Solutions
Block 1: An Introduction to Functions of a Complex Variable

Unit 4: Complex Functions of a Complex Variable

1.4.1(L)

Clearly each element of S is a complex number since both cos t
and sin t are real for all 0 < t < T, Thus, S exists without any
reference to a picture. The point is, however, that if we use
the Argand diagram, we view x + iy as the point z[= (x,y)] in

the xy-plane.

In other words if we identify the position vector R with the
complex number z, we see that the "graph" of S (by which we
mean the set of points in the Argand diagram which represents
S) is the curve whose vector eguation is

R(t) =cos ti+sintj, 0<t<m. (1)

This, as we already know from our study of vectors, is the curve

whose parametric form is

sin t

Il

cos t 0 < £ < (1)
Y

which we recognize as the upper half of the unit circle centered

at the origin.

Pictorially,
o\ W
N A, P(cos t, sin t) = cos t + i sin t

JL o

-~ K
iy -
v =

/(1,0)

There is a l-1 correspondence between complex numbers in S and
points on the above semi-circle. The correspondence is defined

by (cos t, sin t) «+ cos t + 1 sin t.
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Block 1l: An Introduction to Functions of a Complex Variable

Unit 4: Complex Functions of a Complex Variable

1.4.1(L) continued

More generally, every curve in the z-plane has the equation of

the form
z = x(t) + y(B)i (2)

(we say more about this in Exercise 1.4.9) and because the
Argand diagram has the structure of a 2-dimensional vector space,
we see that equation (2) is equivalent to the vector function

of a scalar variable, defined by

> x
Ja

R(t) = x(t) 1 + Y(t)

Summarized pictorially

Y
A x = x(t)
i c’{y=y(t>
(x(t) ,y(t))
R
:}x

()1 + y()3.
and C is then the

1. In vector form, C is given by R(t)
2. In the Argand diagram R represents
set of complex numbers, {z: z = x(t) + iy(t)} .

-+
Z,

b. Let w denote the image of z with respect to f£. 1In this case w = 22.

Since both z and w are complex, f is actually a mapping of a
2-dimensional vector space (the z-plane) into a 2-dimensional

vector space (the w-plane).

If we now identify the z-plane with the xy-plane and the w-plane
with the uv-plane, we see that w = 22 actually is equivalent
to mapping the xy-plane into the uv-plane (a topic we have al-

readv studied fairly thoroughly).

5.1.4.2
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1.4.1(L) continued

Pictorially
¥
v
i A
/—'—7’w=22
z = (x,y)
¢
> x ‘}14
z -plane w-plane
. . B . 3 s 2 ;
More specifically, if z = x + iy then z° = (x° - y7) + i 2xy;
so that
u= % - g2
w = u + iv, with (3)
' v = 2xy

Notice that we have already discussed the mapping given by (3)
in Blocks 3 and 4 of Part 2.

Of course, we have something "going for us" now that we didn't
have then. Namely, we are now able to view mappings of the
xy-plane into the uv-plane (a concept which certainly exists
independently of the invention of complex numbers) as complex
valued functions of a complex variable which map the z-plane
into the w-plane.

With this interpretation, we are now able to discuss a vector
product that was undefined before (although with hindsight we
could have gone back to Blocks 2, 3, and 4 of Part 2 and invented
the vector product which corresponds to the product of two com-
plex numbers) and we may conclude that 22 is the complex number
whose magnitude is the square of the magnitude of z and whose
argument is twice the argument of z.

In particular, then, since each point in S has unit magnitude,

its image under the squaring function also has unit magnitude.
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1.4.1(L) continued

Moreover, since the argument of the image is twice the argument
of the point, we see that since the arguments of the points in
S vary from 0 to 180°, the arguments of the images range from
0° to 360°. 1In summary, then, the mapping w = 22 carries the
set S into the whole unit circle centered at the origin. 1In

particular, the point (r,8) maps onto (r,28).

Here we see, as an important aside, how the theory of mapping
the complex plane into the complex plane gives us new insight to
real mappings. In particular, with respect to equation (3)

we now have that this mapping, in terms of what it means to
multiply complex numbers, is easy to explain pictorially,
Specifically, the image of a given point in the xy-plane is
found by doubling the argument of the point (vector) and

squaring its magnitude.

Again we hasten to point out that we could have invented the
product of two vectors to be the vector in the same plane
equivalent to the product of the two given vectors as complex
numbers. That is,

(ali+bPcT+ad) = (ac-bd) 1+ (bc+ ad) 3.

But notice how much more natural this definition becomes in

terms of the language of complex numbers.

In other words, one major real application of the theory of
complex functions of a complex variable is to the real problem
of mapping the xy-plane into the uv-plane. These problems can
be tackled without reference to the complex numbers, but a
knowledge of the complex numbers gives us a considerable amount
of "neat" notation which is helpful in obtaining results

fairly quickly.

As a final observation, let us observe that as a function f

has the same structure (but a different domain) whether we

write f(x) = x% or f(z) = z2. 1In either case we have a function
machine in which the output is the square of the input. The

big difference is from the geometrical point of view. 1In the

S.1.4.4
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Unit 4: Complex Functions of a Complex Variable

1.4.1(L) continued

expression f(x) = x? se may view both the domain and the image of
f as being l-dimensional (since x is assumed to be real).
Accordingly, we may graph the function in the 2-dimensional xy-

plane in terms of the curve y = x2.

On the other hand, in the expression w = f(z) = zz, the domain
and the image of f must be 2-dimensional since neither z nor 22
is required to be real. Thus, we would require a 4-dimensional
space to graph this function if we wanted a graph which was the
analog of the graph y = f£(x), Since we cannot, in the usual
geometric sense, draw a 4-dimensional space, our geometric
interpretation must involve viewing the z-plane (the domain of
f) as being mapped into the w-plane (the range of f),

1.4.2

a. If we look at z as being the point (r,8) in the z-plane, then

Z3=(r,9)3 - (r3,39). Thus, under f each point in the z-plane
is mapped into the point (p,¢) in the w-plane where o=r3 and

¢= 38 [i.e., the mapping cubes the magnitude and triples the

argument].

In particular the point (1,8) where 0 < 8 < 90° is mapped onto
(13, 38) = (1,30) and since 0° < & < 90°, 0° < & < 270°. Thus,
the first quadrant S of the unit circle is mapped onto the

first three quadrants of the unit circle.

Again pictorially,

y )4
AN  \ v ~_f‘/ -
iy, S f N

~ ,

1 ! .; x } u
e
”
/
/
4 1
z-plane w-plane

S.1.4.5
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1.4.2 continued

By the same token, each point in T, written in polar coordinates,
has the form (r, 45°). [If the line extended into the third
quadrant, the points on this part would be represented as (r,225°).]
Hence "cubing" such a point yields (r3, 135°). In other words,

the mapping defined by f(z) = 23 maps the ray & = 45° onto the

ray & = 135° in such a way that the image of each point has the

cube of the magnitude of the point.

