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Solutions
Block 2: Ordinary Differential Equations

Unit 9: The Laplace Transform, Part 1

2.9.1(L)
a. Here we stress the linearity of the Laplace transform. We begin
with the knowledge (derived in the lecture) that
at, _ 1
X(e™) = === s> a). (1)
We then write cosh bt as % (ebt + e_bt) to obtain
Zlcosh bt) =X’B- (et 4 e'bt)]
_ %‘ﬂebt + & bty
= LxePt) + xe®Y). (2)
Letting a equal b and then -b in (1) yields
bt, _ 1:
and
-bt, _ 1 . N
e ==y =s+p ®©*=h
so that (2) becomes
1 5 1
X(cosh bt) = 'é’[s g = b] (where |s| > |b]).
In other words,
- 1l|{s +Db) + (s - b)
Xicosh, bt 2[ (s -b) (s + b ]
S
= 2 (3)
sz = b2
S 25910
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Block 2: Ordinary Differential Equations
Unit 9: The Laplace Transform, Part 1

2.9.1(L) continued
b. Here we illustrate the so-called "shifting theorem." Namely, if
Z(E(t)) = E(s) then x[e®“£(t)] = (s - a). That is, multiplying
f(t) by eat
(s — a)l. The proof is not difficult. Specifically, let

shifts the value of s by an amount a [i.e., to

T(s) =f e Ste(r)at (4)
0
then
Pl =~ @) = f e~ {8 = @te g, (5)
0

On the other hand,

I

Z(e2%s (v) j e 5t e3¢ (1) 1a¢
0

=f e (8 = @Ate gy, (6)
0

Comparing (5) and (6), we obtain the desired result.

Note #1

Our approach, while valid, more or less presupposes we know the
desired result [otherwise, why would we have known to deduce (5)
from (4)]. 1In real life, we might have been more likely to first
compute g{eatf(t)], thus obtaining (6), and then seeing how this
was related to f(s).

Note #2

As indicated in the lecture and as we shall see in later exer-
cises, one often starts with the Laplace transform and then tries
to find the function. This is the problem of finding inverse
transforms. What part (b) tells us is that if A%g(t)) = f(s - a)
then g(t) = eatf(t). This is illustrated in part (c).

5.2.9.2
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Block 2: Ordinary Differential Equations
Unit 9: The Laplace Transform, Part 1

2.9.1(L) continued

From Lerch's Theorem and part (a), we know that if

f(s) = ———s (7)
2 _ 3

then

f(t) = cosh bt.

Now, given that

g(s) = s — 2 (8)
(s - a)2 - b2

we see from (7) that
g(s) = £(s - a). (9)

Applying part (b) to (7), we see that

(s - a) = Te2TE(t)]

at

X[e®" cosh bt], (10)

and since f(s - a) = g(s), we conclude from (10) that

g(s) = al"[eat cosh btl],
or

g(t) = % cosh bt
i.e.,

£715(s) = £ Lxrre®t cosh btl).
—_— !

g(t) these
cancel

5:2:9.3
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2.9.1(L) continued

Note

As stated in the lecture, Lerch's theorem says that if f and g are
continuous and if f and g have the same Laplace transform then f
and g are equal. We should keep in mind that the wvalue of a defi-
nite integral does not depend on whether we introduce some finite
jump discontinuities in the integrand. That is, we identify the
definite integral with an area and the area of a region does not
depend on changing the heights of some isclated points. Thus, if
the condition that £ and g are both continuous is removed, Lerch's
theorem states that two functions which have the same transform
cannot differ on any interval of positive length (i.e., isolated
jump discontinuities involve changes on intervals of zero length,

namely a point is an interval of zero length).

To keep things simple, however, we have added the condition that
all functions under consideration are continuous. By means of an
example, if we define f by f(t) = 1 for all t, and g by g(t) =1
unless t = 0,1,2,3, and 4 at which points g(t) = 100; then the
Laplace transform of both f and g is given by %. When we deal
with integrals, it is, in a sense, artificial to distinguish be-
tween f and g since both f and g lead to the same area under the

curve.
2.9.2
a. Xlsinh 3t] = r[%(e“ - e"3t)]
_ %[x‘(e:’t) e 31:)]
| . 1
- 2ls - 3 s + 3
o dIm 3 = (g o 3)
2 52 -9
3
= —_— (1)
52 -9
S.2.9.4
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Block 2: Ordinary Differential Equations
Unit 9: The Laplace Transform, Part 1

2.9.2 continued

By the "shifting theorem" of part (b) in the previous exercise, we
conclude from (1) that

2ie*t sinh 3¢) = 32 . (2)
(s - 4)° -9

We are given that

g(s) = LIg(t)] = 2 : (3)

(s - 4)2 -9

Comparing (2) and (3), we conclude that
= Ak ...

Xlg(t)] = X[e sinh 3t].

Hence, by Lerch's Theorem,

g(t) = et sinh 3t.

2.9.3(L)

One way to compute X(cos bx) is to use the definition to conclude
that

X(cos bx) = f e %% cos bx dx* (1)
0

whereupon we could "bludgeon out" the result by integrating the
right side of (1) by parts etc.

A more sophisticated way, which also illustrates yet another real
application of complex numbers is to observe that

*Notice the switch from t to x. We have done this deliberately
in order to emphasize the fact that X[f(t)] does not depend on

[+
whether we use t or x. Namely, X[f(t)] equals ‘[ e_Stf(t)dt,
0
in which t is a dummy variable. That is, the integral is a func-

tion of s,not of t! For this reason, many authors write X(f)
rather than RTf(t)).

8,2.9.5
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2.9.3(L) continued

1
2

I

cos bx {elbx + e—lbx)

cosh (ibx). (2)
Now in Exercise 2.9.1, we showed that

X[COSh bx] = TE'—Z' {3)
s" - b

where b was assumed to be real. The key point is that structur-
ally our definition of X[f(t)] makes good sense even if f(t)
happens to be a complex function of a real variable. (In that
case, we would write f(t) as gl(t) & igz(t} where 91 and g, are
real and apply the previous theory to 91 and 9, separately.)

In particular, assuming that (3) holds even when b is not real, we
may replace b in (3) by ib to obtain

S5

Zlcosh (ibx)] = T
s - (ib)
s
= —_——, (4)
52 + b2
Hence, from (2)
#£(cos bx) = ———x. (5)
S2 4+ b2

b. From (5), we know that

Xlcos 3x] = - (6)
g +9

and from the previous exercise, we know that

Plsinh 3x] = 2—3— (7)
s“ -9

Hence, from (6) and (7), we conclude that

S.2.9.6
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Block 2: Ordinary Differential Equations
Unit 9: The Laplace Transform, Part 1

2.9.3(L) continued

Xlcos 3x] + X[sinh 3x] = 5 + 5 ;
s“ + 9 g =9

so that by the linearity of X,

L[cos 3x + sinh 3x] = 5 — s 3 3 i
s” + 9 s" -9
Therefore,
f(x) = cos 3x + sinh 3x. (8)

[We shall revisit result (8) in the next exercise.]

Since our text does not discuss the Laplace transform, we are in-
cluding a short table of functions and their transforms. (This
table is shown on the following page.) Some of these results will
be derived in the exercises (in this unit and the next) and some
of them have already been discussed in the lecture. Other results
will be introduced in the next unit. Our main aim here is to pre-
sent the results so that you may make reference to them as needed.
Keep in mind that the table is used in two ways. On the one hand,
we may start with f and then look up f and on other occasions, we
start with ¥ and then look up f.

2.9.4(L)

We first observe that our denominator may be written in the form
(s - a)2 + b2 simply by observing that

52 - 45 + 20

(a® = ds + &) + 16

(g8 -~ 2)2 + 4%,

Using our short list of Laplace transforms given on the following
S

page, we notice that = would be the Laplace transform of
il |
cos 4t; hence, by the "shifting theorem," is = 2) is the
2 2
(s = 2)° + 4
Laplace transform of ezt cos 4t.
Be2ee T
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2.9.4(L) continued

Function Transform Function Transform
(1)] £ (£) fis) =6 = [ eSte(nat | (0|1 3
0 s
(2)| af (t) + bg(t)|af(s) + bg(s) (8)| sin at |5——
s +
n
3y £® () s"E(s) - S s" K BT s (9)| cos at —§—§—~—
k=1 s +
(4) eatf(t) f(s - a) (10)| sinh at 3 2
S —
(5)| £ (¢) (-1)® (™) (4 (11)| cosh at |——S—s
S —
t
| [ fmax [T f(s)
0 g
Similarly, —5—2—13 is the Laplace transform of sin 4t, so again by
] +

4
(s - 2)2 + 4

the shifting theorem, is the Laplace transform of

2

eztsin 4t.

With this as foresight, we now proceed as follows:

LlE()] = —25 53

(s - 2) + 16
_ 24g = ) & 7

(s - 2}2 + 16
i 2 (5 -22J i@l % 42

(s - 2)° + 16 (s = 2)° + 16
= 2XTeZtcos 4t) + %'XﬁEZtsin 4at)
= xﬂZeztcos 4t) + xﬂ%-eZtsin 4t)
= x2e?tcos 4t + 1 e°sin at),
$.2.9.8
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2.9.4 (L) continued

so that by Lerch's theorem,

£(x) = 2eztcos 4t + % EZtsin at.

