = a, + 132
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U, = V- Hence, we may conclude that f(z) = u + iv is analytic.
We also know that in this case f'(z) is given by u, + ivx. Thus,
again from (5), we conclude that f'(z) = 3 + 2i (since U, - 3 and
s 2).

In any event, the mapping (5) rotates the xy-plane through an
angle equal to arctan % [i.e., the argument of 3 + 2i], increases
the distance of each point from the origin by a factor of VI3
(i.e., |3 + 2i|), and finally translate the "new" configuration
through a displacement g = SI + 12;.

1.6.5(L)
a. If
u = 3x + 2y

(1)
vex+y

then the induced complex function of a complex variable is
f(z) = u + iv

= (3x + 2y) +i(x + y). (2)
To get (2) into a form which allows us to express f(z) explicitly
in terms of z we try to rewrite the right side of (2) in a form

which emphasizes x *+ iy. To this end,

(3x + 2y) + i(x + y) = 3x + 2y + ix + iy

(x + iy) + 2x + 2y + ix

(x + iy) + 2x + y + y + ix

"

(x + iy) + 2x + y + i(x - iy). (3)

With z = x + iy, we have z = x - iy. Hence,



Solutions
Block 1: An Introduction to Functions of a Complex Variable
Unit 6: Conformal Mapping

1.6.5(L) continued

2x*

N
+
N
"

i2y,

N
I
N
I

—%
r4

Putting these results into (3) and combining this with (1), we

obtain

f(z)

I
N
S
L
N
+
N
+
N
N
|
N
+
| aad
N

1 1 ol e
(2 + 357z + (1 -357 +i)z

(4i + 1)z + (2i - 1 - 2)z
21

o =2if(41 + 1)z + (21 - 3)Z)
4

(8 — 2i)z + (4 + 6i)z
3

or

f(z)

[l
)
>
Nf 1
=
—_
N
+
=
N
|
w
-
e
N

(4)

*Actually, this i1s just another way of saying that

Re z(= x) = E—%—E and Im z(= y) = 321 £,
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Check

1z + A7 2 Lia - Dx+ i) + @2+ 30) (x - iy)]

a-i
3

= L{ax +y+i(-x+4y) + (2x +3y) +i(3x -2y)]
1 N

= 5[6x + 4y + i(=-x + 4y + 3x - 2y)]
1 .

= i[ﬁx + 4y + i(2x + 2y)]

= (3x + 2y) + i(x + y).,
u v

which agrees with equation (1).

Since cz is not differentiable (unless ¢ = 0) we see that £, as
defined by equation (4), is not analytic. Hence, f is not
conformal.

[As a direct proof that the function f defined by equation (1) is
not analytic, we need only observe that the Cauchy-Riemann condi-

tions are not obeyed. Namely, u, = 3 and vy = 1; hence, u, # vy.]

If u = 3x + 2y, then S 3 and “y = 2. Hence, by the Cauchy-
Riemann conditions, it follows that

so that

v = 3y + g(x). (5)
From (5)

Vg = g'(x)

but we must also have that
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Hence,

g'(x) = -2

and, therefore,

g(x) = -2x + c.

Putting (6) into (5) yields

v=3y —-2x +cC

and this checks with the result of the previous exercise with

a, = 3 and a, = -2.

a |

(6)

(7)

Thus, up to translation there is only one way in which v(x,y) can

be chosen if

3Ix-*+ 2y

=4
]

<
]

v(x IY)

is to be conformal. Namely,

vix,y) = 3y - 2x.

1.6.6(L)
implies
(x2 + y%) - x(2x) _ _y® - x? (1)
: (x? + y2)° (2 + y
and
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& (x2 + yz)o = x(2¢) =-2xy
y 2
(2 + v?)