Pictorially, £(T)
y v

N £o,) = 1
(8,135°)

o(2,45°)
45° & h -

> X

P

z-plane w-plane

3
z
(x + iy}3

x> + 3x2(iy) + 3x(iy)2 + (iy)

x> + 3x2yi - 3xy2 - iy3

3 3xy2) + i(3x2y - y3}.

f(z)

Il

3

]

(x

I

Hence,

3 2
x~ - 3xy (1)
3 2 3

x“y -y .

Again, by way of review, equation (1) defines a real mapping of
2-space into 2-space, but from our knowledge of complex variables,
we know that the rather cumbersome system (1) is eguivalent to
mapping each point (vector) in the xy-plane into the point whose
magnitude is the cube of the given magnitude and whose argument

is triple that of the given argument.

S.1.4.6




ER E E B B OO0 mIn B B DD DD B B DD DD o on oDn om

Solutions
Block 1l: An Introduction to Functions of a Complex Variable

Unit 4: Complex Functions of a Complex Variable

b O (K
a. z =x + iy » 2z = 2x + i2y. Therefore, w = 2z = 2x + i2y. Letting
u denote the real part of w and v the imaginary part we have
u = 2x
v = 2y
b, w= f(z) =2 +w=x - iy. Hence,
u=x
v=-y| .
c. f£(z) = |z| =+
f(z) = |x + iz! >
f(z) = V" + y° =
Flz) = VA y2 + 0i =+
u = sz + y2
v= 0
d. £(z) = z2 + 2z + i
ot 2 " .
= (x + iy)” + 2(x + iy) + i
g 2 § 4 :
= %" = ¢o W ilxy + 2% +d2y + 1
2 2 :
= (x° - y© + 2x) + (2xy + 2y + 1)i.
Hence,
u = x2 = y2 + 2x
o= 2%y + 2y + 1
o -
2 f(Z) -*E
_ 1
X + 1y
. X - iy = X >+ i “E:x__fl'
(x + iy) (x - iy) xT t+y x" ty

5.1.4.7




Solutions
Block 1: An Introduction to Functions of a Complex Variable

Unit 4: Complex Functions of a Complex Variable

1.4.3 continued

Hence,

u = _i_z__f i
Xx© + ¥

Yy = ——
X+Y J

x2 + y2 # 0

(since z # 0)

Again, as a reminder, this problem shows us that we may view the

mapp

ing

u X
v = -y

as f(z) = z;
u = x2 G y2 + 2x
v =2xy + 2y + 1
as f(z) = 22 + 2z + i; and
q = —5—5———

X + yz
v = _7:2_“2

x ty

]

as f(z) = =
1.4.4(L)

Our main aim in this exercise is to get a better feeling for the

"reality" of complex functions of a complex variable.

Parts (b)

and (c) are concerned with extending the analogs of f(x) = x + c

and f(x) = cx where c and x are real numbers to f(z) = z + c
and f(z) = cz where ¢ and z are now complex numbers. As we shall
5.1.4.8
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Unit 4: Complex Functions of a Complex Variable

1.4.4(L) continued

see, the algebra of these functions is the same as that of their
real analogs, but the geometric interpretation is a bit more
sophisticated (the result of both our domain and image space
being 2-dimensional rather than l-dimensional). In part (a)

we want to emphasize the fact that what looks like a new function
to us is really an old function that we handled in a very real

situation. In particular,

Recall in our treatment of the double integral that when we
wanted to reverse the order of integration, the technique was
geometrically expressed by the mapping of the xy-plane into
the uv-plane given by

W= ¥ (1)
v X -

It should be clear that we do not have to know anything about
complex numbers to talk about the mapping defined by equation
(1). If, however, we want to view the mapping as being from

the z-plane into the w-plane, our procedure is to write (1) in

the form u + iv, which in this case means that we study the

complex function of a complex variable defined by

f(z)

X + 1i(-vy)
X - iy. (2)

If we now recall that z is x + iy, we see that x - iy is by

definition z. Thus, (2) becomes
£(2) = =Z. (3)

Of course we arrived at (3) rather inversely to the wording

of the exercise in which we were to begin with (3) and derive
(1). Our purpose for doing this was simply to start the
exercise emphasizing the relationship between complex functions
of a complex variable and real mappings. Had we begun with
(3), we would have merely reversed our steps to obtain:

5.1.4.9
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1.4.4(L) continued

f(z) = 2
=X + 1y
= x - iy (4)

and from the real and imaginary parts of f(z), we would have
concluded that the graph of f was equivalent to the mapping de-
fined by

u=x
v = -y.

This mapping is equivalent to reflecting the xy-plane about the

|

x-axis (i.e., we leave X alone and change the sign of y.

Pictorially,
¥ =,
v u=Xx
N AN it
f(z) = 2z {v = -y
z = (x,y)
e y i
z-plane w-plane f(z) = z =(x,-y)

(Figure 1)

But since the w-plane is a replica of the z-plane we may super-

impose the two planes in Figure 1 to obtain

y
T

S.1.4.10
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Block 1: An Introduction to Functions of a Complex Variable
Unit 4: Complex Functions of a Complex Variable

1.4.4(L) continued

Thus, the effect of f on set § in the Argand diagram is to pro-
duce the mirror image of S with respect to the x-axis. 1In
particular if S is any closed region, f(S) = s (i.e., S and its

image have the same size and shape).

b. In the real case, we saw that the graph of f(x) + c just "raised"
each point of the curve y = f(x) by an amount c¢. In particular
the graph of f(x) = x + ¢, was obtained by lifting each point on
the line y = x by c units. Pictorially,

y
N
R
y = £(x) + ¢
e c
/-l'"
=y = Ex)
> X

Now, given f(z) = z + c, we see that in the Argand diagram this
sum must be interpreted as a vector sum. As a vector the complex
number c is written as clf + c2§ (where we are assuming that
c=2cy + czi). Letting c denote cli + c,j, we see that adding

c to z is equivalent to displacing z by an amount equal to the

magnitude of ¢ in the direction of c.

For example, the mapping defined by f(z) = z + 3 + 4i maps the
point z into the point 5 units from z in the direction
31 4+43
5 5 J
Pictorially, . Q
/
% zZ + 3 + 41/7
/
3 7
/ 44
P/
4
/
3
z 5%

8.:1.4.11
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1.4.4(L) continued

Geometrically, adding 3 + 4i onto z shifts (translates) P to Q.
That is, P is translated 5 units in the direction 31 + 43.

Here we invoke the fact that we have a very convenient way of
multiplying complex numbers using polar coordinates. In parti-
cular if c = {ro, Qo) then cz has as its magnitude r, times the
magnitude of z and as its argument 90 plus the argument of z.

In other words we obtain the image of z by rotating the vector

z through 90 degrees and increasing its magnitude by a factor of

X .
o

By way of an example, if f(z) = (3 + 4i)z, then the image of a
given number Z is obtained by rotating z through an angle equal
to arc tan g-and replacing the magnitude of z by 5 times its

value. Pictorially,

[z [% P(x,y) = z

1 We pick any point on OP.

2. We erect a perpendicular to OA and locate B on OA such that
AB = § OA. Therefore, tan ¥ AOB = % a

3. We mark off the length OP (i.e., |z|) 5 times along OB.
4.

OC then denotes (3 + 4i) OP = (3 + 4i)z.