295
a az"(f(t)) = x
. s(s + 1)
=1
T s s + 1

2(1) - e b

S P

=X(1-e

Hence, by Lerch's theorem,

f(t) =1 -e ".

b. X(£(t)

]

s? + 4s + 29

1
s + 4s + 4 + 25
1

(s + 2)2 + 52.

(1)

Then, since 1;1(-——£L—§) = sin 5t, we may use the shifting theorem

52 + 15
to conclude that
K 52 % = e_Ztsin 5. (2)
(s + 2)° + 5
Using (2) in (1) yields
5.2.9.9
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2.9.5 continued

Z(£(t) %[ 2 ]

(s+2}2+25

% Ala 2500 B

Il

Therefore,
2(£(0) = 2G e *%sin 515

whence,

f(t) = % e sin 5t.

G, Tt 2 = =]
s(s + 2) (s + 2)
_ A(s + 2)2 + Bs(s + 2) + Cs
als + 2)2 |
Hence,
Als + 2)2 + Bs(s + 2) +Cs = 1.
|
That is, |
(A + B)s2 + (4A + 2B + C)s + 4A = 1.
Therefore,
A+ B=20 i
4A + 2B + C =0 }
4A = 1 J
Consequently,
1
A=%,B=_%'andc=-'§'~ I
|
|
$.2.9.10 |
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Block 2: Ordinary Differential Equations
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2.9.5 continued

Thus, (3) yields

__1___;(;) _1(__1__) N }
pymapn. Rall § = T\ + 2 -] [Pm—_—
-2t
b i 1 -2t 1 te
Accordingly

1 , =f(%) " f(_% e—-Zt) 5 f(_;zl_ te-Zt)

s(s + 2)

=f(%_ =ik o2t % te"Zt) ’
so that
E(t) =3 -7 e 2 -1 ee 2t

Using partial fractions, we have

3s + 1 A
+

G+D(s +2)(s +3) = *

B 8
1 s + 2 + s + (4)

3

Multiplying both sides of (4) by s + 1 and letting s = -1, we
obtain

3(-1) +1 & pw aamd
1 +2) (-1 +3 5@

or
A= -1.

Similarly, multiplying both sides of (4) by s + 2 and letting
s = -2 yields

=5

T‘_‘i'}(—l)=B,DrB=5.

S$.2.9.11
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2.9.5 continued

Now multiplying both sides of (4) by s + 3 and letting s = -3, we
obtain

G w R
= =D '

Putting these values of A, B, and C into (4) yields

3s + 1 = =l + S _ 4
(s + 1)(s + 2)(s + 3) s +1 s+2 s+ 3
Hence,
1 3s + 1 _ 17 (- -1(_ 1 _ a1
[{s+1)(s+2)(s+3) -.2"S+1+5;." s + 2 ax s +
= —e-t + 5e-2t - 4e"3t.
That is,
-t -2t -3t, _ 3s + 1
Ll-e "+ 5e " -de ] = Ty F G F I
2.9.6(L)
Given that
y" +2y' +y=e", (1)

we have that
ZLly" + 2y +y) = Xeh) . (2)
By the linear properties of X, (2) becomes

Xy™) + 2Xy') + Xy) = xtehH,

: t
or, since X(e”) = == 1t

S5.2.9.12
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2.9.6 (L) continued

(3)

Xy") + 2Xy') + Xly) = ;——/7-

Now, as described in the lecture, we know that X(y') and X(y") may
be related to X(y) by

X(y') = -y(0) + sx(y) (4)
and
Ziy") = -y'(0) - sy(0) + s2X(y). (5)

Putting (4) and (5) into (3) yields

-y'(0) - sy(0) + sz.z"(y) - 2y(0) + 2sX(y) + X(y) = g { T

or

2

(s2 + 25 + L)X(y) = =7 + y' (0) + sy(0) + 2y(0). (6)

s—-.
Equation (6) holds for any choices of y(0) and y'(0), but in this
exercise, we have chosen the initial conditions, y(0) = y'(0) = 0.
Accordingly, (6) becomes

(s2 + 25 + 1)&Ay) = S 2 T
or
2ly) = L 24 (7)

(8 + 1) = 1)

We next invoke partial fractions and consider

1] A B € -
= + o — (8)
s + D3(s -1 (s+n? S*TL sl

*Since the domain of y(s) is an interval of the form s > a, we may
guarantee that our denominator never vanishes by choosing s > 1.

5.2.9.13
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2.9.6 (L) continued

from which we conclude that

A(s - 1) +B(s + 1) (s - 1) +C(s + 12 = 1.
Therefore,
(B+C)s®+ (A+2C)s —-A-B+C =1,

so that
B+C=0 ]

A+ 2C=0 F . (9)

-A-B+C=1 |

Solving (9) yields C = l, B = -l, A = —L, so that (8) becomes
4 4 2

1 | [ T l[_l_] " ;[;]
(s ¥ 112(5 - 1) 2 (s + 1)2 4ls + 1 41s = 1

Thus, (7) becomes

an - 4[] - 3] - He]

Our tables reveal that

(i) a"[tf: ] -1 [i.e.,,z"(tf{t)) = (-1° %=(-1)%(s L 1)]
(s + 1)

(i) #e®) =

—

(ii1) &%) = —=

Consequently, (10) becomes

S§.2.9.14
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2.9.6(L) continued

X(y) = -3 x(te”

y = -% te™® - 27"+ 3 e, (11)

Notice in this exercise that we could have solved things nicely by
the undetermined coefficients. We elected to use Laplace trans-
forms simply to solve a problem which we could easily check.

Indeed, the general solution of y" + 2y' + y =0 is y = c,e %o

czte-t while a particular solution of y" + 2y' + y = et is

y = % et. Hence, the general solution of y" + 2y' + y = 0 is

y = cle_t - czte-t - % e (12)
Hence,

y' = —cie t 4 oy - o te™ + 7 et (13)

Using y(0) = y'(0) = 0 in (12) and (13) yields

0=c, +7

B S Hey wiky F %

so that

cy = -% and c, = -%,

whereupon (12) becomes

which agrees with (11).

$.:2,9.15
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2.9.7

a2 dy

L +23L +2y =2~
dx

2
x(d—g) + 2&’(%%) + 2X(y) = X(2) »
dx

AN

Lly") + 2X(y') + 2ZL(y) = 2X(1) =
Now
Z(y") = =-y*'(0) - sy(0) + 52§(s)

and

Xly') = -y(0) + sy(s).

Using (2) and (3) in (1), we obtain

v (0) - sy(0) + s%F(s) - 2y(0) + 2s7(s) + 2¥(s) = 2,

and since y(0) = 0 and y'(0) = 1, this becomes

-1+ (52 + 25 + 2)F(s) = 2.

Hence,

(s2 + 25 + 2)y(s) = % + 1
8 &+ 2

3 -

Therefore,

- +

y(s) = 5 = - 5

s(s® + 2s + 2)

Using partial fractions, we have

(1)

(2)

(3)

(4)

S.2.9.16
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2.9.7 continued

- + A + C

Y(s) i — 25 2 =§-+_§Bs__..._..__
s(s® + 2s + 2) s® + 28 + 2

From (5), we have that

A(s2 + 25 +2) +s(Bs +C) = s + 2.

Hence,
(A + B)s2 + (2A + C)s + 2A = s + 2.

Therefore,

Thus, from (5)

(5)

- +
Y(g}:%—_.ii._._l_
s° + 28 + 2
L _ s +1
T s 2 * (6)
(s + 1) + 1
Now we know that Z(1) = % and we also know that X(cos x) > B
s” + 1
Hence, by the shifting theorem,
Zle ® cos x] = § % % :
(s + 1) + 1
Consequently, (6) may be rewritten as
I P O
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2.9.7 continued

_ s + 1
(s + 1% +1

=f-1(%) _x-l[ s +1 ]

(s + )2 + 1

w |~

v (x) =-\’_1{

X
=1-e cos X.

