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Solutions
Block 2: Ordinary Differential Equations

Unit 7: Variation of Parameters

2.7.1(L)

There are two difficult aspects to using the method of variation
of parameters. The first is to understand why the method works

(and hopefully this was made sufficiently clear in the lecture).
The second is to have the computational tools necessary to grind
out the specific answer. In many cases, the required functions

ql{x) and g2(x) must be left in integral form.

The easiest part of the method is writing down the solution once
the validity of the method is accepted.

More specifically, if y = ul(x} and y = uz(x) are two linearly
independent solutions of

y" + p(xX)y' + a(x)y = 0% (1)
then
yp = gl(X)ultx} + g2(X)u2(x) (2)

is a particular solution of

"

+

y p(x)y' + gx)y = £(x) (3)

provided that

* %

o

g,"' (Xu;(x) + g," (X)u,(x) =
and . (4)

f (x)

ql'{x}ul'(x) + gz'{x}uz'(x)

*Notice in (1) that there is no restriction that we must have
constant coefficients.

**We shall talk about higher order equations in Exercise 2.7.7.
The general theory is the same, but the computations become more
difficult when the order is greater than 2. For this reason, we
prefer to emphasize the second order equation, lest the method be-
come lost in the vast amount of computational detail.

5.2,7.1
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2.7.1(L) continued
Thus, to find the general solution of

we still want Yy + yp. Since (5) has constant coefficients, we
may obtain Yh by the method of the previous units. Namely,

e® + g ™%, (6)

From (6), we have that e* and e ® are a pair of linearly indepen-

dent solutions of the reduced equation y" - y = 0. Letting
& =u (=), e X =u (x), and 1 f(x), we may invoke (2) and
1 2 1 + X

(4) to conclude that

Y. = gl{x)ex + gztx)e'x 7

P

is a particular solution of (5) provided that

=
' X =X _
9, (x)e” + gz'(XJe = 0
and - (8)
X -X _ i i *
g,'(x)e” - g,"'(x)e e
% 2 1l + ex

Solving (8) is a matter of manipulative skill (and/or a bit of
luck). By adding the two equations in (8), we see that

291' (x)e* = —:-I'-—;C-:
1 + e
*T.e., this is equation (4) with ul(x) = ex, uz(x) = e_x, and
f(x) = ———L—;. Notice that we cannot use undetermined coeffi-
1+ e
cients here since ———L—; is not of the "right form." That is, it
1l + e

k o
is not a linear combination of terms of the form x e Xsin fx and/

k ax
or x e cos Bx.

S:2.7:2
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2.7.1(L) continued

hence,

-
g, () = —=—, (9)
1 2(1 + &%)

Subtracting the equations in (8), we obtain

- -1
2g."' (x)e™ X = —=—,
2 1+ ex
hence,
01 (%) B (10)
2 2(1 + &%)

From (9) and (10), it follows that

-X
glfx) =f__'e dxx
2(1 + &%)
and

X
g, (x) =f————"e dx
. 2(1 + &%)

so that from (7)

X e-xdx -X -exdx
i o [t o f_oes_ -
P 2(1 + &%) 2(1 + &%)

is a particular solution of (5).

We have deliberately written (11) in integral form to emphasize
that the solution exists independently of whether the integrals
may be evaluated explicitly.

+x
In other words, as long as ET%_I—ET is integrable (which it is

because all continuous functions are integrable), the general
solution of (5) is given by y = vy + Ypr SO that by (6) and (11)

8.2+ 7.3
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2.7.1(L) continued

_ X -X X e Xax =3 -eXax
Yy = c,e + cze + e —————ee + e T T (12)
2(1 + e7) 2(1 + &)

Notice that we may group the terms in (12) such that the constants

of integration are included in c1 and Cye Namely,

e *ax X -eXdx -x
j:-—-————x—+c1e +./'——-—x-+c:2e ;s
2(1 + ) 2(1 + &)

"Officially" (12) is an acceptable form for the correct answer,
but since the integrals are not difficult to evaluate in this
case, perhaps it would be worthwhile to express Yo in (11) more
explicitly.

To compute
f e—xdx
2(1 + &%)
we may use tables or we may make the substitution u = e‘x,
whereupon

du = -e “dx.

Moreover,

*
=3 X 1 X u+ 1
= -+ = = >1 + = 5
u e e a e a
Hence,
*Since u = e_x, u > 0 for all x. 1In particular, we do not have to

worry about u being equal to O.