On the other hand

Vo=

> SRkl 3.
implies
2 2

. e XXt ¥ )RO) +2y(2x) - 2xy .
X

(xz + Yz) (xz 3 y2)
and
o e A PV O o P <
Y

(x? + v?) (x2 + y2)

(2)

(3)

(4)

Looking at (1), (2), (3), and (4), we see that Uy uy, Vyr and vy

exist unless x = y = 0 and

Equation (5) gives the Riemann-Cauchy conditions; hence, [,
defined by

f(Z)=U+iv-—2—i——2‘+i<2—-L'§)

X" +y X + ¥y

is analytic as long as (x,y) # (0,0) [i.e., £ is not defined at

(0,0)], and since

(5)
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f'(z) = u, + ivx

2 2
. ik LD [N S

(x2 + Yz)z (xz * Yz)z

we have that

o2 = (2= ) . faxy)®
(«* + v?)

2
= i&f.:.z%%_. (x,y) # (0,0)

Therefore, £ is conformal in a sufficiently small neighborhood of

any point z = By - 0.

Note

If £ is defined by

f(z) ==, z#0

N

then

£'(z) = - # 0
z

for each z # 0. Hence, f is conformal.

Now
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i__1
z X + iy
= x = iy
(x + iy) (x - iy)
= Xy 1Y
x2 - y2
x -y
= e—m— +i .
x2 + y2 (x2 + yz)
In other words, as long as (x,y) ¥ (0,0) ;5—5—;7 and ;722___ are
the real and imaginary parts respectively of %. In fact, this
exercise was made up by starting with f(z) = % and then rewriting

f in the form u + iv.

1.6.7(L)

u = e cos Yy
implies that

o - Ry e
u, = e cosy and uy = =g sin Y.

On the other hand

v = e* sin Yy

implies that

¥y = e* sin y and vY = e* cos V.
Comparing (1) and (2) reveals that
u, = v, and u_ = s

X Y y

so that

(1)

(2)
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1.6.7(L) continued

e* cos y

(=
]

(3)
e* sin Yy

<
Il

defines an analytic function

f(z) =u + iv

e* cos y + ie® sin y. (4)

If £ is analytic and £f = u + iv, then
' 5

f' = u, + ivy.

Hence, by (3), we have

£'(z) = e cos y + ie® sin Y. (5)

Therefore,

/Qex cos y)2 + (e sin Y)2

|£' (2) |

= /ezx(coszy + sinzy)
=e* #0 (6)

for every x.

Hence, the mapping defined by (3) is conformal in a sufficiently
small neighborhood of each point z = Zge In fact, we see from (5)

that in a neighborhood of z = PR R + iyo f rotates z by an
angle equal to y (in radians) since the slope of f'(z) is
%%§—¥ = tan y, and magnifies z by a factor of e*.

Tx = Tuux - Tvvx

X ® ..
= Tue cos y + Tv e siny
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X x X s X .
= - + T +
T T e cos Yy T,e cos y & siny Tve sin y

x x
+
T (‘I‘uuux + Tuvvx)e cos y + T e" cos y + (Tvuux L
e* sin y + 'l‘vex sin y
X X X X
(Tuue cos y + Tuve sin y)e” cos y + T e cos y

x st . X X
+ (Tvue cos y + Tvve sin y)e  sin y + Tve sin y

2% 2 2%

e coszy Tuu + 2e sinzy Tvv

* sin y cos y Tuv + e
(7)

+ e* cos 4 Tu + e* sin Yy Tv

Similarly,

.= Tl 4 Ty
uy vy

X X
Tu(-e sin y) + Tve cos ¥y

Hence

- _X _LX X
Too = T, (- sin y) + T (-e" cos y) + Tvye

X A
+ T (-
vy uy cos y v( e sin y)

X x
(Tu u_  + Tuvvy)(-e sin y) - e” cos ¥y 'I‘u + (Tvuu

uy * Tyely)

b4

e* cos - e sin y Tv

x X X . X
[Tuu(-e sin y) + Tuv(e cos y)1(-e” sin y) - e” cos vy T

> % X > P
+ [Tvu(-e sin y) + Tvv(e cos v)]e" cos ¥y e” siny T,

In other words,
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_ 2% 2 - 92X _. 2x 2
Tyy = e sin"y Tuu 2e sin y cos y Tuv + e cos’y Tvv

(8)

X X .
e cos 'y Tu e siny Tv

Adding equations (7) and (8), we obtain

2X 2x
+ +
Txx T e o e T

il

= e (P ..+ T ) (9)
and from equation (6), we see that

2
R [ELAY | (P +Be)

which checks with the general result derived in the lecture.