2.9.8

y"-y' = e?t -+ (
Ly™ - Zly') = L2t »

Xly™ - Xy') = . (1) |

Then, since

Xly™ = s3§{s) - szy(O) - sy'(0) - y"(0) |
and
Xly"') = sy(s) - y(0),

(1) becomes

$3F(s) - sy (0) - sy’ (0) - y"(0) - s¥(s) + y(0) = z—=— (2)

But we are told that y(0) = y'(0) = y"(0) = 0, so (2) becomes

(s - 8)7(s) = s=

or

1
(s - 2) (s> - s)

y (s)

1
. e —nlse + D =0 (3)

502 .9.18
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2.9.8 continued
Use of partial fractions yields

D
== (4)

1 _A B
S

5le = 0ila ® Iis =3 * * *

&
s -1 s + 1

Rather than use undetermined coefficients etc., in (4) we may
"pick off" A, B, C, and D rather conveniently by multiplying both
sides of (4) by s, s - 1, s + 1, or s = 2. For example, multi-
plying both sides of (4) by a (assuming, of course, that s # 0),

we obtain

1 B B c D
(8-1)(s+1)(5—2)—A+s|:s-l+s+l+s-2]' (5)

Now, letting s = 0 in (5) [i.e., we take the limit of both sides
of (5) as s + 0 since (5) was derived under the assumption that
s # 0], we obtain

1
(0 -1)(0 + 1) (0 - 2)

= A

or
A=z
Similarly
CcC = -—=

so that from (3) and (4), we conclude that

5.2.9.19
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2.9.8 continued

y(s)

Therefore,

(e

y(t) = ¢

s.z .9 .20
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2.10.1

The unit step function, ua(t), is defined by

0, t<a
u (t) =

1, €2 a
Pictorially
ua(t)
------- = A
I
'
|
|
pbdtddt HI’IF”“"”H"I }t
a

ua(t) is the factor we use if we want g(t) "delayed" until

t = a. Namely, if we let
£(t) = u_ (B)g(t - a)

then f£(t) = 0, until t > a since for t < a, ua(t) = 0; and for
t > a, £(t) = g(t - a) since for t > a, ua(t) = 1. 1In summary,

f(t) = ua(t)q(t - a)

means

0 ¥E €< A
f(t) = !
g(t - a) if t > a

S.2.10.1
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2.10.1 continued

For example, if g(t) = sin t is delayed until t = 2, we would
represent this function as

f(t) = uz(t] sin(t - 2).

Pictorially,

y = uz(t) sin(t-2)

y = u,(t)sin(t - 2) is the curve y = sin t shifted to begin

rs

at t = 2, and is 0 prior to t > 2.

a. If f(v)

LE(r))

and since

Lie )

]

ua(tJ, then

oo
fe-
o

ua{t

st

) =

ua(t)dt

0 for t < a and 1 for t > a, we have that

a 0
f e St u_(t)at + f e‘Stua(t)dt
(o] a

$.2.10.2
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2.10.1 continued
Hence,

Llu_(£)] = %- e™2s

b. The result of (a) generalizes as follows
[ua(t}f(t - a)l] = f e-St u_(t)f(t - a)dt
0 a
-st -st
= fa e u_ (t)f(t - a)dt + ] e u_(t)f(t-a)dt
o a A a
= f e St £(t - a)at. (1)
a
Now, to put (1) in terms of the more familiar 3¥(f), we make the
change of variables x = t - a in the integral in (1) to obtain
iﬂ[ua(t)f(t -a)l = f ™" (x + a)f(x)dx
0
= f e %2 ¢7S¥g(x)ax
0
= g a8 f e 5% £(x)dx
0
= e %% A[f(t)] (2)
= e 25 F(s).
In other words, delaying f(t) until t = a yields a new function
whose transform is e 2° F(s).
c. To emphasize inverse transforms we write (2) in the form
X e @5 (s)] = u (DE(E - a). (3)
5.2.10.3
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2.10.1 continued

Thus,

e 51— )] = uyle)E(e = 3)
s + 4s + 5

where

gt = 50—+

=
(s + 2)" +1

]

EE(e-Zt sin t).

Hence,
£(t) = e 2tgin t;

so that

e-2(t -

P o BY o= Netnit = 3).

Thus, from (4) we conclude that
5E_l —E—E:EE—— ] = uy(t)e 2t = Jgin (& - 3)
S+4s+5J 3

Caution

Our recipes get a bit confusing if we are not careful.

For example,

Lete(t)] = E(s - a)

but

Llu ()E(t - a)] = e 38E(s).

The point is we must not confuse g3t f(t) in (5)
in (6). '

with e 2%F(s)

(4)

(5)

(6)

S.2.10.4
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2.10.1 continued

Note:
In addition to the fact that the unit step function gives us a
new application of computing inverse transforms, it should be

again pointed out that the unit step function occurs independently

of any application of the Laplace transform in the sense that
many physical situatioms require the time delay of a given signal.
For example, if the equation of the signal is y = f(t), but we
delay the start of the signal to the time t = to' then the new
equation of the signal becomes

0 £(t), t < &
u, (B)E(t) = °
o L £{t), £ > ¢t
) [e]
_ {o EZE,
£(t) &> €,
2.10.2

Very often in mathematics, whether or not the Laplace transform
is involved, we are called upon to deal with periodic functions.
This occurs, obviously, when we are dealing with the circular
functions; and it also occurs much more subtlely on the advanced
level in the sense that many important applications involve
trigonometric series (for example, Fourier series which are
discussed in Chapter 18 of the text and which we shall touch
upon in the next Block) rather than power series. For this
reason, an analysis of periodic functions is important in its
own right, but in the present exercise we limit our discussion
to an investigation of the Laplace transforms of such functions.

To capitalize on the fact that f(t) = f(t + p) for all t we

write

(xe]

f e St (p)at
(o]

XIE(t)]

§.2.10.5
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2.10.2 continued

(n+1)p

o up

(n+l)p
f e Ste(t)at. (1)

n= np

We now let t = x + np in (1) to obtain
[ S o
,' LUE(t)]

e-s(x+np)

I

f(x + np)dx
n=0 o

) P
Z 6 g f e 5% £(x + np)dx,
‘ n= (o]

‘ or since f(x + np) = f(x) [which is why we made the change of
variable t

x + np]l,

LlE(t)] =.2 (e7P5) 1 fp e % f£(x)dx. (2)
n= -

But for {u|< 1,

20

n _ 1
:E: il =

n=0

| and since p» 0, e P° < 1, so that

: = 1
| Z;(e Pt —— .
| n= 1l -e ps

Thus, from (2) we see that if £ is of exponential order and
periodic with period p > 0, then

P
f e Ste(e)at
(a]

[E(E)] = — a
1 - e ps

b. Let f(t) be periodic of period p = 2 where

1 if 0<t<1
£(t) =

0 £f 15 E<2

P _ P g
| =f e Ste(vyat +[ e Ste(tyat + ... + f e Str(tyat + ..

§.2.10.6
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2.10.2 continued

Then
P 2
f & 8t see)de = f e Stepyat = | e Steyar + [ eSte(p)at
o (o] (o] il
=0
1
=f e Stae
(o]
Jl
- .1 -st
S S
1= e
s -
Hence,
(L=e™
Li£(v)] = 2
1 =g
-S
=2
1 = o
_ 1 -¢e"
s(l - e—2s)
s(l = e %)(1L + e™®)
- ;
s(l + e 9)
8.2.10.7
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2.10.2 continued

Pictorially f is given by:

AY = £(t)

|
|
T

W = —— ——

-
L

[ e —
Nle === == =

2.10.3

In this exercise we try to show how the appearance of certain
expressions that arise in a particular study force us to investi-
gate certain aspects of a topic that we may not otherwise have
elected to study; and that when such a need arises we often must
draw on knowledge that was acquired previously in our study, but
which at the time might not have seemed too important. It is
this latter aspect that is very important in the learning pro-
cess since one often learns to appreciate a result when it is

used as means toward an end rather than as an end in itself.

The problem that occurs in this problem is that of finding the
Laplace transform of tf(t), once the Laplace transform of f(t)

is known. This problem would arise, in particular, if we were
studying linear equations with constant coefficients in the sense
that the previously described method of undetermined coefficients
requires that the right side of the equation have the form

tnf{t) for certain special choices of f.

a. One way of trying to compute L (t£(t)) once L (£(t)) is known

is to invoke the basic definition that
Lite(r)) =f e St tf(r)at _ (1)
0

and then try to express the right side of (1) in a way which

G OGS 5 E oE O Bh Ua e e

s.2.10.8
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2.10.3 continued

helps us get at 3 (f(t)). For example, we might try to integrate
by parts letting u = t and dv = e St (t)at; whence du = dt and

£ = f(s) = f e~ (¢) de.
0

However, if we remember that for suitably chosen functions
F(s,t) that

00

a_ _ 9F (s, t)
= ,I;F{S't]dt_j; —L-—as dt*

and that e STf(t)dt is of this type if F is of exponential
order, then

oo

a -st ~ j de”Ste () at]
ﬁ J(; =) f(t]dt = 3 5s

f -te Ste(¢)at
0

5 fe“s’c[tf(tndt
0

- L [tf(B)]. (2)

*The theorem states that if 3F(s,t)/ds is piecewise continuous

on a < s <b for each t and if
o0 (=21

fF(s,t)dt and f-g—th
0 o °F

both converge uniformly, the above stated result holds. In
particular, since ]F(t)[ < Me®t, etc. we may prove that

oo
j tPe % p(t) de
0

converges uniformly for s > a. All we are doing in our present
example is '"doing what comes naturally" but using this footnote
as a reminder that in improper integrals we cannot avoid a certain
amount of "nasty" theory to justify the validity of our results.