5.1.4.12




Solutions
Block 1: An Introduction to Functions of a Complex Variable
Unit 4: Complex Functions of a Complex Variable

B El & O BN BN D O B B DD DD DD e

1.4.4 (L) continued

As a very interesting special case, notice that if the magnitude
of ¢ is 1 then the mapping f(z) = cz simply rotates z through an
angle equal to the argument of c(i.e., the magnitude is pre-

served because c¢ has unit magnitude).

If we let 8 denote the argument of c, the fact that c is of unit

magnitude means that ¢ = cos 8 + i sin 8.

Hence,

]

cz (cos 8 + 1 sin 0) (x + iy)

I

X cos O-y sin 8 + i (x sin 6 + y cos 8),

and as discussed in our earlier exercises, this is equivalent

to the real mapping

X cos 8 - y sin @

Il

x sin 8 + y cos 8 . (1)

1l

Thus, comparing this result with our polar coordinate interpre-
tation, we see that the mapping defined by equation (1) is equi-
valent to rotating the xy-plane through 8°.

Hopefully, this shows us still another way in which complex
numbers have a real interpretation. By the way, in the special
case that c¢ is real, the argument of c is either 0° or 180°,
depending upon whether ¢ is positive or negative. Notice then
that in this case the result checks with the usual result in
the real case; i.e., multiplying by (real) c leaves the
direction alone, changes the magnitude by a factor of |c| and
preserves the sense if c> 0, reverses the sense :if c< 0,

As a final note on this exercise notice that the linear mapping
defined by f(z) = ¢y
valued constants maps lines through the origin into lines
through the origin; and circles centered at the origin into
circles centered at the origin. Namely, the mappping f(z) is

a rotation (accompanied by a uniform magnification factor equal
to c;) followed by a translation. Under a rotation, lines

zZ + ¢, where both cq and c, are complex-

Sl o B3
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1.4.4 (L) continued

through the origin remain lines through the origin, and circles
centered at the origin remain circles centered at the origin.

Notice also that the algebra of inverting this type of function
is word-for-word the same as in the real case since the structural
rules are the same. Namely, if w = ¢,z + ¢y (cl # 0) then

w - C,

7 =
€1

etc.

In other words, the algebra remains the same, but the geometric
interpretation is elevated by a dimension of sophistication

(so to speak).

1.4.5

1= 3

VZ

a. Here we have f(z) = c4,2 + ¢y where & = and cy = i.

By the result of the previous exercise €,z rotates z through
an angle equal to the argument of €1 and multiples the magnitude

of z by |[c;| . In our case, eyl =1 [i.e.,

J{L>2+ ¢ <1-13%
/Z /Z

while the argument of ¢y is 45°.

Y
~
: V2 o J/Z
2 1
12
a5 ) S %
vZ

Hence, c;z is a 45° rotation of the z-plane. Then since

S.1.4.14
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1.4.5 continued

ciz + i "translates" cyz an amount equivalent to the wvector 3
(i.e., adding i raised the point by 1 unit; we see that

f(z) = (l—i—i)z + i
V2

is equivalent to rotating each point in the plane through 45°
and then raising it 1 unit).

Pictorially,

P(XJY) [= 2]

Rotate P through 45° and then 1lift it (i.e., move it parallel to

the y-axis) one unit.

(1 + i
V2

)z + 1

(1L + i) (x + iy)
V2

# 4

(x - y) + i(x + vy)
V2

+ i

(x —y) +ilx+y) + /2 i
V2

= (X=X + i (E_i_l_i_fz ).
V2 VZ

5.1,4.15
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Hence in Cartesian form, the mapping is given by

-

&
u=— (x - y)
V2
1
v=— (x+y + vV2)
/5 -’
1.4.6

z4 has magnitude 16 if z has magnitude 2, and the argument of 24

is four times the argument of z. Hence as z traces the portion
of the circle r = 2 between 6 = 0° and 8 = 60°, f(2) traces the

portion of the circle r = 16 between 8 = (0° and 8 = 240°.

Pictorially 4
g(s) where g(z) = z
YT
X /
™~ /,
>
A X
L 28
. %> i 2409 4
2 — 16 -A
_ / - J
\"-\._...-/ lf f
- 74
x
B“.

Finally, adding 3 + 4i translates each point 5 units in the

: ; 3 4
direction 5 + g 1,

S.1.4.16
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1.4.6 continued

Ol

/

/7

c:r = 16

Adding 3 + 4i to each point on the circle r = 16 translates the
circle from center at 0 to center at 0'.

«—This is {r =16, 0 < 8 < 240°}
translated by 37 + 43, i.e.,
do' = AA' = BB' = 31 + 47.

(= Y Se )
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1.4.7(L)

Here again we see how our knowledge of vector calculus helps us

here. Namely, it is natural, if only by mimicking, to define

lim £(z) =1L

Z+C

which means that, given €> 0, there exists 6§ >0 such that
0 <]z - c|< § » |[£(2) - L| < e.

The above definition makes sense even though z, c, and L need
not be real since we are dealing only with absolute values -
which are (non-negative) real numbers.

Moreover, from a pictorial point of view (i.e., in terms of the
Argand diagram) the above definition is precisely the same as
our limit definition when we dealt with vector functions of a

vector variable.

Recall in that case we showad that the definition was equivalent
to saying that if R = u{x,y}I + v(x,y}g and if L = Llf + ng,
¢ = clI + czj; then

lim ¥(R) = T

R+

was equivalent to

tt

lim ulx,y) =

(x’Y}*(cl;cz)
and

lim vix,y) = L,.
(fo}+(Cl,02)

Translated into the Argand diagram this says that if c = cy t c2i
then

lim £(z) =L

Z>rCc

S5.1.4.18
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1.4.7(L) continued

means

lim Re[f(z)] = Re(L)
(x,y)+(cl.cz)

and

lim Im[f(z)] = Im(L).

(x,y)+(c1,c2)

For example, in the given exercise

£(z) = 2°
= (x + iy}3
= x3 & 3x2(iy) + 3x(iy)2 + (iy)3
= {x3 - 3xy) + (3x2y - y3)i.
Hence,
lim  £(z) = lim (x° - 3xy) + i lim(3x2 y - y3}
z+(1 + i) (x,y)>(1,1) (x,y)+(1,1)

-2 4+ 2i.

The key point is that using the Argand diagram model for the
complex numbers we need not invent any new ideas to handle
lim f(2z) if ¢ is complex and f is complex-valued.

Z-rC

In particular, every limit theorem that was true in our study of
vector functions of a vector variable remains true in our study

of complex functions of a complex variable. More specifically,

we may continue to use such results as the limit of a sum is

the sum of the limits, the limit of a product is the product of

the limits, etc. Again, the main idea is that once we view

5.1.4.19
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1.4.7(L) continued

complex numbers in the Argand diagram we cannot distinguish
between complex numbers and planar vectors structurally. Thus,
theorems for one model remain theorems for the other.

14,8
(z + h)2 = 22 + 2zh + h? (just as in the real case).
Hence, (z + h}2 - 22 = 2zh + hz. Hence,

2 2 2
(z + h)® - z _ 2zh + h _ % (22 + h)

h h

= 2z + h, provided h # 0.

