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Solutions
Block 2: Ordinary Differential Equations

Unit 5: Linear Equations with Constant Coefficients

2551

Letting

y = oFX (1)
we have

y' = re™™® (2)
and

y" = r2e™¥, (3)

Using (1), (2), and (3) in

y* o= 9! =36y =0 (4)
yields

rzerx - 9re™ - 36e™ =0,

or

= (r2 - 9r - 36) =0,
oxr
e™(r - 12)(r + 3) = 0. (5)

Since ef® # 0, we see that (5) is satisfied only if r = 12 or

12x -3x

r = -3. Hence, y = e and y = e are solutions of (1), so

that the general solution of (4) is

y = cle + cze . (6)
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2.5.1 continued
Using (1), (2), and (3) in
y" - 12y' + 36y = 0 (7)
we obtain
X (r? - 12r + 36) = 0
or
2

™ (r - 6)° = 0. (8)

Thus, r = 6 is a repeated root of (r - 6)2 = 0; hence, two lin-

6x 6x

early independent solutions of (7) are y = e = and y = xe ~. We,

therefore, conclude that the general solution of (7) is
y = cleGx + szeﬁx
or
y = (cl + czx]eﬁx. (9)
Again using (1), (2), and (3)
y" = 8y' + 25y = 0 (10)
becomes
e"*(x? - 8r + 25) = 0. (11)
Thus, (11) is satisfied if and only if

2

r“ - 8r + 25 = 0. (12)

By the quadratic formula, we conclude from (12) that
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2.5.1 continued

ey 8 + v64 - 100
- 2
8 61
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2

so that either

ro= 4 31 (13)

or

r =4 - 3i. (14)
(4 + 3i)x

Using (13), we have that y = e satisfies equation (10).

That is, letting L(y) = y" - 8y' + 25y

pre'? ¥ 3% . 9, (15)
Now
e(4 + 3i)x _ e4x + 13x

_ 4x i3x

=e e

4x 3 A
= e (cos 3x + i sin 3x)
= e4xcos 3x + ie4xsin 3x. (16)

Equation (16) shows that the real and imaginary parts of

(4 + 3i)x 4x 4x . 7
e are e cos 3x and e “sin 3x respectively we have from
the theory of the lecture [i.e., L(u + iv) = 0 + L(u) = Litv) = 0]

that

y = e4xcos 3x (17)
and
y = e4xsin 3x (18)
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2.5.1 continued

are both solutions of (10). Since the quotient of e4xcos 3x and

e4xsin 3x is not constant, (17) and (18) are linearly independent,

so we may conclude that

y = cle4xcos 3x + c2e4xsin 3x,
or
_ 4x ;
y = e (clcos Ix + c,sin 3x) (19)

is the general solution of (10).

[As for (14), which we have thus far neglected, it would lead to

the solutions edxcos X and -eéxsin x (i.e., the real and imaginary
parts of 9(4 - 31)x)' These solutions are contained in (19); the
first with c, = 1, c, = 0, and the second with c, = 0, c, = -1.

Thus, it is sufficient to work with either (13) or (14).]

2.5.2(L)

On the surface, it would appear that the main aim of this exercise
is to reinforce the computational techniques described in the
previous exercise, our text, and in the lecture. While we cer-
tainly want to do this, there are two other very important con-
cepts that we wish to introduce through this exercise.

First of all, we would like to get you used to thinking in terms

X for y and then

of L(e™) rather than consciously substituting e
solving mechanically for the roots of the resulting equation. One
reason for doing this is to emphasize that all solutions of

X i.e., L(e™™) = 0 may be

L(y) = 0 have the basic* form y = e
thought of as being an equation involving two unknowns,** r and x,
and there are always values of r that satisfy this equation pro-

vided the equation has constant coefficients.

