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Pretest
33 4
18 -6-— + s xs
2. We must be inside the circle centered at (1,1) with radius 2, but

outside the circle centered at (0,2) with radius %.

(a) The upper half of the unit circle centered at the origin.

(b) The entire unit circle centered at the origin. [The point
(1,0) is mapped into (1,28).]
u = x3 - 3xy2, v = 3x2y - y3

=
u, 3x

vix,y) = 3y - 2x + C.
(a) |z| < 1.
(b) f(==) = 0.979 - 0.164i
12 > = 2
The path (in the z-plane) which joins z = -1 to z = 2 must not
pass through the origin (z = 0). As long as this condition is

obeyed, the value of the integral is —%.

27i.
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Solutions
Block 1: An Introduction to Functions of a Complex Variable

Unit 1: A Prelude to the Complex Number System

1.1.1(L)

Here we use the indirect proof. We assume that there are integers
whose quotient is V5. (This is the negation of what we would like
to prove.) We then show that this assumption yields a contradic-
tion, and this, in turn, means that our assumption is false. That
is, we prove that the negation of the desired result is false, and
this is logically equivalent to proving that the desired result is
true.

The details are:

Assuming /5 is the quotient of two integers, we have that there
are two integers m and n such that

o=

= /5 (1)

and since any fraction can be represented in lowest terms, we may,
without loss of generality, assume that m and n were chosen so
that %-was in lowest terms (which means that m and n share no non-
trivial factors in common [l and -1 are considered trivial factors
of any integer]).

To clear our eguation of radicals, we square both sides of (1) to
obtain

m°® = 5n°, (2)

There are now two standard ways of showing that (2) contains the

desired contradiction. The easier of the two utilizes the unique
factorization theorem which states that a number can be decomposed
uniquely (up to the order in which the factors are written) into a
product of powers of primes. Using this as our basic tool, we see
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1.1.1(L) continued

that the left side of (2) is a number which has an even number of
factors of 5 (and observe that 0 is even [since it leaves no re-
mainder when divided by 2] so that a number which is not divisible
by 5 still has an even number of factors of 5). That is, when we
square a number, we double the number of times that each factor
appears and the double of any number is an even number. On the
other hand, Sn2 must contain an odd number of factors of 5 since
n2 contains an even number and Sn2 has one more factor of 5 than
does n2. At any rate, since the two numbers m2 and Sn2 have a
different number of factors of the prime number 5, the unique fac-
torization theorem tells us that m2 cannot possibly equal 5n2 and

this is the contradiction of (2) that establishes the result.

The second method is the one used by the ancient Greeks and is
somewhat equivalent to the unique factorization theorem. It is
based on the fact that if the product of two intergers is divisi-
ble by a prime number then at least one of the two numbers must be
divisible by that prime number. The way we use this result is as
follows. We see that since 5n? is clearly divisible by 5 and
since, by equation (2), m2 = 5n2, it follows that m2 is divisible
by 5. Since 5 is a prime number and it divides the product of two
integers (after all, m2 is the product of m and n), it must divide
one of the numbers itself. Thus, it follows that m is also divi-

sible by 5. In other words, there exists a number kl such that

m = Sk1 (3)

and this in turn means that m2 = 25 klz. Putting this information

into equation (2) and simplifying the result, we see that

and using an argument similar to our previous one, it follows that
n is also divisible by 5. This yields the desired contradiction
since we chose m and n so that % was in lowest terms and this in
particular means that not both m and n can be divisible by 5.
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1.1.2(L)

Again, we could use the technique used in proving that /5 was
irrational, but there is an easier indirect proof in this case.
Namely, we now use the fact that the sum of two rational numbers
(or for that matter the difference, product, or gquotient [except
for dividing by 0] of two rational numbers) is a rational number.
We then argue that suppose 3 + /5 were rational. Let r denote
this (rational) sum.

We would then have that

r=3+,5
or
V6 = r - 3. (1)

Since r and 3* are rational numbers, r - 3 is the difference of
two rational numbers and hence is itself a rational number. Since
Y5 is equal to r - 3, it follows that /5 is rational and this is a
contradiction based on our result in the previous exercise. This
contradiction stemmed from the assumption that 3 + /5 was rational.
Hence, it must be that 3 + /5 is not rational, that is, irrational.

The problem here is that the irrational numbers do not behave as
nicely as the rational numbers. For example, 3 + V5 and /5 are
both irrational, but there difference is (3 + V5) - /§ = 3 which
is rational; or ¥5 is irrational but v/5 x /5 = 5 which is ration-
al. This "unfortunate" facts of life tell us that we can expect
to have trouble with the indirect proof here that worked so well
in part (a).

The technique we use instead is to find an integral polynomial*¥*
equation which has V5 + /2 as a root.

*All integers are themselves rational numbers since, 1in particu-
lar, every integer is the quotient of two Integers, namely itself
and 1. For example, 3 = 3 + 1.

**An integral polynomial is a polynomial whose coefficients are
integers.
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1.1.2(L) continued
To this end, we start with

x=V5 + /2 (1)

(which is a polynomial equation but not an integral polynomial
equation since v/5 + /2 is not an integer).

We rewrite (1) as

x - /5= /2

and square both sides to obtain

x2 - 2/8x + 5 = 2

or

x2 - 2/8x = -3. (2)

We now rewrite (2) so that the term containing the radical is by
itself. That is,

2

2/5x = x“ + 3

and we again square both sides to obtain

20x2 = x% + 6x%2 + 9

or
x4 - 14x% + 9 = 0. (3)
[As a check that V5 + V2 is a root of x4 - 14x% + 9 = 0, we have

by the guadratic formula that

2 _ 14 + /142 - 4(9)

% 2

7 + 2v/10. (4)
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1.1.2(L) continued
On the other hand,
(VB + /D)2 =5+ 2/I0 + 2 = 7 + 2/10,

which checks with (4). The other values of x which satisfy (4)
are -(v/5 + v2) and (/5 - /2).]

The key point is that since (3) is an integral polynomial eguation,
any rational root g must have the property that g is a divisor of

1 (the leading coefficient) and p is a divisor of 9 (the constant
term). Since p and g are integers, q must be 1 or -1 while p must
be either *+1, +3, or *9; so that the only possibilities for ra-

tional roots are
B =41, +3, #9,
q ’ r

A trivial check of equation (3) shows that none of these numbers
is a root.*

Hence, every root of (3) is irrational. In particular, ¥v5 + /2
is a root of (3).

Therefore, v5 + V2 is irrational.

1.3
If there exist integers m and n such that m + n = 7, it follows
that
m3 5 7n3. (1)
m> has either 0, 3, 6, 9,... etc. factors of 7 in it (i.e., cubing

a number triples the number of times each factor occurs) while 7n3,

since 7 is a factor of 7n3, has either 1, 4, 7, 10,... etc. factors
of 7 in it.

*Notice, of course, that this check is not necessary in order to
conclude that v5 + V2 is irrational. That is, whatever 5+ V2 is,
we know that it is not any of the numbers =1, *3, or *9. Hence,
since it is a root of (3) but not one of the possible rational
ones, it must be irrational.
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1.1.3 continued

Since 7 is a prime number, thec unique factorization theorem tells

us that m3 and 7n3 cannot be equal since they have a different

number 7's as factors.

b. Letting x = ¥7 + /5, we have that
x - /5= 77.
Therefore,
x - &3 = (7?3
or
x3 - 3x%/5 + (/B2 - (/B3 = 1.
Therefore,
x3 - 3/5%® ¥ 15% - 5/8 = 7
or
x3 - /5 3x% + 5) + 15x = 7.
Hence,
x> +15x - 7 = /5 (3x2 + 5),

and squaring both sides, we obtain

(x3 + 15x - 7)2 = 5(3x2 - 5)2

or

3 2

x5 + 225%2 + 49 + 30x? - 14x3 - 210x = 45x% + 1s0x? + 125,

or
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1.1.3 continued

% - 15x% - 14x3 + 75x2 - 210%x - 76 = 0. (1)

The only possible rational roots of (1) are integral divisors of
76 and clearly +7 + /5 is not an integral (i.e., a whole number)
let alone an integral divisor of 76, it follows therefore that
since 77 + /5 is a root of (1), it must be irrational.

(Technically speaking, one should check all integral divisors of
76 to see whether (1) can have any rational roots. The process is
tedious, but it turns out that (1) has no rational roots.)

1.4
a. Since
n = 0.324324324,...., | (1)
then
1000n = 324.324324..... . (2)

Subtracting (1) from (2) "cancels" the decimal portion and we
obtain

999n = 324 (i.e., 324.0000...).

Hence,
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1.1.4 continued
Check

0.324
37¥/12.0000
1
90
74
160
148
12 <« and this means that the cycle 324 will repeat since we
began by dividing 37 into 12,

Since each cycle contains one more 7 than the preceding cycle,
0.373773777... cannot denote a rational number (since each ration-
al number, in decimal form, must either eventually terminate or
else repeat the same cycle of digits endlessly.

Hence, if we wish* to have 0.373773777... be a number, we must
"invent" the irrational numbers.

Consider 0.51511511i. This, for the same reason as in (b), is an
irrational number. Yet

0.373773777...
+0.515115111. ..

0.888888888... = g.

Since 0.37377 and 0.51511 are irrational while g is rational, we
have another example of how the sum of two irrational numbers can
be rational.

1.1.5

With

n = 0.37377377737777

*¥As usual, the choice is ours to make. That is, we could have
elected to say that 0.373773777 is not a (rationmal) number, but
once we elect to make it a number, It means that we must augment
the number system.
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1.1.5 continued
we see that
U = 0.3737737774

exceeds n and is rational since it is a terminating decimal.

Similarly,
L = 0.3737737773

is a rational number which is less than n. Now,

U - L =0.0000000001 = 10 1°,

Hence, the irrational number n is "between" the two rational num-

bers L and U whose difference is 10710, That is,

U = 0.37377377740000... <—— These two
n = 0.37377377737777... numbers differ
L = 0.37377377730000... by 10719,
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Unit 2: Complex Numbers from an Algebraic Point of View

1.2.1(L)

Our main aim in this exercise is to emphasize the role of pre-
serving a given structure when we extend a number system.