Hence,

2 2
Tag (22 RI” = Fy . adw (22 # Bl
h+0 h h+0

lim 2z + 1lim h
h~+0 h-0

225
Notice that this exercise seems to be the complex eguivalent

of finding f'(x) when f(x) = x°. This idea is the topic of the

next unit.

1.4.9

Our main aim in this exercise is to show that the study of complex-
valued functions of a single real variable was made when we
studied the planar problem of vector functions of a scalar

variable.

Namely, if we view z as x + iy, then the fact that z is a function
of the scalar (real) variable t means that we may write

z(t) = x(t) + iy(t). (1)

S.1.4.20
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1.4.9 continued

The critical point is that if we elect to use the Argand diagram
as a geometric model, we see at once that equation (1) is

structurally equivalent to the vector equation:

R(t) = x(B)1 + y(©) 7. (2)

In summary, the curve in the xy-plane defined by equation (2) is
the "graph" of the complex numbers defined by equation (1). In
other words, one way of visualizing a (continuous) complex

function of a real variable is as a curve in the z-plane.

The main point is that since we may identify a complex function

of a real variable with a vector function of a scalar variable,

we may also assume that the calculus structure of vector functions
of scalar variables is inherited by complex functions of real
variables; and both parts (a) and (b) of this exercise are
designed to illustrate this.

a. We assume here that f'(t) has the usual meaning, except that f
is now a vector function rather than a scalar function. The
point is that had we been given the problem
R(t) = t1 + t53 (3)
we would have been able to conclude that
R'(t) = 1 + 2t3. (4)
Since equation (3) translates, in the Argand diagram, into

2, _
7= & kot 1 = £

it follows that f'(t) must be the analog of equation (4), namely,

£1(t) = 1 + 2ti. (5)

S5.1.4.21
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More generally, then,in terms of the Argand diagram if z = f(t)
where f is a differentiable complex function of a real variable,

we may view z = f(t) as the curve z = g(t) + h(t) i where g is

the real part of £ and h is the imaginary part of f. 1In this
event, f'(t) is a vector tangent to this curve with magnitude equal
to

2

g'2(t) + h'2(t)

The key point is that the calculus here is a "carbon copy" of the
calculus of vector functions of a scalar function.

If R'(t) = t2i + e3tj, then we already know that

R(t) = = £3i + éeBtj + c. (6)

Wi

Translating the result (6) into the language of complex numbers

we have that, if f£'(t) = t2 + e3ti, then

£(t) = % £3 + % et + c, where ¢ is an arbitrary complex constant.
(7)
If we now use the fact that £(0) = 1 + i, equation (7) becomes

1+1i = 1 i+ c so that ¢ =1 + % i. Putting this result into (7),

=3
we have that f£(t) = §.t3 + 3+ 14 £ iy o

{l 3 3t

£(8) = (32 + 1) + %{e + 2)i.

In summary, we already know how to differentiate and integrate
complex functions of a real variable because our previous knowledge
of vector functions of scalar variables. In particular

1. If z = x(t) + y(t) i, then g% 2 g% + g§ i; and

2. If z=x'(t)+y'(t) i, then fzdt = x(t) + y(t) i + c; where

x'(E) ==g§é5l-and y'(t) =:§§%§l_ and ¢ is an arbitrary complex

constant.

Thus, while complex functions of a real variable are important in
our study of complex variables (e.g., as mentioned in Exercise

1.4.1, the "graph" of a set of complex numbers in the Argand

S.1.4.22

2 B & & B S O DD ) B B oD oD & G O O e e

S—




S @ @ & O O &0 B OO O @ &G o a oo o &= o

Solutions
Block 1: An Introduction to Functions of a Complex Variable
Unit 4: Complex Functions of a Complex Variable

1.4.9 continued
diagram has this form), we do not devote much time to such a

study since the main results are already available to us from our
study of planar vectors.

1.4.10

The result of this exercise justifies why the study of real-
valued functions of a complex variable is usually ignored from a
calculus point of view*. Namely, assuming that the result of
this exercise holds, we have that if y = £(2) and if g% exists,

then 9y = 0 This, in turn, implies that f(z) is constant.

dz %
Thus, if f: c+R such that f' exists, then f(z) must be constant.
In other words, unless f(z) = constant, gg ( = g%} fails to

exist. Thus, the study of differentiable real functions of a
complex variable is "short and sweet".

Now, turning to the specifics of this exercise, we must first
define what we mean by f' in the case that f is a real-valued
function of a complex variable. In terms of our usual approach
in terms of structure, we define g§»= £f*(z) by

f(z_ + az) - £(z)
fl(zo) = lim [ a o 1 (1)

Az—+0 8

provided that the limit exists. Since z,and hence Az, is complex,
it means that there are many paths by which Az may apprcach 0.

One such path is the one defined by the change in the imaginary
part of Az being 0; and another, by the change of the real part
of Az being 0.

*We hasten to stress "calculus" lest you erroneously be led to
believe that such functions are unimportant in all respects.

For example, the absolute value of a complex variable is

extremely important and this is an example of a real-valued function
of a complex variable. That is, if z is complex and f(z) = |z|

then the range of f is the non-negative real numbers.

Sw1.4.23
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In terms of the Argand diagram we have,

y
A Re[4z]+ 0 along line Re(z) = Rel(zg)

Im(Az)+0 along line Im(z) =

-

)

o (xo’yo

~¥

Algebraically speaking, we are saying that if z = x + iy then
Az = Ax + iAy; and we are looking at Az in one case with Ay = 0
and in the other with Ax = 0.

The key point is that numerator in the bracketed expression in
equation (1) must be real since f is given to be real valued.

Thus, with Ay = 0,

f(zo + AZ) —- f(zo}

Az

is equal to

f(xo + Ax, yo} - f(xo, yo)

Ax

in which case, f', if it exists must be given by

f(x + A%, v.) - £(x_,y.) 3f

£'(z) = lim [—2 L °© % ==
o Ax

Ax~+0 o'fo

Im(zo}

(2)

S.1.4.24
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Similarly with Ax = 0, equation (1) becomes

f(z + iby) - £(z)

f'(zo} = lim [ .
Ay+0 ALY
—_— f{xo,yo + Ay) - f(xo,yOJ]
Ay+0 iAy
_ 1 lim [f(xo,yo + Ay) - f(xo,yo)]
1 Ay»0 Ay
i 9y —
(xo,yo)
o | :
= i = . (3)
(XO'YO)

Since the existence of the limit in (1) means that the value of
f'(zo) must be independent of the direction in which z+0, we may
equate the values of f'(zo) found in (2) and (3) to conclude

3f - .y BE
X - =l y
xO’YD) T}_:-O ;Yo)
or
fx(xo,yo} +0i=0+1i I[- fy{xo.yoJ]. (4)

5.1.4.25
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Equating the real and imaginary parts in the equality given by (4),

we conclude that

fx(xo,yo) = 0 and fy(xo,yoj = 0 (5)
Finally, since (xo,yo) = z, was an arbitrary point (number) in
the domain of f we may conclude from equation (5) that

(6)

fx(x,y)z fy(x,y)z 0

and from our knowledge of real-valued functions of several (two)

real variables*, we may conclude that
f(x,y) = constant. (i.e., df= 0) (7)

Then since f(x,y) is simply the geometric equivalent of f(z),

we conclude that f(z) = (real) constant.

