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2.6.1(L)

We want to emphasize here that the method of undetermined
coefficients requires not only that

L(y) = £(x) (1)

but also that f(x) must be a linear combination of terms of
the form

o

k _ax k
X e cos BX or X e%

¥sin Bx (2)

where k is a whole number; and o and B are real.*

You may notice that the examples used in the lecture were special

cases of (2). For example, if L(y) = e*, then e* has the form

’
xkeaxcos Bx where k = 0, oo = 1, and B = 0.
The question that we want to analyze in this exercise is why the
right side of (1) must be restricted to having the form described
by (2). The point is that the method of undetermined coefficients
requires that the right side of (1) be a function which has only
a finite number of linearly independent derivatives. As we shall
discuss in more detail in the next (optional) exercise, a
function has this property if and only if it has the form des-
cribed by (2), or else is a linear combination of terms of
type (2).**

*If we allow the use of non-real numbers, the two types of
terms described in (2) can be written in the single form:
k rx

x e

where k is still a whole number, but r is now any complex
number.

**What we mean here is the superposition principle discussed in
the lecture. Namely, if f(x) is a sum of terms of the type (2);
say f(x) = g.(x) + ... + g_(x), where g, (x),...,8 (x) each have
the form described in (2); then solving (1) requires that we
solve each of the equations: L(y) = g,(x), L(y) = gz(x), e acy
and L(y) = gm(x) separately. Then, if L(u1)= gl(x), L(uz)
g,(x),..., and L(u ) = g _(x); by linearity L(u1 + ...+ ul)

m m m
g1 (x) + ...+g (x) = f(x).
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2.6.1(L) continued

Since the reasoning and the concept itself is a bit subtle, we
shall indicate what we mean in terms of the various parts of this
exercise.

1. With

£(x) = e X (1)

we obtain

£ (x) =

I

3e

£" (x) = 9e3%

and proceeding inductively,

£ (5) = 3Me3%, (2)

From (2) we conclude that {f, f', £", ...} is linearly dependent;
and even more, that each member of the set is a constant multiple

of e3x. In this respect, then, {f, f', £f", ...} is a 1-

dimensional vector space spanned by e3x.

2. With

Elx] = xe * (3)

we obtain

£ (x) = ok 3xe3x. (4)

Looking at (4) we see that f'(x) is now a linear combination of

We could now, by "brute force" extablish that each derivative of
xe3x is a linear combination of e3x and xe3x simply by computing
the various derivatives and seeing what happens inductively.

Namely, we may rewrite (4) by replacing xe3x by £(x), so that we

now have
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2.6.1(L) continued

3x

f'(x) = e ™ + 3f(x). (4')

Using (4') to find f"(x), we obtain

3x

f"(x) = 3e + 3£ (%),

or, replacing f'(x) by its value in (4),

3x

£9 (x) = 3e3% + 3(e3¥ + 3xe°%)

63X + 9xeSX, (5)

Clearly, we conclude from (5) that f£f"(x) is a linear combination

3x and xe3x; and even more, we have probably begun to sense

3x

of e

that each time we differentiate 33x or xe we will continue to

3x 3x

obtain linear combinations of e and xe™".

Thus, in this case it appears that the set consisting of xe3x and
its various derivatives is a 2-dimensional vector space, with the

basic "vectors" being e3x and xeBx. That is, every derivative of

xe3x can be written in one and only one way in the form Axeax 4+

Beax, where A and B are constants.

Optional Note:
A "cuter", more mathematical, inductive approach would be to let

g(x) = e3x. Then, from (1) we already know that g(kJ(x) = 3ke3x
= 3kg(x}.
We may now show that each derivative, f(n)(x), of (3) is a
linear combination of the preceeding derivative, f(n - l)(X)
and g(x). Namely, we rewrite (4') in the form
£'(x) = g(x) + 3f(x) (6)
whereupon
£ (x) = g'(x) + 3£"(x)
flll (XJ = g"(X) + 3f" (X},
S.2.6.3
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2.6.1(L) continued

and, in general

f(n){x) _ g(n-l)(x) + 3f{n—l){x)‘ (7)
Since g(k}(x) = 3ke3x and since e3x = g(x), we may let k = n - 1
to conclude that g(n_l){x) = gL 3% 3n_1g(x).

Consequently, (7) takes the form

£ (%) = 3 1g(x) + 3£(071) (), (8)

Without worrying about the specific details at this moment,
notice how (8) tells us that each f(n}(x) is a linear combination
of e3x and xe3x. Namely, since we already have shown that g(x)
and f'(x) are linearly combinations of 93x and xe3x, we may use

(8) with n = 2 to conclude that f"(x) was also a linear combina-

tion of e3x and xe3x. Once we knew this we could again invoke
(8), but now with n = e, to conclude that f(3}(x) was a linear
combination of e3x and xe3x.

In more computational detail, using (8) with n = 1 yields

f'(x) = g(x) + 3£(x)

and since f(x) = xe3x and g(x) = eBx, this means that

£fr(x) = e3x + 3xe3x, (9)

which agrees with (4) [as it should].
If we next use (8) with n = 2, we obtain
f'(x) = 3gi(x) + 3£'(x)

or, from (9),

3x 3x

£ (x) = 363X 4+ 3(e3* 4+ 3xe”%).

