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Solutions
Block 2: Ordinary Differential Equations

Unit 8: The Use of Power Series

2.8.1(L)

n

Since two of the three summations involve x and only one involves

¥ 1 it seems logical to "jack up" the index in -1 by 1.
That is, we replace n by n + 1 inside the I-sign and lower the

starting point of the summation by 1. We obtain

Wk
=]
o
=]
"
7
=
]

2: (n + 1Jan+lxn,

n=1 n=0

oo oo

(=]
2; nan:\in = z: anxn
n=1 n= n=0

[++]

=] [+<]
n n n
Z (n + l)an_l_lx - I;nan:h: + nz=:0anx . (2)

n=0

™
o
:’PJ
%
=}
1
=
1

Il

We then "split off" the first term in each of the summation
in (2) which begin with n = 0 (in this way, each summation
begins with n = 1). We therefore rewrite (2) as:

oo oo

o0
n n n
[al + Z (n + 1)an+lx ] - Zl na x + [a(_J + Z_L a x ]
n=1 n= n=

n n n
a, + a; + :E: [(n + l)an+lx - na x + an]x

n=1
=a +ap+ !;l [(n# a . 5= (0= 1)an]xn. (3)
Note:

Especially for those who may still be "edgy" about extensive
use of the I -notation, it may be worthwhile to show the equi-
valence of (1) and (3) by long hand techniques. In this way,
one does not review what we've done without recourse to the

£ -notation, and one may also learn to appreciate better the

compactness of the I -notation.

To begin with, (1) may be expanded as:

S.2.8.1
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2.8.1(L) continued

3

2
(al + 2a2x + 3a3x + 4a4x + o)

2 3
- a;x + 2a2x + 3a3x + s

2
+[ao + a.x + asx + asx )

1

2 3

{ao+ al) + 2a,x +(3a3- ay)x” +(4a,- 2a3)x7+ ...
and this agrees with (3) since the expansion of (3) yields
(a+ a;) + [(2a,- 0aj)x + (3as- a,)x> + (4a,- 2a;)x+ ...]

o 1 2 3 3 2 4 3 Bt
equals
(a_ + a,) + 2a,x + (3ay- a )x2 + (4a, - 2a )x3 +

o 1 2 3 2 4 3 L
It should also be noted that in either approach, we used the

idea of absolute convergence to justify our taking the liberty
of re-arranging and combining terms in the way we did.

b. Replacing (1) by (3), we see that
o oo (]
Z nanxn_l - 2 nanxn - Z anxn =0 (4)
n=1 n=1 n=0
implies that
L= 2]
n:
(3 + ) + 24 [0+ Dag,, - (n = Daglx= 0. (5)
Now, since the only way that two convergent power series can be
identical is for their coefficients to be equal term-by-term and
since
==
0 5'2: Oxn,
n=0
we see from (5) that
= 6
aj+a; =0 (6)
and
552482
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2.8.1(L) continued

for n > 1; (n + l)an
that

1" (n - l}an = 0. That is, n > 1 implies

_(n-1)
dn4l = n ¥ I °n° (7

From (6) we see that a, may be chosen at random, whereupon
& o (8)

and we may now use (7) to compute a, from ajr aj from aj, a,
from azy etc.

For example with n = 1, (7) becomes

but once a, = 0, (7) tells us that for n > 2, . = 0. That is,

from (7) a_ ., is a multiple of a so that a  , must be 0 once

+1

a, = 0.

Thus, we have that a, is arbitrary, a; = -ag, and a, = 0 for

n > 2, Since

oo
f(x):zaxn=a +ax+ax2+...+axn+...;
et o 1 2 n

we have that

f(x) = ag - ax ( + 0)

a (1 - x) . (9)
If

d
(1-x) gZ+y=0 (10)

has a solution of the form

§.2.8.3
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2.8.1(L) continued

then

so that (10) becomes

d a _

Soxfey-o

or

(=] oo =]

Z nanxn-l - x Z nanxn_l + Z anxn = 0

n=1 n=1 n=0

or

(=] =] =]

E,na xRl —E na_x" + a_x" = 0. (11)
n n — “n

n=1 n=1 n=0

Notice that equation (11) is precisely equation (4) of part (b)
[where the equality in (11) is understood to be our identity.
We used the identity symbol in part (b) for emphasis, but other
than that, we revert to the usual notation that L(y) = 0 means
L(y) = 0].