In other words, if f£'(z) # 0 for each z € R then

Txx + TYY =0 in R ++ Tuu + Tvv 0 in S = £f(R).

Note

X = X is mapped into the curve

(=

]
n
e}
o}
1]
[

X
which is a circle of radius e © centered at (0,0).

¥y =¥, is mapped into the curve

c
]

ex cos
yO

ex sin y
o

<
]
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or
v _ sin y
u cos

Yo
i.e.,

v = (tan yo)u

Pictorially, v = (tan yl) u
¥
A
— v R §
%2 h
R
s
S N
> X
X=X X=X
2§ Notice that if
ly; = vl > 2m
x f need not be
u=2¢e cosy =
z-plane = > w-plane
v==2e siny

Inversely, we may view S as being mapped onto R by f'l. In other

words, then, f-l allows us to try to solve Laplace's equation on
the rectangle R and if we can solve the problem on R, we may back-
map to find the solution on §, the point being that R may be
easier to handle than S.

1.6.8 (Optional)

The mapping defined by £(z) = az + b where a and b are complex
constants may be viewed as being a special case of the more general

function defined by

(1)

+
f(z) = 2: = g
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where a, b, ¢, and d are complex numbers. In particular, if, in
(1), we choose ¢ to be zero and d to be 1, we obtain f(z) = az + b.

The family of functions of the type (1) in which ad - bec # 0 are
known under the name of THE LINEAR GROUP. The name stems from the
fact that any such function maps lines (and circles) onto lines
and circles; where in this context one looks at a line as the

special case of a circle with an "infinite radius."

With £ defined by

flz) =221 2, 2414 (1)

we have by the quotient rule,

(iz + 1)2 - (2z + i)i

£'(z)
(iz + l)2

3
- — (2)
(iz + 1)2

From (2) we see that in any region R of the plane which excludes
the point z = i, the function f is analytic and f'(z) is never
zero since the numerator in (2) is never 0 (i.e., it is always 3).

Thus, the mapping defined by (1) is conformal.

From equations (1) and (2), we have that

£(0) = i (3)
and
£'(0) = 3. (4)

From equation (3) we may conclude that a neighborhood of z = 0 is
mapped into a neighborhood of w = i.

From equation (4) we see that if z is near z = 0 then its image w
is three times that distance from w = i; and since the argument of
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£'(0) is 0° (i.e., 3 is on the positive real axis) we see that the
direction (including sense) of z from z = 0 is the same as that of

w fromw = i.

Pictorially,
y v
A
=mu + 1
Y
y = mx = 3|oP|
w
Top
P
0 .
z =10 i U
- BIRT 13tk e |
v = fz) = iz + 1
z-plane > w-plane

c. Here we again see the local nature of a conformal mapping.

with z = 1, we see from equations (1) and (2) that

£(1) = 3

and

Namely,

(5)
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N [ S
(1 + 1)2

£2(1)

-3
1+ 2i + 12
3
71
=3 (-1). (6)

From (5) we have that f maps a neighborhood of z = 1 into a neigh-

borhood of w = > ; =

From (6) we see that for a point z near z = 1, its image will be %
that distance from w = i.

Finally, since arg f'(1l) = arg(-i) = 270° = -90°, we see that w is
rotated 90° in the clockwise direction. That is,

Y
k v
4 A
slope m
P /ﬁlope m
o
PO Pl
> X ¥ u
z =1 V- =
! Py =£(P)
3 - i
2 1
P1 = f(Pl) is
! + on this line and
1 > T
| P
= £(Py) \IPgPy| = 31PoP, |

Notice again that f behaves very differently near z = 1 than it

does near z = 0.
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d. Given that

f(z) = I%—E—% (z # i)

we see that

_ iz + 1)1 - (z - i) (4)

£ {z)
(iz + 1)°

je+ 1 -dz+i12

(iz + 1)2

0.