Hence,
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2.6.1(L) continued

£ (x) = 6e°% + 9xe3* [which agrees with (5)]. (10)

Again, returning to (8), but now with n = 3, we have

£"(x) = 9g(x) + 3f" (x)

so that by (10),

3x

£"rix) 9e + 9xe

Il

+ 3(623x 3x)

3x 3x

27e + 27xe~ ", (11)

With the arch of (11) we use (8) with n = 4 to obtain

3x

£4) (x) = 273% & 3871 (x)

3x

3x + 27xe™7)

= 27e3% 4 3(27e3%

3x 3%

+ Blxe™ . (12)

108e

Notice how nicely this inductive method minimizes the amount of
actual computation. At the same time, notice how (9), (10),
(11) , and (12) tell us specifically how f', £", £"', and f{4)
are expressed as linear combinations of e3x and xe3x.

With some additional experience and/or luck, we might even
discover in time the more general result that

M) () = n 30" L3IX L 3D L 3% (13)

Of course, even if we never discovered (13), once given it as a
conjecture, we can verify it by mathematical induction.

The really important point, however, is that by use of (8)
we can virtually immediately compute £ (x) as a linear com-
bination of e3x and xe3x as soon as we know f(nﬂl)(x) as a

linear combination of e3x and xe3x. Thus, eBX, xe3x is a
linearly independent set with the property that the derivatives

of xe3x are all linear combinations of the members of this set.
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2.6.1(L) continued

b. Given the equaticn

Liy) = £(x) (1)
with

Lly) = y" - 8y' + Ty (2) [
and i
£(x) = e |

we see that the right conditions for the method of undetermined
coefficients exist. Namely, our equation is linear; it has
constant coefficients; and its right side is of the required

type.

Hence, as outlined in our lecture, we look for a particular
solution of (1) in this case of the form

yp —— Ae3x' (4}

From (4) we obtain

3x
' = 3ne (5)
¥'p
and
3x
" = 9pe™ . (6)
Y'p

Therefore, if we replace y in (1) by Yp as defined by (4);
and use the results of (5) and (6), we obtain

(92e3%) - g(3ae3%) + 7(ae’¥) = 3%,

or

—gae ¥ - o3% [= le3x]. (7)
$.2.6.6
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2.6.1(L) continued

I E Em e e M.

Equating the coefficients of e3x in (7) we obtain

y =-3e (8)

is a particular solution of (1).

Check:
__ 1 e3x = 3 e3x e = 3 e3x
Yo =" Fe oY g€ =¥ p =73 .
Hence,
W 9 3x 3 3% T 3% 3x
¥y = 8y'p + 7yp i @ = 8 (- g e ) —ge T =e

The rest of this problem involves "old" stuff. Namely, our

reduced equation is
Y“ = BYI + 7Y — 0 {9)

and in the previous unit we learned that the general solution
of (9) is given by

_ 7x x
Y, = €€ + cye. (10)

The general solution of (1) is given by

Y=Yh+yp’

so from (8) and (10) we have that

e X (11)

ool =

y = cq© + cye” -
is our general solution.
Note #1

All that is "new" in this unit is that we have a special

technique for finding Yo that works for certain types of
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2.6.1(L) continued

equations. Other than that, the rest of the theory in this
problem has been discussed more generally in previous units.

Note #2

While (11) expresses y as a sum of 3 terms and (10) as a sum

of 2 terms, (11) still has only the same two arbitrary constants
as does (10). That is, if we want to find the solution of (1)
which passes through (xo,yo} with slope y'o, we see from (11)
that ¢ and c, are determined by the system of equations.

X X 3x
_ o o 1 o
Yo = €€ + cye -ge
7x0 x 3 3x (12)
(] -— -
¥ ™ 7cle + cye g e

Since Xgr¥gr and y'  are given numbers, the only unknowns in

(12) are cy and c,. Thus, the uniqueness of the solution in (12)

depends only on the determinant of coefficients of c and Chi

s e~
s b4
e © e ©
7 X
o
Te @ [

which is the same determinant that characterizes (10). This
is why we only needed one sclution yp once we knew the general

solution, Y, of y" - 8y' + 7y = 0.

Our main aim in this part of the exercise is to emphasize our
earlier remarks about the fact that f£(x) and its various deri-
vatives can be expressed in terms of linear combinations of an
appropriate finite subset of derivatives. To set up our claim,
let us try to lead you into a trap. Namely, suppose we tried
to solve this exercise in the same way as we did the previous
part. That is, given that

y" - 8y' + 7y + xe X (1)
we try for a particular solution of (1) in the form

Yp = AxeBx. (2)

5.2.6.8
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2.6.1(L) continued

From (2), we conclude [see part (a)]

y'p = A(e3x + 3xe3x) (3)
and
¥, = a(6e3* + 9xe3¥). (4)

Using (2), (3), and (4) and letting y = Yo equation (1) yields

A(6e3x + 9xe3x) - 8A(e3x + 3xe3x) + 7Axe3x = xe3x,
or,
-8aAxe X - 22e®¥ = xe3x = 1xe3x - Oe3x. (5)

Since xe3x and e3x are linearly independent, we know, again from
the previous unit, that equation (5) can be satisfied if and only
if "like" coefficients are equal. Equating the coefficients of

xe3x, we see that

-8A =1 (6)
and equating the coefficients of e3x, we see that
-2A = 0. (7)

Comparing (6) and (7) we see that we have arrived at a contra-
diction. Namely A must be constant, yet would have to be - %
to satisfy (6), but 0 to satisfy (7).