*We shall explain what we mean by "basic" in part (b).
**x is still the usual independent variable, but r is thought of

rx
as being a parameter meaning that we may compute L(e ) for diff-
erent values of r, but once r is chosen it remains fixed in the

X
expression e
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Al S S s R BE e S e

P d




|

3

-y Em e

s =

- |

|-

mm o Bm A B P A Bm @a Bl

Solutions
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2.5.2(L) continued

Secondly, and we shall do this as a note at the end of this exer-

cise, we want to emphasize why, in a manner of speaking, we have

lost no generality in restricting our study of this unit to equa-

tions of order 2.

If we simply imitate the technique of the lecture, we let

which we obtain

(1)

(2)

(3)

we use the results of (1), (2), and (3) in

g = oTX

from

y' = ref¥

and

y" = rzerx.
If

y" + 2y' - 3y
we obtain
rzerx + 2re™
or

erx(r2 + 2r =

Since e™® #

2
r

+ 2r - 3

0,

=0

-3 =0

3) = 0.

we see from

0,

from which it follows that

-3 ‘or

(4)

(5)

(5) that

(5")

(6)

From (6) we see that the roots of (5') are real and distinct, so

the general solution of (4) is

5.2:,5:5




Solutions
Block 2: Ordinary Differential Equations
Unit 5: Linear Equations with Constant Coefficients

2.5.2(L) continued

- -3x X
y = cqe + c e (7)
Actually, we solve problems like this in the previous unit so that
you could get adjusted to the technique as soon as possible. What

we want to say now is that we may view (4) as

L(y) =0
where
L(y) = y" + 2y' - 3y. (8)

Notice that (8) makes sense even though it is not a differential
equation. (It becomes an equation only when we equate (8) with

some function of x.)

So, just as we did in Exercise 2.4.1, we may compute L(u), from
(8), where u is any twice-differentiable function of x.

In particular, using (1), (2), and (3), we see that with

rx

y (or u) = e where r is a fixed but arbitrary constant

T(eTF) = & Fip? 4 2p = 3) 0 (9)

The key point of (9) is that it shows us that we may view L(e™™)
as a function of r. That is, in (9) we may hold x fixed and see
how L(erx} varies with r. 1In other words, and this shall become
very important, for example, in Exercise 2.5.6, it makes sense to

AL (e™¥)
ar
in (9), we may use the product rule to obtain:

talk about such expressions as . [In fact, with L(erx) as

*Quite in general, if L(y) = y(n} + an_ly(n_1)+...+azy" + aly' +
a y where a , ..., a_ are constants,
o o n e
L(erx) rx(rn + a rn-l + ... + a r2 + a.r + a).
n-1 ’ 2 1 o

That is, to compute L(erx), we write e’ " as one factor, and obtain
the other factor by replacing y by r in L(y) and the derivative by

th,,

an exponent (where it is understood that y is the "0 derivative

of y with respect to x).

S5.2.5.6
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2.5.2(L) continued

rx *
ﬂéi%;_l - erxfzr + 2) + xe™™ (rz + 2r - 3)
= e (2r + 2 + xr2 + 2¥x = 3%).1
Returning to our main problem, we see from (9) that L(e™) = 0 «
r = =3 or r =1 so as far as solving this exercise is concerned,

setting (9) equal to 0 is simply a compact form for how we solved

the equation previously.

To emphasize the role of equation (9), we see that

y" - l4y' + 49y = 0 (10)
is

L(y) =0

where

L(y) = y" - 1l4y' + 49y. (11)

From (11), we conclude that

L(e™™) = ™ (2 = 14r + 49)

erx(r - 7)2. (12)

Il

We conclude from (12) that

Xy =0+ r =7

L{e

so that

¥=ie

is the only solution of (10) of the form y = g,

*Remember that we are differentiating with respect to r so x is

rx
the "constant" in e
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2.5.2(L) continued

Thus, the l-parameter family y = ce7x is a solution of (10), but
if we want the general solution of (10), we need to find another

solution which is not linearly dependent with e7x. As shown in the

" . T
lecture, one such other solution is xe

What we would like to do here is derive the fact that y = xe7x is

a solution of (10) in a way which is much different from our lec-
ture procedure but which works more efficiently than our classroom
procedure for higher order equations.