We know that 12 = -1, and if we want the usual rules of arithmetic
(including the rules of exponents) to apply to the study of com-
plex numbers then we must have that

i" =1 =i"i". (1)

In short, equation (1) is based on the fact that we want to
preserve the structure that we multiply numbers with like bases
by adding the exponents, even in the event that the base is
complex.

1

If we now assume that x* = x even when x is non-real, we see

that (1) can be replaced by

19 = (=1yd (2)

and if we now assume that (=1)x = -x for all numbers x, real or

otherwise, then (2) becomes
4Vl o, (3)

It must be observed that there is nothing mystic about how the
result of (3) comes into being. In terms of the basic theme of
this entire course, we are free to insist upon any consistent set
of assumptions and then to see where these assumptions validly
lead us. In the present case, all we have done is shown that

(3) follows inescapably from the assumptions we have elected to
make,
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1.2.1(L) continued

Continuing, we next find that

4 i3+1

. TN ¢
ivi
3

i

"

= 171,

and since by (3), i3 = -i, it follows that

1Yo )i
e ({=2)2]%
= (-1)[(1) (1))
= (=1)g2
and since i2 = -1, it follows that
it = (-1)(-1)
= 1, (4)

While we do wish to keep belaboring the point, notice that in
going from, say, [(-1)ili to (-1)[(i)(i)], we are assuming that
the complex numbers are structured so that they obey the assoc-
iative rule for multiplication. We are not required to make
such an assumption (even though it is a very sensible one to
make), but without this assumption (or at least an equivalent

one), we cannot conclude that i4 I

Equation (4) now affords us a very quick way of computing i?
for any natural number n. Namely, since 14 =1and 1™=1
for all m, it follows that

14 Y™ ()™ = 1, (5)

We then utilize eguation (5) by observing that every integer

may be written uniquely in the form

4m + r where r = 0, 1, 2, or 3. (6)

* Notice again now we are assuming that the rule (a”)" = aPC€

which we accepted in our treatment of real numbers is also
being accepted in our treatment of the complex numbers.
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1.2.1(L) continued

[Notice that (6) is just a "fancy" way of saying that every
integer leaves a remainder of either 0,1,2, or 3 when divided by
4,1

In any even, given the integer n, we write it as n = 4m + r,
and we then use the rules of exponents to deduce that

it - i4m +r

.4m.r
> LIS ¥

(14)mir
yNr
= (1)1,

and assuming that the axion 1x = x is accepted even when x is
non-real, we obtain

S 2 (N
where r is the remainder obtained when n is divided by 4.

In particular, in this exercise, we have

235 = 4(58) + 3.

Hence,

235 _ i4(58) + 3_ i4(58)i3 _ (i4)5813 _ (1)58i3 _ 1(i3)

i
so that by (3),

=i~ = -i, (8)
The significant part of equation (8) is that it begins to appear
that we never have to worry about powers of i other than 10 and i1
since all other powers of i are equivalent, within sign, to one

of these two.

In summary
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1.2.1(L) continued

- 0
o
e

= -1
= -i
1
i,

T i i
LS S P N

and the cycle continues in this way (sort of like what happens
when we take derivatives of sin x or cos x; the derivatives

repeat in cycles of four).

b. The first thing we observe here is that 3 + 5i and 7 + 9i are
each complex numbers. Why? Well because the complex numbers
were invented so that we could find roots of xz + 1 =0 and i

is one such root, clearly i must be a complex number. Secondly,

since every extended number system includes the previous number
system, it follows that 3,5,7, and 9 are complex numbers simply

by virtue of their being real numbers. Thirdly we would like
the complex numbers to be closed with respect to addition and

multiplication (that is, we want the sum as well as the product

of two complex numbers to be a complex number). Therefore,
for example, since 5 and i are complex numbers so also is 51
and since 3 is also a complex number so also is 3 + 5i.

Now since we want the rules of real number arithmetic to

remain valid in the complex number system, we no longer have
any choice as to how (3 + 5i) + (7 + 9i) must be defined.

Namely,

(3 4 5i) + (7 +9i) =3+ 7+ 5i + 9i =10 + 14i.
Clearly we may generalize this result to cover the case
(a + bi) + (c + di)

where a, b, ¢, and d are real numbers, to conclude that

(a, + bi) + (c + di) = (a +c) + (b + d) i.

(1)
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1.2.1(L) continued

Since a + ¢ and b + d are also real numbers (a, b, ¢, and d
are real),we see that sum of numbers of the form a + bi (where a
and b are real numbers), is again a number of the same form.

Notice of course that our conclusions are strongly dependent on
our choice that the arithmetic of the complex numbers obey the
same structural rules as those obeyed by the arithmetic of the
real numbers.

We shall pursue this idea further in part (c).
c, The fact that we want the product of two complex numbers to be
a complex number does not tell us the recipe for multiplying
complex numbers. Thus we must still make a decision as to how
(3 + 51)(7 + 9i) (1)

should be defined.

Again we invoke the structure of real numbers and we agree
that since the rule

(a + b)(c + d) = ac + bd + bc + ad

is valid for real numbers, it will also be valid for the
complex numbers. Once we make this agreement the procedure
for forming the product in (1) becomes clear. Namely,

(3 + 5i)(7 + 9i) = (3)(7) + (5i)(9i) + (5i)7 + 3(9i),

and since we assume that the "usual" rules of arithmetic are
still to be obeyed, it follows that

2

(3:+ 51)(T + 91) 21 + 45i° + 35i + 27i

21 - 45 + i(35 + 27)

-24 + 62i. (2)
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1.2.1(L) continued

The impact of (2) should now be fairly obvious. Notice, first
of all, that there was nothing at all special about our choice
of the numbers 3,5,7 and 9 in this exercise.

More generally, it is easy to show that for any real numbers a,
b,c, and 4,

ac + bdi2 + bci + adi
ac - bd + (bc + ad)i. (3)

(a + bi) (c+di)

Since the real numbers are closed with respect to addition,
subtraction, and multiplication, equation (3) tells us that
since a,b,c, and d are real numbers, so also are ac - bd and
bc + ad, so that eqguation (3) has the form

(real + [realli) (real + [realli) = real + [realli

we see that numbers of the form a + bi where a and b are real

are closed with respect to multiplication.

This result, coupled with the result of part (b) start to give

us hope that the special numbers of the form a + bi with a and

b real are at least an attractive substructure of the complex
numbers since they are closed with respect to addition, sub-
traction, and multiplication. In fact, if we can now show that
this class of numbers is an extension of the real numbers which
contains i, and is closed with respect to division, it might

be a shrewd move to define the complex numbers to be all those
numbers of the form a + bi with a and b real real numbers, and the
usual rules that also govern the arithmetic structure of the

complex numbers.

Since 0i = 0 (if you don't mind too much, take these arithmetical
results for granted, but for the interested student who wants

to see a more rigorous demonstration in terms of structure and
validity, we have supplied more details in the optional exercises),
it follows that for every real number &, we may write it in the

form a + 0i.
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1,2,.1(L) continued

In other words, if we define the complex numbers to be those
numbers of the form a + bi where a and b are real, then the
real numbers are those for which b = 0.

In a similar way, notice that we can write i in the form
i=0+1i =0+ i,

For this reason we define a + bi to be a "purely" imaginary
number if a = 0. 1In this way every complex number (where we
are now defining the complex numbers to be those of the form

a + bi with a and b real) is the sum of a real number and a
purely imaginary number. Both the real numbers and the purely
imaginary numbers are substructures of the complex numbers (and
from a geometric point of view, which we shall discuss in more
detail later in this unit, it turns out that the real numbers
correspond to the arithmetic of the x-axis and the purely ima-
ginary numbers to the arithmetic of the y-axis.

From the point of view of terminology, given the complex number
a + bi, a is called the real part of the number and b is called
the "purely" imaginary part. (It is worth noting that by
definition both the real and imaginary parts of a complex number
are real numbers. In particular it is b and not bi which is
defined to be the imaginary part of the number.) Then a
complex number is said to be real if its imaginary part is 0;
and it is said to be purely imaginary if its real part is 0.
Notice that the only way a complex number can be both real and
purely imaginary is if both its real and imaginary parts are 0.
This means that the number must be 0 + 0i, and this is clearly
0.

e, Given the complex number a + bi, a - bi is defined to be the
complex conjugate of a + bi. In other words, when we change

the sign of the imaginary part of a complex number we convert
the complex number into its complex conjugate. Arithmetically,
the complex conjugate has the following very helpful property.
Namely,



Solutions
Block 1: An Introduction to Functions of a Complex Variable
Unit 2: Complex Numbers from an Algebraic Point of View

1.2,.1(L) continued

(a + bi) (a - bi)

I
oo oo

N N NN
|
o

Hence, if a and b are real numbers the product of a + bi and its

complex conjugate a - bi is the non-negative real number, az + bz.

This result is very useful in forming the quotient of two numbers
of the form a + bi where a and b are real. This brings us to
part (f); namely:

3.+ 5i (3 + 5i) (7 - 9i)
7+ 91 (7 + 91)(7 - 91)

21 - 45i% 4 i(35 - 27)
7* =i9gy*

21 + 45 + Bi

49 + 81
_ 66 + 8i
130
66 8
"= o0t myt
or,
3+ 5i _ 33, 4 (1
7+91 6 T85!
and the right side of (1) has the form a + bi where a and b
are real.
More generally
a+ bi _ (a+ bi)(c - di)
c + di T(c + diYlc - di)
(ac + bd) + (bc - ad)i
c2 3 d2
_ ac + bd (bc - ad)i (2)
- f 2
c“ +d c” + d
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1,2.1(L) continued

and (2) has the form: real + (real)i unless ¢ = d 0 (in which
case cz + d2 = 0). Since ¢ = d = 0 implies c + di = 0, equation

(2) tells us that the quotient of a + bi and ¢ + di is a complex

number except if c + di is 0.

The main purpose of this exercise was to give you a better
feeling for how the complex numbers were developed in terms of
our theme, "The Game of Mathematics".

What we have shown in the various parts of this exercise is:

1. If we wish to impose the arithmetical structure that
governed the real numbers, then all numbers of the form a + bi
where a and b are real are closed with respect to additioen,
subtraction, multiplication, (raising to integral powers),

and division (except as before, division by 0 is excluded).

2. These numbers include the roots of x2 + 1 = 0 since these
roots have been denoted by i and -i; and we have that i=0+
1li, while =i = 0 (-1)i. They also include the real numbers
since any real number, x, may be written as x + 0i and both

x and 0 are real.