Hence, from part (b) we deduce from (11) that y = ao(l - x).

Note #1:

As usual we have elected to start with an example that could be
solved more easily by a more familiar technique. In equation
(10) we could separate variables to obtain that for x # 1 and
y #0 , dy/y = dx/x = 1; or In|y|= In[x - 1| + ¢;; or

o c
ly| = e b |x - 1] , e L o;

or

© . 12
Y=j"_el(x—l)=c(x—-l),wherec=tel?€0. (12)

If we let c 0 in (12) then we obtain the "forbidden" case,
y = 0. But y = 0 satisfies (10) trivially. Thus, we may conclude

S.2.8.4
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2.8.1(L) continued

that (12) may be extended to cover the case y = 0 by letting
c = 0. In other words, we see that (9) may be verified by our
earlier technique of variables separable.

Note #2:
Without the main theorem discussed in our lecture, all we have
proven is that if the equation

- dy -
(1 x) Rl ¢ 0
has a solution which is analytic at x = 0, then the solution

is given by (9).

What the theorem tells us is that the equation does have a
solution which is analytic at x = 0. In fact, if we write the

equation in standard form, we obtain

whereby we see that the coefficient of y is 1/1 - x which is
analytic for |x|< 1. We may therefore use the theorem to
conclude that the solution given by (9) is valid at least for
|x|< 1.

Note #3:

In this particular exercise we were able to check directly that
(9) was the solution of the given eguation for all x, except

x = 1. Thus, we see that the theorem actually tells us the
smallest region which we can be sure that we have a solution.
It does not say that the solution cannot extend.beyond this
region. In other words, with respect to the present exercise,
we see that by the theorem, (9) is the solution of our equation
at least if |x|< 1. It also happens here that (9) is also the
solution if |x|> 1; but we cannot conclude this simply from the
theorem.

S.2.8.5
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2..8.2(L)

Given that

(1 - x) g% -y=20

r

we know that the general solution may be expressed in the form

o0

P n -
y = n§=i: ax , aj arbitrary;

valid at least for |x|< 1.*

From (2), we have that

o0

gﬁ- = Z nanxn_l

n=1

so that (1) becomes

or
o ] o0
~1 n-1
na nxn - XK na nx e a
= ns= n=
or
o oo o
- n n
. na xn 1 - na_x = a_Xx =
n n
n= n= n=
Hence,

(1)

(2)

*This was discussed in Exercise 2.8.1.

standard form, equation (1) becomes

1
=

l - -
Tx)y = 0, and

Namely, written in

is analytic for |x|< : b
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2.8.2(L) continued

=] o0

|

2 (n + 1)an+1xn - E : nanxn - anxn = %
n= n=1

n=0
Therefore,
oo o0 (=]
n z n n
a, + (n + 1)a X - na x - a_ - a5 = 0.
1 n= n+l n=1 a 9 n= 2
Consequently,

oo

(al - ao) + ; [(n + l,an+l - (n + l)an]xn =: {) =; ox". (3)

Thus, by equating coefficients of like terms, we see from (3)
that

By =il = 0, (4)
or
a; = agi (4")

and for n > 1;

(n+ Da - @+ 1a =0 (5)
or
A iy = AL, TR s LoE¥ (5")

*Hopefully what we are doing seems familiar. We have copied

the equation of the previous exercise, except for a sign change,
in order to give you a chance to rederive the sequence of steps
which were explained then.

**Since n > 1, n + 1 # 0. Hence we may cancel (n + 1)
in (5).
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2.8.2(L) continued

From (4') we see that a, may be chosen at random whence a; = a_.
Then, from (5'), we see that a, = a;, az = a,, etc. In other
words, (4') and (5') combine to tell us that a, is an arbitrary

constant and that for n > 0, a, = a.

Putting this information into (2) we obtain

o0
_ E n 2 n
y = - anx ag + alx + a,X N anx + el

Il

2 n
a. Fa.RXF aX F oeex FAXE + cus
o o o] o

a, (1 +x+ %25+ oo #50+ ...)

n (6)

|
4]
"

valid at least for |x| <1, we see from (6) that this solution is
given unambiguously by

oo

n
y = a E : %%
o &

Note #1:
The sign change here (versus the previous exercise) changes
the "complexity" of our series solution. Yet

oo

E <1

n=

should suggest to you 1/1-x (i.e., the geometric series

n
X

M

n=0
converges to 1/1 - x for |x|< 1). Once this observation is

made, we see that (6) becomes

a

(o]
y= r—= & |%|% L. (7)
S.2.8.8
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2.8.2(L) continued
This can be checked directly by observing that

d
(1-3x gE-y

is equal to

41 - w0yl

so that (1) is

g;[(l - x)yl = 0.