$.2.10.9
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2.10.3 continued

The left side of (2) may be written as

£(o = S0

so that from (2) we conclude that

— o F _ _di(s) _ _ alL(£(t))]
Litf(t)] = - F'(s) = = = - g (3)

Note:
We may now proceed inductively. For example,

%E J{;- e St te(v)at =j(;e"5tt2f(t}dt. (4)

Recalling from (2) that

f -e St te(e)at
0

is

df(s)
ds !

and observing that

f:e_“ t2f(e)at = YPre2e(e) 1,

we see that (4) may be rewritten as

2_
Hits(e)) = ﬂ.z(_‘él )
ds

This process may then be applied to
=]
f e St%¢ (v)at,
0

etc., since each time we differentiate with respect to s, a
factor of -t is introduced and we may conclude that for any

positive integer n,

ng n
Litee)) = (-n® LEE) o (qyn S XB
ds ds

S.2.10.10




aa =S AW oA O E P e O e

[ -

rFr1!

Solutions
Block 2: Ordinary Differential Equations
Unit 10: The Laplace Transform, Part 2

2.10.3 continued

b. We apply the result of part (a) toward the solution of the

equation

‘a% . @

t—-iz’-+a{-+ty=o (5)
dt

subject to the initial conditional y(0) = yo.*

Equation (5) is called the Bessel Equation of order 0 and the
solution which obeys the specific initial condition y(0) = 1
is denoted by JO(tJ and is called Bessel's function of the
first kind of order zero. Bessel equations arise in many
areas of applied mathematics.

At any rate, from (5) we conclude that
d’y . a
Lt L+ K+ oty =Ko,
dt
or, since &F is linear and ¥£(0) = 0, we have
a2 a
L L) + L&D + Ly = o. (6)
dt

From (3), with f£(t) = dzy(t)/dtz, we conclude that

2 o ia2 2
e CXO o da‘f[dd}sf{t)/dt 1. (7)
dt

and with f£(t) = y(t), (3) yields

__adywl _ _day(s) _ _ &y
Llty(e)] = - S=L=1 - - S8 - X, (8)

We may further simplify (7) by recalling that

2
i[d (t)] = -y'(0) - sy(0) + 52)7(5)

dt e

product of two functions of s

*Letting t = 0 in (5) yields dy/dt = 0. Hence y'(0) must equal
0 so that we have no choice in prescribing the value of
v'(0) other than to let it be 0.

S4:2,10:11
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2.10.3 continued
so that

a & [a%y () zat?]
ds

= -y(0) + 25§(s)+ 52 EZ%%L

-y(0) + 2sy(s) + s2 Q%E(_a)_ A

Hence, (7) becomes

2

Lt L4 1 = y(0) - 2s7(s) - s? WS
dt S

and since we are given that y(0) = Y, we may further conclude
that

2 -
da - 2 d
Lit E;¥-] =¥ F 2sy - s aﬁ-. (9)

Recalling next that

(G = -y(0) + s¥(s) = -y, + s% , (10)

we see from (8), (9), (10) that (6) may be rewritten as

- T w g B w s _ 9y _
yo 2sy s a5 yo + sy as 0

or
= &% = {1 % g%) lel=o.

Therefore,

g’i +_S§_=0

s (11)
ds 1l + 32

An integrating factor for (11) is
T sds

% ok 52
©

or

S.2.10,12
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2.10.3 continued

% In(1l + SZJ 5
e = V1l + s° ,

so that (11) may be written as

a( /1 + s y)
ds

Hence

§ 1, + 52 = c.

In other words

e = —SLe—u (12)

1l + 52

Note:

It is interesting to note that the result given in (12) does not
depend on the choice of M It can be shown (but we don't prove

it here) that if we require that y(0) = 1, so that y(t) = Jo(t),

then y(s) = 1/1 + s®. That is assuming that 3 1 (1/Y1 + s2 )= J_(t),
then;fpl{c/ Yl + s2) = cJ (t).* Thus, aside from any other
properties of Jo{t), it arises in the study of inverse transform
when we try to find a function whose Laplace transform is a

constant multiple of

8T 4.1

*Even if we didn't know that
-1 —_—
£ (1] A+ s I_(e),
we know from (12) thatdi(Jo(t) = clf V1 + s2 for some number ey |
Then given any number c(# 0), we may write it as cl(cfcl) so that
(12) yields

c

1
(———) = £ £ _(0); org H(—E

c —_—e
c c
i V1l + 82 3 !/1 = 82

constant multiple of Jo(t).

y(s) = ) =

S.2,10.13
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2.10.4

In Exercise 6.4.7 in Part 1 of our course we defined the Gamma
Function by

r'(x) = ftx-l e~ tdt. (1)
0

The Gamma Function arises in the study of the Laplace Transform
when we try to compute sftxnj. In particular, by definition

L") = [e‘sx x"dx. (2)

Comparing the integrals in (1) and (2), the substitution t =
sx seems to suggest itself (i.e., we compare the powers of e in
both integrals). This leads to

dx=£
s

and

n .- E n

X —(3)

£ x™

1
h
1]
ik
|
mlga

Le s
- —r11+—1- ftne_tdt. (3)
S 0

The integral in (3) is precisely TI'(n + 1). [Namely, simply let
x - 1=mn in (1).] Therefore,

L") = [ 1) , provided n > -1%, (4)

n+1
s

*#In part 1 we showed that

=]
g tx—le_tdt
converged only when x > 0. Hence, letting x - 1 = n implies

that x > 0 <+ n > -1.

5.2.10.14
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2.10.4 continued
In particular, if n is a whole number,T (n + 1) = n!; so that

ZL(x") = =R if n is a whole number. (5)
S

Equation (5) could have been derived without recourse to the

Gamma Function. The beauty of (4), however, lies in the fact

that it applies for all real values of n provided only that

n > -1. For this reason one often defines n! to mean TI(n + 1).

In this way n! is now defined for all real n > -1 and agrees

with the traditional definition of n! when n is a whole number.

2.10.5

a. We have by definition of T' that

% L
I‘(%) = f ¥ x 2 ax. (1)
0

We now make the change of variables defined by x = tz. Equation

(1) then becomes

0 2 i

f et () 2 a(t?
0
=2

fe-t 7L 2% ae
0

{++]
_t2
= 2 Jfle dt,
0

and since

e

2
Ufme L % V7T , we conclude from (2) that
0

r () =/m (3)

=

b. The fact that I'(n + 1) = n I'(n) means that we can compute
r(3f2), r(5/2), etc. in terms of I'(1/2). Thus,

- TR T S
I’('z—}—-é-I'(E}-E/'E

5.2.10.15
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2.10.5

NI

r(3)

continued
3
T(EJ

(& /m)

Nfw

3
7/

Quite in general, if one knows F(xo) for each x, such that

1 <%
- "o

2 < /7

T (v/7)

where 0

< 2, one can compute I'(x) for any x.

< 3, we have that

(V7 - 1) T( V7 - 1)

( V7 - 1) I( VT - 2)T( V7T = 2)]

(V7T -1(Y7-2)T(7-2),

/7 - 2 < 1.

For example, since

On the other hand, if 0 < x < 1, we may write I'(x + 1) =

in the

T (x)

= T(x + 1)

form

X

x I'(x)

Then, since 0 < x < 1, it follows that 1 < x + 1 < 2 so that

I'(x) =

where

r{xo)

X =x+l€[1;2]0

o

For this reason, when one refers to tables to find TI'(x), he

usually finds that the tables are computed only for 1 < x < 2.

From these values, he can find T (x) for any x > 0 by applying

the recurrance formula: T(x + 1) = x I'(x).
similar to tables of logarithms wherein one tabulates log x
for 1 < Xy < 10 and then computes log x by writing x =

where 1

2x < 10; whereupon log x = log Xy + e

X
(o}

In a way, this is

(o]
ao™

S.2.10.16
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2.10.5 continued

We include a short table of values for T'(x) for selected values

of x between 1.00 and 1.99, as well as a few examples which

show how to compute I'(x) from the table when x is
1 and 2. The results are finally summarized in a

not between

graph of T (x).

Table of Values for I'(x) = (x - 1)!
X .00 .03 .06 .09
1.0 1.0000 .9835 .9687 . 9555
vl .9514 .9399 .9298 .9209
.2 .9182 .9108 .9044 .8990
o3 .8975 .8934 .8902 .8879
.4 .8873 . 8860 . 8856 . 8859
.8862 .8876 .8896 .8924
.6 . 8935 .8972 .9017 .9068
aid .9086 .9147 .9214 .9288
.8 .9314 .9397 .9487 .9584
.9618 .9724 .9837 .9958
Example #1

To find T (3.73) we have

(3. 71) = (2+73) (1. T3y T(1.73)
= (2.73) (1.73) (.9147)
¥ 4,320

Example #2

To find T'(0.03) we use

I'(n + 1) = nI(n)

with n = 0.03.

This yields

'¢(1.03) = 0.03r(0.03),

S$.2.10.17
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2.10.5 continued

so from the table we conclude that

(1.03)

(0.03) 703

0.9835
0.03

32,78.