S$.2.7.4
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2.7.1(L) continued

e *ax _ -u du
2.y ) JEETH

] ]
I I
[N N
[
| ol
e
c
+|=
(=]
—
o
o

1 1
=-3u+ 3 1n |u + 1]
and since u = e %,
e ¥ax 1 -x , 1 -x
e LA E R R
2(1 + e7)
1 -x 1 X+ 1
= 8 +§1n (—x—")
e
P o« 1 % - X
=-5e + 5 1n (™ + 1) 5 1n e
= owk 2 gk x -1
=-5e + 35 iIn (™ + 1) 5 X. (13)
Similarly, letting u = 1 + ex, du = e*dx. Hence,
f—exdx - -du
2(1 + &%) 2
1
= -3 1n |u|
i b:d
= -3 1n (1 +e"). (14)
Putting (13) and (14) into (11) yields
o N
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2.7.1(L) continued

-

¥ = ex[}% e X +=1n (X + 1) -

(S
N =

1 L. =% X i X 1
———2-+-2-e In (e +1)—5xe-—2-e

_ X X o x L =X
= -3 (1L + xe™) + (2 e 5 e ) 1n (1

Wl

-% (1 + xe¥) + [sinh x] 1n (1 + &%).

2,7.2

-xX

x| + e[ 1n  + M)

2

In (1 + ex)

X
+ ev)

(15)

Since
y' - 2y' +y = e 1n x (x > 0)
we have that

x

_ X
vy, = ©1& + cyxe”.

Letting U = e* and u, = xex, it follows

ul'(x) = &%

and

uz'(x] = xe* + &*.
Hence,

yp = gl(x)ex + gztx)xex

is a particular solution of (1), where

(1)

(2)

that

(3)
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Block 2: Ordinary Differential Equations
Unit 7: Variation of Parameters

2.7.2 continued

91'{x)ex + 92'(x)xex =0

and

gl'(x)ex + gz'(x}[xex + ex] = e*1n x

- . (4)

Subtracting the top equation in (4) from the bottom yields

e gz'(x) = *1n x

or

gz'(x) = 1n x.

(5)

Replacing gz'(x) by 1n x in the top equation of (4) yields

X

gl'(x)ex + xe” 1lnx =0
or
gl'(x) = -x 1ln x. (6)

From (5) and (6), using tables or integrating by parts, we obtain

gz(x) =x 1ln x
and

_ 1 .2
g,(x) = 7 x° -

B =

b'4 (7)

x“ 1n x. (8)

Replacing gl{x) and gz(x} in (3) by their values in (7) and (8)

yields

8:2.7.7
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2.7.2 continued

yp = ex[% x2 = % x? In x] + xe®[x 1n x - x] = % xzex + % xzexln X
2 x(1 i
X
= x"e (5 ln x - E) (9)

Combining (2) and (9) yields that

_ X X 2. %11 _ 3
y = c,e + c, Xe + x"e (5 1n x Z)

is the general solution of (1).

2.7.3(L)

Our main aim here is to show how one can find the general solution
of y" + p(x)y"' + q(x)y = 0** once one non-zero particular solution

of the equation is known. We shall handle the general case as a
note at the conclusion of this exercise, but for now we would like
to illustrate the method more concretely.

We are given the equation

Y“+-}2-Y'H-}-3-y=0'x#0*** (1)
X X

and we assume that by "hook or crook" we stumbled across the fact
that y = X happens to be a solution of (1). [In the next unit, we

*Had the domain of (1) been x < 0, (9) would have been replaced by

xzex(% 1n |x| - % . The important point is that x = 0 is excluded

from the domain of (1) since then e¥1n x is undefined.

**Recall from our earlier lectures that the existence of the
general solution in this case is guaranteed as soon as p(x) and
q(x) are continuous.

***Since p(x) = JE and q(x) = —JE here, the condition that x # 0
X X
guarantees that the general solution exists, since only at x = 0
are J? and —Jﬁ discontinuous.
X x
8:.2.7.9
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2.7.3(L) continued

shall show a method for finding this solution, but in terms of our

immediate objective in this exercise, how we know that y = x is

solution of (1) is irrelevant.]

a

Since (1) is homogeneous (i.e., the right side equals 0), we know

that y = cx is a l-parameter family of solutions of (1). Thus,
all we need is one additional solution which does not belong to
this family in order to obtain the general solution of (1).

In other words, if u(x) is any function which is not a constant
multiple of x [i.e., {x,u(x)} is linearly independent] then

y = cx + czu(x)

is the general solution of (1).

The major problem is that of finding a technique which yields

u(x), and it turns out that the method of variation of parameters

is again the solution.

As before, we replace c by g(x) in y = cx to obtain

y = xg(x)

(2)

and we now try to see what g(x) must look like if (2) is to be a

solution of (1) [observing that if such a g(x) can be found and

if

g(x) is not constant then xg(x) is not a constant multiple of x,

so that {x,xg(x)} is linearly independent].

At any rate, from (2), we obtain

y' = xg'(x) + g(x) (3)
and
y" = [xg"(x) + g'(x)] + g'(x)
= xg"(x) + 2g'(x). (4)
Using (2), (3), and (4) in (1) yields
8.2.7.9
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2.7.3(L) continued

[xg" (x) + 2g'(x)] + —lf[xg' (x) + g(x)] - —-1§[xg(x11 =0
X X

or

xg" (x) + 2g'(x) + % g'(x) + ﬂi§l - ﬂlgl =0
x X

or

xg"(x) + (2 + -i-)g'(x) = 0.*%

Letting p = g'(x) in (5), we see that

and since x # 0, (6) may be written in the equivalent standard
form

%*(%*ﬁ)lnm (6")

We may solve (6') either by observing that the variables are

separable or by observing that the equation is linear in p. If we

elect to separate variables, we obtain

X 2

QE = —(2. + -..-].'...)dx
P X

or

I
I
N
H
5
%
+

1n |p|

(kl an arbitrary constant), or

*Notice that g(x) conveniently disappeared from our equation, so

that (5) is now easily handled by the substitution p = g'(x).
our note following this exercise, we shall show that our method

guarantees that g(x) will always be missing from our final equa-

tion, and this is why this technique always works.