* Notice that we have identified f(z) with f(x,y) by viewing =z

as the point (x,y) in the Argand diagram. Since f is real-valued
it follows that f(x,y) is a real function of the real variables

x and y. Consequently the statement given in (6) is independent
of our knowing anything about complex numbers (although the
derivation of (6) came from our treatment of the complex numbers).
Accordingly (7) is merely a reaffirmation that if df = 0dx + 0dy

then f(x,y) is constant.

5.1.4.26
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1.5.1(L)

a. "Mechanically" we obviously expect f'(z) = 322 just as in the real
case. Our faith in the mechanical method is justified by the fact
that the rules of arithmetic, needed to justify f'(x) = 3x2 if
f(x) = x3, are obeyed when we turn to complex numbers. More

specifically,
£'(z) = lim £(z + h; = f(Z)] (1)
h+0 L
= lim (z + h)3 — 23]
h+0 - h
= 1im z3 + 322h + Bzh2 + h3 - 23]
h+0 *~ n
= lim % (3z2 + 3zh + hzﬂ
o L
= 1im (3z2 + 3zh + h?)
h-+0
= 322 + lim 3zh + lim h®
h-+0 h-+0
= 322, (2)

Notice that in going from (1) to (2) every step was justified by
the structure of complex arithmetic - but we also see that the
sequence of steps which takes us from (1) to (2) is precisely the
same sequence of steps, only with z replacing x, by which we
deduced that f£'(x) = x? if f£(x) = x3.

3

P 12 (x + iy)3

3+ 2 (iy) + 3x(ip 2 + tiy)?

(x3 - 3xy2) + i(3x2y - y3). (3)
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1.5.1(L) continued

From (3) we see that

-

u=x - 3xy2

and g (4)

v = 3x2y - y3j

By direct calculation in (4), we have

2 2 2 2
u, = 3x® - 3y, uy = =6xy, A 6xy, and vY = 3x~ - 3y°.

Hence,

u, = vy and uy e

As an aside to this part of the exercise, notice that in this
exercise we knew explicitly how f(z) was related to z without
reference to real or imaginary parts. There are cases, however,

in which we know u and v as functions of x and y but not explicitly
in terms of z. For example, in terms of real mappings, whenever

we have the real transformation defined by u = u(x,y) and v =
v(x,y), we may invoke complex variables by writing this transfor-
mation in the form f(z) = u(x,y) + iv(x,y), where z = x + iy.

In this form it may not be easy to see how f(z) is directly related
to z. It is then that we have no recourse other than to use the
Cauchy-Riemann conditions as a check to see whether f(z) is analy-

tic (differentiable).

[Actually, we want the converse of the Cauchy-Riemann conditions
here. Namely, what we have seen is that if f(z) = u + iv is
analytic then its real and imaginary parts, u and v, satisfy the
Cauchy-Riemann conditions. We have not shown that if the Cauchy-
Riemann conditions are satisfied then u + iv is analytic. This is
done in Exercise 1.5.12.]

With respect to this exercise, what we have shown is that we may
apply the Cauchy-Riemann conditions to (x3 - 3x2y) + i(3x2y - y3)
even if we did not know that this was the Cartesian form of z~.
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1.5.1(L) continued

Here our main aim is to stress how one deduces f'(z) from
f(z) = u + iv. What we showed in the lecture was that if £'(z)
existed it had to have the form

u, + ivx (5)

where equation (5) was obtained from equation (1) by letting h-+0
through real numbers; and it also had to have the form

vy - iuy (6)

where equation (6) is obtained from equation (1) by letting h+0
through purely imaginary values.

Thus, equations (5) and (6) give us two answers to part (c).

Moreover, by the Cauchy-Riemann conditions, ve may replace Vi in
(5) by -u_, and we may replace u, in (6) by vy. This leads us to
the fact that if f(z) = u + iv is an analytic function then f'(2)

can be written in any one of the following equivalent form:

-

iv

£ (z) X X

I
[~
+

= vy = iuY
d (7)

=u_ - iu
2

= vy + ivx

P

(These results may seem partly self-evident. The non-obvious part
comes from letting h+0 through the purely imaginary numbers since
in that case our denominator is not Ay but rather ily.)

All we wish to do in this specific exercise is check these results

in the case f(z) = 23.

To this end
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£'(z) = 322
= 3(x + iy)?
= 3(x2 - yz) + i6xy. (8)

From our results in part (b), we know that u = 3(x2 - yz).

uy == ORY. W 2 6xXy, and v = 3(x2 - yz). With these values, we

see that equation (8) is obeyed by each of the expressions in (7).

1:5:2
f(z) = z3 + z2 + 2z 4+ 1 +
£1(z) = 322 + 22 + 1. (1)

Letting z = x + iy, we have

£(z) = (x +iy)d + (x + iy)2 + (x + iy) + 1

= [x3 + 3x2(iy) + 3x(iy)2 + (i) 3] + [x% - y? + i2xy] +

+ x + iy + 1

3 2

= X~ + i3x2y - 3xy2 - iy3 + x° - y2 + i2xy + x + iy + 1

N (x3 - 3xy2 R s y2 + x +1) + i(3x2y - y3 + 2xy + y). (2)

Hence,

u(x,y) = x3 - 3xy2 + x2 = yz +x + 1
(3)

vix,y) = 3x2y - y3 + 2xy +y

From (3) it follows that

3x2 - 3y2

[ =
I

+ 2x + 1, uy = =6xy - 2y
(4)

v, = 6xy + 2y, vY = 3x2 - 3y2 + 2x + 1
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Hence,

and

= -
uy Vx.

c. f£f'(z2) = u, + ivx.
Hence, by (4),
' e 2 2 .
£'(z) = (3x° - 3y° + 2x + 1) + i(6xy + 2y). (5)

As a check on (5), we may return to egquation (1) and write f'(z)
in the form u + iv. Namely, from (1),

£1(z) = 3(x + iy)2 + 2(x + iy) + 1

2

IX* - 3y© + i6xy + 2x + i2y + 1

[3x2 - 3y2 + 2x + 1) + i(6xy + 2y)

which checks with (5).

1.5.3

a. £(z) =z 2= 35 (z # 0).
z

Hence, just as in real-variable calculus,

3

£'(z) = =2z ° = ’—%u (1)
z

For the more rigorously-oriented student,
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b.

1.5.3 continued

£'(z)

lim
h+0

lim
h+0

lim
h+0

h+0

S T
(z + B)% 2%
h
22 - (z + h)2
héz(z + h)2

J -22h - h®
hzz(z - h)2

[ -2z - h
22(z + )2

provided z # 0.

f(z)

2S
)
i
(x + iy)?2
1
(x2 - yz) + i2xy
(x2 B yz) - i2xy

[(x? - yz) + izxy]((x2 - yz) - i2xy)

2

X

- yz - i2xy

(2

and since

(x* - v?)

2

2
_ yz) + ax2y?