Example #3

Compute T (-1.07). Now we are in trouble! Namely, our definition
of T'(x) to be

f 51 "Eq
0

required that x > 0. Since x = =1.07, this condition,
obviously, is not fulfilled.

To get around this problem we use an argument similar to the
one which led us to define 0! to be equal to 1.

We say that we want the recurrence formula

_T(x + 1)

If{x + 1) =% (x); ory T(x) %

to hold even when x is negative. Thus,

r(-1.07) = E{%Eﬁgl)*, -
In turn
r(-0.07) = [=0.07 + 1] _ I(0.03) )

-0.07 - -0.07 2

Combining (4) and (5), we conclude that

*Notice that -1.07 means -(1 + .07) = -1 - .07. Hence
-1.07 + 1 = -.07. We should not confuse this with (-1).07 =
-1 + .07 in which case =-1.07 + 1 = +.07.

S.2.10.18
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2.10.5 continued

1 (0.03)

T-107) = = v =507 !

_ I'(0.03)
= 0.0749 ° (6)
From Example #2, T(0.03) = 32.78 so that (6) becomes
_ _ 32.78 w 7
(-1.07) = —0749 v 437.5 (7)

Looking at (7) we observe that I'(-1.07) is quite large. This
is not a quirk. Indeed, if x is a negative integer, we see that
the recurrance relation guarantees that (x) be + «. Namely,

_I{x + 1)
() m ===t
1 I(x + 2)
X x + 1

_ 1 '(x + 3)
Tox(x + 1) (x + 2)

and continuing in this way we eventually reach the stage where
if x is a negative integer we obtain a 0 factor in our denomina-
tor. 1In fact[x + (-x)] = 0. 1In other words, I'(x), even when
we use the recurrance formula, is not defined when x is a

negative integer.

Without belaboring this point further, the graph of the I'-function

is given by

S.2.10.19




Solutions
Block 2: Ordinary Differential Egquations
Unit 10: The Laplace Transform, Part 2

i a

2.10.5 continued

e — —

5

I-‘u}—-——‘—-- —_— -

|
| |
4 =3 =22 = 1 2 3 4 !
| | I |
' I I | 4-1
+-2
! I I b—3
- P-4
|

Graph of vy = T'(x) = (x - 1)!

2.10.6

Our aim in this exercise is two-fold. On the one hand, we want
to point out that

(X(£)1[K(g)] # Llfgl.

In other words, linearity applies to addition and "scalar

multiples" but not to products of two non-constant functions.

Secondly, we want to show how to compute h if we know that
h(s) = f(s)g(s) where f and g are known. Such a result would

be very helpful in certain problems involving inverse transforms.

Making use of dummy variables so that we may express the product

as a double integral we have:

L
L) -HAg) = f e %Y f(y)ay fe_sxg(x)dx
0 0

5.2.10.20
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2.10.6 continued

=Jf o8 (x+y) £(y) g(x)dydx. (1)
0 "0

Using a little hindsight, we sense that ultimately we want a
factor of the form e °" so that the proper form of a Laplace

-s (x+y)

transform will be present. Observing that e appears in

(1), we Ery the change of variables

u=x+y
v =y (2)

Now the limits of integration in (1) indicate thatwe are inte-

Il

grating over the entire first quadrant of the xy-plane. The
mapping (2) maps the first quadrant of the xy-plane into the
region of the uv-plane shown below:

JE’/ /

4
3

Namely, (2) may be rewritten as

u-v
v (3)

so that x = 0 implies u - v = 0 or u = v; and since y > 0, and

X
Y

y = v, we have that the positive y-axis (i.e., x = 0 and y > 0)

maps onto v = u, v > 0.

Similarly, y = 0, x > 0 » v =0, u > 0; so the positive x-axis

maps onto the positive u-axis.

Thus, in the uv-plane our limits of integration are given by

that for a fixed u, v varies from 0 to u; and u may be chosen

S$.2,10.21
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2.10.6 continued

from 0 to » . Moreover, from (3),

9 (u,v) Yo Y 0 1 -

Hence, (1) becomes

® au
f f e %" f(v)g(u - v)dv du
0 Y0

o u
[ L a B4 f(v)glu - v)dvldu

0

o u

= f e—-su(f f(v)g(u - v)dv)du
0 0

u
;ﬁf f(v)g(u - v)dv]. (4)
0

L)L (g

I

I

Equation (4) is called a convolution integral. More specifically,

given £ and g we define the convolution of f and g, written f*g
by

vl

f*g =f f(v)g(u - v)dv.
0

Then (4) says:

Lif*g]l = L(£)L(g) -

b. As usualy, we again pick a problem to which we already know the

answer. Namely, if

L
i(h) ol g

then
1 1
R
= i(et) -d(1)
=‘&((et -1).
S.2.10.22
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2.10.6 continued
Hence

hit) = e~ = 1.% (5)

Using convolution we have

_ 1
L) = g5

1 1
(=)

= (1) L(eb) .
— —

f(t) gl(t)

Hence, by convolution,

L(n) =L * &b

Hence,

h(u) = a" =]

which, as discussed in our last footnote, agrees with (5).

*Again, keep in mind that t is not necessary. We could, for
example, have written &£ (h) =% (eX) - =£(1); whence h(x)= e¥X - 1,
This is the same as (5); namely, h([ ]) = el 1 - 1. This 1s

why we usually write 3¥(h) rather than = (h(t)).

$.2.10.23
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2.10.7

a. £%g =£ £(v)g(u - v)av. (1)
-0
Now let w = u - v. Then

f *g =‘/ﬂ f(u - w)g(w) (- dw)
u

f(u - w)g(w)adw. (2)

é\’:

Since w is a dummy variable, we may replace it by v in (2) to
obtain

u
f * g =_L. f(u - v)g(v)dv
u
=i/. g(v)f(u - v)dv
G

=g * f.

153
b. £ * (g + h) ff(v)[g+h](u-v}dv
0

u
./.f(V)[g(u - v) + h(u - v)]dv
0
u
=i/-[f(v)g(u -v) + £f(v)h(u - v)ldv
0
u u
=f f(v)g(u - v)dv +f f(v)h(u - v)dv
0 0
= (£ *g) + (£ *Xk).
It may also be shown that convolution is associative. That is,
(E *g) * h=%&* (g*.h),

but we elect not to prove any further properties of the convo-
lution integral since such proofs are peripheral to our immediate

needs.
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2.10.8

A

b.

Given that

Lih) = g

(s - 1) (s® + 1)

we see from our tables (or otherwise) that

i[cos t) = TE.—

and

Leh = 25 .

We then rewrite (1) as

Zn) = (——) (52—
s-1 s" +1

‘nﬂet) Z (cos t)

Zie® * cos t)

t
f e* cos(t - x)dx.
0

Using tables, or else integrating by parts twice,

t

Z.(h) =!2'-{sint+e - cos t).

Given that

1
(h) = .- ——
Jt (52 - 1)2

we write

Z(h)

1 1
[ 11
52 L 52 + 1

Z(sin t) L(sin t)

]

Il

= #sin t * sin t).

(1)

(2)

(2) becomes

(3)

$.2.10.25
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2.10.8 continued
Hence,

t
L (h) -—-;K[f sin x sin(t - x)dx]. (4)
0

Using the fact that sin A sin B = % [cos(A - B)], we see (4)

may be rewritten as

] od
Z (h) =i_[%f [cos (2x - t) - cos t]dx].
0

Hence,
T £
h(t) = 5 [5 sin (2x - t) - x cos t
x=0
I & s s
=3 [5 sin t t cos t 5 sin (-t) + 0]
B O S o
== [2 sin t t cos t + 7 sin t]
= $sin t - >t cos t, (5)
c. e B e L el
(8 = 1)} (8™ 4 1} s -1 s“+1
= 2 (e%) Hsin t)
=$f,(et*sin t)
-_~i[ ftexsin (t - x)dx]
0
=it - si &
-;f[z(e sin t cos t)]
=£L(h(t)).
Hence,
h(t) = % (et - sin t - cos t). (6)
s s ) 2
d. = ) ( )
82 + 12 s?+1 s?+1
=L (cos t) Z(sin t)
S$.2.10.26
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2.10.8 continued

= Ef(cos t * gin t)

t
= ;ﬁ[-]— cos x sin(t - x)dx]
0
p
= i[ f sin x cos(t - x)dx]. (7)
0

Since sin A cos B = %[sin(A + B) + sin(A - B)], (7) becomes

; o
5 5 e [%f [sin t + sin (2x - t)]dx]
(S +1) 0 £
i . 1
=35 [x sin t - 5 cos (2x - t)] }
x=0
_ il ; -1 L
—i{z [t sin t - 5 cos t + 5 cos t]}
=“£-{%tsin t}
= £(h(t)).
Hence,
-1 :
h(t) = 5 t sin t. (8)

Given the system

dt -
(9)
%% + x = sin t

together with the initial condition x(0) = 1 and y(0) = 0; we
take the Laplace transform of both sides of each equation in (9)
to obtain