S.2.7.10
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2.7.3(L) continued

_ -2 L
In 1pl_1n lxl +§'+k]_ I
or
=2 1
1n x| “ + Ttk
[pl = e
1
-2 = k
- oln |x| " x e 1
1
k -_—
=e ! [x] 2 &%, (7)
Ky %2
Hence, since e is an arbitrary positive constant and |x]| =
1 1
——= = —, (7) becomes
|x|2 xz
1
X k
- e _
Ipl = k, 2 where k, = e = > 0.
Hence
J‘- |
ex
_ L2 = *
p = k3 x2 where k3 ikz. (8)

Recalling that p = g'(x), we have from (8) that

1

X

s (9)

g'(x) = kg

"

*We could have obtained (8) by viewing (6') as linear in which

2 1
f(x * x2)dx 2 1n |x| = % 2 —%
case e ol - = X e is an integrating
factor in which case (6') becomes
_l) o
ﬁL px2 e X/ = 0, or px2 e = k; whence
X
1
_ ke®,
P 2

8.2.7.11
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2.7.3(L) continued

Now from (9)

g (x) =fk3

In the present exercise, we have chosen coefficients which allow

B L

dx. (10)

le (]

us to compute (10) explicitly (but as we've said before, this is

not crucial). Namely, letting v = %, we see that dv = -g%, hence
X

1

X

e"dx _ . u
kaxT— kaedu

u
= -k3 e + ks

or since -k3 is still arbitrary,

g(x) =k, e + kg. (11)

Returning to (2), (11) tells us that

1
y = x(%4 e* + ks) (12)

is also a solution of (1).

In fact, (12) contains two arbitrary constants k4 and ks so that
it appears that

1

- X 1
y = k; xe” + kgx £X2%)

is the general solution of (1). 1In this regard, notice that (11)

was more "complete" than was necessary. Namely, all we needed was
one specific solution of (1) which was not a constant multiple of

x, or, equivalently, any one function g(x) which was not a

Sads Takd
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2.7.3(L) continued

constant. In particular, had we chosen k4 = 1 and k5 =0, we
1

would have obtained g(x) = e*; whence a particular solution of (1)

would be

1
Yy = xg(x) = xe* (13)

which is not a constant multiple of x. Notice that (13) checks
1

with (12') in the sense that since x and xe® are linearly inde-
pendent solutions of (1),

1
- b4
y = ¢;%x + c,xe (14)
is the general solution of (1) [(14) is (12') with c; = k; and

Cy = k4].

2
As a check that (13) is a solution of (1) ,* we have

1

X
Yy = Xxe

1 1
y' = X + x -35 ex
X
1 1
= ex = % e -
1 1 1
it 1 X% i 1. % 1 N.x
y" = ——= e - |=|-—5 e + ———)e
x2 X x2 (xz
1
1 X
=—3€.
b4

*Again, technically speaking, all we have shown is that if there
exists a solution of the form xg(x) where g is not constant, then
any such solution is essentially given by (13).

$.2.7.13
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2.7.3(L) continued

Hence

1 1 1

1 1 1 1| x 1 x 1 X

y" + ¥y - Yy = - T ——[% == e ] = [xe }
%2 2T P x2 X =

Note
The technique used in this exercise may be generalized as follows.

Suppose we are given the homogeneous linear differential equation
(where the coefficients need not be constants)

y" + p(x)y' + g(x)y =0 (1)

and we "happen to know" that y = ul{x} is a non-zero solution of
(1). We then write

uz(x) = g(x)ul(x} (2)

and try to determine g(x) so that u2(x) is also a solution of (1).
From (2), we obtain

uz'(x) = g(x)ul'(x) + g'(x)ultx} (3)
and
uy"(x) = [gx)uy"(x) + g'(x)uy' (x)] + [g" (x)u, " (x) +

+ q“(x)ul(X)] (4)

Il

g(x)ul“(x) + Zg'(x)ul'(x) + g"(x)ul(x).