Hence, (1 - x)y = c; so that for x # 1

Y =9 ==

which agrees with (7), except the restriction |x|< 1 may be
replaced by x # 1, a fact that cannot be deduced from the key

theorem.

Note #2:

In this exercise the series solution (6) could be written in a
convenient closed form (which is not always the case). The
key point is that even if we could not "simplify"

o0

aoxn ’
n=

letting f£(x) = z ; aoxn,
n=

we can still compute f'(x), f"(x), etc. by term-by-term
differentiation, at least for |x|< 1. In other words, the
series solution is as exact as any closed form expression would

be, but we may not feel as "at home" with it.
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2.8.3(L)

Given

dy ”

gl 2xy = 0 (1)

and

y = a x", (2)
n=

we have that

oo

% = E nanxn—l. (3)

n=1

Putting (2) and (3) into (1) yields

(==
n-1 n
E ;nanx - 2x ax = 0:p
n= n=
n-1

or

8

n+l
E ;na X - 2a_x 0 (4)
n= A n= L

Replacing n by n = 2 in the second summation on the left side
of (4) yields

[+2] ++]
z ;nanxn-l- E ;2a _2xn‘1 =0
n= n= n

or
o0 oo
n-1 n-1
a, + E : na_x - 2a X = 0
1 =% n - n-2
or
oo ; (==]
n-1 n
— —3 = 5
a; + Ji;(nan 2a__,)x 0 L 0x" . (5)

Equating coefficients in (5) we see that a; (the constant term
on the left side) must equal 0 (the constant term on the right
side). That is,

5.2.8.10
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2.8.3(L) continued
a; = 0; (6)
and that for n > 2

na - 2a, 6 , = 0.

That is,

n
> - = -
n > 2 a =

(7)

Equation (7) tells us that each a  (for n z 2) is a multiple of
the coefficient which comes two earlier. In particular, since
a, = 0, we deduce from (7) that a3, agy Ag...2 ,...are all

equal to 0. 2n+1

Moreover, the first n for which (7) applies, namely n = 2, implies

that
5 = (8)

Since no condition is imposed on a,, we see from (8) that a,
may be chosen at random, whereupon a, = a,-

We then use (7) with n 4 (we omit odd values of n since we

have just seen that a

" 0 for all odd values of n) to obtain

~ 2a2 1
2T T ¥ By

so by (8)

o

o

Yo (9)

M =

a
o

I
N

We then use (7) with n = 6 to obtain

a6= =

-

2a4
6

whf

so by (9),

§.2.8.11
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2.8.3(L) continued

a
o

a
ag = g = 37 ). (10)

Next, we use (7) with n = 8 to obtain

2a a
_ 6 _ 76
% =8 71
so by (10),
a a
. o0 _ o
Letting n = 10 in (7) yields
2a a
i) 8 8
20T 10~ 5
so by (11)
a
= 0
Q0 =BT * (12}
Note #1:

Looking at (8) through (12) we might venture the guess that

This may be verified by induction but the important point is
that we may use (7) plus previous values of a  to find each new

a_; knowing by our general theory that the series which is

o
thus generated yields the solution of the equation.

Returning to the mainstream of the exercise, we have that

Aoy =0 for n =0,1,2,3,... (13)

a
O
a = —

on = = 0,1,2,3,... (14)

for n

and using this information in (2) yields

S.2.8.12
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2.8.3(L) continued

JB

=]
Il

=] o0
_ 2n 2n+1*
= :E;-aan # :£; n+1¥ ,
n= n=

=
i
i™
Il 8
3o
~lo
»
8]
]
+
fos |
I 8
o
Y
M
=]
+
H

or

y = a 2 x-2n i (15)
n=0 n!

Note #2:

The solution given by (15) is valid for all real x since the
coefficients in (1) are everywhere analytic.

Note #3:
Notice that e ® is an integrating factor of (1). 1In fact, if
we multiply both sides of (1) by e we obtain

2
d -X .
ax (ye ) =0

or

*Omitting the Z-notation, all we are saying is that by the
properties of absolute convergence,

(ao + a;x + a2x2 + ... + anxn R |

2 4 2n 3
(a. + asx + a,x + sues t a8, X + .o.) + (a,x + agx
o 2 4 2n 15 3 2041

+ asx + e * azn+1x +.