3. Since the set of numbers of the form a + bi include the
real numbers and extend the operations of arithmetic for the
real numbers, they may be structurally called an extension of
the real numbers.

4. The name given to this extension is The Complex Number

System.

Notice that we are not saying that our definition of the
complex number system is unique. One could have invented other
extensions. What we are saying, however, is that our
definition certainly "fills the bill" and other extension of
the real number system which obeys the rules of ordinary
arithmetic must contain what we have called the complex
numbers. That is every number of the form a + bi with a and

b real, must be part of any extension of the number system
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1.2.1(L) continued

if it is to contain the solutions of x2 +1=0 (i.e., if
the system is to obey the usual roles of arithmetic, then as
soon as it contains a, b, and i it must, by closure, contain
a + bi).

1.2.2

Since (2 - 7i)(2 + 7i) = 4 + 49 = 53, we have
35 =3i _ (5 -31)(2 + 71)
2 = 71 - +

(10 = 21i%) + i(-6 + 35)
- 53

31 + 29i
53

31 29 .
ﬁ+§§l' (1)

Il

If equation (1) holds then if division is the inverse of
multiplication it means that

31 -
(2 - 71)(§§ + zx 1) 5 - 3i. (2)

[i.e., if g = ¢, then bc = a]

As a check, then

-G+ 1) =23 - 73hi® - b + 28 0
_ 62,203, 217 _ 58,
53 Y 53 - 1553 - 53
so that,
(2 - ) @3+ F o= 28 - 13D
=5 - 3i

which checks with equation (2).
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1.2.3(L)

Since the structure of the complex number system obeys the same
rules as the structure for the real number system, the formula

3

(a + b)3 ='a~ + 3a2b + 3ab2

+ b3 (1)

must remain valid even when a and b are any complex numbers.

Applying eguation (1) to the present exercise we obtain

(+ 3 03=134+3m%an+30( a2+ (303
=1+ 3/31+3038 + (/D33 (2)

and since 12 = =1, 13 = -i, and ( /3)3 =3 /3

it follows from equation (2) that

L+ B3 als3@i-9=3d%

= -8. (3)

Thus far we cannot honestly say that this has been worthy of being
called a "learning exercise" since the computations used in
arriving at Equation (3) were very simple (at least in light of
some of our other computations).

What is significant about eguation (3) is the result it presents.
Namely, equation (3) shows us that 1 + /3 i is a cube root of

-8. Now, in terms of real numbers the only cube root of -8 is
-2. On the other hand -2 is a root of the integral polynomial

equation
x> + 8= 0. (4)

The point is that from "elementary"” algebra we know that

(3 + i8) = (x4 2)(x% - 2% + 4) (5)
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1.2.3(L) continued

Putting the result of (5) into (4), we see that

implies

(x + 2) (x2 - 2x + 4) = 0.

Therefore

(x+2)=0 (6)
or

x2 - 2x + 4 =0, (7

If (6) holds then x = -2, while if (7) holds the quadratic
formula implies that

_ 2+ /4 -16

1 +7/3 1. (8)

[In fact we made up this exercise by deriving equation (8) from

equation (4).]
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1.2.3(L) continued

What equation (8) shows us is that the integral cubic equation
x3 + 8 = 0, which has only one real root, has three complex
roots; namely 2, 1 + v3i, and 1 - V3 i (note that while V3 is
irrational it is real since (v}% = 35>0).

This result will be generalized in the next unit, but for now

it is hoped that you begin to appreciate how the complex numbers
allow us to completely factor polynomials which are only parti-
ally reducible when we are restricted to the use of real numbers

as coefficients.

1.2.4

x5 - ox3 + 8= (x> -1)(x> - 8 (1)
and

%2 = 1w (e L) (xt 1) (2)
while

x3 - B = (x - 2)(x% + 2x + 4). (3)

Applying the results of (1), (2) and (3) to the equation
x6 - 9x3 + 8=0 (4)

we obtain

(x - ) (% + x+ 1) (x=-2) (x> +2x+4) =0

whereupon, either

x=-1=0 (5)
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1.2.4 continued

or
2
X" +x+1=0 (6)
or
x=-2=0 (7)
or
2
X+ 2x + 4 = 0. (8)

From (5) and (7) we conclude that x = 1 and x = 2 are roots of
equation (4), while from eqguations (6) and (B) we conclude that

=1+ /T =14 -1+ /3 i
- 7 - y)

-2 + /4 =16 _
~ -1+ /31

are also roots of eguation (4).
Hence, the six complex roots of equation (4) are

1, 2, - % + fg i, - % - f; i, =1+ Fi,and-1-+¥31,

1.2.5(L)

In the early study of the quadratic eguation, an interesting
result is stated but it is not pursued in great depth. Namely
if we look at

(x - rl)(x - r2) = 0 (1)
it is trivial to see that the roots are Ty and Ty

On the other hand,
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1.2.5(L) continued

(x - rl)(x - rz) = x2 - (r1 + rz)x +rr, (2)

Combining (1) and (2) we see that the equation

2 o
X" - (rl + rz)x - rlr2 =0

has rl and T, as its roots.

Thus, we may conclude that in a guadratic egiation the
coefficient of the linear term (i.e., the coefficient of x)

is the negative of the sum of the two roots while the constant
term is the product of the two roots.

This result generalizes to all (monic)polynomial equations.
For example, suppose we start with the equation

(x - rl)(x - rz)(x - r3) =0, (3)

Then, since (x - rl)(x - rz) = x2

follows that

- (r1 + r2) X + r,r, 5

2

(x - rl)(x - rz)(x - r3) = [x" - (rl “ r2) X + rlrzl(x - r3)

o 2
= X" - (rl + r, + r3)x

+ (r1r2 + riry + r2r3)x
- X r,ra. (4)

Equations (4) shows us that in a monic cubic polyncmial the
coefficients of xz, x and the constant term are determined by
some rather interesting combinations of the roots. Namely,

the coefficient of x2 is the negative of the sume of the roots
(a rather neat extension of what happened in the gquadratic
case), the coefficient of x is the sum of products of the roots
taken two at a time and the constant term is the negative
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1.2.5(L) continued
of the sum of the product of the roots taken three at a time.

Quite in general if Tyreens and r, are the roots of the nth

degree monic polynomial equation

n n-1 n-2 =
x' 4+ a X +oa, ox + ... tax+a =0
then
a1 == + ... +1)
a2 (rlr2 +iiewe )

where the sum is taken over all possible combinations of the

roots taken two at a time and this equals

n

j=1 i=1
n n

n
r.rj where i and j vary from 1 to n but i # j
=

Lol = Z

- B .
= 4=1 i=1 FiT%j j— Ty} < These are the terms for which i = j

so these are subtracted from our
first sum which includes the terms for
which i = j.

(where thesa last equalities are just to get used to various

notations) A

a

n n
2.2
e -(rlr2r3 £} = k=1 =1 i=1 Fi%4%xk’ 1-#A: AR, § FK

where the sum is taken over all possible combinations of the
roots taken three at a time, and finally

the sign depending upon whether n is even or odd. (The sign
is positive when n is even and negative when n is odd, as
can be checked from our study of the quadratic and the cubic

cases.)
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1.2.5(L) continued

In the theory of polynomial equations the two coefficients

a4 and ag of a monic polynomial of degree n are given special
names. a__, is called the trace of the polynomial and a is
called the norm of the polynomial. From what we have just seen,
the trace of a monic polynomial is the negative of the sum of
roots of the equation when the polynomial is equated to 0 and
the trace is the product of the roots if the polynomial has even
degree and negative the product of the roots if the polynomial
has odd degree.

The study of the norm and the trace of a polynomial plays an
important role in many applied (as well as theoretical) branches
of mathematics. Thus it is worth devoting an exercise just to
introduce these terms. At the same time, however, to relate
this result to our study of complex numbers, let us observe

that the trace of a monic* polynomial of degree n is zero if and
only if L 0. 1In particular as soon as n> 1 the trace of
x" - a is zero since in this case all coefficients except the

leading coefficient and the constant term are zero.

Therefore, by our previous remarks if we solve the polynomial
equation, ' - a= 0, where n is a natural number greater than
1, the sum of the roots of the equation must be zero since the
sum of the roots is the negative of the coefficient of xn_l
(the trace of the polynomial) which is zero.

In particular, this accounts for why the sum of the four
(complex) roots of 1 equals 0 as is the sum of the three (complex)
cube roots of =-8.

* We stress "monic" since the polynomials

a
ax" + a iy e FRRF R, and ¥ § 2L gl e +
n n-1 1 0 a,
a1 ao
= X + — (an # 0)
n n

are different when a_ # 1 even though they both have the same,
roots when equated td 0. The trace is the coefficient of x"
only when a_ = 1. However, as long as a, ¢# 0 notice that a

= 0 if and Only if a l/a = 0. Hence, when we want to see
whether the trace of a po?ynomial is 0 it is unnecessary to
insist that the polynomial be monic.
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1.2.6(L)

Suppose Z = a + bi. Then Z = a - bi.
Hence,
2+ 2 = 2a

2[r=al part of Z*]

2 Rel(2).

Z=a+ bi where a= 3 + 2i, b= 4 + 5i.
Hence,

Z= (3 + 2i) + (4 + 51)i
=3+ 2i + 41 - 5
= =2 + 6i.

Therefore,
Z = -2 - 6i

The key point here is that if Z = a + bi,Z is not a - bi
unless a and b are real. In the present example

a-bi=(3+2i) - (4 + 51)i
=3 +2i-41+ 5
=8 - 2i

# Z.

If 2 = a + bi where a and b are real then Z = a - bi. Hence,

Z =9 «»a+ bi = a - bi
«s 2bi = 0
«+ b =0 <++ Im(Z) = 0.

*We abbreviate the real part of Z by Re(Z) and the imaginary
part of Zby Im(Z). In particular if 2 = A + bi where a and
b are real then Re(Z) = a and Im(Z) = b.
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1.2.6(L) continued

Hence,

Z = Z ++2 is a real number.

z1 = a, + bli - z1 =ay - bli

z2 = az + bzi b d ZZ = a2 - bzi.
Hence,

z1 + z2 = (al - az) . (bl K bz)i
while

Z1 + 2z, = (al + az) - (bl + byli.

and comparing (2) and (3) we conclude that

+ Z

2, + 2, = z1 2

1 2
(i.e., the conjugate of a sum is the sum of the conjugates).
Hence,

2122 - (alaz - blbz) - i(albz + azbl)o

on the other hand,

Z, = a - bli and 22 = Ay bzi.