Replacing y by u, in (1) and .using (2), (3), and (4), we obtain

S.2.7.14
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2.7.3(L) continued

oy

[g(x)ul"{x) + Zg'{X)ul'(K) + g"(X}ul(X}]

+ p(x) [q(X)ul'(x) + g' (X)ulix)] - = 0. (5)

+ q(x) [g(x)uy (x)]

e

While the left side of (5) may seem a bit cumbersome, let us ob-
serve that ultx) was not just "any old function" but rather was a
solution of (1). This means that

u; " (x) + p(x)u;*(x) + q(x)u; (x) = 0. (6)
Herein lies the key as to why every term involving g(x) vanishes
from the left side of (5). Namely, the portion of the left side
of (5) which involves g(x) is

g(x)u;"(x) + p(x)g(x)u; ' (x) + q(x)g(x)u, (x)

or

g(x) [ul"{x) + p(x)ul' (x) + q(x)ul(x)] ’

and, from (6), this is zero!

Thus, (5) may be simplified to read

2g'(x)u1'(x} + g"(x)ul(x) th p(X)g'(X)ul(x} = 0. (7)
If we now let v = g'(x) [in the exercise, we let p = g'(x) but
this would be confusing in the present context because p or p(x),
is being used to denote the coefficient of y' in (1)], (7) becomes

20 (v + ug (1) JE+ px)uy (X)v = 0

or

dv

u, (x) g + [2u;'(x) + p(x)u; (x)]v = 0 (8)

or, if we assume our equation is defined on an interval for which

S$.2.7.15
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2.7.3(L) continued

ul(x) # 0, we may rewrite (8) as

av 2u1'{x)
a‘;"‘ u—lGa'—"‘P(x)v=0. (9)

Notice that, just as in the exercise, (9) may be viewed either as
variables separable or as linear in v [keeping in mind that p(x),
ultx), and ul'(x) are known functions of x].

Treating (9) as linear, we have that an integrating factor is

u, ' (x)
2a - PR EAx 5 an |uy 0| + fpixiax
e = e

ulztx}efp(X}dx,

so that (9) is equivalent to

d [Vlllz (x) efp{x)dx]

dx =9
or
v, 2 () e/PIHISE o g,
Hence
-/p(x)dx
v = 59——5————— = g'(x);
uy (x)
so that
-/p(x)dx
g(x) = fk_e____z___ dx. (10)
uy (x)

Simplifying (10), of course, depends on p(x) and ultx), but (10)
supplies us with the solution, from (2),

5.2.7.16
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2.7.3(L) continued

u, = xg(x), with g(x) as in (10). (11)

L(y) = y" = 2y' + y,

2

rx(r = E)

Le™®) = (2 - 2r +1) = e
Hence, r = 1 is a root of L(erx} = 0, and we may conclude that

y = e* (1)
is a solution of

' = 2yt = ¥ =0 (2)

Using variation of parameters, we see from (1) that there should
be a different solution of (2) in the form

y = g(x)e™. (3)
From (3),

y' = g(x)e”’ + g' (x)e* (4)
and

y" = g(x)e” + 2g' (x)e* + g"(x)e¥. (5)

Using (3), (4), and (5) in (2), we obtain

¥+ gr(x)e*] + [gx)e*1=0,

[g(x)e® + 2g' (x)e* + g"(x)e®] - 2[g(x)e

or

eXlg(x) + 2g'(x) + g"(x) - 2g(x) - 2g'(x) + g(x)] =0,

$.2.7.17
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or
g"(x) = 0. (6)
From (6),

g(x) = c X + ¢,

and; hence, choosing ¢ = 1 and c, = 0, we see that one simple
choice for g(x) is

g(x) = x,

whereupon (3) becomes
%

y = Xe ,

which as we already knew by other methods was a solution of (2)
which was not a constant multiple of &=,

2,7:5

a. Once we write
y" + (%2 - 4)y' - 4x’y = 0 (1)
in the equivalent form
(y" - ay') + x*(y' - 4y) =0, (2)

it is not hard to notice that

"o ayt = gt ~ 4yt
Thus, letting

u=y' - 4y (3)

S.2.7.18
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2.7.5 continued
in (2) yields
u' + x2u =0,

for which u = 0 is trivially solution.

I

Since u y' - 4y, u = 0 means

y' - 4y = 0.

(4)

From (4), which is a linear, first-order, homogeneous differential

equation with constant coefficients, it is easy to conclude that

y = cle4x. In particular, letting ¢ = 1, we see that

¥o= e

is a particular solution of (4); hence, also of (1).

e4x 4x i

-+ y' = 4e -+* b - lﬁe4x.

[Check: y =

Hence,

X 2 4x

y" o+ (x2 - 4)y' - 4x2y - 16e4x + (x2 = 4}4e4 - 4x"e

(5)

0.1

By variation of parameters, we conclude from (5) that there exists

a second linearly independent solution of (1) with the form

4x

y = g(x)e?®. (6)
From (6)
y' = 4gx)e?® + gt (x)e?* (7)
and
¢" = [16g(x)e?® + 4g' (x)e¥*] + [4g' (x)e¥F + g" (x)e?¥]
= 16g(x)e?® + 8g" (x)e*®* + gn(x)e?®. (8)
S.2.7.19




Solutions
Block 2: Ordinary Differential Equations
Unit 7: Variation of Parameters
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Using (6), (7), and (8) in (1), we obtain

[16g (x)e?® + 8g' (x)e®* + g" (x)e?¥]

X

+ (x2 - 4) [4g(x)e?® + g (x)e?¥] - = 0.