This contradiction is not the end of the world, but it does tell

us that equation (1) has no solution of the form: y = Axe3x.

Where, then, did we go wrong? How come we used the same method
in part (b) and didn't get into any trouble but that the method
got into trouble here?

S.246.9
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2.6.1(L) continued

The answer lies in the fact that when we differentiate xe3x,
the derivative includes the new, linearly independent term
e3*. This did not happen in part (b). That is, in part (b)
every derivative of e3x was a constant multiple of e3x so that
no new family of linearly independent terms was introduced by

taking the various derivatives.

Herein lies the importance of the work discussed in part (a)
of this exercise. In part (a) we saw every derivative of xe3x
was a linear combination of the linearly independent functions,

e3x and e3x.

X
terms from "creeping in", our trial solution should not have
been Y, = Axe3x, but rather

y. = axe>* + BeX, (8)

p

Using a bit of hindsight, we see that with (8) replacing (2),
the fact that we are going to have to compare like coefficients
of two sets of terms no longer forces us into a contradiction

since (8) gives us two undetermined coefficients at our disposal.

More computationally, from (8) we have

y'P = A(eBx + 3xe3x) + 3Be3X

= 3axe>* + (A + 3B) % (9)
and
y"p - A(6e3x + 9xe>X) + 9pe3¥

9axe X + (6a + 9B)e’%,

If we now replace y by Yo in (1), only now using (8), (9),
and (10) instead of (2), (3), and (4), we obtain

9Axe3x + (6A + QB)e3x - 8[3Axe3x + (A + 3B)e3x]

3x 3x

+ 7(axe3* + Be3¥) = xe

Thus, to protect ourselves against new, unforeseen

$.2.6.10
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2.6.1(L) continued

or,
-8axe’* + (-2a - 8B)e ¥ = 1xe3* + 0e%, (11)
Equating coefficients of "like" terms in (11) yields
-8A = 1 [just as in (6)]
and 3 (12)
-2A - 8B = 0 3
With A = - % , the bottom equation in (12) becomes
5=-tun=dy.
Using these values of A and B in (8), we obtain
v, = - kx4 1o (13)
As a check that (13) is a solution of (1), we have
Y'p I % 3% _ % 2% 4 %7 3%

= %3 3% _ 3 xe3x;
hence,
y" = = 3 e3x _ 3 e3x _9 xeBx

p 32 ] 8

== %% e3x = 2 xeBx.
Therefore,
y“P - 8y'P + 7yp = - %% e3x - % xe3X I

+ % e3x + 3xe3x - 0 + xe3x .
4 %f Q3% _ %xeax |
S.2.6.11
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2.6.1(L) continued

Since the reduced equation is still

¥ - 8yt # Uy =0

we see from (13) that the required solution is

3x
e .

_ Tx X 1 3x
Yy = cle + cze -7 xe +

W =
)

This helps to explain why we do not have to go beyond the
family of derivatives of the right side in looking for Yy by
the method of undetermined coefficients. A good rule of thumb,
however, is that when in doubt as to whether a particular term
should be included in the trial solution of yp, always include
the term. If the term was unnecessary its coefficient will
simply turn out to be zero, in which case we have wasted some
time but no damage is done in the sense that we still get the
answer. On the other hand, if we leave out a term which
should have been included, then we will arrive at a contra-

diction [as in (6) and (7)] in which case we must start over.

Note: (optional)

Let us observe that we do not have to worry about whether
additional term should have been included in (8). For example,
had we tried

y_ = axe X + Be3* + ¢ h(x) (14)

P

then, if h(x) is a linear combination of e3x and xe3x, then

ch(x) is redundant in (14) because h(x) could have been written
3x 3x

as klxe + kye in which case (14) would be back in the form
(8). If h(x) is not a linear combination of e3x and xeBx, then
{h(x), e3x, xe3x} is linearly independent. Since h(x) does

not appear on the right side of (1) but ch(x) appears on the
left side, we must have that c¢ = 0, since the coefficient of
h(x) on the left side must equal the coefficient on the

right side (which is 0).

5.2.6.12
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2.6,.1(L) continued

Here it appears that we are back to the type of problem in part
(b) rather than the type of part (c). That is, looking at the
right side of

it seems that our trial solution should be

7x
= Ae (2)
Yp
and that no other terms are necessary since all the derivatives
of 37x are (constant) multiples of e?x.
Nevertheless, using (2) we see that
Tx
' = T2e (3)
¥'p
and
7x
" = 49ae’". (4)
Y'p
Replacing y by Yp in (1) now yields
4926 = B(72e™®) + Tine’®) = ™%
or
0=e™®, (5)

Obviously (5) is a contradiction, since e?x cannot be zero for
any value of x - let alone identically zero. Where we went
wrong in this problem (unless you saw through our approach and
did it correctly on your own) was that we did not recognize that
our trial solution was itself part of the solution of the re-
duced equation.