S.2.8.13
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2.8.3(L) continued

ye = .yt
hence,

= a exz
Y o -

2
is the power series expansion of e® about x = 0.

Note #4:
Had we not known a closed form expression [such as (16)] for
(15), we could still have let

x2n

£ix) = aQ ne.
n=

whereupon

oo

2nx2n-1
1 -—
£ (x) = ) En= n' E

etc. For a less contrived example, see Exercise 2.8.7(L).

2.8.4(L)
With

n
y = 4% (1)
n= L

we have that

oo

y' = r; nanxn-l. (2)

*Since (15) uses a_ as the arbitrary constant, we have elected
to use a_ to denote the arbitrary constant here also. 1In this
way, we ¢an make a more direct comparison of (15) and (16).

S.2.8.14
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2.8.4(L) continued

Putting (1) and (2) into

ay =
xqb+ty=0 (3)
yields
=] oo
X E: na_ x*1 + 2: ax" =0,
n=1 n=0
or
4] 4]
z: 1:1.3.1,1:{n + E anxn =0,
n=1 n=0
or

[==] =]

n n
Znanx +ao+2 a x =0,
n=1 n=1
or

a_ + 2: (n + )ax =0 = z : 0x". (4)
o n
n=1 n=0

Equating "like" coefficients in (4), we obtain

a =0 (5)
(o}
and
(n + l)an = 0 for alln > 1, (6)

Sincen > 1 > n + 1 # 0, we see from (6) that a = 0 for n > 1.
This coupled with (5) tells us that every a in (1) must equal
0.

In other words, we have shown that only the trivial solution of
(3), namely y = 0, is analytic at x = 0. That is, except for

y
b4

I

0, equation (3) possesses no solution which is analytic at
0.

This does not contradict any results discussed in our lecture.

Namely, the fundamental theorem requires that all our coefficients

S5.2,.,8.15
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2.8.4(L) continued

be analytic at x = 0 when the equation is written in standard
form. When equation (3) is written in standard form, it becomes

dy _
ax T § = 0.

In this form, the coefficient of y is %, which is not analytic
at x = 0.

The key point is that our fundamental theorem only quarantees
the general solution in the form

o0
y = Eo anxn

when all of the coefficients are analytic at x = 0, when the
equation is written in standard form.

Again, we have deliberately chosen an "easy" example so that
we may see what went wrong here. Namely,

M:x.gl+y’
X
so that (3) is equivalent to

d_ (xy) = o0,

from which we conclude that xy = ¢ or y = ¢/x, provided x # 0.

In other words, the general solution of (3) is not analytic at

x = 0.

Optional Note:

Up to now, we have been using examples in which our solutions

have been of the form

y = Z anxn.
n=0

More generally, we strive for solutions of the form

S.2.8.16
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2.8.4(L) continued

== _ n
Y= (= a (x xo) 5

In the present exercise, equation (3) may be written in standard
form as

dy . ¥ -
dax T X 0

and the coefficient of y, namely % , 1s analytic except when x =
0.

Thus, according to the general theory, if we pick any Xq # 0,
equation (3) has a solution in the form

e = n
Yy = 2;% a (x - x)

valid for all x such that [x - x_|< R where R is chosen so
that x = 0 is not included in the interval.

For example, we could choose X, = -1 and then obtain the general

solution of (3) in the form
=]
pe 2 a0k @
n=0
valid at least for |x + 1|<l since 0 ¢ { x: [x + 1|< 1} .
From (8) we have
[==]
y' = 2, na (x+ 1) (9)
n=1
We then rewrite (3) as

x+1) L -y = o

*Writing (3) in this way permits us to keep working with
powers of x + 1. Otherwise, we would have to work with
expressions like

Lo+l

x 2: na (x + l)n-l

n=1

and these are not too pleasant.

S$.2.8.17
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2.8.4(L) continued

whereupon (8) and (9) yield

2 na_(x + 1)® - E na_(x + 1)n-1 Z a_(x + 1)" = 0. (10)
=0

n=1 n=1

We may now rewrite
2: nan(x + 1)n-1
n=1
as
n
Ié:{) (n + 1)an+1(x + 1)

so that (10) becomes

oo

Zna(x+1]n- (n + 1)a (x+1)“+):a(x+1)“=o.