(1)

(2)

(3)

(1)
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1.2.6(L) continued

212

AT (al - bli)(a2 - bzi)

(ala2 B blbz) - i(alb2 0 azbl). (2)

Comparing (1) and (2) we see that the conjugate of a product
is the product of the conjugates.

1.2.7

Since Z =a + bi, Z = a - bi. Hence (Z) = a + bi. Therefore
(Z) = 2. (i.e., the conjugate of a complex number is the complex
number.)

If ii = 22 then the conjugates of Ei and ié must also be equal.
That is v

Z, =1,

But by part (a) this means 2, = Z,.

(This is the converse of saying that egual numbers have equal
conjugates. Namely it says if the conjugates are equal then
the numbers are equal.)

1.2.8

Given that Z satisfies

n n-1
- i
anz + an-lz + eee + alz + ag 0 (1)

it follows that

* st agZ ra,™ 0. (2)

n n-1
anz + an-lz
Now, from the two previous exercises we know that

1. 0 = 0 (cince 0 is a real number).

5 (K =T TS X v = B
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(since the conjugate of a product is the product of the conjugates)

K _ T .k _ T 3k
akz = a 2" = ak(zl

n . n -
anz 4+ cas ¥ alz + a° = anz S SUPSEE alz + ao

(since the conjugate of a sum is the sum of the conjugates).

Putting these results into (2) we see that

n

anz + an_lz * e * alZ + a. .- 0

implies that

a (@ +3a,_, +...+a2+a =0. (3)

Notice that equation (3) follows inescapably from equation (1)
even if the coefficients agr @y¢ wees Ap 90 and a  are not real.

If, however, ag. Ayrenns and a are each real it follows that

a, = 56, a; = ay,..., and a, = 35; so that equation (3) becomes

e~ 74 N-1
a ()" +a @, aZ + a, = 0. (4)

Equation (4) says that Z is a root of

n n-1
ax +a X + ... tajx +a = 0. (5)

In other words, if Z is a root of (5), so also is Z.

Notice that this result reguires that the coefficients be real.

For example,

%2 - 3ix -2=0 (6)

has i and 2i as roots since x2 - 3ix -2 = (x - 1i)(x - 2i).

But -i, which is the complex conjugate of i, is not a root of
(6).
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This is not a contradiction of the result proved in this exercise
since our result was valid only for polynomial equations with
real coefficient of x while here the coefficient of x is -3i which

is not real.

1.2.9 (optional)

Letting z1 =a; + bli, Z2 = a, + bzi, and Z3 = aj + b3i, we have
21(22 + Z3) = (al + bli)[(a2 + byi) + (a3 + b3i)]

= (a1 + bli)[(az i a3) B (b2 4+ b3)il

al(a2 + a3) - bl(b2 4+ b3) + i[bl(a2 B a3)

+ al(b2 + b3)]

(ala2 - a,ay - blb2 - b1b3) + (bla2 - b1a3
+ ajb, + a1b3)i. (1)
On the other hand,
2,2, = (al + bli)(a2 + bzi) = (ala2 - blbz) + i(alb2 - a2b1)
Hence,
+ (a3b1  n d1b3)
= (ala2 + ajay - blb2 - b1b3) - {a1b2 + a2b1

and since the a's and b's are real numbers we see that the
right sides of (1) and (2) are equal, from which it follows
that
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1.2.9 continued

Zy(Zy + Z3) = 212, + 2yZ5. (3)
Equation (3) establishes that the distributive rule applies to
complex numbers. In a similar way we can prove that the rules
of closure, associativity, and commutativity, etc. for the real
numbers apply also to the complex numbers.

If 2 =a + bi # 0 then

(NP |
Z a + bi

a - bi
(a + bi) (a - bi)

- A = bi
a2 + b2
Hence,

2

’ 2
a-bi; _a *+b _ 1 (gince a’+ b’ #0).

2(3) = (a+bi)l
a“+ b a +b

We need only mimic the proof in the real case since the rules
used there are valid here. In particular, if 21 # 0 then

[by part (b)] there exists a number % , such that 2, = L
Hence,

| =
=

172

1

1

12%2,=0 =
Z, = 0.

Again, mimicking the real case since the structure is the same,

we have
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0z = 20
= Z(0 + 0)
= Z0 + Z0.

Hence, 20 = Z0 + 20, Therefore, by "cancellation" 20 = 0.

wWhile this exercise may not seem too significant it has some

far reaching effects in certain types of applications. Namely
as we shall see in the next unit it is not always convenient to
express complex numbers in the form a + bi where a and b are
real (by the way, this form is called the Cartesian form and
will be explained more fully in the next unit). There are times
when one might want to use other symbolism (numerals) to denote
complex numbers (in the next unit, we discuss the polar form

of complex numbers).

The idea is that we often want our results to depend only on

the fact that we are dealing with complex numbers, not on the
particular system of numerals we are using to denote the complex
numbers. What we have done in this exercise is to show that the
complex numbers obey certain rules (or equivalently, have
certain properties) that predict certain results, without

reference to any system of numerals.

A more sophisticated question (and one that is a bit too
abstract for us to solve here) is that if there isn't at least
one rule that the complex numbers obey that isn't obeyed by

the real numbers (i.e., unless the two structures have at

least one different rule) how can we tell the two structures
apart algebraically? Obviously, we couldn't. Yet we kncw that
the complex numbers are a different system than are the reals.
Hence, there must be at least one rule for the complex numbers
which isn't obeyed by the real numbers. We shall try to answer
this more satisfactorily in the next unit, but for now what

we are trying to say is that when we extend a number system
we extend all of the rules of the old system. Since our only
theorems are those results that follow inescapably from the
rules, it means that if the two sets of rules are the same

so also will be the set of valid theorems in each structure.
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1.2.9 continued

Thus, for an extension to be algebraically meaningful, the
extended system must have at least one new rule which is not
obeyed by the original system.
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1.3.1(L)

Our aim in this exercise is to show how we may give the complex
numbers a real interpretation simply by viewing the xy-plane as
the Argand Diagram. In essence this technique simply allows us to
view planar vectors as complex numbers.

Given the point P(a,b) in the xy-plane, we may view OP as a + bi.
Multiplying by i yields ai - b = -b + ai. Our claim is that the
vector 6b, where Q is the point (-b,a), is the 90° rotation of oP.

That is,
Yy
A
pla,b) = a + bi
Q(-b'a) =
-b + ai |
90° :b
! = X
(=b,0) 0 a =
Figure 1

While the result indicated in Figure 1 is not hard to come by, the
fact is that it is even easier to understand when we introduce
polar coordinates. Namely, as a vector in the xy-plane, i has
magnitude 1 and argument 90°. When we multiply complex numbers,
we obtain the product by multiplying the magnitudes and adding the

arguments.

Thus, multiplying (a + bi) by i preserves the magnitude of (a + bi)
[since the magnitude of i is 1] and adds 90° to the argument of
a + bi. That is, ifa + bi) is a 90° rotation of a + bi.

But, as shown in Figure 1, a + bi may be identified with the point
(a,b) in the xy-plane. Since (a,b) could denote any point in the
plane, we see that multiplication by i is equivalent to a 90°
rotation of the plane.
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1.3.1(L) continued

More specifically, given the point (a,b), we may find its image
under this rotation by writing (a,b) = a + bi, and then computing

ifa + bi) = ia - b = =-b + ai = (=b,a).

Hence, we have shown (even though other methods were available)
that under the transformation of rotating the xy-plane by +90°,
the point (a,b) is mapped into the point (-b,a); and that this
transformation may be viewed as being obtained from the Argand
Diagram by multiplying each complex number by i.

1:3.2

In the Argand Diagram, 1 + i is the point (1,1).

Iy

> X

Hence, its magnitude is v2Z and its argument is 45°.

Therefore, multiplying the vector a + bi by 1 + i multiplies the
magnitude of a + bi by Y2 and increases the argument of a + bi by
4500

Thus, multiplication by 1 + i may be viewed as a +45° rotation of
the xy-plane in which the distance of each point from the origin
is multiplied by V2.

To find the image of (a,b) under this mapping, we look at
(a + bi)(1 + i) = a -Db + (a + b)i

and since (a - b) + (a + b)i denotes the point (a - b, a + b), we
see that this mapping sends (a,b) into the point (a - b, a + b).
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Cc.

1.3.2 continued

(1,1) should be mapped into (0,2) under this mapping since its
magnitude is v2 and its argument is 45°. [Hence, multiplying its
magnitude by /2 yields 2 and adding 45° to its argument yields
90°, and this corresponds, in Cartesian coordinates, to (0,2)].

Algebraically, we see that (1,1) corresponds to 1 + i and
(L + 4)(1 + i) = (1 - 1) +2i =0 + 2i = (0,2); which checks with
the geometric result.

1:3:3

Since multiplication of complex numbers is rather easy to des-
cribe in polar coordinates, let us write each of these numbers in

polar form.

zg =1+1i therefore, |zll = /2, arg z, = 45°
zy = 1+ i therefore, |22| = /2, arg z, = 45°

2, =5+ 2'/31 therefore, |z,| = 1, arg z, = 60°
3 2 2 r 3 ' g 3

Therefore,

|zlzzz3| = (V2) (V2) (1) = 2
arg(212223) = 45° + 45° + 60° = 150°.
Therefore, in polar form,

2124929 = (2,150°)

2 cos 150° + i 2 sin 150°%*

-/3 + 1.