In other words, notice that once we pick our Yp' the approach
is to compute L(yp) and then look at the right side, f(x),
and compare coefficients. The point is that once yp is a

8.2.6.13
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2.6.1(L) continued

solution of the reduced equation, L(yp) will automatically be
zero and this will lead to a contradiction unless f(x) is also
identically zero (if f(x) is identically zero then we would not
have been using undetermined coefficients in the first place,
but rather the method of the previous unit).

This is why we emphasized in the lecture that one should solve
the reduced equation before trying to find Y, by the method
of undetermined coefficients.

The trick in this case is that whenever the logical choice we
would have made for yp turns out to be a solution of the

reduced equation, we replace ¥ by xy If xy_ 1is still a

p*
solution of the reduced equation we then try x yp, etc., and
we ultimately wind up with a value of k for which xkyp does
not satisfy the reduced equation. 1In this case, xkyp will

work as our trial solution.

With respect to the present exercise, we see that with Yp =
Ae7x, yp is a particular solution of the reduced equation

since the general solution of the reduced equation is

from which we may obtain yp simply by letting By = A and Cy
= 0.

Therefore, rather than (2) we try

Tx
= Axe (6)
Yp X

] > i 7x
as our trial solution, This will work since xe X is not a
X
linear combination of e* and e?x; and consequently Axe7
cannot be a solution of the reduced equation (since all such

" 1 F : >4 7x
solutions are linear combinations of e and e 7).

Before carrying out the solution of this problem, let us make
sure that we see the basic difference between this part of the
exercise and the previous part. In the previous part, we

5.2.6.14
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tried for a solution of the form

YP _ Axe3x + Be3x

3x
not because e

was a solution of the reduced equation but be-
3x' In this

part of the exercise, we used (6) not because the right side of
7x

cause the right side of the equation had the term xe
(1) had a term of the form xe '™, but because the right side was
al* which was a solution of the reduced equation. In this
context, notice that (6) is written just as it is. We do not
write (6) as

yp = Axe?x + Be7x (6")
since (6') would just cause us extra work (and a contradiction
unless B = 0). Namely, in computing

L(Axe7x + BeTx)

We obtain by linearity
AL (xe'¥) + BL(e'¥)

and this, in turn, is simply

%

AL(xe ™)

7x

since L(e =) = 0.

Thus, had we used (6'), when we went to equate coefficients,

B would have been missing!

At any rate, returning to (6) we obtain

y'p = heT™ & Tige X (7)
and
y", = 78’ + 7ae”* + 49axe™ = 14 ae’* + 49axe”™. (8)
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2.6.1(L) continued

Thus, using (6) in (1) yields

(14Ae7x + 49Axe?x) - 8{Ae7x - 7Axe7x) + 7{Axe7x) = e:?x
or
6ae’* - 7%
(9)
and from (9) we conclude that
6A = 1, or A = é
so that, from (6)
Yp = z xe'*. (10)

From (10) we conclude that the general solution of (1) is

_ Tx X 1 7x
y = cle + c,e b g X .
Summary :

Admittedly this was an unusually long exercise (even by our
standards). The point is that this one exercise hits at
virtually every problem that can arise when one uses the
method of undetermined coefficients.

We may summarize our results as follows. Assume for the remainder
of this discussion that

L(y) = £(x)

is a linear differential equation with constant coefficients.

1. We investigate to see whether f(x) is a solution of the

reduced equation; that is, we see whether L(f(x)) = 0.

S.2.6.16



Solutions
Block 2: Ordinary Differential Equations
Unit 6: The Method of Undetermined Coefficients

I Ta BE BN BN PR DE B D B B B e

T S E BN E .

2.6.1(L) continued

2. In the event that f(x) is not a solution of the reduced

equation, we choose our trial solution as follows:

XX

e ", then yp = aet¥

If f(x)

I

If £ix)
Yp is used if f(x) = cos mx).

sin mx, then Y = A sin mx + B cos mx* (and the same

_ .k _ k :
3. If f(x) = x, then yp = Akx C P Alx + Ao [i.e., £
and its derivatives are all linear combinations of 1, x..., and

xk].

4, If £(x) = fl(x) e aanet fm(x}, where fl""'fm are of the
types (1), (2), and/or (3), we solve L(y) = fl(x),...,L(y) -

£ (x) separately and then use linearity to find the solution of
L(y) = £(x).

5. If f£(x) = xkeax cos Bx (the most general case), we take the
families {1,%,...,x°} , {e®®* } , {cos Bx, sin Bx} and form
all possible terms which consist of a member of each set. Our
trial solution is then the general linear combination of the
members of the resulting set.

By way of illustration, if

fix) = x3cos 2x

we form one family {1, x, x2 x3 } [by (3)], and the other

family {cos 2x, sin 2x} and obtain the set of eight terms

2 . y
{cos 2x;, x cos 2x, x"cos 2x, x3cos 2x, sin 2x, x sin 2x,

x2sin 2x, x3sin 2x }

211 derivatives of x3cos 2x are linear combinations of these
eight members.

*Notice that this is consistent with our claim that y_ must
include all linearly independent derivatives of f(x).P In the
case that f(x) = sin mx or cos mx, f and all its derivatives
are linear combinations of sin mx and cos mx.
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2.6.1(L) continued

6. If f£(x) is a solution of the reduced equation then the
corresponding yp given in (2) is multiplied by the smallest power
of x, say x, for which xkyp is not a solution of the reduced

equation. Our new trial solution is then xky §

For example, suppose we wanted to find a particular solution of

Lly) = y" - 3y" + 3y' -y = e*.