+ 4x2y2 - x4 - 2x2y2 +y
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2 2
R o A, | . ; (2)

(x2 + yz)z (X2 + yz)z

From (2) we conclude that

2 2
PG, Sl and v = _“2_)(1_ (3)

o (x2 + yz)z

and both u and v are well defined provided x2 + y2 # 0 and this is
guaranteed since z #¥ 0 (i.e., 0 ¢ dom f).

From (3) we have

2
_ (x2 + yz) (2x) - (x2 - y2) 2(x% + y2)2x

u
X 4
(x2 + y2)
N 2% (x> + yz)[(x2 + y2)4- 2(x? - yz)l
x2 + Yz)
2 2
= 2X[X * 3% ] (since x2 + yz #£0) (4)
(2 + y2)
2
v = (x2 - yz) (=2x) + (2xy) 2(x2 + 12)22
y 4
(x? + y2)
_2xx® + y?) (- +4y2) + ay?)
(2 + y?)
2 2
_ 2x[-x" + 3% ] (x2 + ¢% # 0). (5)
(x? + v2)
Thus, comparing (4) and (5), we see that u, = vy unless x2 + y2 =0

and since 0 § dom £, u_ = . for all z ¢ dom f.
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Similarly,

2
(x2 + yz) (-2y) = (x2 = yz) 2(x2 + y2)2y

l.‘ly = a
(x2 + y2)
= 2y (x% + y2) - (x% + 12)4- 20x2 - y3))
(x2 + y2)
2 . 2
=3 2 ) (x,y) # (0,0) (6)
(x* + v?)
2
s o2 v) con 4 202 ¢ yPrax
X ( 5 2)4
X +y

~2y(x2 + yz)[(x2 + yz) - 4x2]

’ (25:53)"
- z2yleax? + Yz]. (x,y) # (0,0). (7)
(x + y2)°

Comparing (6) with (7) shows that
u, = V.
c. 1I1f f(z) = u + iv is analytic, then (among other expressions)
£'(z) = u, + iv,.
Thus, had we been given only eguation (2) and we couldn't guess

that this was z-z, we could have used equations (4) and (7) [once
we knew that f(z) was analytic] to deduce that
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1.5.3 continued

2

2% (-x% + 3y%) + =2y i=3x * y2)
(2 + g (x2 + y2)

The validity of this result could be checked by expressing -—%
z

[which we know is £'(z) by part (a)] in terms of real and imagi-
nary parts. In fact, from the previous exercise,

f'(z) =

2 -2
2 (3 - 3xyd) + 4(3x%y - v)

—20 (x> - 3xy§) - i(3x%y - y;)]
(x3 - 3xy2) + (3x2Y = Y3)

ax(=x2 + 3y2) + i[-2y(=3x> + y2)]

x6 - 6x4y2 + 9x2y4 + 9x4y2 - 6x2y4 + vy

6

= 2x(-x2 ks 3y2) + i[—2y(-3x2 - yz)]

x6 - 3x4y2 + 3x2y4 - y6

[ e
Y

( + )’

1.5.4(L)

The actual computation involved in this exercise is quite simple.
The more interesting part of the result is its relevance to real-

valued functions of two real variables.

We have u + iv is analytic. Hence, by the Cauchy-Riemann condi-

tions, we may conclude that

(1)

(2)
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If we now differentiate both sides of (1) with respect to x, we

obtain,

(ux )x = (% )x

Uxx = Vyx- (3)

Similarly, if we differentiate both sides of (2) with respect to
y, we obtain

u S (4)

Under the assumption that vxy is continuous, we Kknow that
vxy = Vyx’ and putting this result into (3) and equations (3) and
(4) , we obtain the required result that

Uy + uyy = 0.

To prove that Voest + vyy = 0, we copy the above procedure, only now
we differentiate both sides of (1) with respect to y and both

sides of (2) with respect to x.

What this tells us is that the real and imaginary parts of an
analytic function satisfy Laplace's equation. In other words,
given the real partial differential equation

then the real and imaginary parts of every analytic function
satisfy this equation.

This also tells us quite a bit about the remarkable behavior of

an analytic function. Among other things, the stringency of the
Cauchy-Riemann conditions seems to indicate that the real and
imaginary parts of a complex function of a complex variable must
be rather strongly inter-related if the function is to be analytic.
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The reason for this is that the definition of derivative requires
that a certain limit exist and be the same in infinitely many

directions.*

Note

From this exercise, we see that unless both u and v satisfy
Laplace's eguation u + iv cannot be analytic. It turns out that
the converse is also true. For example, if u satisfies Laplace's
equation, we may solve the Cauchy-Riemann eguations to find a
function v such that u + iv is analytic. (Notice that we are not
saying that simply because both u and v satisfy Laplace's equation
that u + iv is analytic. Rather u and v must satisfy Laplace's

equation and the Cauchy-Riemann conditions if u + iv is to be
analytic.)

This idea will be stressed more in the next few exercises, but
what we want to emphasize before we end our discussion of this
exercise, is that the study of complex variables provides us a
rather powerful tool in our study of Laplace's equation. Namely,
in looking for solutions of Laplace's equation, we may bring to
bear all our knowledge about analytic functions and then use the
fact that the real and imaginary parts of such functions are solu-
tions of Laplace's equation. (In fact, the role played by u and v
if u + iv is analytic is even more profound than simply that they
are solutions of Laplace's equation, but we shall talk more about
this in later exercises as well as in the next unit.)

- -

*That is, lim [f(z 2 hl - f(il] must not depend on how h approaches
h+0

0. Since h is complex, h may approach 0 in infinitely many ways.
Thus, the fact that f(z) is analytic means that the derivative
exists regardless of how h*0. This is a more powerful condition
than the corresponding "real" statement that the directional deri-
vative exists in each direction. Rather this says that the direc~-
tional derivative exists in each direction but its value is the
same in each direction.
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1.5.5(L)

In the previous exercise, we showed that if u + iv was analytic,
then u satisfied Laplace's equation. The converse of this, which
we haven't proved, would be that if u satisfied Laplace's equation
then u was the real part of an analytic function. We shall not
prove the converse but it does happen to be true. What we are
doing in this exercise is illustrating the converse in a concrete
example. The procedure is to first show that u satisfies Laplace's
equation (since from the last exercise, we know that if it doesn't,
u + iv cannot be analytic) and we then construct v by solving the

Cauchy-Riemann conditions (equations).

To this end, given that u = s 6x2y2 + y‘, we have that
3
u, = 4x> - 12xy%, u, = 12x% - 12y2 (1)
and
u, = —12x%y + 4y>, vy = —12x2 + 12y2. (2)

From (1) and (2), it follows that

and consequently, u is at least eligible to be the real part of an

analytic function.

To find the imaginary part v of such an analytic function, we
utilize the fact that we must have

Wi -uy (3)

and

vy =3 (4)
2 3

By (2), uy = -12x“y + 4y~; so (3) implies

v, = 12x%y - ay>.
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1.5.5(L) continued

Hence,

v = 4x3y - 4xy3 + gly).
Now from (5)

Vy = ax3 - 12xy2 + g'ly).
But from (4) and (1),

_ B 3 _ 2
vy = U 4% 12xy~.

Equating the values of v, in (6) and (7), we conclude that

Yy
g'(y) =0
or
gly) = c.

Putting the result in (8) into (5), we conclude that

v = 4x3y - 4xy3 + C.