LE) - =2EH
ifg{-) + £(x) = LAsin t) \

or

$.2.10.27
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2.10.8 continued

- - 1
sx(s) - x(0) - y(s) = ——

5=l (10)
s7(s) - y(0) + X(s) = —51—-—’

g +F .1

Using our initial conditions and abbreviating x(s) and y(s) by x
and § respectively, we may rewrite (10) as

= _=_ _1
i (11)
X + sy = 21
s“ + 1 l

To eliminate § from (11) we may multiply the top equation by
s and then add the two equations. Thus:

D -
3K = @Y W et B

§+5;,=_2_.L_

s” + 1

2 = S 1

(8™ & L)X & = & E my——
= L 8 ¥ 1
Hence:
=5 S s 1
X = + + . (12)
(s -1)(e? +1) s2+1 (8% + 1)%
Then using (12) in the top equation of (11) we obtain
y = =2 e Tovers deces emmen (13)
(s = 1) s + 1) s+ 1 (s + 1)

We may now use the results of (a) and (b) to compute x(t) from
(12); and the result of (c¢) and (d) to compute y(t) from (13).
Namely, from (12) we have

t

x(t) - cos t) + cos t + (% sin t - % t cos t)

M= N

(sin t + e

(2 sin t + et + cos t - t cos t); (14)

G GE e
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2.10.8 continued

(14)
and from (13)
y(t) = - % (et - sin t - cos t) - sin t + % t sin t
= % (-et - sin t + cos t + t sin t). (15)

As a check we have from (14) and (15) that

%% = %(2 cos t + et- sin t + t sin t - cos t)
1 t A r
-5 (cos £t + e - sin t + t sin t)
and
%% = % {-et - cos t - sin t + sin t + t cos t)
= % (—et - cos t+ t cos t).
Thus,
ag . . I £ : kg &
3t y = 2(cos t + e sin t + t sin t) 2{ e sin t
+ cos t + t sin t)
=3
=: e
and
%% + x = % (—et - cos t + t cos t) + %(2 sin t + et + cos t
- t cos t)
= sin t.

Moreover, the initial conditions are also obeyed since, from
(14),

x(0) =3 (0+14+1-0 =1

§.2.10.29
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2.10.8 continued

and from (15)

y(0) = % -1-0+1+0) =0.
As a final note on this exercise, observe that the check of our

solution in (e) is part of the solution. Namely, we have shown

that if the system has a solution, subject to the given initial
conditions, then it must be the one given by equations (14) and
(15). But until these equations are checked we do not know
whether a solution exists.

The key caution in using Laplace transforms to solve simultaneous

systems of linear equations is that while the method will yield
the correct solution if it exists, it will yield an incorrect
result if no correct result exists (and this happens when the
presented initial conditions cannot be satisfied). Thus, in
doubtful cases, one should always check that the solution
obtained by the transform method obeys the given initial

conditions.

For example, use of the transform method to solve the system

dx

g&ry=0

dzx dy t

?+dt+y=e

subject to the initial conditions x(0) = 1, x'(0) = 0, y(0) = 0,
yields:

sx +y =1

2= - _ 1
s'x + (s + 1) y =s + Tr=—r
Hence,

-_3_ 1
*=3 s -1
- _ 1

&R e ST L

from which we conclude that

5.2.10.30

I & & =D B B Eh e

G A & B s



Solutions
Block 2: Ordinary Differential Equations
Unit 10: The Laplace Transform, Part 2

IR Fa S .

Bl E e

Il N Th FEm B Pl e

E E Bm @S .

2.10.8 continued

X =2 - et
p

y=e

Yet this cannot be the solution since it would imply that

y(0) = e® = 1 rather than 0.

What is true is that the general solution of the given system is

=
X=c-e
— i (16)
so that only the initial value of x is arbitrary. That is,
(16) implies that x'(0) = -e® = -1 and y(0) = 1. As a result,

we may arbitrarily prescribe x(0) but unless we insist that

y(0) = 1 and x'(0) = -1, the given system has no solution.

Based on the results of the exercises in this Unit together with
appropriate applications of convolution,our table of Laplace
transforms, given after the solution of Exercise 7.9.3, may be
supplemented to include:

Function Trans form
(12) u_(t)£(t - a) e % E(s)
£
(13) ,g f(t - u)g(u)du =
t —_— —
£(s)g(s)
t
v/-f(u)g(t - u)du
0
1 -bt -at s
8 =g e~ = me =) s+ a) (s ¥ b
(15) t sin at > 2a52 > [= = g— & (sin at)]
(s® + a“) S
2 2
(16) t cos at g - ; >
(s® + a%)
; ; 2a25
(17) (sin at) (sinh at) e
' s  + 4a
(18) * @ s -1 Lo+ 1) [ - D ifnis an
integer]
etc.
5.2.10.31
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1. (a) Separating variables, we have that
%} = 2x dx (1)

provided v # 0.

Integrating (1) we have

enly| = xz + C1

or

Il
0]

|yl

= % @ ¥, (2)

C
Since Cl is an arbitrary constant, e 1 is an arbitrary positive

constant. Hence, from (2) we conclude that

2
|yl = Czex » where C, > 0.

y=2Cex. (3)

Letting C3 = tcz, we conclude from (3) that

2
y = C3ex » where C, # 0. (4)

So far, the derivation of (4) required that y # 0. If y = 0, we

see that (4) is satisfied with C
. dy _ .

tion of 3% = 2xy is given by

3 = 0. Hence, the general solu-

S.2.Q.1
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1. continued

y=Ce (5)
where C is an arbitrary (real) constant.

Note

If we let f(x,y) = 2xy, then both fxauﬂ fY are continuous. There-
fore, by the fundamental theorem, one and only curve passes through
a given point (xo.yo) and satisfies g% = 2xy. This curve may be
found from (5) by letting y = y_ and x = X That is,

o
2
*o
Yo Ce
or
C=y_ e .

Therefore,

2
¥ =N

is the only curve which satisfies %& = 2xy and passes through
(xo,yo). It is in this sense that (5) represents the general solu-
tion of g% = 2xy. In other words, there is one and only one solu-

tion which passes through a given point, and this solution is a
member of the family y = C e* .

(b) We observe that the equation is linear and write it in the
form

Y <oxy = 8% . (6)

Letting P(x) = -2x, we see that

5.2.Q.2
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1. continued

JJP(x)dx _ J-2x dx

=X

2
so that e * is an integrating factor of (6).

2
Multiplying both sides of (6) by e ¥, we obtain

2 2 2 2
e * %% - 2xy e * =e* & =1.

We recognize the left side of (7) to be
2*

d -X

£l ).

so that (7) becomes

2
2(re) -,

Integrating (8) yields

vy e =x + C,
or:

y = e* (x +0).

(7)

(8)

(9)

*Recall that whenever we use this technique, g Fix)dx

grating factor of %ﬁ + p(x)y = f(x); and that when we multiply

both sides of this equation by EIP(x)dx’ the left side becomes
4 fP(x)dx)
3= \Y e 5

is an inte-

5.2.Q.3
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(c) The fact that not both x and y = 0, allows us to invoke the
fundamental theorem to conclude that the equation does indeed have

a general solution.

If we divide numerator and denominator of the right side of the

equation by x2 (by yz if x = 0), we obtain
2(L
X - (& . (10)
X y 2
1+(x)

%% = v + — X. (11)

Replacing %% in (10) by its value in (11) and % by v, we obtain

from (10) that

% ¥ ity
1 +v
or
dv 2v
R = B =
dx 1+ v2
3
& E;V_z_ (12)
1l + v

Separating variables in (12) we obtain

1+v2 _ax
X
= oxF
or
dx _ 1+ v2

x vad +Fwva-wv

dv. (13)

$.2.0.4
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1. continued

Using partial fractions, we may rewrite (13) as

dx _ 1 1
] =( e + i v)dv. (14)

<=
1

[By way of review, the use of partial fractions requires that we
2
. . 1 <t ar = A B Cc
look at the identity T EV "9 - v Yyt =9 We

solve for A by multiplying both sides of the identity by v and
letting v = 0; for B by multiplying both sides of the identity by
1 + v and letting v = -1; and for C by multiplying both sides of
the identity by 1 - v and letting v = 1.]

Integrating (14) we see that

in|x| = tn|v| - R,nll + v| - n|l - v| + Cl. (15)

Then, in order to utilize logarithmic properties to simplify (15),
we write C; as 2n|C|, where C is any non-zero constant (i.e. &n x
is defined only if x > 0, and as x ranges over the positive reals,

¢n X ranges over all the reals). We then obtain

¢n|x| = &n|v| - #n|l + v| - 2n|1l - v| + 2n]C]|

= 4n Cv

- (L +v)(1L -wv)|"'
whence
|| X

a+wvl-wv|"
or
x = L"z (16)
l =-v

Since C is already an arbitrary non-zero constant (positive or
negative) the ambiguous sign [where we have written our arbitrary
constant as &n C (C > 0) rather than as C to facilitate our loga-
rithmic form of computation used in obtaining (15)].