+ (-4x?) [g(x)e*¥].
Simplifying (9) yields
8g' (x)e?* + g"(x)e?¥
or

**agr (x) + g"(x) + x%g' (x)] = 0

or

g"(x) + [x2 + 4]g' (x) = 0.

+ ng'(x)e4x - 4g'(x)e4x

(9)

=0

(10)

Equation (10) is linear in g'(x), so that an integrating factor is

3

2 + 4x

o
uwd

ef{x + 4)dx _

Hence, (10) is equivalent to

[ %x3 + 4x ]
dle g'x) _
dx T

so that

g'(x) = ke .

From (11), one choice of g(x) is

(11)

S.2.7.20
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2.7.5 continued

-%'-xB - 4x
glx) = & dx.*

Hence from (6)

1
-x~ - 4x
y=e4xfe3 dx

is also a solution of (1).

Accordingly
1
-ZX~ - 4%
_ 4x 4x 3
Y = ce + cye fe dx
is the general solution of (1).

2.7.6 (L)

Our main aim here is to put the two previously-discussed uses of
variation of parameters together and show by means of a specific
example what it means when we say that we can find the general

solution of
y" + p(x)y' + gx)y = £(x)

once we know one particular solution of the reduced equation.
Other than for this, the present exercise comes under the heading
of additional drill.

We are given

" ““—ii—f ¥t = ——JL—E =1 (1)
1l —i% 1 - x

*Here we have an example in which g(x) (up to an additive con-
stant) is well-defined because our integrand is continuous, but we
cannot express g(x) in a more explicit closed form. We could ex-
pand the integrand as a power series and integrate term-by-term
etc., but our main point is that g(x) may not be convenient from
an explicit point of view.
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2.7.6(L) continued

and told that one solution of the reduced equation is y = x [and

this may be easily checked once given; namely, y = x > y' = 1 +
YI'=0+YII-_X2'Y'+__'_L'2_=O_ x2+ x2=0].
1 =% 1= % L= % L= ix

Since y = x is one solution of

Y!l_—xz,yl'.'._L_z._:o (2}
1 - x 1 -x

the method of variation of parameters tells us that another lin-
early independent solution of (2) exists in the form

Yy = xg(x). (3)
From (3),

y' = g(x) + xg'(x) (4)
and

y" = g'(x) + [xg"(x) + g'(x)]

= xg" (x) + 2g'(x). (5)

Putting (3), (4), and (5) into (2) yields

xg" (x) + 2g'(x) - —x—z [g(x) + xg'(x)] + ——-1—-—-2- [xg(x)] = 0,
l - x 1 =%

or

x2
xg"(x) + |2 - —|9'(x) =0,

- X
and since x # 0,

2 X ' =
g"(x) + [; - -————5}9 (x) = 0. {6)
1 - x
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2.7.6 (L) continued

Equation (6) is linear in g'(x), so that an integrating factor of

G- =2)>

(6) is e

Since

2 1n|x|+ % in (1 - x2)

k-..___'
—
LS
I
=
Fox
»
3%
T —
(ol
b
Il

*

1n xz + 1ln V1 - x2
1n x2 Yl - xz,

Hence, (6) is equivalent to

d[xzfl  x* g'(xJ = g
dx i

or

g'(x) = — 5 (7)

x2/l = x2
(where k is an arbitrary constant).

Hence

q(x)=f—-]L(0<x<l). (8)
2 2

X vVl - x

*We are in no trouble here since |x| <1 so that V1 - x2 is real

and non-zero. Had x not been so restricted, we would have had to
remember to observe that -[-——JL—E dx = % 1n |1 - x2| and so the
1. ==
only trouble occurs when x = *1.
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_

2.7.6(L) continued

The integral in (8) lends itself nicely to trigonometric substitu-
tion. Namely,

sin 8 = x
i x cos 6 d8 = dx
8 #i - x2 = cos 6
2
- o
so that

k dx _fk cos 06 dé
- .2
x2 é _ x2 sin”6 cos 8
= kfcscze dae
= -k cot 6 (+k;). (9)

From our diagram (or else analytically)

cot § = ——Mmm,
so that from (8) and (9),

2
_ =kvYl - x
g(x) = e + kl. (10)

Since we need only one non-constant choice of g(x) in (10), we may
let k = -1 and kl = 0, and we then obtain

A = 52 (11)

g(x) = Se———

S.2.7.24
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2.7.6(L) continued

Using g(x), as given by (11), in (3), we obtain

y = x(ﬁL£;53)== 1 - x*

X

is our second linearly independent solution of (2).

Thus, the general solution of (2) is

y = g% + /1 - x2. (12)

1 2

Observe that in deriving (12), we were doing the same thing as we
did in Exercises 2.7.3, 2.7.4, and 2.7.5; namely, finding the

general solution of L(y) = 0 knowing one non-zero solution.

Now we use variation of parameters, starting with (12), as we did
in Exercises 2.7.1 and 2.7.2; namely, to find a particular solu-
tion of L(y) = f(x) once we know the general solution of L(y) = 0.