What (9) tells us is that if the function (x - 6x y + y ) +
iv(x,y) is to be analytic then v(x,y) must be 4x y - 4xy + c.

(5)

(6)

(7)

(8)

(9)

That is, the function is not analytic if equation (9) isn't obeyed.

In this particular example it is easy to verify that u and v are

the real and imaginary parts of the analytic function

f(z) = z4 4+ ic,* where ¢ is a real constant.

Namely,

#f is analytic because f'(z) = 4z7.
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s R 4 A
z + ic = (x + iy)" + ic

x? 4+ a3 (iy) + 6x%(iy)2 + ax(iy)> + (ip)? + ic

x4 + i(4x3y) - 6x2y2 - i(dxy3) + y4 + ic

(x4 - 6x2y2 + yd) + i(4x3y - 4xy3 + ¢)

\ )
v Ad

u v

In Exercise 1.5.9, we shall try to generalize this result to cover

the case of less "familiar" functions.

Our aim here is simply to verify that the role of real and imagi-

c.
nary are in a sense interchangeable. That is, once Ve uyy =0
there is an analytic function which has u as its real part and an
(another) analytic function which has u as its imaginary part.
The key point is that if f£(z) is analytic so also is cf(z) where c
is any complex constant. [Namely, just as in the real case,
leg%&ll = ¢f'(z).] 1In particular, if u + iv is analytic so also
is i(u + iv) = =v + iu.
Using the results of part (b), we see that
-(4x3y - 4xy3 + c) + i(x4 - 6x2y2 + y4) (10)
is such a function [i.e., £(z) = i(z® + ic) = iz" - c]. [This
same result could have also been obtained, of course, by inter-
changing the roles of u and v, and using the technique of part (b).]
L.5.6

a. Given that u = x3y4, we have that

_ 2 4 _ 4
R 3x"y , u = 6Xy
and

33 3 2

= 4x u = 12x o

Uy ¥ Yy y
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Hence,

4 3.2
Uy t U, = 6xyT + 126°yC 7 0. (1)

By our results in Exercise 1.5.4, u cannot be the real part of
any analytic function u + iv because if it were, L~ + uyy =0
which is contrary to what we proved in (1).

O R
Vi ™ uy implies Vi © 4x"y~. Hence,

v = -x4y3 + gly). (2)

Therefore,

v, = -ax3y? + g' (y) (3)

but vy =u, implies

2 4
= » 4
Vy 3x%y (4)

Comparing (3) and (4), we conclude that
g'(y) = 3x2y4 + x4y4

which contradicts the fact that g'(y) depends only on y. (Notice
how this process resembles the construction in our treatment of
exact differentials.)

Thus, g(y) doesn't exist, and combining this with equation (1)
shows that the required v fails to exist.

In summary, then, there does not exist an analytic function whose

real part is x3y4.

1.5.7(L)

Aside from giving us a nice review about certain results of real-
valued functions of two real variables, this eXxercise gives us
further insight about the real properties of pairs of functions
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that are the real and imaginary parts of an analytic function.
(Such pairs of functions are called harmonic conjugates.) In
particular, this exercise shows that a harmonic pair do more than

satisfy Laplace's equation. More specifically, we are going to
show that if u + iv is analytic then the family of curves defined

by
u(x,y) = constant (1)
and
v(x,y) = constant (2)

always intersect at right angles, except possibly when the deriva-
tive of u + iv is zero. This fact plays an important role in why
mappings defined by (1) and (2) where u + iv is analytic are so
important in real applications. This idea will be pursued in even
more detail in our next unit when we discuss conformal mappings.

At any rate, returning to the actual computational details of the
present exercise, the technique is to find %§ for each of the

family curves defined by equations (1) and (2).

Differentiating equation (1) implicitly we conclude that

uxdx + uydy =0

or
d -ux
a% = Tgr (uy #0).* (3)

Thus, equation (3) gives us the slope of each member of the family
u(x,y) = constant.

Similarly, from equation (2), we deduce that the slope of each

curve in the family v = v(x,y) is given by

*Recall the Implicit Function Theorem discussed in Block 4 of
Part 2.
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-V

g:;-=75 (v, # 0. (4)

Now equations (3) and (4) apply for any functions u and v - pro-
vided only that u and v are continuously differentiable. If,

however, we now assume that W, - vy and uy = —vx,* we see that
equation (2) becomes

|
x< k<

= L, (5)

dy _
ax =V

Comparing (4) and (5), we see that d for the family ul(x,y) =
X

constant is the negative reciprocal of %% for the family v(x,y) =
constant. This means that wherever a member of ulx,y) = constant
intersects a member of v(x,y) = constant the intersection is at
right angles - unless possibly when both vy and u_ egual zero
(since then implicit differentiation need not be valid).

We know, however, that if £(z) = u + iv and f is analytic, then

£f'(z) = vy - iuy [see, for example, Exercise 1.5.1, part (c)].

Thus, the only time that u(x,y) = constant and v(x,y) = constant
need not meet at right angles is when the derivative of u + iv
eguals zero (i.e. when uy and v.. both equal zero). This estab-

Y
lishes the result stated in this exercise.

1.5.8

u = x2 - yz and v = 2xy imply that u + iv = x2 = y2 + i(2xy) =

(i +3g) 2 = 2%,

Hence, u + iv is analytic and its derivative is
2z = 2(x + iy).

Therefore,

*Again, notice in this form, no reference to complex numbers 1is
needed. 1In other words, the Cauchy-Riemann conditions apply to
pairs of real valued functions of two real variables, but the
language of complex functions is often more convenient.
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(u+iv)1=0*-*x=y=o.

So by the result of the previous exercise, the curves x2 - y2 -

constant and 2xy = constant intersect at right angles except at
those points for which x = y = 0 (i.e., the origin). At the
origin the curves in guestion are

and

2xy =0

x2 - y2 = 0 defines the pair of lines y = *x while 2xy = 0 defines
the lines x = 0 and y = 0.

That is,

x =10

\

y = =x Y = X

45°

In other words, xz - y2 = constant and 2xXy = constant intersect
orthogonally at all points of intersection except the origin.

As a check notice that

X2 y2 =g * 2x =2y %¥ =0 + %% = 3
negative
reciprocals
2Xy = ¢ + 2[xdy + ydx] = 0 » g% = -¥

and the only trouble spot occurs when x = y = 0 since then %%

has a zero denominator.




Solutions
Block 1: An Introduction to Functions of a Complex Variable
Unit 5: Differentiating Complex-Valued Functions

1.5.9 (optional)

We are given that u and v are continuously differentiable and that

(i) u, = vy and (ii) uy s We want to prove that

u + iv

is analytic.

Letting f(z) = u + iv, we see that
f(z + Az) = (u + Au) + i(v + Av)
so that

flz + Az) - £(z2) _ Au + iAv

Az Az

and since 4z = AX + ily, it follows that

f(z + az) - £(z) _ Au + iAv (1)
Az Ax + 1Ay’

Hence, to prove that f(z) is analytic, we see from equation (1)
Au + iAv

that we must prove that Ailm A% * 1by exists.
+0
Ay
Since u and v are assumed to be continuously differentiable, we

know that

Au = uxAx + uyAy + kle + szy

and (2)
Av = v Ax + vyAy + k3nx + k4Ay

where kl' k2, k3, and k4 all approach zero as Ax and Ay apprcach

zZero.