(7)

(8)

Egquation (8) tells us that f(z) must be constant! In fact, with
this as a hint, notice that (7) may be written in the form

and as long as z # i, equation (9) is eguivalent to

£(z) == -i.

o] bt

In other words,
-i, if z #£ 1
f(z) =

undefined, or », when z = i

In any event, f is not conformal anywhere since f'(2)

e. More generally, if

then

(9)

m
o
.

(10)



Solutions
Block 1: An Introduction to Functions of a Complex Variable

Unit 6: Conformal Mapping

1.6.8 continued

(cz + d)a - (az + b)c
(cz + d)2

£'(z2)

o ad - bc
(cz + d)E

Hence, f(z) is conformal unless ad - bc = 0 in which case f(z) is

constant.

1.6.9 (Optional)

At first glance, there seems to be little relevance in the present
exercise with respect to the topic of this unit. The point is,
however, that the solution of this exercise gives us an excellent
insight to defining "the point at infinity" in a very natural way.
What we shall show is that the construction mentioned in this
exercise gives us a 1-1 correspondence between the points on §,
excluding Po and the points in the xy-plane. Since the corre-
spondence is 1-1 and onto, it is invertible. 1In this way, every
point in the plane is identified with one and only one point on
the sphere; and Po is then viewed as the image of "infinity."

In other words, we may view the Argand Diagram as being equivalent
to the sphere xZ + y2 P | (the so-called Riemann Sphere),
with PO(O,O,I) playing the role of the point at infinity. 1In this
context, the point at infinity is no different from any other

point on the sphere.

At any rate, with respect to the problem, let Pl(xl,yl.zl) be any
point, other than PO(O,O,I) on S. Then the line which joins P1
and P_ passes through (0,0,1) and has the direction of

>

-
PP, = xII + y13 + (zy - L)k.

Hence, the equation of this line is

xX=0_y=190 z -1 (1)

5 ¥ ¥y

To find where this line meets the xy-plane, we merely let z = 0 in

(1), in which case we obtain
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Xy ¥y zy ~ 1
or
X - ._;ﬂLf[
and
N S I
Yy zy - 1
That is
x
s ; -lz
1
L (2)
Y1
Y, - =
1 z !

[Since Py 9 Por 2y # 1; hence, the values of x and y, given by
(2), are well-defined.]

Thus, we may match the point Pl(xl,yl,zl) on S with the point

o A L5 T
Pitr= zl' = z; in the xy-plane.

Pictorially,

While the result is probably clear pictorially, the fact is that
we can prove algebraically that the given construction maps § - Po
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in a 1-1 manner onto the xy-plane. We do not wish to pursue the
details here since the computation is "messy" and tends to obscure
our main point that = need not be "feared" if we use the present

interpretation.

In the context of f(z)

_az + b
cz

Tq We may now view f as being defined

at every point in the z-plane by letting f(-%) = = = "the point at

infinity." Of course, if

still assume that f is defined everywhere except at z = -

1.6.10 (Optional)

we feel uncomfortable this way, we may

ol

alz + b
If fl(z)

flofz(z) fllfz(Z)]

z + b2<

llc,2 + d2

1
gz ¥ d, 5

a.,z + b

(z) = Ef;—;—af then

Q) Ul Al o
NN N

v}
N
N
+ 4| +| +

alazz + a1b2 +

blczz + bld2

clazz + clb2 +

(a1a2 4 blcz)z

czdlz + dld2

- alb2 + bld2 -

(cja, + cydylz

Equation (1) suggests the

If f is defined by f(z) =
denote f.

+ c)by + dydy°

following matrix code.

az + b let u the matrix a b to
GE +/a¢ 1ot 78 ae A c a

With this notation in mind, fl would be denoted by
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a b

( 1 1) (2)
% Gy

fz by

a b

( 2 2) . (3)
cy 49,

Moreover, from (1), E1°f2 is denoted by

(ala2 + blc2 alb2 + bldz) @

+ cyd c b, + dpd,

S1%2
Assuming that the rules of matrix algebra apply when our elements
are complex numbers, we observe that matrix (4) is the product of
(2) and (3), i.e.,

(al bl) (az bz) i} (ala2 - blc2 alb2 + bldz) 5
c; 493/ \ex 9, cja, + dye,  cyby + did,