The key to the new technique is that if
L(y) =0

has constant coefficients, then

AL (et _ 9, rx
= o L[g;(e ﬂ . (13)

(Again, the proof is saved for an optional exercise.)

What (13) says is that if L(y) has constant coefficients, we may

3L{e"™)

or

The significance of this is that since

compute by moving inside the parentheses to differentiate.

equation (13) tells us that

1. (=)
ar

X

= L(xe™™). (14)

Equation (14) is very powerful. In fact, if we now return to (12)
we have from (12) that

rx
iEi%?—l =e™2(r - 7) + xerx(r = 7}2

(r - NNe®[2 + x(r - 11]. (15)

§.2.5.8
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2.5.2(L) continued

3L (e5%) rx
From (14), we may replace ———— by L(xe ”) so that (15) becomes
L(xe™) = (r - e™ (2 + xr - 7x). (16)

Since r - 7 = 0 when r = 7, we may let r = 7 in (16) to obtain

L{xerx

)

0,

and, thus y = xe'X satisfies L(y) = 0.

The fact that e7x and xe7x are linearly independent follows from
the fact that their ratio is non-constant.

Hence, we have shown that the general solution of (10) is

= C e7x +: S xe7x
¥ 1 2

or

_ Tx
y = (cl + czx)e .

A NOTE ON SECOND ORDER DIFFERENTIAL EQUATIONS WITH CONSTANT
COEFFICIENTS

Up to now, we have been concentrating on the second order linear

equation. Suppose we now look at

L(y) =0 (1)
where
_ < Am) (n-1) 1
L(y) =y + a 1Y t ... +tay' +oagy.
Letting y = erx' it is not difficult to see that equation (1)
becomes
rx, n n-1 e
e (xr +a qr t ... Fagrt ao) =0,
; r¥ ; rx . .
and since e~ is never zero, we see that L(e” ") = 0 if and only if

r satisfies the equation:

S5.2,.5.9
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r + ... tar+a = 0. (2)

Now (2) is a polynomial equation with real coefficients.

In the previous block we saw that every polynomial with complex
coefficients factored linearly. Unfortunately, the same result
does not hold for real coefficients. For example,

has no linear factor as we restrict our coefficients to the real
numbers, but with respect to the complex numbers, it factors lin-
early into (x + i) (x - 1i).

What is nice, however, is that even with real coefficients, the
only irreducible (unfactorable) polynomials, other than linear
ones, are quadratics. This follows from the fact that since (2)
has real coefficients, the complex conjugate of any root of (2) is
also a root of (2). What this means is that if r = ry is a root
of (2) [so that (r - rl) is a factor of the left side of (2)] and

r, is not real, then the complex conjugate, ?1, of ry is unequal

;b
to rl* and is also a root of (2).

In other words, if (r - rl) is a factor of

n n-1
< + ... tar+al (3)

and r, is non-real, then El # rl,and (r - Fl] is also a factor of

1

(3). Since r - ry and r - r, are different factors of (3), their

2
product is also a factor of (3).

Hence, (3) is divisible by

e =~ r5)ixs = fl} - g (ry + fl}r-+r1§i

2 2
r - 2Re(r1)r-+|rl| (4)

*Recall from Block 1 that z = z ++ z is real (i.e., a + bi =
a - bi =+ 2bi =0 +b =10).
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but since Re(rl} and |r1[2 are real even when r; is non-real, we

see from (4) that r; and Ei are roots of the real quadratic

equation
2 2
£° = 2Relzy) # |rl| = 0. (5)

In summary, then, if r = r. is any (complex) root of (2), then

1
either (r - rl} is a real factor of (3) if ry is real, or

r2 C 2Re(rl) + |rl|2 is a real factor of (3) if r, is non-real.

[Notice that for higher degree equations, we may not know how to
solve for the roots of (2), or, equivalently, the factors of (3),
but whatever the factors are, the only irreducible ones are those

of first or second degree (linear or quadratic).]

Hence, in theory, at least given that the equation L(y) = 0 is an
nth order linear differential equation with constant real coeffi-
cients, the problem of finding solutions is essentially no worse

than solving nth order equations.