(11)

We may then split off the first term in each of the last two
summations on the left side of (11) to obtain:

Eéi_nan(x + l)n -y = E:(n + l}an+1(x RS 1)n + a,

n=1 5
+_2: a (x + nt=o0
n=1

or

(ao - al) + Egi [(n + l}an - (n + 1Jan+l]{x + l)n

=0 = ZO(x - 1%, Q2
n=0

Equating "like coefficients" in (12) we obtain

or

il B BN s S S e EE s
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2.8.4 (L) continued

(n + l)an - (n + 1)an+l =0 for n > 1.
That is, for n > 1
a = 8 (14)

Hence, from (13) and (14) we see that we may choose aj arbitrarily

afterwhich a, = a; = a; = ... = 2, F oo
In other words, (8) yields

n=0

as the general solution of (3).

As a check, we already know that y = c¢/x is the solution of (3)
provided x # 0. Moreover,

=
X x + - 1

-C
1 - (x+ 1)

Letting u = x + 1, we have that

-1 1

x 1 - (x + 1)

Il
™

‘:.’3
7

A

|

2: (x + 17, |x + 1|< 1.
n=0

5.2.8.19
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2.8.4(L) continued

Hence,

% = -c 2: (x + 17, |x+1] <1

o}
a}
=
®
t
[
[
o]
(s}
ji)
l

= -c, we obtain that
y = & 2: (x + 17, |x+ 1|< 1

is the general solution of (3), which checks with (15).

2.+.8.5{L)

With

y = Z a_x"; y' = E na_x® 1 ana y" e Z n(n - l}anxn_z.
n=0 B n=1 n=

Hence

or
oo o =] o
Z nfn = Daa™ 2 Z n(n - 1Jatn>s:n - Znanxn + Z anxn =: B
n=2 n n=2 n=1 n=0

Therefore,

oo

n n n
Z (n + 2) (n + 1)an+2x - nz=;2 n(n - l)anx = E na x

ﬂ

n=0 n=1
+ x =0,
n=0 ®n
or
2a, + 6agx + 2 m+2)(n+ Da %" - 2 nin - Dax”
n=2 n=2
§.2.8.20
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2.8.5(L) continued

=] oo
n n._
- apx - Enanx tag +oax+ Zanx = 0.
n=2 n=2
Consequently,

(2a, + a) + 6agx + n;z {ta+2)(n+ Da_,, - [n( - 1)

n—
+ n - llan} x = 0

(1)
Since all the coefficients on the right side of (1) must equal

0, we conclude that
2% ¥ d. =0 OF 8, = =+ a (2)
2 ! 2 2 .

(3)

o
o
w
Il
o
o]
a]
]
W
Il
o

- [n(n - 1) + n - l]an = )
or
(n+2)(n+ Va_,, - [n2—1]an=0

or

== 2 (4)
n+2 n ¥ 2 “n°

a

Thus, we may pick a_ and a; at random whereupon (3) and (4) show
us that all other coefficients are then uniquely determined.

In fact, since a; = 0, (4) shows us that g = a; = 8 = a7 = ...
=a2n+l=-t-=0-

Moreover, if n is even, (4) reveals that

]

I
co|

W

1
Xy = T8z F

(o]

26

|
0|
[
i
|
l
HPJ
(o3
o
o)
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2.8.5(L) continued

= 5
% T " 128 %

oL

i
Sk e 3 _ . .35
10 = 10 %8 = T 1280 %
Regrouping the terms in
n
2 ax
n=0 =°

we obtain

= 2 4 6 8 10
y = (ao toayx™ + a xt + agx + oagxs + 910x Fioemn)
+ a,x + (a,x” + a x5 + a x7 + )
1 3 5 7 e
B 1.2 1.4 1 _6 5 .8 35 _10
—ao(l—-z-x —-gx —E-x -mx —mx # el
+ a;x + 0.

Thus, the general solution of (1 - xz)y" -xy' +y =0 (lxl<l)
is given by

_ 1 1 L4
y—a(l—-ix-gx-ﬁx ---)+aIX-

In still other words, two linearly independent solutions of
the equation are

y=uy&x =x (@)
and

_ 1.2 1.4 1 6_ 5 8 35 _10
Pl =gl CEE S T CEmr T e )
Note:
If we compare this with Exercise 2.7.6, we notice that equation
y = u;(x) = x is the solution y = x which we assumed was found
by inspection in Exercise 2.7.6. On the other hand, the

2

second equation should correspond to y = VY1 - x“ which was

the other solution found in Exercise 2.7.6.