A o

with £,(2z) = —7 and f,(z) = 5+ we see from (5) that

e
z +
flof2

is given by

) (2) (e )

That is,

PR e R
fl(fz(z)) =222 g L.
Similarly,
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1 o\ (1 1
£_of =

Hence,

az + b + o= (6)

1
alw

+ bc - ad
clcz + ad)

I
ol

be - ad
c2(z + %)

bc - ad 1 a
- (7)

Equation (7) now gives us an excellent insight into why mappings
of the form

az + b a

*I1f ¢ = 0 then f(z) = T WUk + % which is the linear function
discussed in Exercise 1.6.4. 1In other words, while (6) is mean-
ingless if ¢ = 0, the case ¢ = 0 is un"interesting" since in this

event we have already solved the problem.
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az + b

£(z) = cz +d

(ad - bc # 0)

carry lines and circles into lines and circles.

More explicitly, notice that (7) may be viewed as a composition of
mappings each of which has the desired property. In particular,

B f} z + 9 f‘ 1 E} be - ad 1 \f4 e
c d 2 d 3 c
_— 2. = c z + =
w _—’_c-‘ \ c-
Yoo .
2 Wy 3

That is, define fl' f2, f3, and f4 by

£,(z) = z + %, £,(2) = %, £,(z) = (‘E;T‘d-)z, and £,(z) = z + &,
Then
z2 +b
E(z) = =™ f4(f3 (fz(fl(z’)))
or
£ = £ 08 0f,0f . (8)

We have already studied mappings of the type fl' 53, and f4. In

fact, f1 and f4 are simply translations while f3 is a magnifica-

bc - ad
c

tion (;f magnitude
§ = arg(és—:529>. [Again, the only time we are in trouble is if
c

> followed by a rotation

c = 0, but we are excluding this case.]

Thus, we need only worry about the function f2 (which is called an
inversion). Let us, therefore, concentrate on what the image of
fz(z) is where fz(z) = l. [Again, if ¢ = 0, f2 is not needed in

z
(8) since then f is simply given by f(z) = 5515—9 = %z + g.]
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Using polar coordinates, we see that z = (r,8) is mapped into

1 - {1.00) (l -f) [Recall, in polar form, that when we
(r,0) (r,8) X’ : . .
divide complex numbers, we divide their magnitudes, and subtract

their arguments.)

Hence, if R is a circle centered at the origin with radius r, %
is also constant. Moreover, as f goes from 0° to 360°, -8 goes
from 360° to 0° so under f2' ¢ is mapped onto the circle centered

at the origin with radius % and the opposite sense of R.

The arithmetic becomes quite a bit more awkward if c is not cen=
tered at the origin. We shall tackle this case indirectly in the
next exercise, but for now we hope that you begin to get a feeling

for the type of linearity possessed by f(z) = %ﬁ-%}%;.

1.6.11 (Optional)

Here we show that every member of the linear group has an inverse,
which is itself a member of the linear group.

In particular, let

az + b (1)

We may solve for z in terms of w to obtain
cwz + dw = az + b,
(cw = a)z = -dw + b,

or

- SOwit-b (2)

* cw - a’

_ - —dw + b
[If ad - be = 0, then —————

If we reverse the roles of w and z in (2), we obtain

is a constant.]

dz 2 b (3)

w =
cz — a
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or

-1 . =dz +>b
£ Tim) e (4)

As a check of (4), let us observe from (1) and (4) that

f-l(f(z))

-daz - bd + bcz + bd
caz + bc - acz - ad

{bc - da)z
bc - ad '’

or, since ad - bc # 0,

£ (£(2) = 2.

So

“tof = Identity mapping.

b. There is nothing special about the points 0, 1, and =. In fact,
we intend to show as we go along that every member of the linear
group is determined as soon as we know what it does to any three
distinct points in the z-plane.