*Pictorially,

2(x,0) Hence, in polar coor-
2 dinates, (r,0) corre-
L (e $in 0 sponds to r cos 8§ +
2] | i ¥ sin 0.
| r cos 9
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1.3.4

We look at DeMoivre's Theorem with n = 5. Namely,
(cos & + i sin 6)5 = cos 56 + i sin 50. (1)
But, by the binomial theorem,

cosse + 5 cos46 (i sin B8) + 10 cos3e

(cos 8 + i sin 9)5
(i sin 8)2 + 10 cos26 (i sin 8)°

+ 5 cos 8 (i sin e)4 + (i sin 6)5

= cosse + 5 c0548 sin 6 1 - 10 cosae sinze

-10 c0929 sin38 i+ 5 cos 8§ sin‘ﬁ

+ i sin58

5 =

g6 - 10 c0338 sinze + 5 cos 9 sin @)

+ (5 cos46 sin 0 - 10 cosze sin39

(cos

+ 8in’e)i. (2)

Replacing (cos A + i sin 8)S in (1) by its value in (2) and re-
calling that two complex numbers are equal if and only if their
real parts are equal and their imaginary parts are equal, we
deduce from (1) that

5 3

cos 568 = cos™ 8 - 10 cos™ B sin2

0 + 5 cos 8 sinte

5

(3)
sin 58 = 5§ cos4e sin 8 - 10 cosze sin3e + sin”@
Hopefully, the relative ease with which (3) was derived shows you
the power of the complex number system to the real problem of de-

riving certain trigonometric identities.

1.3.5(L)

Algebraically, if z = x + iy, then |z| = k2 + y2. Geometrically,
|z| is the distance from z to the origin. Our aim in this exer-
cise is to show, once again, the power of the geometric

interpretation.
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1.3.5(L) continued

Let

z = X + 1iy.

Then

z - (1+1i) = (x+diy) - (1 + i)
= (x=-1) + (y - 1)i.

Hence,

|z = (1 + i) v/(x-1)2+ (y-l)z.

so that

|z = (L +4i)| =2
implies that
(X-1)2+(y-1)2=4

which is the circle of radius 2 centered at (1,1).

|z - a] denotes the distance between z and a. Hence,
|z = (L +1)| =2

represents those points which are 2 units from 1+ i.

Since 1 + i denotes the point (1,1), we see that our set consists
of the circle centered at (1,1) with radius 2.

Since |z - a| denotes the distance between z and a, we have that
{z: |z - (L + i)| < 2]

is the interior of the circle c centered at the point (1,1) in
the Argand Diagram with radius 2.

On the other hand,
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1.3.5(L) continued
(z: |z - 2i| > 3}

is the exterior of the circle <, centered at (0,2) [i.e., at 2i]

with radius %.

Thus,

{z: |z - (1 +i)| < 2 and |z - 2i| > %}

is the set of points inside ¢; but outside c,-

Pictorially,

~NIs

Notice that in theory, we have the same situation here as we had
when we studied the absolute value function of a real variable.
Our diagrams involve circles instead of line segments and our
algebraic equations involve two unknowns (a real and imaginary
part) instead of one unknown; but the general idea is the same.

Note

In the exercises of the previous unit, we mentioned that if a

number system were extended then unless the extended system had
certain properties that were different from the original system,
we could not, algebraically, distinguish the extension from the

original.




Solutions
Block 1: An Introduction to Functions of a Complex Variable
Unit 3: Complex Numbers From a Geometric Point of View

1.3.5(L) continued

The purpose of this note is to indicate one basic difference be-
tween the arithmetic of the complex numbers and the arithmetic of
the real numbers. In the real number system, we saw that a given
number was either positive, negative, or zero; and that this was
equivalent to saying that given two real numbers X and y either
X >y, X<y, 0r Xx =Y.

In the complex number system, given the two complex numbers z, and
Zy4 it is certainly true that either z) = 2, or zq # z,. However,
if zy £ Zys WE cannot order z; and z, by size other than by
magnitude.

Pictorially, what happens is that in the real case, the negative

of a number is a point on the real axis located symmetrically with
respect to the origin to the original number. Since our diagram

is l-dimensional it is very easy to keep track of all possibilities.
On the other hand, in dealing with complex numbers, we use the 2-
dimensional Argand Diagram. In this case it is still true that

the point -2y is located symmetrically opposite the point 2y with
respect to the origin. Now, however, there are infinitely many
points which are the same distance from the origin as a given

point zy and this complicates things considerably.

We do not wish to pursue this idea further here but we do wish to
point out that since the absolute value of a complex number is a
(non-negative) real number, we may use results from the theory of
real functions of a real variable whenever we are interested in
results which involve the magnitude of a complex number. A11 that
must be kept in mind is that there are infinitely many different
complex numbers which have a given magnitude.

In summary, if r is any positive real number, then
{z: |z| =} = {r,-r}

if our universe of discourse is the real numbers; but
{z: |z| = r}

has infinitely many members if our universe of discourse is the

complex numbers.
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1.3.5(L) continued

In essence, then, the "labels," positive and negative, are applica-
ble to complex numbers in the sense that we can talk about -z; but
not applicable as an aid in ordering the complex numbers (other
than by magnitude).

1.3.6

Letting z = x + iy, we have

z - (1 + i) X + iy - (1 + 1)

(x - 1) + i(y - 1)

while

]

z - (3 + 2i) (x + iy) - (3 + 2i)

(x = 3) + 1ly ~2),

Hence,

|z = (1 + i)] = |z = (3 + 2i)]

implies that

[(x = 1) +ily - D] =](x=-3) +ily -2)],

or

x-D2+ly-12=@x-32+ (y-2°%
Therefore,

x2 - 2% 4+ 1 + y2 -2y +1= x2 - 6x + 9 + y2 - 4y + 4
or

4x + 2y = 11.
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1.3.6 continued

Thus,

§=1{z: |z=- (1 +1i)] =]z - (3 + 2i)]}
is the line

4x + 2y = 11.

Since |z - (1 + i)| is the distance between z and 1 + i while

[z = (3 + 2i)| is the distance between z and 3 + 2i, we see that S
is the set of points equidistant from (1,1) [i.e., 1 + i] and (3,2)
[i.e., 3 + 2i].

Thus, S is the perpendicular bisector of the line which joins (1,1)
and (3,2); and it is easy to verify that the equation of this line
is 4x + 2y = 11.

1.3.7(L)

Note

This exercise is perhaps one of the most significant points in the
invention of the complex numbers. It is the exercise that lies at
the foundation of why the complex number system is algebraically
closed. The fact that the nth root of a complex number is always

a complex number (or numbers) is the last loophole that had to be
closed when we tried to solve polynomial eguations.

For example, when our universe of discourse was the natural num-
bers, we could not solve the equation x + 4 = 3 because the solu-
tion required that we compute 3 - 4 which is not a natural number.
In other words, since the natural numbers were not closed with
respect to subtraction and since we solve addition-type egquations
by subtraction, it was possible that polynomial equations with
natural numbers as coefficients would not have natural numbers as
roots.

By the same token, when we had the integers we could not solve the
equation 2x - 3 = 0 because the integers were not closed with res-
pect to division. For example, in the present instance, a root
involved determining the number 3 * 2 which is not an integer.
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1.3.7(L) continued

Finally, even when the ultimate real number system was developed,
we could not be guaranteed that the nth root of a real number was
real. In particular, any even root (in particular, the square
root) of a negative could not be a real number.

wWhat we are showing in this exercise, however, is that any nth
root of any complex number is a complex number and this means that
(except for division by 0) the complex numbers are closed with
respect to addition, subtraction, multiplication, division, and

extracting roots.

Why is this so significant? The point is that in solving an equa-
tion, we must perform the indicated arithmetic operations and
their inverses (which was called transposing in the "old" déys).
Now in a polynomial equation we use the four basic operations of
arithmetic as well as raising to integral powers. The inverse of
the four operations of arithmetic are these operations themselves
(i.e., subtraction is the inverse of addition and addition is the
inverse of subtraction, etc.), but the inverse of raising to powers
is extracting roots AND THIS IS THE OPERATION THAT WE COULD NOT
GUARANTEE TO BE CLOSED WITH RESPECT TO THE REAL NUMBERS. With
respect to the complex numbers, however, this operation is closed;
and accordingly, it should not be too surprising that we can con-
clude that a polynomial equation of degree n with complex coeffi-

cients has n complex roots (counting repetitive roots). For this
reason, if our purpose in extending the number was to ensure that
polynomial equations had roots, we no longer need to extend the

number system.

Returning to the specifics of this exercise, assume z = 1.

Therefore,
27 = &, (1)

If we introduce polar coordinates and let z = (r,d), equation (1)

becomes
x o
(r,0)” = (1,90°) (2)

and since (r,e)n = (rn,nﬁ), equation (2) implies
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1.3.7(L) continued

(r3,38) = (1,90°). (3)

Since r is a non-negative real number, r3 = 1 implies that = 1
and if 36 = 90°, then 8 = 30°,

Hence, (1,30°) is a cube root of i. As a quick check,
(1,300 3 = (13,3(30%)) = (1.90%) = 1,

and in Cartesian form

(1,30°) = cos 30 + i sin 30

]

B b
@
+

3

(%/i + %i) = %(/5 4y
= %[(/3)3 +3(/D% + 37312 + 13]
= 113/3 + 91 - 3/3 - i]

o |
= 5[81]
= i.

The method for determining the other two cube roots of i hinges on
the fact that as 0 ranges between 0° and 360°, 36 varies between
0° and 1080°. Hence, we must use the fact that i is named not
only by (1,90°) but also by (1,450°) and (1,810°); so that while
in any case r = 1, 30 may equal 450° and 810° as well as 90°.

This leads to 6 = 150° and 8 = 270°.

Thus,

i

B

(1,150°) = cos 150° + i sin 150° = -3/3 +
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1.3.7(L) continued
and
(1,270°) = cos 270° + i sin 270° = -i

are the other two cube roots of i.

Again the check is easiest in polar coordinates since then
(1,150°)3 = (13,450°) = (1,450°) = (1,90°) = i
and

(1,270°)° = (13,810°) = (1,810°) = (1,90°) = i.

[In Cartesian forit, (=1)° = (L) (1Y = ~{=1) = 1.]

Pictorially,
Y
A
i= (0,1)
150°
22 zl
30° >
A
23
[ o= {21,22,23}.
1.3.8
a; (@) «1 =
(r2,80) = 1. (1)
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1.3.8 continued

1= (1,0) = (1,2m) = (1,4m) = (1,6m) = (1,8w) = (l,l0w) = (1,12m)

= (1,147);

so from (1), we conclude that

and

B8 =0, 2m, ..., l4m*

s0O
8 =0, ‘E‘r 12"' 34—1TI L STWJ 3w, and 7—4“'-

In other words, the eight eighth roots of 1 are given in polar
coordinates by

a0, @B, @b, a.2h, am, &3P, 1,30, ad 0,55,
In Cartesian form, these are
1, 3/7 + %-/2'1, P -%./i + !2'-/2'1'., <1 -%/i S %/ii, -1, and X/3 - 2/7i.