£ A
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2.8.5(L) continued

As a partial check, notice that for |x|< 1

n
(l - xz) = 1 = fEe Eiﬁf;—ll %% = aln = lgfn = 2) 54 ... (5)

[i.e., the binomial expansion is wvalid for |x1< 1 even when n
is not a positive integer].

Letting n = 1/2 in (5) yields

1 1 1 1,1 1
(1-2)2=1-142 =g o FE-UE= Y s
fx +‘—‘_2—'—‘x - 3: X +ann
=] = % x2 - % x4 - %E xG + s

which appears to agree with (2).

Again, the key point is that it's "frosting on the cake" that

allows us to simplify (2) as y = V1 - x2 . The crucial point
is that

_ 1.2 1. 4_1 6 5 .8 _ 35 _10
uz(X)—l—?x—gx 'R-X—mx mx Sl

is a well-defined function of x for |x|< 1 and for a given x in
this interval, we can compute uz(x) as accurately as we wish
simply by considering enough terms.

2.8.6(L)
This looks a lot like the previous exercise since all we have
done is changed the coefficient of y" from 1 - xz to 1 + x2

(and this makes the coefficients everywhere analytic when the
equation is written in standard form).

We may mimic (indeed, copy) the steps of the previous exercise,
remembering only to replace the term -xzy“ by xzy“ to obtain

(2a, + a_) + 6agx + 2, {(n + 2)(n +l)a ,, + (n(n - 1)
o 3 ) n+2 &
B -n+ 1lla} x° = 0.

(2)

N
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2.8.6 (L) continued

Equating coefficients in (2), we conclude that

1 2a2 + a, = 1]
or
a
o
62 ks f_ [ (3)

or

a3 =0, (4)

3. For n > 2

2
_ (n - 1)° 3
B0 = ® e e 1) (3)

Equations (4) and (5) together tell us that

a3 T g T 89 = ... T 8917 T .. = 0.

We may then pick a, and a; as arbitrary constants; whereupon we
view

(=]
2
n
n=0

as (ay + azxz + a4x4 + asx6 +..0) + (agx 4 a3x3 + asxs
+ a7x7 G L,
and since ay = ag =a; = ... + 0, the second term becomes

simply a;x so that our solution has the form

_ 2 4 6
y = a;x + (ao + a,x” + a,x° + agx + e B

We then use (3) and (5) to obtain Ay, Bys BgresesBypees in

terms of a,-
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2.8.6 (L) continued

Thus, using (5) with n = 2 yields

1
a4 = T (3 22’
so by (3)
4

Then letting n = 4 in (5), we obtain

o
o
]

so that by (6),

= 2 (7)

Next we let n = 6 in (5)to obtain
25 a
8~ (8 (1)
so that by (7),
225 a
- o

= —BY -
Hence, our general solution is now given by

6
1 2 1 4 9 225 _8
y=ao(l-§:x +'4-!X -_)6{!-+T!x + .-.J +alx.

2.8.7(L)

Up to now, most of our exercises were of the type where the
series solution could be easily identified with a "well-known"
function of x (the previous exercise gave a hint of what's

to come). In this exercise, we try to give a better illustra-
tion of how the solution is well-defined even when we cannot
translate it into a familiar function. Part (a) of this
exercise shows how the series solution is still obtained in
the same way as usual. Part (b) illustrates how we can still

find a particular solution once we specify y and y' at a given
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Solutions
Block 2: Ordinary Differential Equations
Unit 8: The Use of Power Series

2.8.7(L) continued

value of x (in this case x = 0). Part (c) illustrates how we
can compute this particular solution y = f(x) for a given value

of x. In other words, f(x) is well-defined as an infinite series

to the extent that we can approximate, say, f(l) to as great a
degree of accuracy as we wish simply by taking sufficiently
many terms of the power series.