The reasons for choosing 0, 1, and = is that these three points
make the arithmetic rather easy. In fact, using the notation of
equation (1),

(i) £€(0) = 0 ++ b = 0, since £(0) = g

a+b
c +d

(ii) £(1) = 1 + a + b = c + d, since £(1) =
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—r Z b _ G % RY g
(iii) e - %; hence, f(=) = -
or,
sooreifge §

Therefore,

f(») = » ++ c = 0.
Now, with b = ¢ = 0 [from (i) and (iii)], (ii) tells us that
a=d,

and this coupled with b = ¢ = 0 implies that

Hence, the conditions
f(0) =0, £(1) = 1, and f(») = «
imply that

= 2z
£(z) = = (5)
and since ad - bc # 0 and ad - bc is also equal to a2 (since a = d
and b = ¢ = 0), it follows that a # 0. Hence, from (5), we con-
clude that

f(z) = =z,

c. What we first show is that one such required function f is given
by
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zZ, - Z zZ - 2

o - (252 [

2 1 3
To derive (6), we observe that for f(zl) to be zero, we want
z =z to be a factor of our numerator, and to have f(z3] = o we
want z - 2, to be a factor of our denominator.

z - z
This means that f£(z) must be a multiple of ;—:—;l: say,
3

z -z
f(z) = k|————]|. (7)

z - 24

Knowing that f(zz) = 1, we put this information into (7) to deduce
that

z il
2 3

whereupon it follows that
k = ————., (8)

Combining equations (7) and (8) establishes eqguation (6).

Now, to prove that £, as defined by (6), is the only such member
of the linear group, suppose that g is any member of the linear
group such that g also satisfies g(zl) =0, g(zz) = 1 and

glzy) = =.

By part (a) of this exercise, g-l exists. Moreover,

(7)) = £z =0 |
f(g-l(lﬂ

£ (q'l (m))

n
h
N

1
=

(9)

]
]
N

I
B
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1
1

maps 0 into 0, 1 into 1, and
is the identity mapping. 1In

From equation (9), we see that feg
= into =. Hence, by part (b), feg

other words, g % = £} or, equivalently,
f=g (10)
and since g was any member of the linear group for which g(zl) =0,

g(zz) =1, and g(z3) = =, equation (10) shows that g must equal £;

so f is unique.

With part (c) as our basic building block, we now establish the
more general result asked for here.

Intuitively, our technique is simply to use part (c) to construct
the function f which maps zy into 0, z, into 1, and z, into =. We
then find the function g which maps Wy into 0, Wo into 1, and Wy
into =. Then g-lof maps z, into w;, 2z, into w,, and z, into w,.
Moreover, since f and g are unique, so also is g-lof.

: § }r

+

z-plane

"Intermediary"-plane

Now the main consequence of this result is that Zyr 2y and Zq
determine a circle unless the three points are all on a straight
line. A similar result applies to Wyr Woo and Wy Hence, mem-
bers of the linear group map circles or lines onto circles or lines.
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Rather than supply any further details, we conclude this exercise
with a specific example. Namely,

e. We want to find h such that

h
0+ 1
h
i~+-=1
. h
-i+0

Mimicking the procedure of part (d), we make the auxilliary mapping

=],

whereupon h = g “°f.

Now to find £, we proceed as in part (c). Namely, the numerator
of f(z) must be 0 when z = 0. Hence, the numerator of f(z), up to
a constant factor, must be z itself. Secondly, the denominator of
f(z) must be 0 [i.e., f£(z) = =] when z = -i. Hence, the denomina-
tor is z - (-i) = z + i. Therefore,

£(z) = 22 (11)

and since f(i) = 1, eguation (11) implies that

1=£(i) =

ki _ k
T+1 2

so k = 2.
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Hence,

£(z) = ?21{ (12)

A similar analysis implies that

g(z) = k(z.__...z-—l). (13)
and since g(-1) = 1, equation (13) implies

l=g(—l)=k_(-1—--i.-—12-=2k

so k = %. and, consegquently,

L (14)

z-
g(z) = 5%

We now invert g. That is,

implies that
2wz = z — 1

or

(2w - 1)z = ~1.

Hence,

- S
R e i (15)

From (15), we have that

g 2 = g (16)
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From (12) and (16), we conclude that

g log = (0 1) (2 0
2 -1/ \1 i

)

B

St I st Tt

iy oool=i) - i _ 0 _
hi-1) ==y =1~ ~
What this tells us is that
h(z) = 3%—%

is the only member of
-1+0.