S.2.0.5
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From (15) we conclude that

x=—=> (c#0),
lL=w

and since v = %, we obtain

'8
cx
X = 3
b4
or
- B
X - Y
or
]_=__.__2L
2 2
X -Y
or

x —Y2=cy,0?‘0-

If ¢ = 0, then (19) reduces to

y = X
in which case

dy _
e +1

and

(17)

5.2.0.6
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1. continued

2xy _ . _¥2X s = +1 (if x # 0),

L agE EEy

so that (19) remains valid even if ¢ = 0. Thus, our solution is

the family (of hyperbolas)

2 - y? = oy,

(a) Given the l-parameter family f(x,y,c) = 0, we find the enve-

lope, if one exists, by solving the simultaneous system
f(x,y,c) =0

fc(x,y,c) =0

In this example, the fact that our family is

y =¢ex - 2c2

means that

f(x,y,c) =y - cx + 202,

and hence
fc{x,y,c) = -x + 4dc.
Therefore, f_(x,y,c) = 0 > c = %.

Letting ¢ = % in (2), we obtain

or

(1)

(2)

5.2.Q.7
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2
y = & (3)
x2 2
Thus, y = 5 is the envelope of the family of lines, y = cx - 2c”.
(b) Fromy = cx - 2c:2,r it follows that
Y «
ax - C-
Replacing ¢ by g% in (2), we obtain
dy _ ,(dv)?
y=Xax- 2(dx) : @

[Recall that an equation of the type (4) is called a Clairant's
equation.]

By its construction, we know that (4) is satisfied by the family

y = cx - 2c2. A trivial check shows that y = %r also satisfies
(4). Namely,
2
- X, My X
Y=7§ 7a& " 1
Hence,

x - (3 -

|
%
%
I
(28]
—
<P
—
i
o %
I
<

(c) Notice that this equation is precisely the same as equation
(4).

In order to apply our uniqueness of solution criterion, we would
want to rewrite (4) in the form g§ = g(x,y). To do this, we re-

write (4) as

§.2.0.8
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2. continued

2
2(5%) -

and use the quadratic formula to conclude

»

dy -
3x +y=0

That is,

d X + x2 - 8y

<= T (5)
or

d X - x2 - 8y

Eﬁ‘ 2 ¢ (5")

For either (5) or (5') we see that the equations have no (real)
solution if x2 - 8y <0, i.e. if

2
X
Yy > g

2
If we let g(x,y) = x & }; BY, we see that g(x,y) is continuous

if x2 - 8y 2 0; but g_(x,y) exists only if x2 - 8y>0 (i.e. when
we compute gy(x,y), xz - 8y occurs in the denominator and this

means that x2 - 8y must not equal zero). Thus, either (5) or (5')
admit a general solution if and only if

2
X
y < g

5.2.0.9
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Pictorially,
(X i) 2
. =
Y=g
@ 1t (xo,yo} is
abovezthe parabola
y = %r, our equa-
(x fyo) tion has no
- : A . — solutions.
Q) 1f (x,,y,) is on the ®@ 1f (x,,y,) is below the parabola,
parabola, then there are there are two members of (2) which
two solutions, one of satisfy the equation. One solution is
which is the parabola a solution of (5), and the other is a
itself and the other is solution of (5').
a member of (2).
Applying this to the present exercise, we have that
X x2
(i) Since (4,2) implies y = 5 (i.e. vy = 2 and o= 2) , we have
2

that equation (4) is satisfied both by the parabola y = % and the
member of (2) in which ¢ is determined by

2 = 4c - 202
or

c=1

That is,

y =x -2

is the other solution.

2 2

(ii) With x = 4 and y = 3, we have that %r = 2, so that y > %r.
2

Consequently, our point is above the parabola y = %r, and, as a

result, we have no solutions in this case.

5.2
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2. continued

2 2
(iii) Now we have that y = 0 and B = 2, so that y < X_. We now
8

have two solutions; one which satisfies (5) and the other (5').
In particular, if we let y = 0 and x = 4 in (2), we obtain
0 = 4c - 2¢2

so that ¢ = 0 or ¢ = 2.

In other words, our solutions are the lines
y = 0 (the x-axis)

and

y = 2x - 8,

[With reference to (5) and (5') notice that x = 4, y = 0 imply
that xz - 8y = 16. Hence,

+
) T 2

while

X - /xz =By 4=4 0
4 4 oo

That is, vy = 0 is a solution of (5') and y = 2x - 8 is a solution
of (5).]

X
, we see that

Letting y = e
y" + dy' - 21y = 0 (1)
implies that

% + ar - 21 = o0,

so that

5.2.0.11
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(r + 7)(x - 3) =0.
Hence, r = =7 or r = 3; whereupon the general solution of (1) is

-Tx 3x (2)

(a) As a trial solution of

y" + 4y' - 21y = e (3)
we try
yp = Ae™. (4)

This leads to

and putting these results into (3) yields

X X

ae® + 42e* - 212e" = e

or

-16ae* = &*.

Therefore,
-16A = 1

or

NN |
A = 16"
Using this value of A in (4), we see that a particular solution of

(3) is

S.2.0.12
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3. continued

vy = --1-15 o*. (5)

Using (2) and (5) we have that the general solution of (2) is
given by

Y=Yh+yp

or

= -7x 3x _ 1 x
Yy = cye + cye i€ © -

(b) Since the set of linearly independent derivatives of sin x
contains only sin x and cos x, we try for a particular solution of

y" + 4y' - 21y = sin x (6)
in the form

Yp = A sin x + B cos X. (7)
This leads to

Yo' = A cos X - B sin x

and

Yo -A sin x - B cos X,

Putting these results into (6) yields

(=A sin x - B cos x) + 4(A cos X = B sin x) - 21(A sin x + B cos x)
= sin X

or

(-22A - 4B)sin x + (4A - 22B)cos x = 1 sin x + 0 cos x.

5.2.0.13
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Hence,

-22A - 4B =1

4A - 22B = 0
Solving (8) yields

11

~350 and B =

~ !
A= 125"

so that (6) yields

g g o gl
Yp = ~35p Sin x - 155 cos x.

Combining (2) and (9) yields the result that

= -7x 3x _ 11 s
y = cqe + c,e 350 sin x 155 COs X

is the general solution of (6).

(c) From (5) and (9), we know that

1 ok _
L(-Ee)—e
and

y 5 i o
L( 350 Sin x 155 COs x) = sin x.

Hence,

3 L(—%E ex] = 3%

(8)

(9)

and . (10)
11 ; 1 _ ;
5 L"iﬁﬁ sin x - 755 cos X) = 5 sin x
o
S$.2.0.14
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By linearity

11

'2—5'6 cos X) =

sin x -

1. % 1
3 L(-Tg e”) + 5 L(- 155

L(“f% &) # L(—%% sin x - f% cos x ) =

cos X).

L{~f% e* - %% sin x - f%

Hence, from (10) we conclude that

X 11

X :
- 50 3" + 5 sin X.

I

L(-f% e sin x - f% cos Xx)

In other words,

= S S e
¥, = =5z e 50 Sin X - 55 cos x (11)

is a particular solution of
y" + 4y' - 21y = 3¢* + 5 sin x. (12)

Therefore, the general solution of (12), from (2) and (11) is

- - -1 o -1
y = cle o cze 16 e 50 sin X 35 COs X.

(d) The key point here is that we cannot obtain a trial solution
from Yp = Ae3x since e3x is a solution of the reduced equation (1).

-7x 3x
e 4

Since xe3x is not a solution of (1) [since {e ; xe3x} is a

linearly independent set], we may look for a trial solution of

3x

y" + 4y' - 21y = e (13)
in the form
yp = Axe X, ' (14)

5.2.0.15
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From (14) we have

yT' = 3Axe3x + AeBx,

while

3x 3x + 3x

Yo' = 9Axe + 3Ae 3he

= 9axe3* + gae’%,

Putting these results into (13) yields

3x 3x 3x 3x

+ 4(32xe>¥ + ae ¥) - 21axe’¥

9Axe + 6Ae

or

108e3% = 3%,

Hence,
10A =1
or

1

5% 35

From (14) we thus conclude that

L ye3%

Yo T 10

is a particular solution of (13).

Again, using (2) and (15), we conclude that

is the general solution of (13).

(15)

5.2.0.16
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"X
4, Since T does not have a finite set of linearly independent

derivatives, we must use variation of parameters in this problem.

We begin by finding the general solution of the reduced equation,

y" + 2y +y =0,

Letting y = erx' we see that

2+ 2+ 1=0
or

(r +1)2 = o.

Thus, our only (repeated) root is r = -1. Accordingly,

is the general solution of y" + 2y' + y = 0.