The following optional exercise is designed to make the remarks in
this note more concrete, but the student who wishes to ignore this

note at this point is free to do so.

2.5.3 (Optional)

We know that ry 5 = 4 + 3i, and ry = 5 - 2i are roots of a

5th degree polynomial equation with real coefficients. Since non-

=3, r

real roots of such polynomial equations occur in pairs of complex
conjugates we see that r = 4 - 31 (since 4 - 31 is the complex
conjugate of the non-real root 4 + 3i) and r = 5 + 2i are also
roots of our fifth-degree polynomial equation.

Since a fifth-degree polynomial equation can't have more than five

roots, the five roots r; = 3, r, = 4 + 3i, Fé =4 - 3i,

ry = 5 - 2i, and ry = 5 + 2i are the only roots of P5(r] = 0.
Hence, the linear factors (including those with non-real coeffi-
cients) of PS(rJ are (r - 3), (r - [4 + 31i]), (r - [4 - 3i]),

(r = [5 = 2i]), and (r - [5 + 2i]) [where we are using the usual
result that in any polynomial equation

P(x) =0 (1)

§.2.5.11
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2.5.3 continued

X =2, is a root of (1) +— (x - xo) is a factor of P(x).]

So that up to a constant multiple [i.e., the leading coefficient
of Ps{r)]:

Po(r) = (r - 3){(r - [4 + 3i]l)(r - [4 - 3i])}
{(xr - [5 - 2i])(x - [5 + 2i])}. (2)

The key now is that

(c - [4+3i1)(r - [4 - 3i]) =22 - [4 + 31 + 4 - 3i]r + 16 - 9i2
2
=" = B8Br + 25.* (3)
Similarly,
(r - [5 - 2i1) (r - [5 + 2i]) = r2 - 2Re(5 - 2i)r + |5 - 2i[2
2
= r° - 10r + 29. (4)

If we now assume that the coefficient of rs is 1 in Ps(r), putting
(3) and (4) into (2) yields

Po(r) = (r - 3) (x? - 8r + 25) (r? - 10r + 29).** (5)
It is needless busy work to expand the right side of (5), but it

should be noticed that the two real quadratic factors of Ps(r) in

(5) are irreducible if we insist on real coefficients.

*With r, = 4 + 31 and T, = 4 - 31, 2Re(r,) = 8 and 2,12 =

42 -+ 32 = 25. Hence, (3) agrees with the general more abstract

result of equation (4) in the note at the end of the previous
exercise.

**Had the coefficient of r5 in Ps(r) been m, then (5) would be

replaced by

Po(r) = m(r - 3)(r? - 8r + 25)(r2 - 10r + 29).
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2..5.4
Given that

a° ay . a
Liy) =L -2+ X -9 (1)

5 3 dx

dx dx
we have that
L(e™) = erx{r5 - 2r3 4+ r)

= erxr(r4 - 2r2 + 1)

_ erxr(rZ _ 1)2

= elr + 12 - 12, (2)
From (2), we see that
L(erx} =0+~ r=0; ==l ox T =1,

ox -X X

]

so that vy = e 1, vy =e , and y = e° are three linearly inde-

pendent solutions of (1).

Since r = 1 and r = -1 are double roots of r(r + 1)2{r - 1}2 =0,
we have that y = xe* and xe ™ are two additional linear indepen-
dent solutions of (1). Hence, the general solution of (1) is

given by
o X X ~X -X
= Cq.8 + C.e + Xe + c,e + X
b 1 2 3 4 Cgxe
or

—_ X -
y = cl + {02 + 03x)e + (c4 + csx)e

is the general solution of (1).
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2.5.5

Since the curve satisfies the differential equation

4 3 2
g_%__ 2 g_% + 2 §—§'= 0 (1)
dx dx dx

we see that the solutions of (1) of the form y = e™ are deter-

mined by the polynomial equation

r4 - 2r3 H 2r2 =0

or

r?(r? - 2r + 2) = 0. (2)
r = 0 is a double root of (2); hence,

y = e®® =1 and y = xe%* = x (3)

are solutions of (1).