Notice that 0, i, and
determine the u-axis.

Y
A

z-plane

(17)

(18)

the linear group that maps 0+1, i+-1, and

-i determine the y-axis while 1, -1,
That is,

v

A
T o 1 A
w-plane

and 0
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is the only member of the linear group which maps the imaginary
axis onto the real axis such that 0+1, i»*-1, -i=0.

[There are, of course, infinitely many members of the linear group
which map the imaginary axis onto the real axis, each determined
by the images of any three points on the imaginary axis.]

Since one of our main purposes in this block is to relate complex
variables to real situations, it is appropriate that we conclude
this exercise with an application that has no direct bearing on
any knowledge of the complex numbers.

in this exercise, notice that the problem is well-defined without
reference to the complex numbers (although the word "conformal"
probably gives us a bit of a hint to think in terms of the complex
numbers). The point is that if we identify the xy-plane with the
z-plane and the uv-plane with the w-plane, this exercise asks us
to find the conformal linear function f(z) defined by £(0) = 1,
f(i) = -1, and £(-i) = 0. In this form, we see at once that our
present exercise is just a restatement of the problem given in

part (e).

In particular, then,

f(z) = 32—+

and if we now let z = x + iy, we obtain

-{x + iy) = i
3(x + iy) - 1

f(x + iy) =

-x = i(y + 1)
Ix + i(3y - 1)

[-x = i(y + 1)]|3x - i3y - 1)1
[3x + i(3y - 1 3x - i(3y - 1

"

EE EE - B D oI O B B O o I
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- [(-3x% - (y + 1)(3y - 1)] + i[x(3y = 1) = 3x(y + 1))
9x? + (3y - 1)°

oa? -3yl ooy 1L - 4x
2 2 2 2|
9x” + (3y - 1) 9x“ + (3y - 1)
Hence,
2 2 {
ulx,y) = 3x R 3y 2y + 1
9x“ 4+ (3y - 1)
& (19)
9x” + (3y - 1)

[Notice that when x = 0 and y = T, equation (19) is not defined.

l:y & =z -1
This corresponds to the fact that f(3i) = = when f(z) R

To find the image of the x-axis, we let y = 0 in (19) and obtain

_=3x2 4 )

9x“ + 1

u

- (20)

-4x
WA

9x"™ + 1

o

To eliminate x in (20), we observe, for example, that

-3x2 + 1
S o R
9x” + 1

implies that

9ux2 4+ u = -3x2 + 1
or
2 _1=-1u
X =37 ou (21)
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[Notice that since x2 > 0, eguation (21) yields a good deal of
information about u, but we shall not utilize this here.]

We then use (21) in v = ——%ii-— to obtain
9x~ + 1

]
=

-% YT =0 (3 + 90) (22)

Sguaring both sides of (22) yields
vi=32@a-we o+ oo

or

2

90 - 6u -3 +9v° = 1.
Therefore,

2 2 5 L 7 I |
A i AL Sl

and completing the square now yields
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so that the image of the x-axis is the circle of radius %/5 cen-
tered at (%.0).

This checks with our earlier remark that linear mappings carry
lines (or circles) into lines or circles.

Note

We should be a bit careful about our new use of the word "linear."
Before we emphasized the idea of conformal mappings, we agreed
that any mapping of the xy-plane into the uv-plane defined by

u = ax + by —_—

v = ¢cx + dy

where a, b, ¢, and d were all real numbers, would be called linear
mappings. If we insist that a linear mapping be conformal then as
we saw in Exercise 1.6.4, a, b, ¢, and d could no longer be chosen
at random. More specifically, if (23) represents a conformal

mapping then

u = ax + by

implies

v = -bx + ay.

This, in turn, tells us that once we specify that (0,0) be mapped
into (0,0), we have only one more point whose image we can pick at

random (rather than the additional two points which we ordinarily
need if the mapping is not necessarily conformal).
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Thus, if we want the mapping to be conformal and still require
three points to determine it, then we must accept the broader
interpretation of linear as used in this exercise. That is, by £
being linear, we mean

where a, b, ¢, and d are complex.
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