Pictorially,

*We could continue and let 88 = 167 but then 8 = 27 which yields
the same point as does 8 = 0. The key idea is that we want o to
name the argument of the root and in this context values of the
argument which vary by multiples of 27 (or 360°) name the same
root.
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b. zy= (1,45°).
Therefore,
222 = (1,45°)2 = (1,90°) = i = z,
2,3 = (1,135°) = z
2 ' 4
z 5. w (1,180°) = =1 = 2
2 ' 5
2.2 = (1,225°) = z
2 ' 6
2.8 = (1,270°) = z
2 ' 7
z.! = (1,315°) = z
2 ' 8
z 8. (1,360°) = z
2 ' 1

This means that the set {z: 28 = 1} is given very conveniently by

8 1 1
[22’ 222, 223, 224, 225, z26, 227, z, } where z, = 5/5 + 5/51.
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1.3.9

In polar form,

1+ i= (vV2,45°).

Namely,
vy
(1;L) =L+
N>
45°
1 S
Now ,

(V2,45°) = (v/2,405°) = (V/2,765°).
Hence,
(£,6)° = 1 +1i

implies

(r3,30) = (V2,45°) or (/2,405°) or (/2Z,765°).

Hence, in any case, r> = /2 (r > 0) so that r
135°, or 255°;

Thus, in polar form,

1+ 1i= (¥2,15°), (¥2,135°), (¥2,255°).

N s | S —

z z z

1 2 3

Pictorially,

¥2 while & = 15°,
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1.3.9 continued

> X

(/2,0

(Notice how the roots
are equally spaced.)

1.3.10 (Optional)

Here we wish to present a practical application of the complex
numbers to the real world. To this end, notice first of all, that
the given problem exists (and is even solvable) had complex num-

bers never been invented.

By using complex numbers, however, watch how guickly the problem
falls apart! We begin by agreeing to view the xy-plane as the
Argand Diagram. We then view the circumscribed circle as being
centered at (0,0) with one of the vertices at (a,0). Pictorially,
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1.3.10 continued

We have let n = 9 in
this diagram simply to
get a concrete diagram,
31 but this is not crucial
to our general dis-
cussion.

Figure 1

Each of the vectors Shl, Poe s ahn viewed as a complex number is a

solution (root) of the equation

2% = a" (1)
or
2" - a" = o. (1')

Namely, the magnitude of OAZ, for examply, is a and its argument
is %?. Hence, in polar form, it is given by (a.——); and

n
(a.zTﬂ) = [&n.n('zn—“)] = (a",2m = (a",0) = a".

On the other hand, the sum of these roots must be 0 since this sum

n-1

is the coefficient of z in equation (1').

Hence, viewed as complex numbers in the Argand Diagram, we see

that the sum of d?l, 6?2, Saech dbn must be zero.

In summary, we have exhibited an example wherein an analytic
application of complex numbers solves a real problem in a rather

elegant manner.
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1.3.11 (Optional)

Here again we want to show the realness of the complex numbers and
we are again using a geometric illustration. The key point is
that the vector a; + b§ in the xy-plane becomes the complex number
a + bi when we view the xy-plane as the Argand Diagram. Thus, the
rule for multiplying two vectors in the xy-plane given in this
exercise is nothing more than a word-for-word translation of the
rule for multiplying complex numbers - provided only that we iden-
tify the xy-plane with the Argand Diagram.

Since we know that multiplication for the complex numbers obeys
the commutative, associative, and distributive rules; it follows
that this form of vector multiplication obeys the same structure.
The actual details which could be used to check this result are
left as unofficial exercises for the interested student. It will
be noted in the check that the proofs are word-for-word the same
as for the complex number case; which is as it should be since
one is just a different geometrical interpretation of the other.

In this same context, it is easy to explain geometrically what
this new type of vector multiplication means. Namely, the product
of two vectors multiplied in this way is the vector in the xy-
plane whose magnitude is the product of the magnitude of the two
given vectors; and the angle this vector makes with the positive
x-axis is the sum of the angles that each of the two given vectors
makes with the positive x-axis.

At this stage of the game, it is not important whether there are
any nice physical examples in which this type of multiplication of
vectors is important. What is important is that we have applied
the theory of complex numbers to induce a real vector operation;
and that this particular type of vector multiplication is pre-
cisely what is needed if we wish planar vectors to continue to be
an accurate geometric model for the complex numbers.
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1.4.1(L)

Clearly each element of S is a complex number since both cos t
and sin t are real for all 0 ¢ t < 7, Thus, S exists without any
reference to a picture. The point is, however, that if we use
the Argand diagram, we view x + iy as the point z[= (x,y)] in

the xy-plane.

In other words if we identify the position vector R with the
complex number z, we see that the "graph" of S (by which we
mean the set of points in the Argand diagram which represents
S) is the curve whose vector eguation is

R(t) =cos ti+sint3j, 0 <t <. (1)

This, as we already know from our study of vectors, is the curve

whose parametric form is

cos t 0 < . < (1)
sin t

which we recognize as the upper half of the unit circle centered
at the origin.

Pictorially,
\\\\ o "’(’/I
o 4, P(cos t, sin t) = cos t + i sin t
\L 4
~ I.
-~ ,,
-~ -~
v t -
T(1,0)

There is a 1-1 correspondence between complex numbers in S and
points on the above semi-circle. The correspondence is defined
by (cos t, sin t) <> cos t + i sin t.
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1.4.1(L) continued

More generally, every curve in the z-plane has the equation of

the form
z = x(t) + y(t)i (2)

(we say more about this in Exercise 1.4.9) and because the
Argand diagram has the structure of a 2-dimensional vector space,
we see that eguation (2) is equivalent to the vector function

of a scalar variable, defined by

B(t) = x(t) 1 + v(t) J.

Summarized pictorially

y
/ X = x(t)
i C'{y=ym
(x(t) ,y(t))
R
:;x

1. In vector form, C is given by R(t) x(£)1 + y(t)}.
2. In the Argand diagram R represents z, and C is then the
set of complex numbers, {z: z = x(t) + iy(t)} .

v I

b. Let w denote the image of z with respect to £. In this case w = 22.

Since both z and w are complex, f is actually a mapping of a
2-dimensional vector space (the z-plane) into a 2-dimensional

vector space (the w-plane).

If we now identify the z-plane with the xy-plane and the w-plane

with the uv-plane, we see that w = 22 actually is equivalent

to mapping the xy-plane into the uv-plane (a topic we have al-
readvy studied fairly thoroughly).
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1.4.1(L) continued

Pictorially
b
v
AN AN
L7 %y = g
z = (x,y)
.
7 r
z -plane w-plane
: _ : 2 2 2 i
More specifically, if z = x + iy then 2" = (x" - y7) + 1 2xy;
so that
— y2
w=u+ iv, with (3)
v = 2xy

Notice that we have already discussed the mapping given by (3)
in Blocks 3 and 4 of Part 2.

Of course, we have something "going for us" now that we didn't
have then., Namely, we are now able to view mappings of the
xy-plane into the uv-plane (a concept which certainly exists
independently of the invention of complex numbers) as complex
valued functions of a complex variable which map the z-plane
into the w-plane.

Wwith this interpretation, we are now able to discuss a vector
product that was undefined before (although with hindsight we
could have gone back to Blocks 2, 3, and 4 of Part 2 and invented
the vector product which corresponds to the product of two com-
plex numbers) and we may conclude that 22 is the complex number
whose magnitude is the square of the magnitude of z and whose
argument is twice the argument of z.

In particular, then, since each point in § has unit magnitude,
ite imace under the saguaring function also has unit magnitude.
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Moreover, since the argument of the image is twice the argument
of the point, we see that since the arquments of the points in
S vary from 0 to 180°, the arguments of the images range from
0° to 360°, In summary, then, the mapping w = 22 carries the
set S into the whole unit circle centered at the origin. 1In
particular, the point (r,8) maps onto (r,26).

Here we see, as an important aside, how the theory of mapping
the complex plane into the complex plane gives us new insight to
real mappings. In particular, with respect to equation (3)

we now have that this mapping, in terms of what it means to
multiply complex numbers, is easy to explain pictorially,
Specifically, the image of a given point in the xy-plane is
found by doubling the argument of the point (vector) and
squaring its magnitude.

Again we hasten to point out that we could have invented the
product of two vectors to be the vector in the same plane
equivalent. to the product of the two given vectors as complex
numbers. That is,

(af+bPecT +da3) = (ac-bd) 1+ (bc+ ad) J.

But notice how much more natural this definition becomes in
terms of the language of complex numbers.

In other words, one major real application of the theory of
complex functions of a complex variable is to the real problem
of mapping the xy-plane into the uv-plane. These problems can
be tackled without reference to the complex numbers, but a
knowledge of the complex numbers gives us a considerable amount
of "neat" notation which is helpful in obtaining results

fairly guickly.

As a final observation, let us observe that as a function £

has the same structure (but a different domain) whether we

write £(x) = x2 or f£(z) = z2. 1In either case we have a function
machine in which the output is the square of the input. The

big difference is from the geometrical point of view. In the
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expression f(x) = x2 se may view both the domain and the image of
f as being l-dimensional (since x is assumed to be real).
Accordingly, we may graph the function in the 2-dimensional xy-

plane in terms of the curve y = xz.

2

On the other hand, in the expression w = f(z) = 2, the domain

and the image of f must be 2-dimensional since neither 2z nor 22
is required to be real. Thus, we would require a 4-dimensional
space to graph this function if we wanted a graph which was the
analog of the graph y = £f(x). Since we cannot, in the usual
geometric sense, draw a 4-dimensional space, our geometric
interpretation must involve viewing the z-plane (the domain of

f) as being mapped into the w-plane (the range of f).

1.4.2

a. If we look at z as being the point (r,8) in the z-plane, then
z3=(r,9)3 = (r3,39). Thus, under £ each point in the z-plane
is mapped into the point (p,¢) in the w-plane where p=r3 and
¢= 36 [i.e., the mapping cubes the magnitude and triples the
argument] .

In particular the point (1,8) where 0 < 8 < 90° is mapped onto
(13, 38) = (1,38) and since 0° < & < 90°, 0° < @ < 270°. Thus,
the first quadrant S of the unit circle is mapped onto the
first three quadrants of the unit circle.