To use variation of parameters, we have that
—x —
y = 91(XJe + gz(x)xe N

is a particular solution of

=X
Y' 42y by =

where
ql'(X)ultx) + 92'{x)u2(x) =0

gl'(x}ul'(x) + gz'(x)uz{x) = f(x)

and

-X
1+ %

uy (x) = e %, u, (x)

xe X, and f(x) =

(1)

(2)

(3)

(4)

(5)

$.2.0.17
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From (5)

u, " (x) = -e X, u,' (x) = & e

so that (4) becomes

gl'(x)e_x + gz'(x)xe_x =0

=X
=X e
] —

—g (e 4 gyt () [e7F - xe™F] = 2 —

Adding the two equations in (6) we obtain

=X
e

—x__
gz'(x)e IR B

or

%' ®) = 5%

Using (7) in the first equation of (6) we obtain:

=X
Xe

T+x_ %

gl'(x)e-x +

so that

6V =g L by

Integrating (7) and (8) yields

-x + n|l + x|

gl(x)

en|l + x|

QZ(X)

(6)

(7)

(8)

(9)

and we have omitted constants of integration in (9) since we seek

but one particular solution.

S.2.0.18
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4, continued

At any rate, replacing gl(x) and gz(x) in (2) by their values in
(9) yields that

= (-x + 2n|1 + x|)e™® + xe” ™ 2n|1 + x| (10)
is a particular solution of (3).

From (10) and (1) we have that

y = cle-x 4 czxe_x + e X(-x + 2n|l + x| + x 2n|1l + x|) (11)

is the general solution of (3).

Note
Equation (11) may be regrouped in the form

-X

_ _ -X
y = cye + (c2 1) xe

N S x)&n|l + x|,

and since c, - 1=oc, is also arbitrary if c, is, we may write
(11) as

y = cle_x + (:Elxe"x +e X(1 + x)2n|l + x

Since the leading coefficient is 1 and the other coefficients
(-3x and -3) are analytic, the general solution of

o Y = 39 B (1)

can be found by the series technique.

We let
(=<1

_ n

¥y = :E: an*
n=0

from which we obtain
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n=1

and
0

gy o= 2 n{n-l)anxn_z.
n=2

Putting these results into (1) yields

_ n-2 _ Z: n-1 _ E n _
:E: n(n l)anx 3x na x 3 a x' = 0
n=2 n=1 n=0
or
a0 3 g 3 s
:E: n(n 1)anx + 3nanx + 3anx = 0 (2)
n=2 n=1 n=0

We make the exponent n in each of the three sums on the left side
of (2) by rewriting

Z n(n-1) anxn-2

n=
as

n
:E: (n+2){n+1)an+2x
n=0

(i.e. we replace n by n + 2 everywhere within the summation and
adjust for this by lowering the index of summation from n = 2 to
n=0).
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5. continued

Equation (2) then becomes

o o

n n n _
Z {n+2)(n+1)an+2x +Z 3nanx +E Banx = 0. (3)

n=0 =1 n=0

We finally "adjust" (3) by "splitting off" the first term in both
the first and third summations on the left side of (3). This

gives us a form in which each summation begins with n = 1.

In other words, we have:

Il

(0+2) (0+l)a0+2x0 - Z (n+2) (n+1)an+2xn

n
:E: (n+2)(n+l)an+2x
n=0 n=1

o0

- n
& 2a2 + z (n+2) (n+1)an+2x
n=1
and
[=.=] [+ <]
E -3a x" = -3a, + E -3a xn.
n 0 n
n=0 n=1

Hence, (3) becomes

oo

==
2 : n z : n
262 + (n+2)(n+l)an+2x + 3nanx - 3a0 -
n=1 n=1

o
1 8
]

|

w

o

»

=

I

o

or

(2a, - 3a,) + D [(n+2) (n+1)a_,, - 3na_ - 3a_lx = 0.* (4)
n=1

*The validity of manipulating the summations in obtaining the left
side of (4) hinges on the fact that we know there is a uniformly
convergent power series solution, etc.
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From (4), using the fact that each coefficient on the left side
must be 0 if the series is identically zero, we conclude that

2a2 - 3a, =0 (5)
and that for each n 2 1

(n+2)(n+1)an+ - 3na_ - 3a_ =0

2 n n
or
3(n+l)a
a = . (6)
n+2 m+2) (n+1) *

We now pick a, and a; at random, from which all other an's are
then uniquely determined. Namely, from (5)

32"’

N w

29

and from (6)

3(2)al

A4y T FIE T M

3(3)32

_ -3 =3 3 - 2
a, =@y " 71227 (53 =73,
. T .
5 = T5(2) e Tl
LT W I R
38 < T6(5) 3T 28 16 %0
3(6)a
o 5 - 3 =3 3 =
a8 = FEr —73% =7 (523 =35 2,/ etc.

Therefore,
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_ E:: n _ 2 3 4
y = anx = a0 + alx * azx + a3x + a4x F e

o+ agxd + Lat 4 2 aga® 7

9 6
8 20 5 3% * 1§ %%

3
+alx+5a

9
3 0 t 35 X%

3.2 9 4 9
ao (1 + E’X + -a—x + —---X16

6 + el * al(x + x3+§-x5+—9-x7+ AT [

5 35

Our initial conditions tell us that y = 1 when x = 0, so that (7)
becomes

1= ao(l) + al(O).

Hence,

! (8)

Also from (7)

y' = a (0 + 3x + 2x3 4+ ...) +a 1+ 3x% 4 3kt 4254 .0 (9)
0 2 1 5
and since we are given that y' = 0 when x = 0, we conclude from

(9) that
0= ao(o 0 wee FIO F ou) #F al(l +.00 # 0 F B e F O F bl
or

= 0. (10)

Using the results (8) and (10) in (7) we have that:

y =1+ éxz + 2x4 + jlxﬁ

2 8 i6n T e w

S.2.0.23
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Note

While it may not have seemed too obvious, we chose an example
which could have been without series. Namely,

"

y" - 3xy' - 3y = (y' - 3xy)'.

Hence, equation (1) may be written as
(y' - 3xy)' =0

or

y' = 3xy = Cq- (11)

An integrating factor of (11) is

3
ef—~3xdx 2 i 2

That is, we may rewrite (11) as

_ %xz i g_xz
e (y' = 3xy) = c,e

or

2
or
%xz _%xz %xz
y = cje fe dx + c,e s (12)
S.2.0.24
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5. continued

From (12) we obtain

W Wk

y' = 013xe fe dx + c,e e + 3x c,e

=: 3% c,e fe dx + ¢y + 3x c,e § (13)
Since y' = 0 when x = 0, we conclude from (13) that
c, = 0
whence (12) becomes

%x2

y = cye” . (14)

The point is that the previously-found solution turns out to be

3.2
=X
the series representation of 32 . Thus, in this example, we can
see that not only is our infinite series "meaningful" but also
that it has the more "concrete" form y = e 5
§ dx dzx
Letting x' = =+ and x" = , we have from
dt 4 2
C i3
x" + 2x' + 5x = 8 sin t + 4 cos t (1)
that
2Ax" + 2x' + 5x) = X(8 sin t + 4 cos t). (2)
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By linearity, (2) becomes

X(x") + 2X(x') +5 X(x) = 8 L(sin t) + 4 XLlcos t).

Now :

i

X (sin t) 7

Xl(cos t) 5 .
s” + 1

]

X(x') = s XAx) - x(0)

X£(x") = s Xlx) - s x(0) - x'(0)

L}

(3)

(4)

(5)

(6)

(7)

Since our initial conditions are x(0) = 1 and x'(0) = 3, equations

(6) and (7) become

Llx') =s(x) -1
and
X(x") = s X(x) - s - 3.

Substituting (4), (5), (6'), and (7') into (3) yields

(6")

(7%)

sZ2 fx) - s -3+ 25 F(x) - 2+ 5F(x) = 5 8 & 245
s + 1 s + 1
or
(32+25+5)2‘{X)=-8—-2:-£+s+5
s +1
_ s3 + 55 + 55 + 13
32 + 1
Hence,
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6. continued

3 2

(52 # 28 + 5) (&> +. 1)

or by using partial fractions

x(x)_29+3 +22
s“ + 2s + 5 s + 1

|

s + 3 2
(s + 1)2 + 4 s“ + 1

We notice that the tables have expressions of the form

s + a
(s + a)2 + b

a
(s + a)2 + b

5 and 5

(8)

More generally, we notice that if f(s) is in the tables then

f(s + a) is the Laplace transform of e-atf(t). In this context,

for example, since X(cos 2t) = —Eji——, it follows that

8" 4 4

f(e-t cos 2t) = s+ 1 3

(s + 1)2 + 4

With this in mind, we rewrite (8) as

L(x) = +21 + 22 + 2
(s + 1)° + 4 (s + 1)° + 4 s + 1

= et 2 2| —
(g8: 4 L) + 4 (s + 1)™ + 2 s+ 1

Il

£t cos 2t) + 27t sin 2¢) + 2 X(sin t).
By linearity, (9) may be rewritten as

E

X(x) = Xle t cos 2t + e F sin 2t + 2 sin t).

(9)

(10)

Finally, since A is 1-1 (Lerch's Theorem), we conclude from (10)

that

S.2.0.27




Solutions _
Block 2: Ordinary Differential Equations
Quiz

6. continued

=~k

x=¢e % cos 26 +e b

sin 2t + 2 sin t.
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