The other roots of (2) are given by

2 + v4 - 8

= —  — = + 3
r 5 12 i,

(1 + i)x

Hence, the real and imaginary parts of e are also solu-

tions of (2).

Since

(L + i)x X ix
e = g e

I

ex(cos x + i sin x)
this means that
y = e“cos x and y = e'sin x (4)

are also solutions of (1).

5.2.5.14
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2.5.5 continued
Combining the results of (3) and (4), we see that
X X _ .
Yy =¢; +: cxX -+ cje’cos x + cyesin x (5)

2

is the general solution of (1).

From (5), we see that

. >
y' = c, + c3[excos x - e'sin x] + c4[e sin x + e*cos x] (6)
y" = c3[excos x - eXsin x - e%sin x - e“cos x]

X . X X X .
+ c4[e sin x + e cos X + e cos X - e sin x]

or
y" = -2c3ex3in X ¥ Zc4excos X, (7)
and
y" = —203[ex51n x + eXcos x] + 2c4[excos x - e'sin x]. (8)

Assuming that y = ¥ e y' = yo', y" = yo“, and y" = yo“ when x = 0,

equations (5), (6), (7), and (8) yield the linear algebraic system

Yo T €1 * “a
Yo' = By Ry 9y
> {9}
"o __
Yo 7 28y
"o i
Y5 = 2c3 + 2c4

Equation (9) should be emphasized with respect to the meaning of
"general solution." In particular, at least at x = 0, the system
(9) may be solved uniquely to determine Cqr Cyr C31 Cy for any
given values of Yor yo', Yo"’ yo”. In fact, the determinant of

coefficients in (9) is

S.2.5.15
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2.5.5 continued

1 0 L 0 ¥
1 1 1
0 1 1. 1 0 2
= 0 0 2| = =4 #0.
0 0 0 2 -2 2
0 =2 2

0 0o -2 2
In this exercise, we are told that
¥y = 2 yo' =0, yo" = 2, and yo“ = 0.
Hence, (9) becomes

i = +
(i) 2 cy tcy 1
(ii) o0 = Cy + Cy + Cy

; (10)
(iii) 2 = 2¢,
(iv) 0 = -203 + 204
From (iii),
c, =1
and with Gy = 1, (iv) implies cy = L
With Cy =¢Cy = 1, we see from (ii) that c, = -2; and from (i) that
2 =c¢y + 1, so that ¢, = 1. Thus, the curve in question has (5)
as its equation with ¢ =C3 =¢, = 1 and c, = -2. That is,
X -

y =1 - 2x + e"cos x + e"sin x. (11)

By the fundamental existence theorem, there can be no other solu-
tion of (1) which satisfies the given initial conditions.

*For those who may be a bit weak on determinants, have patience
until we treat this topic in Block 3.
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2.5.6(L)

Here we wish to establish the following important result.

Suppose that L(y) = 0 is an nth order linear differential equation
with constant coefficients. Suppose also that r = r; is an m-fold
root of L(erx) = 0, meaning that L(erx) is divisible by (r - rl)m,

but not by (r - rl)m+l. [For example, if L(y) = y(n} +

Y(n-l)

a s F aly' + ajy, we are saying that L(e™) =

n-1

rx( n n-1

m .
+ + .. + -
e T (x a _1f + ajr +a ) and that (r r;)" is a factor

23

of r"" + an_lrn_l * ivu +oagE o+ oA But (r - rl)m+1 isn't.]

Our technique extends the method given in Exercise 2.5.2(L).
Namely, it turns out that

oL (e¥%) _ L[é(erx)]
or or

may be generalized to include

akL{erX} _ Bk(erx

)
L
ark ark

Thus, in the given exercise, we have

L(y) = y™ - 3y" + 3y' -y = 0. (1)
Hence

L(erx) = erx(r3 - 3r2 + 3r - 1)

or

L(e™) = ™ (x -~ 1)°. (2)

From (3), we see that

L(e¥®) =0 < r = 1. (4)
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2.5.6(L) continued
Hence
e (5)

is a solution of (1) and because r = 1 is a 3-fold root of (2), we
might expect by "intuitive" induction that from (5) we may also
conclude that

y = xe* and y = xzex (6)

are also (linearly independent) solutions of (1).