Letting

y = E anxn (1)
n=0

in

y" - xy =0 (2)

we obtain

2: n(n - l)anxn'2 B 2: a x"*L - 0.
n=2 n=0

Therefore,

E: n(n - l)r::nxn-2 - 2: a 222 w03
n=2

n=3 n-3
or,
- -2
2a2 % Z_n(n - l}lanxn 2 5 Z a1 %" = 0%
or
=
232 + 2.: [n(n - l)an - a 3]xn 2 Z 0x". (3)
n=3 B n=0

Equating like coefficients in (3) we conclude that

a, =0 (4)

and for n > 3,

B = 3 (5)

5.2.8.26
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2.8.7(L) continued

Letting n = 3, (5) becomes

a

o o
a3 = Oy ey < 6 - (6)

W

Letting n = 4, (5) becomes

ay i |

RO R i P =

Letting n = 5, (5) becomes

22
a5=w,
or by (4),
a5 =0,

In fact, since (5) tells us that each a, is a multiple of the one
that comes three before it, we may conclude that 0 = a, = ag =

= *:
88 = ¥3n+27 " -
We also conclude that the other coefficients may all be

expressed in terms of a, and ajs where ag and a, may be selected

1
arbitrarily (since neither (4) nor (5) imposes any restrictions

on a_ or a,).
o l)

For example, letting n = 6 in (5), we obtain

a3
8 = (Y (5)
or, by (6),

*The subscript 3n + 2 is simply a compact way of expressing all
whole numbers which leave a remainder of 2 when divided by
3. This is precisely the set {2,5,8,11,14,...1}
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2.8.7(L) continued

a_ * a
a = o

o —
6 (6) (5) (3) (2) ~ 180 ° (8)

Similarly, letting n = 7 in (5), we obtain

44
a; = 77 (e ¢
or by (7),
a a
a?, = (Wl = -5-0%' - (9)

Continuing in this way, we obtain

. 6
o = TOTET
or,
I ao _ a
9 =T Y@ B (5) (7 (2) Iz,960 ’
and
a

S B 7
10 -~ T{I0) (9)

_ 21

m‘ -

What is interesting in this example is that our coefficients do
not suggest a "well-known" series. Yet, this is irrelevant.
The key point is that the resulting series represents the
general solution and that we can compute as many coefficients
as we wish to obtain any desired accuracy (as we shall indicate

in part (c) of this exercise).

At any rate, we now rewrite

*We write (6)(5)(3)(2) rather than 180 in order to emphasize
the structure of the coefficient in terms of n.
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2.8.7(L) continued

by rearranging the terms so that all terms whose exponent belongs

aE TS e

M M

-l Ta o.

.l o oa .

to the family {0,3,6,9,...,3n,...} are grouped together; all
terms whose exponent belongs to {1,4,7,10,...3n + 1,...} are
grouped together; and all terms whose exponent belongs to
{2,5,8,...,3n + 2,... } are grouped together.

This leads to

= 3 6 6
y = (ao + asx” + agx” + agx” + S

4 Y2 10
+ (alx + azx + a,x + ajox * eini)

or
3 6 9 7
_ X X X
¥ = ao(l + e * 180 " 17,960 -
4 7 10 "
X X X
+ 0 [x2 + xs + xB . 5wl -
In summary, the general solution of (2) is
y = clul(x) + czuz(x)
3 6 9
- b4 X X
where ul(x} = (1 + = ygyt 17,960 + e
and
x4 x? xlO
Optional Note:
The advantage of writing our coefficients in the form, say,
ag = %o
9 (9) (8) (6) (5) (3) (2)
rather than
S.2.8.29
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2.8.7(L) continued

a9=m’

is that it is easier to express a, as a function of n. For
example, we notice that (9) (8) (6) (5) (3) (2) would have been 9! had

the factors 1, 4, and 7 been included. Thus, we have that

ag = (l)(gzt7)ao .

It is then an easy step to "guess" and then verify by induction
that

_(1)(4)....(3n-2)a
43n © 3n) T ° . (11)

In a similar way, one notice that

a
~ 1
2410 T T @ (M (8) (4 (3)

_ (2) (5) (8)a;
10!

and then conjectures that

_ (2)(5)...(3n-1)a1
Adnal = (3n+1) ! . (12)

We may then write our general solution in the form

-5} o0 m=0
3n 3n+l 3n+2
g2 2 a0, a0 pu ¥ g 20
n=0 0 n=o 3n+l =t “3n+2
or
(1) (4) ... (3n - 2) _3n
y=a(1+ . x )
o n=1 (3n) !
(2) (5)ve. (3 = L¥ _3n%l 3
+ al(x + ~ Gn 1T X Yis (13)

b. When x = 0, we see from (10) that y[ = £(x)] = a, (since all
other terms have a factor of x). Hence, the fact that £(0) = 0
S.2.8.30
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€3 s

2.8.7(L) continued

(i.e., y = 0 when x = 0) means a, = 0. Therefore,

- 4 x?