In this case,

L(e™) = erx(r3 - 3r2 + 3r - 1)

from which we see that r = 1 is a 3-fold root of L(erx).

5 4 4 " § o X X
Hence, it is "foolish" to try linear combinations of e, xe™,

and xzex since each of these functions is a solution of the

reduced equation.

Thus, our trial solution in this illustration would be

3%
= AX e,
Yp

Further drill is left to the remaining exercises.

2.6.2 (optional)

In the last exercise we showed how the method of undetermined
coefficients worked in the case L(y) = f(x) where L had constant

coefficients and f(x) had either of the two forms: xkeaxcosﬁx

k. cx. .
or X e ~sinBx.

We showed why it was necessary that f(x) and its various deri-
vatives all be linear combinations of a finite subset of this
set. 1In this exercise we want to show that f(x) must be
restricted to the type discussed in the previous exercise if this
is to happen.
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2.6.2 continued

To prove our assertion, let us assume that that f(x) is any
analytic function which together with all its derivatives forms

a linearly dependent set. By definition of linearly dependent,
this means that there exists a derivative of £, say the nth
derivative, f(n)(x), which is a linear combination of the previous
derivatives.

such that

In other words, where exist constants c and cn

l;---; -1

£ ) =c MV (x) &+ ...+ cE(x) + c £(x),

n-1 1

and if we transpose all terms onto the left side of this equations,
we obtain

£ +a PV + b a0 +afx) =0 (1)

where we have replaced =Cp by a

K simply for the sake of

convenient notation.

Looking at (1) we see that y = f(x) is a solution of the homo-
geneous linear differential equation with constant coefficients:

(n)

(n-1)
Y + an_ly +

] —
ceet ajy' +ag = 0. (2)

In the last Unit we showed that every solution of (2) was a
linear combination of terms of the form xkemx cos Bx and/or xk
X sin Bx. In other words, if we insist that the set

{€£, £",..., } be linearly dependent, then f(x) must have the

form described in the previous exercise.
For example, if we refer to the equation
+ y = sec x, (3)

mentioned at the end of the lecture, and try for a solution
in the form

= A 4
Yp sec x (4)

mE Em Em B e m EEm e
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2.6.2 continued

we obtain

y'p = A sec x tan x (5)
and
y“p = A sec x(seczx) + A(sec x tan x) tan x

A sec x{seczx + tanzx). (6)

Letting y = Y5 in (3) then yields

A sec x{seczx + tanzx) + A sec x = sec x + 0 sec x(seczx + tanzx).

(7)

Thus, by comparing coefficients in (7) we obtain A = 1 and
A = 0* which is a contradiction since A is constant.

If we now try to adjust (4) by trying

I

v A sec X + B(sec x)'

P
(

A sec X + B sec x tan Xx)

we wind up in the same trouble because each time we differentiate,
a new (linearly independent) derivative enters the picture.

Thus, we keep imposing too many conditions of our given
undetermined coefficients. This will always happen because we
never get to the stage that any finite sum of the form

Aosec X + Altxec x)' + Az{sec )" + ... + An{sec x)(n]

characterizes all of the remaining derivatives of sec x.

This is not to say that we cannot find the general solution
of y" + y = sec x but rather that this general solution

*We may only compare like coefficients when our functions are
linearly independent. The fact that, sec x is not a kig&ar
combination of terms of the family x e cos Bx and x e sin Bx
means that {sec x,(sec x)', (xec x)"} is linearly independent.
Thus, in particular {sec x, (sec x)"} is linearly independent.
Thus, what (7) says is

A(sec x)" + A sec x = 0 (sec x)" + 1 sec x.

S.2.6.20
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2.6.2 continued
cannot be found by the method of undetermined coefficients. In

this example, we still have constant coefficients but the right
side is of the wrong form.

2.6.3

Since L(y) = y" - 6y' + 9y in each part of this exercise, we have
that the general solution of the reeuced equation will always be

vy = (e, + clx}e3x. (1)

Thus, in each part of this exercise we must find one particular
solution, yp, of L(y) = f(x) whereupon the general solution will
be

Y=Yp+Yk
=y + (c_+ cx}e3x (2)
P le] X :
Given
y" - 6y' + 9y = X (3)
; ; ; 4x
our trial solution is yp = Ae . Hence
4x 4x
' = 4he and " = JgAEe",
Yp Yp
We then obtain from (3)
(162e¥*) - 6(42e¥) + 9(ae¥®) = e¥* or 19net* = 1%
_ 1. oL 4x
so that A = 197 whence yp =15 ¢ -

From (2) our general solution is given by

= 3x , 1 _4x
y = (co + clx}e tige . (4)
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2.6.3 continued
b. With
y" = 6y' + 9y = sin 3x, (5)
our trial solution becomes
y_ = A sin 3x + B cos 3x. (6)

P

Hence,

y'p = 3A cos 3x - 3B sin 3x
and
y"P = -9A sin 3x - 9B cos 3x.