We may verify that our conjecture in (6) is correct by taking the
partial derivative of (2) with respect to r to obtain

E&L%;fl = T [@Bir - 1)2] + 2™ (x - 1)>

= (= D%+ %+ e~ 1)1

= (5= 3% %2 * & + #). (7)
Since

rx X
a(Lgr ) = L[atgr }] = L(xe™),

we have from (7) that
L(xe™®) = (r - 1)%e*(2 + x + 1), (8)
and letting r = 1 in (8) yields,

L(xex) =0

so that y = xe® is also a solution of (1).

If we now return to (7) and again take the partial derivative with

respect to r, we obtain

5.2.5.18
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2.5.6(L) continued

azL(erx)

Br2

2(r - 1)erx{2 +x +r) + (r - l}zxerxtz + x +r) +

*
+ (r - 1)2erx

(r - 1)e™™[2(2 + x + 1) + (r - 1)x(2 +x + r) +

+ (£ = 1)) (9)
The important point is that

(i) the right side of (9) is 0 when r = 1

and

(ii) the left side of (9) is equgl to

rx
L d (e 2) = L[x2erx].
ar

Using (i) and (ii) in (9) yields

L(xzex) =0

so that y = x2ex is also a solution of (l1). Hence, since

{*, xe¥, x%e*} is linearly independent and each member is a solu-
tion of the third order linear differential equation (1), the

general solution of (1) is

X X 2 x
y = cle + czxe + c3x e
or
_ 2
y = (cl +cox +oegx Ye©.

*Where we have observed that the right side of (7) is a product of
three factors involving r, and accordingly we used the product
rule for the product of three functions of r (wherein we write the
product three times, each time differentiating a different
factor).
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2.5.6 (L) continued

Note

This exercise, together with our note at the end of Exercise 2.5.2,
tells us the form of every possible solution of the general nth
order linear differential equation with constant coefficients

L(y) = 0. (1)

Namely,

(1) We look at L{erx) to find the values of r for which L(erx)= 0.

(2) Ifr = ry yields a solution of L(erx) = 0 and ry is real then,
rx
of course, y = e is a real solution of (1).

3y If£E = T, yields a solution of L(e™) = 0 and ry is non-real

then L{erx) has the real quadratic factor (r - rlltr 2 Ei)

2 a 2Re (ry)r + |r1|2, in which case y = e*®sin Bx and

y = e®®sin Bx (where ry =a+ iB) are both solutions of (1).

(4) 1If ry is an m-fold root of L(e'®) = 0 then in addition to
T X s o r.x it
Yy = e we also have y = xe 1, y = x2e ', ..., and y = glg 1
as linearly independent solutions of (1).
In summary, then,
() 1If Ty is real and an m-fold root of L(erx) = 0, then
r X ryX m-1 F1¥
= y Xe 7 e g X e
are all linearly independent solutions of (l1). In particular,

ox 1)

then, if ry = 0 these solutions (since e = take the form

y=1y=x,y~= x2, «sey and y = xm_l.

Thus, if r, is real our solutions can only be of the form

1

y = xke . r (10)

S.2.5.20




J—

S ]

-l em S oE .

ah B8 fn fa B A B Ta

- By

Solutions
Block 2: Ordinary Differential Equations
Unit 5: Linear Equations with Constant Coefficients

2.5.6(L) continued
[where (10) takes the form y = XX if ry = 0].

(B) 1If ry is non-real and an m-fold root of L(erx) = 0, then the

solutions still have the form

r x I m-1 T1¥
Y"—-e ’y—xe '.‘U'y=x e

but are now non-real.