10
X X
f (x) _a1(x+1_2+m+m+'.'1- (14)

Consequently,

3 6 9

£'(x) = a; (L + g- 3 %f + I§§€ ¥ o) (15)

so that
f£fr{0) = a..
(0) i

Since we are told that f'(0) = 1, we have for (15) that a, = 1
and thus from (l14) we, therefore, conclude

<4 ! x10

f(x’=x+r~+m +m+... (1le)

Note #1:

Again, notice that in obtaining (15) from (14) we used the fact

that
2 n
]
n= %n
converged uniformly to f(x).

Optional Note #2:
If we wanted to use (13), we have that

— 3n-1
- (1) (4)...(3n - 2)x
v ao(;;; G3n - D7 )

o0

3n
fay (14 Z‘[ (2) (3).{5;0(?11 - 1% 0
n= .

where we have again differentiated term by term.

The fact that a, = 0 and a; = 1 reduces (17) to
N (2)(5)...(3n - 1)x3"
£¥ (x) = 1 -+ 3n) | 5
n= "
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2.8.7(L) continued

c. Letting x = 1 in (16) we obtain

_ 1 it 9
f(l) - 1+I?+m+m‘+ - e

= 1.0000 + 0.0833 + 0.0019 + 0.0000™.
Hence, to the nearest hundredth
£(1) = 1.09.
2.8.8(L)
Letting

n

.

n=0 =°
we obtain as usual

n-1

y' = }E: na_x

n=1 B
and
y" = }E:.n(n - l)anxn"z.

n=2
Hence,
3 " 1 ] o
xy" + xy' —-y=20 (1)
implies that )
x> 2 n(n - Da x™ 2 + x Z nanxn-l - Z: anxn =0,

n=2 1 n=1 n=0
or
E nin - 1)a xn+l + E nanxn -Z anxn = 04 (2)
n=2 n n=1 n=0
Rewriting
S.2.8,32
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2.8.8(L) continued

==}

n 2 n
:g: (n - 1(n-2)a _; x + (a;x + 2a,x" + }E: na x)
n=3 n=3

i
o
-

= (ao + a;x + a2x2 + }E; anxn)
n=

oo

1]

> S
ag + ayx” + [(n = 1) (n - 2)&:11,1__l + (n + l}an]x = .0 0x .
n=3 n=0

Comparing coefficients of like terms we see that

(o}

a, = 0

and for n > 3

1
[3%]
V]

(n - 1) (n + (n + 1}an =0

-1
or, n>3+a =-(n- Dn-2)/n+1 a ;. (3)
Letting n = 3 in (3) yields

_ _ (2) () -
Gy & =~ (0) =0
and, in fact, since each a, is a multiple of the preivous

one, we see that n > 3 ~» By ® 0.

Hence, each a = 0 except a; (since no condition is imposed on

alJ.

In other words, if

00

E n
y = a.x
n=0 ="

is a solution of (1), then a, is arbitrary and a = 0 if

n # 1. Therefore,

y = a;x (4)
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2.8.8(L) continued

is a solution of (1), but not the general solution. To be sure,
we can find the general solution from (4) by using the method
of variation of parameters (as we did in the previous unit) but
in terms of the theory of this unit, the key point is that when
it is written in standard form, (1) becomes

Y“+£2Y" la-y=0
X X

and our coefficients are not analytic at x = 0. Consequently,
there is no guarantee that the general solution of (1) can be
put in the form

w

n
=2y ax
n=0 n

Indeed, we have just shown that only the solution y = cx has this
form.

As a final check on this example, recall that in the previous
unit we solved this same problem and found that y = x and y =
el/x were a pair of linearly independent solutions. Notice

that el/¥
at x = 0.

"blows up" at x = 0, and consequently is not analytic
y

We conclude our exercises on this note to indicate why the
concept of series solutions must be developed beyond a discussion
of ordinary power series. Namely, the usual power series
approach requires that our coefficients be analytic everywhere

in a particular region and this is not always the case. A
further discussion of these other cases is beyond the intent of
our course, but it is important for you tc see why such addi-

tional refinements are necessary.
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