Thus (5) now leads to
(-9A sin 3x - 9B cos 3x) - 6(3A cos 3x - 3B sin 3x)
+ 9(A sin 3x + B cos 3x) = sin 3x
or
18B sin 3x - 18A cos 3x = 1 sin 3x + 0 cos 3x,
From which we conclude that B = %ﬁ and A = 0. Thus, from (6),
yp = %ﬁ cos 3x.
Referring again to (2), our general solution is

y = (co + clx)e3x + %§ cos 3x.

c. With
y" - 6y' + 9y = xe* (7)

our trial solution must be of the form

5.2.6.22
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2.6.3 continued

yP = axe® + Be*

(8)

; ’ ; X : . : X
since all derivatives of xe” are linear combinations of xe

and e*.
From (8) we obtain

y' = 2e® + axe® + BeX

= Axe™ + (A + B)ex

X

" ae®* + axe®

+ (A + B)e¥

L
I

Axe® + (2a + B)ex.

Using this information in (7) yields

axe®* + (2a + B)ex - 6[Axex + (A + B}ex] + B(Axex + BexJ = xe*
or
4axe™ + (-4a + 4B)e® = 1 xe® + 0e*.
Hence,
4A = 1 1

or A =B = T
-4A + 4B = 0
Thus, (8) becomes

_ I X i S S (R
Yp =z xe" + e’ =7e (x+ 1),
so that by (2) our general solution is
y = (cl + clx}e3x + % eX(x + 1)
d. Since y" - 6y' + 9y = 0 is satisfied by both y = e3x and
y = xe3x, our trial solution for
S.2,6.23
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2.6.3 continued

y" - 6y' + 9y = e°X -
should be
- e (10)
From (1)
Y'p = 3Ax2e3x + 2Axe>X
and
¥'p = (9ax%e3¥) + (6axe?®) + (22e%* + 6axe?¥)
= 9Ax%e % + 12ax%e % + 2ae°%,

Putting these results into (9) yields

9Ax2e3x + 12Axe3x + 2Ae3x 3
-lBAx2e3x - 12Axe3x E _ .3x
—0 =B
RS 9Ax233x
0 -
Hence,
2Ae3x = le3x, or A = % v
. 1 :
with A = 5 , (10) yields

N .
yp_fxe'

so from (2) we obtain as our general solution

y = (co + clx)e3x - %—xZBBX.

S.2.6.24




|

Solutions
Block 2: Ordinary Differential Equations
Unit 6: The Method of Undetermined Coefficients

M M em 63

2.6.4

From the previous exercise we have that

4x} 4x

L(e = e .

Hence,

L (e?®) = 3%,

By linearity,
3L(e?®) = L(3e%);
hence, (2) becomes
L{3e4x) = 3e4x.
We also saw in the previous exercise that
L(—l-cos 3x) = sin 3x.
18
Combining (3) and (4) yields
L(3e4x) F L(I% cos 3x) = 3e4x + sin 3x.
Again by linearity,

1
g Cos 3x),

Il

L(3e4x) + L(T% cos 3x) L{3e4x +

so that (5) implies

L(3e4x + T% cos 3x) = 3e

4x + sin 3x.

In other words,

4x

y = 3e + I% cos 3x

is a particular solution of L(y) = 394x + sin 3x.

(1)

(2)

(3)

(4)

(5)

(6)
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2.6.4 continued

Since L(y) = y" - 6y' + 9y,

¥y, ™ (g, clx}e3x. (7)
Hence, from (6) and (7) we have that the general solutions of
g = By' + 9= 36X & win 3x

is

3x 3e4x

y = (co + clx)e + cos 3x.

2

2 5645

Since x2ex is not a particular solution of y" + 3y' + 2y = 0,
we may try as a solution of

y" + 3y' + 2y = x2eX (1)
the trial solution

v, = Ax“e® + Bxe® + ce* (2)

X 2%

[i.e., all derivatives of xze are linear combinations of x“e™,

xe®, and e¥].
From (2) we have
y' . = (szex + 2axe®) + (Be* + Bxe®™) + ce®

Ax%eX + (2a + B)xe* + (B + C)e¥

2% +

y" = 2axe® + ax%e® + (2a + B)xe® + (2a + B)e®* + (B + C)e¥

szex + (4a + B]xex + (2A + 2B + c)e*.

]

With this information, (1) becomes

S.2.6.26
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2.6.5 continued

ax?eX + (4a + B)xeX + (2A + 2B + C)e¥
3ax2eX + (6A + 3B)xeX + (3B + 3C)eX b = x%e¥
2Ax2ex - ZBxex + 2Cex J
or
6Ax2eX + (102 + 6B)xeX + (2A + 5B + 6C)eX = 1x%e* + 0xe* + 0e¥.
Hence,
- ~ 2
_ _ 1 -1
6a = 1 A=z A=
& 4 - _ 3 ey il
10A + 6B = 0 L B=-3a » | B=-2
! 19
2A 4+ 5B + 6C = 0 C == E(ZA + 5B) C = 108
o = L

Therefore, one solution of (1) is

y= ke S ye¥ 4 10 oK,

and since the general solution of y" + 3y' + 2y = 0 is

Yi = cle—2x + cze_x, the general solution of (1) is

_ -2x -%x. ;1 2 x .5 x ; 19 %
Y—Cle +Cze +gxe ‘l—g'xe +10—ae
2.6.6

Letting L(y) = d3y/dx3 - dy/dx, we see that L(e™®) = erx(rB— r):
so that L(e™) =0 «» r =0, 1, -1.