Il

x and uz(x) = ¥l - x2 we have that

u;'(x) =1 and u,' (x) —X ___ Hence, there exists a particular

¥l = x2

solution of (1) in the form

Namely, letting ultx)

yp = *hy (x) + /A - x% h, (x)* (13)
where .
xhy ' (x) + /L - %2 hy' (%) =0
and L . (14)
R = hy' (x) =1

l - x

*#In our lecture and previous exercises, we used 8, and 8, rather

than hl and hZ' Since the names of our functions is not impor-
tant, we elected to use h rather than g simply so as not to become

confused with g as used in equation (3).
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2.7.6(L) continued

Multiplying the bottom equation of (14) by x and then subtracting

the bottom equation from the top, we obtain

2 h,'(x)
Yl - x2 e e hz'(x) = =X, Or e

1 o= x2 1

or

h,'" (x) = -x V1- x

Hence, from (15),

--/rx 1 - x2 dx

3
2

1)

]

h2(x)

From the top equation in (14)

-1 - %2 h," (x)

hl'(X} = X ’

so from (15),

Il
|
=
I
"
B
T
"
!
"
)
—

hli(x) x
or
= _ w2
hl'(x) =1 X
Hence,
1.3

hl(x) =x - 3X.

Using (16) and (17) in (13), we obtain

(15)

(16)

(17)
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2.7.6 (L) continued

3

¥y = x(x - % x3) # L= %2 % (l _ x2)2

=x? - % xt 4 3 (1 = xz)z

S -lidalo2.2, 1.

= % (1 + x2). (18)
Check of (18)
Y=%‘(1+x2)+y'=%x+y"=%
Therefore,
e A N e T

2(1 - x2} - Z%° & (1 + xz)
3(1 - xz)

3 - 3x2
3(1 - xz)

=10

Now we combine (18) with (12) [remembering that (12) is yh] to
obtain the fact that

|
Yy = ¢;% + c,/1 - x2 + % (1 + x2) i

2

is the general solution of (1). |
|
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2.7.7 (Optional)

a. Up to now we have been stressing variation of parameters in the
case of second order linear equations. Even in this relatively
simple case, the arithmetic often becomes cumbersome. Obviously,
then, one can expect some real "messes" to occur when we apply
variation of parameters to higher order linear equations.

Nevertheless, we feel it is worthwhile to practice on at least one
higher order equation in order to make sure that you understand
the general theory.

The overview is as follows.

Suppose
L(y) = f(x) (1)
is a linear nth-order differential equation, and that

Yy = clultx) G R cnun{xj (2)

is the general solution of the reduced equation, L(y) = 0.
Then a particular solution of (1) exists which has the form

Yp = gl(x)ul(x) * i oF gn(x}un(x)* (3)

where

gl'(x)ul(x) + g B gn'(x)un(x} =0

g, (Xuy'(x) + ...+ g " (X)u (x) =0

Z : ) : (4)

(n-2) (n-2)

L] " =

g, " (x)uy (x) + +g, ' (x)uy (x) =0
gl'(x)ul(n-ljtx) + ... 4+ gn'(x)un(n'l)(x} = £(x)
*We obtain (3) from (2) just as we did in the case n = 2. That
is, we replace the arbitrary constants Cys wovs cu by the arbi-
trary functions gl(x), $%na § gn(x).
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2.7.7 continued

System (4) is essentially n linear equations is the n unknowns
gl'{x) - gn'(x). [That is, the u's are known functions of x;
hence, the coefficients of gl'(x), Sl 7 gn'(x} in (4) are known

constants for a given value of x.]

Notice that in (4) that each of the left sides of the first (n-1)
equations is equated to 0. The last equation has the left side
equated to f(x).

If we view the u's as coefficients, we see that the determinant of

coefficients is
ul(x)r . ST un(x)

uf(x), i v un'(x)

-
-

(n-1)
L8
1 (X)) vewy vy

(n=1) (%)

which by definition is the Wronskian of {ul, e un},

W(ul, S s un). Since {ul, P un} is a set of n linearly inde-
pendent solutions of L(y) = 0, W(ul, R un) is never zero (see
Supplementary Notes, Cahpter 10). Hence, (4) may always be solved
to yield unique expressions for gl'{x), ..., and gn'(x), whereupon

we may find gl(x), ..., and gn(x) by integration (so they are
unique up to an additive constant). Then with any particular
choices of gl(x), o gn(x}, we find ¥ from (3).

The derivation of (4) is very analogous to the procedure explained
in the lecture for n = 2. Essentially, with n arbitrary functions,
we may impose n - 1 conditions at our disposal. Rather than give
the proof for an aribtrary value of n, we shall pick n = 3 and
then mimic the procedure of the lecture. Our feeling is that once
you see explicitly what happens when n = 3, it will be easy to
understand (4) for any value of n.