Again pictorially,

y v
~ YT
/
ha ™R £ N / (1,38)
~ -“V‘q
~ 7~
(1,8) - &
v e —y X > u
-~
7’
’
/
-
z-plane w-plane
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By the same token, each point in T, written in polar coordinates,
has the form (r, 45°). [If the line extended into the third
guadrant, the points on this part would be represented as (r,225°)]
Hence "cubing" such a point yields (r3, 135°). In other words,

the mapping defined by f(z) = 2> maps the ray 8 = 45° onto the

ray 8 = 135° in such a way that the image of each point has the
cube of the magnitude of the point.

Pictorially, £(T)

m
P
0
(o]
~
]
5
7

(8,135°)

45°

z-plane w=-plane

f(z) = 23
(x + iy)>

= x> 4+ 3x2(iy) + 3x(iy)2 0 (iy)3

x3 + 3x2yi - 3xy2 - 1y3

3y - 3xy2) + i(3x2y - y3).

= (x
Hence,

3 2
= X 2- 3xy3 (1)
Xy -y .

=1
|

Again, by way of review, egquation (1) defines a real mapping of
2-space into 2-space, but from our knowledge of complex variables,
we know that the rather cumbersome system (1) is eguivalent to
mapping each point (vector) in the xy-plane into the point whose
magnitude is the cube of the given magnitude and whose argument

is triple that of the given argument.
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1.4.3

zZ = x + iy + 2z = 2x + i2y. Therefore, w = 2z = 2x + i2y. Letting
u denote the real part of w and v the imaginary part we have

< &
n
NN
oW
—

x - iy. Hence,

54
<
1
(o]
)
I
N
v
5
"

d. f(z) = 22 + 2z + i

(x + iy)2 + 2(x + iy) + i

%2 - g2 4 i2xy + 2x + i2y + i

= (%2 - y2 4+ 2x) + (2xy + 2y + 1)i.

Hence,

u = xz - yz + Zx]

v =2xy + 2y + 1

e. flz) = %
e 1
X + 1y
= x - iy =X o+ i [ 5Ll
(x + iy) (x - iy) x* + y2 x° + vy
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Hence,
u=_2_x__..
2
. x2 + y2 #F 0
> " (since z # 0)
y:_z_L_z.
x+y 4

Again, as a reminder, this problem shows us that we may view the

mapping

as f(z) = 2z

as £(z) = z;

u=x2 - y2 + 2x
v =2xy + 2y + 1
as f(z) = 22 + 2z + i; and
u = —7—5——7
x+y
v = —721—12
3 ¥ ¥

as f(z) = %.

1.4.4(L)

Our main aim in this exercise is to get a better feeling for the
"reality" of complex functions of a complex variable. Parts (b)

and (c) are concerned with extending the analogs of f(x) =x +c
and f(x) = cx where ¢ and x are real numbers to f(z) =z + c
and f(z) = cz where ¢ and z are now complex numbers. As we shall
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see, the algebra of these functions is the same as that of their
real analogs, but the geometric interpretation is a bit more
sophisticated (the result of both our domain and image space
being 2-dimensional rather than 1-dimensional). 1In part (a)

we want to emphasize the fact that what looks like a new function
to us is really an old function that we handled in a very real
situation. In particular,

Recall in our treatment of the double integral that when we
wanted to reverse the order of integration, the technique was
geometrically expressed by the mapping of the xy-plane into
the uv-plane given by

y (1)
2. I

It should be clear that we do not have to know anything about
complex numbers to talk about the mapping defined by equation
(1). If, however, we want to view the mapping as being from
the z-plane into the w-plane, our procedure is to write (1) in
the form u + iv, which in this case means that we study the
complex function of a complex variable defined by

u

v

£(z) = x + i(~-y)
= x - iy. (2)

1If we now recall that z is x + iy, we see that X - iy is by
definition z. Thus, (2) becomes

flz) = z. (3)

Of course we arrived at (3) rather inversely to the wording

of the exercise in which we were to begin with (3) and derive
(1). oOur purpose for doing this was simply to start the
exercise emphasizing the relationship between complex functions
of a complex variable and real mappings. Had we begun with
(3), we would have merely reversed our steps to obtain:
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£f(z) = 2z
=X + iy
= X - iy (4)

and from the real and imaginary parts of f(z), we would have
concluded that the graph of f was equivalent to the mapping de-
fined by

u = X
=-y.

This mapping is equivalent to reflecting the xy-plane about the

x-axis (i.e., we leave x alone and change the sign of y.

Pictorially,
Y v u =X
N Y TR
N £(z) =z {v = -y
zZ = (X,Y)
7 X &b
z-plane w-plane f(z) = z =(x,-y)

(Figure 1)

But since the w-plane is a replica of the z-plane we may super-
impose the two planes in Fiqure 1 to obtain

b4
™

“N
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Thus, the effect of f on set S in the Argand diagram is to pro-
duce the mirror image of 8 with respect to the x-axis. In
particular if S is any closed region, £(S) 25 (i.e., S and its
image have the same size and shape).

In the real case, we saw that the graph of f£(x) + c just "raised"
each point of the curve y = f(x) by an amount c. In particular
the graph of f(x) = x + c, was obtained by lifting each point on
the line y = x by ¢ units. Pictorially,

Y
N

f(x) + ¢

e
]

f(x)

|
<
I

Now, given £(z) = z + ¢, we see that in the Argand diagram this
sum must be interpreted as a vector sum. As a vector the complex
number c is written as CII + czf (where we are assuming that
c=cy + czi). Letting c denote cli + czj, we see that adding

c to z is equivalent to displacing z by an amount equal to the
magnitude of cin the direction of c.

For example, the mapping defined by f(z) = z + 3 + 4i maps the
point z intco the point 5 units from z in the direction

% 1+ g 3.

Pictorially, Q




Solutions
Block 1l: An Introduction to Functions of a Complex Varib
Unit 4: Complex Functions of a Complex Variable

1.4.4(L) continued

Geometrically, adding 3 + 4i onto z shifts (translates) P to Q.
That is, P is translated 5 units in the direction T+ 43.

Here we invoke the fact that we have a very convenient way of
multiplying complex numbers using polar coordinates. In parti-
cular if ¢ = (ro, OO) then ¢z has as its magnitude r  times the
magnitude of z and as its argument 90 plus the argument of z.

In other words we obtain the image of z by rotating the vector

z through 90 degrees and increasing its magnitude by a factor of

r_.
o

By way of an example, if f(z) = (3 + 4i)z, then the image of a
given number Z is obtained by rotating z through an angle equal
to arc tan % and replacing the magnitude of z by 5 times its
value. Pictorially,

IZ P(XIY) = 2

1. We pick any point on OP,

2, We erect a perpendicular to OA and locate B on OA such that
AB = T OA. Therefore, tan ¥ AOB = % .
3. We mark off the length OP (i.e., |z]|) 5 times along OB.

4. OC then denotes (3 + 4i) OP = (3 + 4i)z.
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As a very interesting special case, notice that if the magnitude
of ¢ is 1 then the mapping f(z) = cz simply rotates z through an
angle equal to the argument of c(i.e., the magnitude is pre-
served because c has unit magnitude).

1f we let 8 denote the argument of c, the fact that c is of unit
magnitude means that ¢ = cos 8 + i sin 8.

Hence,

(cos & + i sin 8) (x + iy)
X cos @-y sin 8 + i (x sin 8 + y cos 8},

cz

and as discussed in our earlier exercises, this is equivalent
to the real mapping

u=xcos § -y sin 6
v =xsin 8 + y cos @ . (1)

Thus, comparing this result with our polar coordinate interpre-~
tation, we see that the mapping defined by eguation (1) is equi-
valent to rotating the xy-plane through 8°.

Hopefully, this shows us still another way in which complex
numbers have a real interpretation. By the way, in the special
case that ¢ is real, the argument of c is either 0° or 180°,
depending upon whether ¢ is positive or negative. Notice then
that in this case the result checks with the usual result in
the real case; i.e., multiplying by (real) ¢ leaves the
direction alone, changes the magnitude by a factor of |e| and
preserves the sense if c> 0, reverses the sense if ¢< 0.

As a final note on this exercise notice that the linear mapping
defined by £(z) = c,;Z + ¢, where both ¢, and c, are complex-
valued constants maps lines through the origin into lines
through the origin; and circles centered at the origin into
circles centered at the origin. Namely, the mappping £(z) is

a rotation (accompanied by a uniform magnification factor equal
to cl) followed by a translation. Under a rotation, lines
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through the origin remain lines through the origin, and circles
centered at the origin remain circles centered at the origin.

Notice also that the algebra of inverting this type of function

is word-for-word the same as in the real case since the structural

rules are the same, Namely, if w = €1z + ¢, (c1 # 0) then

g - B
ot |

etc.

In other words, the algebra remains the same, but the geometric
interpretation is elevated by a dimension of sophistication

(so to speak).

1.4.5

1+ i
VZ

Here we have f(z) = ¢,2 + ¢, where cy = and ¢, = i.

By the result of the previous exercise €,z rotates z through

an angle equal to the argument of 5 and multiples the magnitude
of z by |c1| . 1In our case, [c)| =1 [i.e.,

J(L)Z il a9
vz /Z

while the argument of c, is 45°.

Yy
N

p (- 1
P e /2

1
vz

45°

>~
7 x

N b

Hence, c,z is a 45° rotation of the z-plane. Then since
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€2 + i "translates" ¢yz an amount equivalent to the vector 3
(i.e., adding i raised the point by 1 unit; we see that

£lz) = (2t 4y 4+ 3
/z

is equivalent to rotating each point in the plane through 45°
and then raising it 1 unit).

Pictorially,
Y
Tt £

P(x,y) [= z]

Rotate P through 45° and then 1lift it (i.e., move it parallel to
the y-axis) one unit.

(1 + 1
V2

)z + i

(1L +i)(x + iy) | i
V2

(x - y) + i(x + y)
VZ

+ i

(x - y) + i(x +y) + V2 i
V2

I

=¥y 44 BEYF T,
VZ vZ
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Hence in Cartesian form, the mapping is given by

-

u = (x - y)

=
vZ

1
vm Ll ey /T
/2 |

1.4.6

24 has magnitude 16 if z has magnitude 2, and the argument of z4

is four times the argument of z. Hence as z traces the portion
of the circle r = 2 between 8 = 0° and 8 = 60°, f(2) traces the
portion of the circle r = 16 between § = 0° and 8 = 240°.