Hence,
OoX X -X

Yy, = Cj& + cye;” + cje

_ x -x
=cy + c,e + cie . (1)

We now want to solve

L(y) = e® (2)
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2.6.6 continued

Tc find a particular solution of (2), we would ordinarily use
yp = ae* but since e* is a solution of the reduced equation (1),
our trial solution should be

X

yp = Axe . (3)

This leads to

ae* + axe®

sl
Il

g 2ae™* + axe”®

yp"'= 3ae* + axe*

so that

y" - y' = e

implies

3ae* + axe®

, K
= je ,
-ae® - axe®
X
2he 0
orA=%—.

Hence, from (3)

_ X X
Yp = 3 xe
is a solution of (2). Therefore, from (1) we conclude that the

solution of the differential equation is

= X -x , 1 _x 4
y=0c; +cye’ +cge + 5 xe. (4)
From (4)
gl o= 02ex - c3e-x + % e® + % xe™ (5)
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2.6.6 continued

and

v = c2ex + c3x-x + % e” + 5 xe” + % e

% -X X 1 X
chye” + cae +e” + 3 xe”, (6)

Now we want the member of (4) such that when x = 0%, y = 1,
y' = 3/2, and y" = 4.

Putting this information into (4), (5), and (6) yields:

-

'_l
]
Q
=
+
0
[ o8]
4
(o]
w

or

¢ + ey +cyg=1
€y - c3 =1 ¢ (7)
cy t c3 = 3

From the bottom two equations in (7) we see at once that e, = 2
and c3 = 1, hence from the top equation, ¢ = -2.

Putting these results into (4) yields

y=-24+2%4+e %4 %—xex 5

*x = 0 is chosen only to make the arithmetic easier. The
crucial point is that since (4) is the general solution of (2),
it means that one and only one curve satisfies (2) and passes
through a given point (x _,y ) with slope y ' and concavity

y "; and this curve belofgsto (4). Our present exercise is
ngply a specific application of this result.

e M
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2.6.7(L)
Here we simply want to emphasize that while most of our discussion

centers about equations of order 2, the concepts apply to higher
order equations as well. 1In particular, the equi-dimensional
(or Euler-Cauchy) equation (which we mentioned in Exercise
2.4.10 in our discussion of using a change of variables to
reduce linear equations with variable coefficients to linear
equations with constant coefficients) has the general form

x" QEZ T B A HPT T QE:E% $y0uk A Loy a y = f£(x) (1)
as? n-1 ax™ e 17 dx o

T const -
where ags 13,1 are cons ants

Just as in the case n = 2, the substitution z = ln x (or x =
e?) converts (1) into an equivalent equation with constant
coefficients in which y is expressed as a function of z. 1In

our particular case, with

xay“'+ xy'! ~y=0 (x > 0)* (2)
we let
z=1n x or x = eZ, (3)

Had we allowed x to be negative, then (3) would not be real.
In the event x < 0, (3) would be replaced by z = 1n (-x).

Using (3) we obtain

, _dy dy dz _1 4
Y -FZ-F & -5 =& (4)

*We still want to emphasize that our theorems concerning the
existence of a general solution were all stated in terms of

the leading coefficient being 1. To put (2) in this form re-
quires that we divide by x~, and this means that x # 0. Our
condition that x > 0 simply is meant to capture the flavor that
we usually solve equations in a connected region. Thus, since
x > 0 and x < 0 are both connected regions, we usually handle

x # 0 as a union of these two cases.

$.2.6.30
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2.6.7(L) continued

Since we want to eliminate x in our new equation, we might prefer
to replace 1/x by € %2 [as seen from (3)] and write y' = e? dy/dz.
This is certainly permissible, but we prefer to use (4) in the
sense that when we replace y' by (4) in equation (2), the 1/x

will be cancelled by the coefficient of y'. This type of cancel-
lation occurs because of the form of the equi-dimensional equation
wherein the coefficient of the nth gerivative is a constant

multiple of Lo

From (4) we have

W _ 14y,
yt= (25D
2
L. d 1 ,d dz
o ;I H% i (dz &
SoL g1 Py 1 y-opes )
2 B0 7 a2 (2 a3

and from (5) we have that

2
] d d
e = - g0
¥ x dz2 2

or

*Recall that we are differentiating with respect to x and thus
must use the chain rule. That is d/dx(dy/dz) = d(dy/dz)/dz
dz/dx = d2y/dz2 . dz/dx.