Using the results of (2) in (1), we have
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. f(z + Az) - £(2)
£f'(z) = 1lim [ ]
Az+0 Az

lim
Ax
Ay™0

[Au + iAv
Ax + iAy

2 u Ax + uYAy +kAx+ k, Ay +i (v Ax +vyAy +kyhx + k4Ay):| (3)
Ax+0 i Ax + 1Ay
Ay

If we now invoke the Cauchy-Riemann conditions, the bracketed
expression in (3) can be greatly simplified. Our strategy is to
use the facts that u, = vy and uy ==V, to make Ax + iAy a factor
of the numerator in (3).* To this end, we write

) - ) uxAx-vay-+kle-+k2Ay + i(vxdx +uxAy+-k3Ax +k4Ay)
£'(z) = 1lim TSR
Ax*o L Y
Ay
B ux(Ax +idy) + ivx(Ax +iky) + (kl + ik3)Ax + (k2 + ik4)Ay
=i A Ax + iAy
Ax*o 3
Ay
(k, + ik,)ax + (k, + ik,)Ay
: 1 3 2 4
= Ak Alim [ 5%+ Ik ] . (4)
x+0
Ay

Hence, from equation (4) it follows that f'(z) exists provided
only that

lim
AX
Ay*o

(ky + iky)Ax + (k, + ik, )4y
Ax + iAy

exists.

*For a shorter proof, see note at the end of this exercise.
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It is not difficult to show that this limit exists and,
that it is zero.

Namely,

(k1 + ik3)Ax + (k2 + ik4)Ay
Ax + 14y

I(k + ikg)ax + (k, + ik )Ayl
IAx + iAy|

A

|k, + ik3| |ax| + |k,
[ax + 1Ay]

fﬁ + ky %|ax| + /£ i IAYI
v/AxE + Ay2

ik, | lay|

Since ——=——— < 1 for all real numbers a and b, we see

that

4 2 2 4 2 2
1 + k3 + 2 + k4

(ky + ik3)Ax + (k2 + ik4)Ay
Ax + idy

in fact,

(5)

(6)

and since kl' k2, k3, and k4 + 0 as Ax and Ay - 0, it follows from

(6) that

=0

lim
Ax¢o
Ay

(kl i 1k3)Ax + (k2 + ik4)Ay
Ax + iAy
so that from equation (4) we conclude

£V(2) =u .+ iv,

(7)
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and f'(z), therefore, exists. In fact, equation (7) checks with
our earlier result that when u + iv is analytic, its derivative is
u, +iv,.

Note

If we are willing to accept that Au = uxAx + uyAy and
Av = v Ax + vyAy with a negligible error, then equation (3) becomes

f'(z)= 1lim
Ax
sy

ux(Ax + iAy) + ivx(Ax + 1iAy)
ix + iby

= u. + 3 -
X lvx

The remainder of the proof was merely(?) verifying that the error
was indeed negligible, thus validating the assumption we accepted.

1.5.10 (Optional)

Just as we did in the real case, we let %% - %% = k (where now k

is complex since %% and %% are complex). We then have that

lim [é! - 9!] = lim Xk

rz+o LAZ s Az+0
or

lim 8% - 1im 7 = lim k. (1)
Az+0 Az+0 Az»0

.. Aw dw . . _
Now since 1lim —— = = (by definition of the fact that w = f(z) is
Az dz
Az=>0
§ % . dw _ dw
analytic) and since 1lim az - az’ Ve may conclude from equation

Az-+0

#Notice structurally that we are using the same limit theorems
(such as the limit of a sum equals the sum of the limits) in the
complex case as we used in the real case and this is why our step-
by-step translation from the real case is valid.
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(1) that 1imk=f1—‘;'-g-‘§=o.
Az+0

Hence

A_W- dw = k

Az dz

implies that

Aw _ dw

Fz_-§'+k' lim k = 0.

Az+0

Consequently, since Az # 0,

Aw = (g%)Az + kAz, 1lim k = 0. (2)
Az+0

Since kAz is a higher order infinitesimal, we may assume that

dw
Aw~Eﬁz

for "sufficiently small" values of Az.

In terms of £, if £ is analytic at z = Zor then "near" z,

AW = f'(zo)Az. (3)

Recall that f'(zo) is a complex number, as is Az. We know that to
multiply two complex numbers, we multiply the magnitudes and add
the arguments. Now the only complex number whose argument is
undefined is 0 (i.e., the complex number 0 has the same problem as
the vector 0 has when it comes to defining direction).

Hence, assuming that f'(zo) # 0, we have that f'(zo) has a well-
defined argument, say, eo.

Thus, the complex number f'(zo)Az has a magnitude egual to
If'(zo)l times that of Az's magnitude and its argument is that of
Az's plus eo.
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In terms of equation (3), thcn, near z = z_ Aw has |f'(zo)| times
the magnitude of Az and its argument exceeds that of Az by Bo. In
other words, the direction of Aw is obtained by rotating Az

through the angle ao.

Pictorially,
y v
4\ A
. W, = f(zl)
e;;r 1 Aw
z
o W f(zo)
> X > u
z-plane w-plane

f f'(zo)

We multiply the length of Az by the length of f'(zo) to obtain the
length of Aw and we rotate Az by eo to obtain the direction of Aw.

In summary, then, near z_, f magnifies z by a scaling factor equal
to lf'(zo)l and rotates z by an angle equal to the argument of
f’(zo).

We shall discuss this further in the next unit and we shall give a
specific illustration in the next part of this exercise, but for
now we wanted to point out the very important aspect that as long
as f'(zo) # 0, the mapping defined by f preserves angles. That
is, if two curves C1 and C2 meet at a point P in the xy-plane and
if the mapping u = u(x,y), v = v(x,y) has the property that u + iv
is analytic (or without reference to complex numbers, that B vy
and u_, = -vx) then the angle at which the images of C1 and C2 meet
in the uv-plane is the same as the angle of intersection in the
xy-plane. The proof of this remark is nothing more than a direct
translation of the discussion of this exercise to viewing complex

numbers as vectors in the plane.
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The key idea is that while the scaling factor need not be 1,

unless f'(zo) = 0 each vector emanating from z is rotated the same
amount Bo. It is for this reason that analytic functions are very
important in the study of transformations of the plane. Namely,
these mappings [provided only that f'(zo) # 0] yield the conformal
mappings which we shall discuss in the next unit.

N

v 2xy

corresponds to the analytic function

£(z) = 2° (1)
[i.e., £(z) = (x + iy)2 = x2 N i2xy].
u v

From (1) it follows that
f'(z) = 2z

so that at (1,1) [= 1 + i]
£'(z) = 2(1 + i).

Hence,

|€9(1 + i) | = 2|1 + i| = 2/2
and

arg £(1 + i) = 45°.

Therefore, in a sufficiently small neighborhood of (1,1) the
e x2 _ Yz

mapping may be defined as multiplying the distance
v = 2Xy

of each point from (1,1) by 2/2 and rotating it by 45°.
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