Pictorially 4
g(s) where g(z) = z
YT,
\S /
% b 4
~
x %,
V4 s
& £
o x5 4 240 ’
2 o 16 A
/ - /
\" , - /
~ /
P y
o~

Finally, adding 3 + 4i translates each point 5 units in the

direction % + g 5
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ol

2

c:ir = 16

adding 3 + 4i to each point on the circle r = 16 translates the
circle from center at 0 to center at 0'.

‘r—This is {r=16, 0 < 8 < 240°}
translated by i + 43, i.e.,
00' = Aa' = BB' = 31 + 47.
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Here again we see how our knowledge of vector calculus helps us
here. Namely, it is natural, if only by mimicking, to define

lim f(z) =L
z+C

which means that, given €3> 0, there exists & > 0 such that
0 <|z - c|< &+ |£(2) - L| < €.

The above definition makes sense even though z, ¢, and L need
not be real since we are dealing only with absolute values -
which are (non-negative) real numbers.

Moreover, from a pictorial point of view (i.e., in terms of the
Argand diagram) the above definition is precisely the same as
our limit definition when we dealt with vector functions of a
vector variable.

Recall in that case we showsd that the definition was eguivalent
to saying that if f(ﬁ) = u(x,y)I + v(x,y)f and if L = LII + sz,
+

c = clI + c23; then

lim £(R) = &

ReC
was equivalent to

lim u{x,y) = Ly
(x,y)*(cl,cz)

and

lim v(x,y) = Ly.
(er)"(cl lcz)

Translated into the Argand diagram this says that if c = c, t czi
then

lim f(z) = L
z+c
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means

lim Relf(z)] = Re(L)
(x,yJ*(cl,cz)

and

lim Im[£(z)] = Im(L).
(x,y)*(cl,cz)

For example, in the given exercise

£(z) = 23
= (x + iy)°>
- x? 4 3x2(iy] - 3x(iy)2 + (iy)3
= (x3 - 3xy) + (3x2y - y3)i.
Hence,
A N 3 2 3
lim f(z) = lim (x° = 3xy) + i lim(3x" y - y7)
z+(1 + i) (x,y)+(1,1) (x,y)+(1,1)

-2 + 2i.

The key point is that using the Argand diagram medel for the
complex numbers we need not invent any new ideas to handle
1lim £(2) if c is complex and f is complex-valued.

z2+C

In particular, every limit theorem that was true in our study of
vector functions of a vector variable remains true in our study

of complex functions of a complex variable. More specifically,

we may continue to use such results as the limit of a sum is

the sum of the limits, the limit of a product is the product of

the limits, etc. Again, the main idea is that once we view
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complex numbers in the Argand diagram we cannot distinguish

between complex numbers and planar vectors structurally. Thus,
theorems for one model remain theorems for the other.

1.4.8

2

(z + h)2 = z“ + 2zh + h? (just as in the real case).

Hence, (z + h)2 - 22 = 2zh + h2. Hence,

(z + h)2 - z2

h h

2
_ 2zh + h™ _ % (22 + h)

2z + h, provided h # 0.

Hence,

2 2
Jim (L2t B -2 _im (22 4 B)
h+0 h h-0

lim 2z + lim h
h=+0 h+0

2z.

Notice that this exercise seems to be the complex equivalent
of finding f'(x) when f(x) = x2. This idea is the topic of the

next unit,

1.4.9

Our main aim in this exercise is to show that the study of complex-
valued functions of a single real variable was made when we
studied the planar problem of vector functions of a scalar

variable.

Namely, if we view z as x + iy, then the fact that z is a function

of the scalar (real) variable t means that we may write

z(t) = x(t) + iy(t). (1)
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The critical point is that if we elect to use the Argand diagram
as a geometric model, we see at once that equation (1) is
structurally equivalent to the vector equation:

R(t) = x(t)1 + y(t)]. (2)

In summary, the curve in the xy-plane defined by equation (2) is
the "graph" of the complex numbers defined by equation (l). In
other words, one way of visualizing a (continuous) complex
function of a real variable is as a curve in the z-plane.

The main point is that since we may identify a complex function
of a real variable with a vector function of a scalar variable,

we may also assume that the calculus structure of vector functions
of scalar variables is inherited by complex functions of real
variables; and both parts (a) and (b) of this exercise are
designed to illustrate this.

We assume here that f'(t) has the usual meaning, except that f

is now a vector function rather than a scalar function. The
point is that had we been given the problem

Bt) = ¢t + t%3 (3)
we would have been able to conclude that

R () =1 + 2t3. (4)
Since equation (3) translates, in the Argand diagram, into

z =t + t% [= £(8)],

it follows that f'(t) must be the analog of equation (4), namely,

£1(t) = 1 + 2ti. (5)
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More generally, then,in terms of the Argand diagram if z = f£(t)
where f is a differentiable complex function of a real variable,
we may view z = f(t) as the curve z = g(t) + h(t) i where g is

the real part of £ and h is the imaginary part of £f. 1In this
event, f'(t) is a vector tangent to this curve with magnitude equal

to

g'z(t) - h'z(t) .

The key point is that the calculus here is a "carbon copy" of the
calculus of vector functions of a scalar function.

If R'(t) = tzi + e3tj, then we already know that

3

t7i + % e3tj + c. (6)

W=

R(t) =

Translating the result (6) into the language of complex numbers

we have that, if £'(t) = t2 + €°ti, then

£(t) = % t3 + % eati + ¢, where ¢ is an arbitrary complex constant.
(7)

If we now use the fact that £(0) = 1 + i, equation (7) becomes

1 +1 = 1 i + ¢ so that c =1 + % i. Putting this result into (7),

we have that f(t) = % t3 + % e3ti + 1 + § i, or

1

}-(e3t

£(t) (§t3 + 1) + + 2)i.
In summary, we already know how to differentiate and integrate
complex functions of a real variable because our previous knowledge

of vector functions of scalar variables. In particular

1. If z = x(t) + y(t) i, then g% = g% + 3 i; and

2. If z=x'(t)+y'(t) i, then fzdt = x(t) + y(t) i + c; where

x'(t) =9§égland y' (t) =2 ét) and ¢ is an arbitrary complex

constant.

Thus, while complex functions of a real variable are important in
our study of complex variables (e.g., as mentioned in Exercise
1.4.1, the "graph" of a set of complex numbers in the Argand
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diagram has this form), we do not devote much time to such a

study since the main results are already available to us from our
study of planar vectors.

1.4.10

The result of this exercise justifies why the study of real-
valued functions of a complex variable is usually ignored from a
calculus point of view*. Namely, assuming that the result of
this exercise holds, we have that if y = £(z) and if Hl exists,
then az-— . This, in turn, implies that f(z) is constant.

Thus, if f: c*R such that f' exists, then f(z) must be constant.
In other words, unless f(z) = constant, Jz (= a—) fails to
exist. Thus, the study of differentiable real functions of a
complex variable is "short and sweet".

Now, turning to the specifics of this exercise, we must first
define what we mean by f' in the case that f is a real-valued
function of a complex variable. 1In terms of our usual approach
in terms of structure, we define g% = f*(z) by
. f(zo + AzZ) - f(zo)
£'(z) = lim [ ] (1)
Az=+D *

provided that the limit exists, Since z,and hence Az, is complex,
it means that there are many paths by which 4z may apprcach 0.

one such path is the one defined by the change in the imaginary
part of Az being 0; and another, by the change of the real part
of Az being 0.

*We hasten to stress "calculus" lest you erroneously be led to
believe that such functions are unimportant in all respects.

For example, the absolute value of a complex variable 1is

extremely important and this is an example of a real-valued function
of a complex variable, That is, if z is complex and f(2) = | 2]

then the range of f is the non-negative real numbers.
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In terms of the Argand diagram we have,

Y
A Re[Az]+ 0 along line Re(z) = Rel(zg)

)

z. = (x

o o'Yo

~

Algebraically speaking, we are saying that if z = x + iy then

¢ Im(Az)+0 along line Im(z) = Im(zo)

Az = Ax + iAy; and we are looking at Az in one case with Ay = 0

and in the other with Ax = 0.

The key point is that numerator in the bracketed expression in
equation (1) must be real since f is given to be real valued.

Thus, with Ay = 0,

f(z_ + Az) - f(zo)

o

Az

is equal to

f(x° + Ax, yo) - f(xo, yo)

Ax

in which case, f', if it exists must be given by

M

Ax (XOIYO)

f'(zo) = lim [
Ax—+0

(2)
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Similarly with Ax = 0, equation (1) becomes

f(z°+ ihy) - f(zo)]

f'(zo) = lim [

Ay+0 isy
f(x ,y_ + Ay) - £(x_,y.)
= lim [ o'“o o''o ]
Ay~0 1Ay

1 1im [f(xo,yo + Ay) - f(xo,yo)l

Ay+0 Ay

|
2
|

(3)

Since the existence of the limit in (1) means that the value of
f'(zo) must be independent of the direction in which z+0, we may
equate the values of f'(z)) found in (2) and (3) to conclude

3f L L5 BE
Ix =Tl %
xo'Yo) -(;O:Yo)
or
£ (x ,y,) +0i=0+41 [~ fy(xo,yo)l. (4)
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Equating the real and imaginary parts in the equality given by (4),

we conclude that
fx(xo,yo) = 0 and fy(xo,yo) = 0. (5)

Finally, since (xo,yo) = z, was an arbitrary point (number) in

the domain of f we may conclude from equation (5) that

fx(x,y)z fy(x,y)z 0 (6)

and from our knowledge of real-valued functions of several (two)

real variables*, we may conclude that
f(x,y) = constant. (i.e., df= 0) (7

Then since f(x,y) is simply the geometric equivalent of £f(z),
we conclude that f£(z) = (real) constant.

* Notice that we have identified f(z) with f(x,y) by viewing 2z

as the point (x,y) in the Argand diagram. Since f is real-valued
it follows that f(x,y) is a real function of the real variables

x and y. Consequently the statement given in (6) is independent
of our knowing anything about complex numbers (although the
derivation of (6) came from our treatment of the complex numbers).
Accordingly (7) is merely a reaffirmation that if df = 0dx + Ody

then f(x,y) is constant.
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