**Again, notige that the coefficient of y" in (1) is a constant
multiple of x° so that when y" is replaced in (1) by its value
in (5), only the constant will remain as a coefficient. By

coincidence the constant multiple of x2 in (2) happens to be 0
so that (5) is not needed there, but (5) is still necessary if

we are to compute y'"\

M
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2.6.7(L) continued

d[93§ ~ 5]
yll|=_2 (dz _gz_)+l 4 dz dz
;j dz dz ;I dz dx
2 3 2
2 .4 d 1 ,d d 1
= - (== - ) + 5= - )
& Az dz %2 az dz L
_ 1 &y 8%y, ey 6)
x3 dz3 d22 a% ’

If we now rewrite (2) in light of (4), (5), and (6), we obtain,

3 2
F.1 .4 d d 1 4d
=EE - 3L+ 25D + xlp F) -y =0,
< dazd 322 dz X a%

or
§E§ = 3232 + 39y _ y =0 (7)
dz dz2 gz

b. Equation (7) has constant coefficients and hence may be solved
in the usual way. Namely, letting L(y) denote the left side
of (7) we have

*
L% = erz(r3 - 3r2 +3r-1) = e %(xr - 1}3.
Thus, r = 1 is a triple-root of L(ef?) = o.
Accordingly, the general solution of (7) is
2y 2
y = (co + cyz + ¢,z e, (8)
Recalling now that (7) is the result of making the substitution
(3) into equation (2); we may now replace z by 1ln x in (8),
and the resulting equation is the general solution of (2).
That is, the general solution of (2) is:
25 .1nx

y = [eg + cqIn x + c, (In x) le :
*The technique involves the substitution y = e™ where y denotes
the dependent variable and u the independent variable. In (7)
it is z, not x, which is the independent variable.
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2.6.7(L) continued

X
or, since eln = X ;

y = [c0 +c; Inx + ¢, (1n x)zlx

2

= c X + c;x In X + cyx (I )5 (9)

c. We now want to emphasize that our present technique of undeter-
mined coefficients can only be applied to equations with
constant . coefficients. Thus, had we not first done part (a)
and we were confronted with the equation

x3Y"'+ xyl -y =X 1n x [X> 0): (10)

the method of undetermined coefficients could not be used here.
Namely, once the coefficients are variable, the restriction

that the right side be of the form xkeax
applies.

cos Bx, etc. no longer

This does not mean that equations like (10) cannot be solved,
but rather unless we can find a way of reducing (10) to a
linear equation with constant coefficients [and this is the
role played by part (a) in the solution of part (b)], we
must find a different method for solving (l1). This more
general technique is the subject of the next Unit, but we
may end this Unit on the proper note of applying the

method of undetermined coefficients.

Namely, using the substitution z = ln x(x = e?), the right
side of (1) becomes zez; and from part (a), the left side

of (10) becomes

ady  .a? dy _
o et E Y

Hence, to solve (10) it is sufficient to solve

3 2
d 47y dy z
- 3 + 3 -y = ze (10')
5;§ d22 az

and then replace z by 1ln x in the solution,
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2.6.7(L) continued

The point is that (10') does have constant coefficients and the
right side has the "proper" form. Thus, since ze? is associated
with the family {e?, ze?} we would ordinarily try for a particular
solution of (10') in the form

¥, & Aze? + Be? (11)
but since ez, zez, and zzez are all solutions of the reduced
equation [which is, you will notice, equation (7) of part

(a) ; and whose solution is equation (8)], we must "scale" y_,

as given in (11), by a factor of 23 before we can conclude ¥
that no part of our trial solution is a solution of the reduced
equation., In other words, our trial solution should be z3yp,
where Yp is as in (1l).

We therefore apply the method of undetermined coefficients to

y = Az4ez + stez (12)
to obtain
y' = azde? + 4az3e? + Bz3e? + 3Bz2eZ

= aze? + (4a + B)z3e? + 3Bz2e? (13)

y" = Az4ez + 4AzSez

z z

+ (4A + B)zeZ + 3(4A + B)z2e

+ 3Bz%e? + 6Bze?

or

2

y" = Az4ez (8a + B)z3ez + (12A + 6BJ22e + 6Bze? (14)

+

and

4 z

y" = Az"e” + 4az3e?

+ (8A + B)ze? + 3(8A + B)z2e?

+ (12A + 6B)z2e% + 2(12A + 6B)ze>

S.2.6.34
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2.6.7(L) continued

+ 6Bze? + 6Be?
or
y" = azde? +(12A.+B)z3ez-+{35A4-QB)zzez+-(24A+—183}zez-+6Bez. (15)

Using (12), (13), (14) and (15) in (10') we obtain

-

4

Az + (12A + B)z3ez

z

+ (36A + 9B)z%e? + (24A + 18B)ze? + 6BeZ

)

-3az% - 3(8a + B)z3e? - 3(12A + 6B)z%e? ~ 18Bze?

+3az% + 3(4a + B)z3e? + 9Bz2e?

0

24aze?

or:

z 4 Z

24aze? + 6Be? = zeZ? = 1ze? + Oez,

so be comparing coefficients of like terms

24A = 1 and B = 0%,
so that from (12) our particular solution is
¥ = %1’ z4ez. (16)

Now if we combine (16) with (8) we obtain that the general
solution of (10') is

y = (e, + cyz + czzz}ez + %T z%e?. (17)

*This tells us that y = Az4ez was sufficient for a trial
solution, Notice, however, as we've said before, including

the term Bz3eZ did nothing to prevent us from finding a solution,
except that we had to perform a little more computation. In

the next unit we shall obtain this particular solution by a
different method.
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2.6.7(L) continued

Now replacing z by 1ln x in (17) yields

y = (c0 + clln - g czlnzx)eln £ % %I ln4x eln %

= Rx + cyx ln x + CyX (1n x}2 + %I x (1n x)4

is the general solution of (10),
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