If we write r, = o + iBl, these solutions become

(ul + iBl)x o X =
y = e = e (cos le + i sin le}
{al + iBl)x o, X
y = Xe = xe (cos ByX + i sin BlX)
. A (11)

_q (@, + iB,)x 1 04X
%™ 1e 1 1 e 1e 1

y = (cos Bx + i sin B,x) J

Remembering that L(u + iv) = 0 + L(u) = L(v) = 0, we conclude
from (11) that the only possible real solutions in this case have

the form

agx 04X g X 04 X
e cos le, e sin le, Xe cos le, xe sin le,

o, X 04X
xze 1 cos le, xze 1 cos le, etc.

In other words, only functions of the form

o, X R
y = xke 1 sin BX

where k is a whole number

and

and o, and 81 are real

1
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2.5.6(L) continued

can be solutions. In the case that ry is real, Sl = 0; hence,
. X
y =X e cos le reduces to

L
I
"
o

which is also the solution found in (8).

Thus, the most general single term which can be a solution of (1)

is
o, X ‘
y =X e sin le
k whole
or - (12)
Qg Bl real

o
y = xke 1 cos le

e

Hence, the general solution of (1) consists of appropriate linear
combinations of terms of the form (12).
o, X
As special cases, (12) contains the solutions y = xk, y = e 1 5
04X
y = sin le, Yy = cos le, Yy =e cos le, etc., but nothing other

than linear combinations of terms which have the specific form
(12) can be solutions of L(y) = 0, provided the equation has con-

stant coefficients.

For example, y = VX cannot be a solution of any linear differen-
tial equation with constant coefficients since there is no way of
picking a whole number k and real numbers ay and Bl so that any

linear combination of the terms having the form (12) can equal
1

x2U

It is in this sense that we may say that we know everything there
is to know about solutions of L(y) = 0 when the equation has con-
stant coefficients.
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2.5.7 (Optional)

We want y = xezxcos 3x to be a solution of

L(y) =0 (1)

where (1) has constant coefficients.

We know that y = ezxcos 3x can be a solution of (1) if and only if
y = e{2 + 3i)x is a solution of (1).
That is, the real part of 3(2 * 3i)x is ezxcos 3x and the imagi-

; 2%,
nary part is e sin 3x.

Now, if Lel? ¥ 3%,

=0, r, = 2 + 3i must be a root of
L(erx) = 0. Moreover, ry = 2 + 3i must be at least a double root

of L(erx} = 0 since it is x(ezxcos 3x), not just ezxcos 3x, which
is a solution of (1). Hence, (r - r1}2 must be a factor of L(erx),

where r, = 2 + 3i. [It is possible that (r - r1}3, etc., is a

factor. For example, xzezxcos 3x might also be a solution of (1)
but we are looking for the lowest order equation that has

v o= xe?¥cos 3x as a solution.]

Since the polynomial factor of L(e™) is the only factor which can
equal 0 and since the polynomial has real coefficients, we see

that each time r = ry is a root of L{erx) = 0, so also is r = ry-
Thus, L(erx), in this case, must have, at least,

(r - r)?(r - ek

as a factor.

Now

2

Il

(r - rl)z(r - rl) [ = rl}(r = ;i)]

_ o — 2.2
= [r (rl + rl)r + |rl| T (2)
We see from (2) that with r; = 2 + 3i (so Ei =2-3i, r; + ?l = il
2
|z, = 13)
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2.5.7 continued

< 2 3 2

(2 = 4r + 13)% = % % 16x% + 169 - 8r3 + 26r° - 104r

4

=X - 8r3 + 42r2

—-: 104r + 169 (3)

is a factor of L(erx}.

Therefore, in (3), replacing r by y and exponents by derivatives,
we obtain that

4 3 2
§~§v- 8 Q-% + 4z L% - 104 gl + 169y = 0 (4)
X
dx dx dx

is the lowest order (homogeneous) linear differential equation
with constant coefficients which can have y = xe2x cos 3x as a
solution. We humanely spare the reader the details of checking
the result, as well as ourselves the embarrassment of uncovering
an error in the derivation of (4).