Suppose, then, we are given that

¥y = clul{x} + czuz{x} + 03u3(x} (5)

552,577,229
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2.7.7 continued

is the general solution of

y"+ px)y" + ax)y' + r(x)y = 0, (6)
and we want to find a particular solution of

y" + px)y" + gx)y' + r(x)y = £(x) (7)

Replacing the constants in (5) by arbitrary functions, we obtain
the function

y = gl(xiul{X) + gztx)uz(x) + q3(X)u3(X). (8)

At this point y, as described in (8), is extremely vague. We
might say that y has three degrees of freedom in the sense that we
are completely free to choose gi{x}, gztx}, and g3(x) as we choose
[except, of course, that they must each be at least thrice-
differentiable, otherwise we will not be able to use (8) when we
seek a solution of (7)].

From (8), we have
y' =gy (x)ugt (%) + gy (X)ug (X) + g,y (x)u, ' (X) 4 gy' (X)u,(x) 4+
+ g3(x)u3'(x) + g3'(x)u3(x). (9)

[Notice, in reference to our last parenthetical remark, that equa-
tion (9) requires gl(x): gz(x}, and g3(x) to be differentiable.]

"Surveying" (9) [and perhaps even using a bit of hindsight by
being reminded by (4) that our system of equations will not in-
volve gl(x), gz{x}, 93(x), but rather gl'(x), gz'(x}, 93'(x}], we
now elect to impose our first condition on the g's. Namely, we
assume that gl{x), gz{x}, and g3{x) are chosen such that

gl'(x)ul(x) + gz'(x)uztx) + g3'(x)u2(x) =, (10)

5.2.7.30

E3 © - E =S

Bl S TS o T

Tl = e




B 0 A S S S B D BN By D Pm el

ean B Ma M

;s e

Solutions
Block 2: Ordinary Differential Equations
Unit 7: Variation of Parameters

2.7.7 continued

[This is not hard to do. For example, we may choose 94 and g, at
random, and then pick 94 to be any function defined by

—[gl'(X)ultx) + qz'(x)uz{x)]
95 (x) = u3(§7 etc.]

Once condition (10) is imposed, equation (9) reduces to
y' =gy (x)uyt(x) + g, (x)u, (X) + ga(x)uy’ (x). (9")
From (9'), we obtain
y' =gy (®)ug"(x) +ogyt (X)ug (X)) + gy (X)uy"(x) + gyt (x)u,y ' (x) 4
gy (x)uy" (x) + g3' (X)ujy' (%),
or, upon regrouping terms,
y" = [g(x)u " (x) + g, (x)u," (x) + g;(x)us"(x)] +
+ [gq" (0)ug ' (%) + g,' (K)uy' (x) + gyt (Kug' (0], (11)

If we now elect to impose our next restriction on gl(x), gz(x),
and g3(x), equation (11) suggest that it be

gq' (X)u, " (x) + 92‘(X)u2'(x) + gy3' (x)uy' (x) = 0. (12)

[Equation (12) is suggested by (4). Had we not known this, how-
ever, our choice would have been the same, but the reasoning might
have been different. Namely, somewhere along the line, we expect
to have to use the fact that ul{x),uz(x), and u3(x) are (linearly
independent) solutions of the reduced equation. In other words,
for k = 14 2; oxr 3

uk“(x) F p(x)uk“(x} + q(x}uk'(x) + r(x)uk(x) =0 (13)
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2.7.7 continued

so we want to keep the higher order derivatives of Uys Uy, and u

3

in (11) in the hope that we will be able to simplyfy things by use

of (13).]

At any rate, assuming that condition (12) has been imposed, (11)
becomes

y" =gy (®)u"(x) + g, (x)u,"(x) + g3 (x)uy” (x) (11')

and from (14)
y" = [gl(x)ul"Tx} + gz(x)uz"Tx) + 93(x)u3"1x)] +
+ [gy" (x)u " (x) + gz'(x)uz“(x) + 93'(X)u3“(X)].

We now replace y
(8), (9'), (11'), and (14). This yields

gl(x}ul"Wx} + gz(x)uz“Wx) + g3(x)u3“1x) c gl'(x)ul“(x) +

+ gz'(x)uz“(x) + q3'(x}u3“(x}

+ p(x)gl(x)ul"(x) + p(x)gztx)uz“(x) + p(XJg3(X)u3"(x)
+ q(x)gltx)ul'IXJ + q(x)gztx)uz'(XJ + q{x)g3(x)u3'(x}
+ r(x}glfx)ul(x} + r(x)gztx)uz(xl + r(x)g3(x)u3(x)

(14)

, v", v', and y in (7) by their values given in

n ] n " "

gl{x)[ul+pu1+qul+ru1] gztx)[u2+pu2+qu2+ru2] g3(x)[u3+pu3+qu3+ru3]

. T g

J

3 v b

=0, by (13) =0, by (13) =0, by (13)

Hence,

gl'(x}ul"(x) + gz'(x)uz“(x) + g3'(x]u3“(x) = £f(x).