258
Letting
dx ax
we see that
Le™>) erx(r6 - 255 # 1)
= " (r® - 2 4+ 1)
Thus
Le™) =0« r® - 2r3 + 1 = 0. (1)
Now
P oawdr1= -2 (2)
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2.5.8 continued

the factors of r3 - 1 come from the roots of r3 = 1 and these are

rl = 1
_ 2T g o 20 Ly Lo

£, =gos S+ 1 gin Sp= -3 + 2/31 [ (3)
U - Ty | U . =

r; = cos 3 + i sin = = 5 3i r, )

[Of course, (3) is just showing off our knowledge of how to ex-
tract roots using complex numbers. A more mundane, but perhaps
less frightening a technique in this case would be to factor

r3 -1as (r - l}(r2 + r + 1) and use the gquadratic formula on

r2 + r+1=20.]

At any rate, from (3), we have that
1 !
{-5 + ].El/g} X

X
e and e

are solutions of our equation.

Next observe that

1 1=, 1
(-5 + 5/3i)x -5x
2 2 = @ 2 [cos —/2;}( + i sin /—-zj-x],
1 1
- o
so that e _ cos %;% and e 2 sin %;x are a pair of real solutions.

But from (2) we know that each root is a double root so in addi-
tion to the solutions

1
_ X _ TBE V3 N |
y=e ,y=e8e cos 57X, and y = e sin fo

we also have the solutions

1
——x -=x
y = xe™, y = Xe 2" cos %;ﬁ, and y = xe 2 sin —;ﬂ.
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2.5.8 continued

Thus, the required general solution is

1
-=X
_ x 2 V3 . /3
y = (cl + czx)e + (c3 + c4x)e cos —x + (c5 + csx)31n X
2.5.9 (Optional)
a. (xerx}I = xret> + &FX
= (1 + rx)e™™ (1)
L] L}
(xe™) = [(1 + rx)e™)
= (1 + rx)rerx + ret™
2 rx
= (2r + r“x)e (2)
(xe™*) " = [(2r + r2x)e"*]’
b'd 2. X

= (2r + rzx)rer + r’e

2

= (3r° + r3x)erx

b. From (1), (2), and (3) it seems a "natural" conjecture that

k rx
d (xek ) = (krk-l " xrk)erx.
dx

To establish (4) inductively, since we know from (1), (2), and

(3)

(4)

(3), that it's true for k = 1, 2, 3, we must show that (4) implies

dk+l(xerx}

k+l; %
L Je .
3¢

[k + 1)r" + xr
a

(5)

Well, using (4) and differentiating with respect to x, we obtain
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2.5.9 continued

k+1

rx
d (ie ) _ (krk'l 1 xrk)rerx 4 rkerx
dx
= (krk + xrk+1 + rk)erx
= ([k+l]rk + xrk+l)erx

which agrees with (5). Thus we conclude by induction that

k rx
d {xek ) _ {krk-l & xrk)erx
dx
(6) **
*
for k = 01,23 aws
k. %
c. Q_lﬁi_l ) rkerx. (7)
dx
Hence, from (7)
A dk(erx)
k
dx _ 9 , k. rx
T =3z (e
_ rkxerx + krk-lerx
= (krk_l + xrkJerx. (8)

Comparing (6) and (8), we see that

AL (e™X) _ rx
T L(xe™)
dk
in the special case that L(y) = ——%.
dx

*We never checked k = 0, but with k = 0, (4) reduces to

rx rx
Xe = Xe .

*%We use (6) even though it looks the same as (4) since (4) was
only a conjecture.
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2.5.9 continued

The beauty is now that by linearity the general result is estab-

lished since

Il

2 k k
d d
b D [ - 2o )

k=0 k=0

(9)

Il
)+
W
-
/"'E’."\
[oTR FeoT)
& 5
—

Equation (9) shows that the truth of

oL (eF%)

X
or )

= L{xer

is guaranteed as soon as we know that it is true whenever L(y) is
k

the single term g—%, k=07 20004 «
dx
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