> = f(x)

(15)

5.2.7.32
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2.7.7 continued

[Notice that (15) is not arbitrarily prescribed. Rather we have
shown that our first two restrictions, (10) and (12), force us to
accept (15) if there is to be any hope for (8) to be a solution of
(7).1

Collecting the results of (10), (12), and (15), etc., we have
shown that

Y. = glfx)ul(x) + gz(x}uztx) + g3{x)u3(XJ

P

will be a particular solution of (7) provided that

-

gl'(X)ul(x) + gz'(x)uztx) + g3'(x)u3(x) = 0

(16)

1]
(=)
Y

ql'(X)ul‘{x) + gz'(x)uz'(x) + q3'(x)u3'{x}

f(x)

gl'(x}ul"(x) + gz'(x)uz“(x) + 93'(x)u3"(x)

-

The determinant of coefficients in (16) is W{ul,uz,u3} and this is
never zero since {ul,uz,u3} is a linearly independent set of solu-
tions of (6).

Since the determinant of coefficients never vanishes, equations
(16) are consistent and uniquely determine gl'{x), gz'(x), and
g3'{x}, from which we can now find gl(x), QZ(X), and g3(x),

and thus determine Yp from (8).

Notice that equations (16) would still make sense even if
{ul,uz,u3} was a linearly dependent set. In this case, however,
W(ul,uz,u3} = 0 and consequently equations (16) need not be con-
sistent. In other words, we would not have enough information in

(16) to determine gl(x), gz(x), or g3(x).

Since x # 0, we may rewrite our equation as

Yllt+_‘l_'2_yl_L3y=i2—lnx (x > 0). (1)
X X X

Knowing that

Yy, = C1X * c,x In %+ esx (In x)2 (2)

1 2 3
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2.7.7 continued

is the general solution of the reduced equation, we may let

ul(x) = X

]

uz(x) x 1ln x

Xx(1ln x)2

u3(X)

(3a)

(3b)

(3c)

whereupon the result of Exercise 2.7.7 tells us that

Yp = gy (Xuy (x) + g, (X)u, (x) + g5(x)uy(x)
is a particular solution of (1) provided

gy'uy *+ g5’y + ggytug =0

gll'ull + g2|u2I + galu3l - 0

£%) = 35 1n x

" 1 L1} ] "
gp'ag" * gyt " ggtug =

(4)

3 (5)

4

[Notice from (4) and (5) that it is easy to specify yp. The

difficult tasks are verifying the formula

(which we did in the

previous exercise) and carrying out the computations (which we

shall do now).]

From (3), we have

ul'(x) = 1, ul“(x) =0, uz'(x) =1+ 1In x, uz"{x} = %,

2

uy'(x) = 2 In x + (In x)2, ) = % +

In x

X

Using these results in (5), we obtain the system

xgl'(x) + x 1n xgz'(x} + x(1n x)2g3'(x) =

g;"(x) + (1 +1nx)g,"(x) + [2 1n x + (In

i g," (x) + (% +

2 1n %
X

! = L
= g3 (x) = 5 1n x

X

0

v

x)2g," ()] = 0 (6)
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2.7.7 continued

Equations (6) lend themselves nicely to a direct solution without
our having to refer to determinants. For a start, since x # 0, we
multiply the first equation in (6) % and the third by x to obtain

gl'{x) + 1ln x gz'(x} + (1n x)2 g3'{x) =0

Y

g,"(x) + (1+1nx) g,'(x) + [2 1n x + (In x) 2] 95" (x) = 0 (7)

In

gz'fx) 4+ [2 + 2 1n =] g3‘(x} ==

-

Replacing the second equation in (7) by the second minus the

first, we obtain
gl'(x) + 1n x gz'(x) + (1n x)2 q3'(x) =0

g,'(x) +2 1n x g;'(x) =0 i (8)

_1n x
=

We complete the diagonalization of the system by replacing the

gz'(x) + (2 + 2 In x) g3'(x)

third equation in (8) by the third minus the second to obtain

g,'(x) + In x g," (x) + (In x) 2 g;' (%) = 0

qz'(x) + 2 1n x g3'{x) =0 - (9)

1n x
X

2 gy'(x) =

Therefore, from the third equation in (9)

95" (x) = 12xx' (10)

Putting this result into the second equation in (9) yields

1n x)

2% =0

g2'(x) + 2 Inx |

0¥ ;
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2.7.7 continued

_ 2
g, (x) = X (11)

Using (10) and (11) in the first equation of (9), we finally

obtain

2
gy " (x) + 1n & [Zil%;il—] + (1n x)2 lgxx =0

or

3
g,' (%) = il%;ﬁl—. (12)

We now integrate equations (10), (11), and (12) to conclude that

g3(x) = i (1n x)2
g,(x) = -3 (lnx)> (13)
gy (x) = % (1n x)4

Using equations (13) and (3) in (4) yields

% (in )4 % - % (ln-'x)> x 1n x + % (1n %)% x(1n x)2

<
I

1 1

(F-3+Px nx?

f% X (1n x)4

Il

(which agrees with our result in Exercise 2.6.7, where we obtained
the same answer using undetermined coefficients.
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