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Letting 


rx 
y = e  


we have 


rx 
y' = re 

and 


2 rx 
y l ' = r e  . 

a. Using (11, (21, and (3) in 


yields 


2 rx r e -
9rerx - 36erx = 0, 

rx Since e # 0, we see that (5) is satisfied only if r = 12 or 
-3x 

r = -3. Hence, y = and y = e are solutions of (I), so 

that the general solution of (4) is 
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2.5.1 continued 


b. Using (I), (21, and (3) in 


we obtain 


Thus, r = 6 is a repeated root of (r - 612 = 0; hence, two lin- 
6x

early independent solutions of (7) are y = e6X and y = xe . We, 
therefore, conclude that the general solution of (7) is 

c. Again using (I), (2), and ( 3 )  

becomes 


Thus, (11) is satisfied if and only if 


By the quadratic formula, we conclude from (12) that 
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2.5.1 continued 


so that either 


Using (13) , we have that y = e(4 + 3i)x satisfies equation (10). 

That is, letting L(y) = y" - 8y' + 25y 

Now 


4 x = e (COS 3x + i sin 3x) 

Equation (16) shows that the real and imaginary parts of 


e(4 + 3i)x are edXcos 3x and e4xsin 3x respectively we have from 


the theory of the lecture [i .e. , L(u + iv) = 0 * L(u) = L(v) = 01 

that 

and 
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2.5.1 continued 

4xa r e  both s o l u t i o n s  of (10) .  Since t h e  q u o t i e n t  of e cos 3x and 
4xe s i n  3x i s  n o t  cons tan t ,  (17) and (18) a r e  l i n e a r l y  independent, 

s o  w e  may conclude t h a t  

i s  t h e  genera l  s o l u t i o n  of (10) .  

[As f o r  ( 1 4 ) ,  which w e  have thus  f a r  neglected ,  it would lead t o  

t h e  s o l u t i o n s  e4xcos x and -e4xsin x ( i .e. ,  t h e  r e a l  and imaginary 

p a r t s  of e (4  - 3i)x) . These s o l u t i o n s  a r e  contained i n  (19) ; t h e  
f i r s t  wi th  cl = 1, c2 ,= 0 ,  and t h e  second wi th  cl = 0, c2 = -1. 

Thus, it is  s u f f i c i e n t  t o  work wi th  e i t h e r  (13) o r  (14).1 

2.5.2(L) 

On t h e  s u r f a c e ,  it would appear t h a t  t h e  main aim of t h i s  e x e r c i s e  

i s  t o  r e i n f o r c e  t h e  computational techniques descr ibed i n  t h e  

previous e x e r c i s e ,  our  t e x t ,  and i n  t h e  l e c t u r e .  While w e  cer-

t a i n l y  want t o  do t h i s ,  t h e r e  a r e  two o t h e r  very important  con-

c e p t s  t h a t  w e  wish t o  in t roduce through t h i s  exerc i se .  

F i r s t  of a l l ,  w e  would l i k e  t o  g e t  you used t o  th inking i n  t e r m s  

of ~ ( e ~ ~ )r a t h e r  than consciously s u b s t i t u t i n g  erx f o r  y and then 

so lv ing  mechanically f o r  t h e  r o o t s  of t h e  r e s u l t i n g  equation.  One 

reason f o r  doing t h i s  i s  t o  emphasize t h a t  a l l  s o l u t i o n s  of 
r xL(y) = 0 have t h e  bas ic*  form y = erx, i .e . ,  L(e ) = 0 may be  

thought of  a s  being an equation involving two unknowns,** r and x ,  

and t h e r e  a r e  always values  of r t h a t  s a t i s f y  t h i s  equat ion pro-
vided t h e  equat ion has  constant  c o e f f i c i e n t s .  

*We s h a l l  e x p l a i n  what we mean by " b a s i c "  i n  p a r t  ( b ) .  

**x i s  s t i l l  t h e  u s u a l  independent v a r i a b l e ,  but  r i s  thought of  
rX 

a s  b e i n g  a parameter meaning t h a t  we may compute L(e  ) f o r  d i f f -  
e r e n t  v a l u e s  o f  r ,  but  once  r i s  chosen i t  remains f i x e d  i n  t h e  

r
e x p r e s s i o n  e  

X . 
S.2.5.4 
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2.5.2 (L) continued 

Secondly, and w e  s h a l l  do  t h i s  a s  a no te  a t  t h e  end of t h i s  exer-

cise,  w e  want t o  emphasize why, i n  a  manner of  speaking,  we have 

l o s t  no g e n e r a l i t y  i n  r e s t r i c t i n g  our  s tudy of t h i s  u n i t  t o  equa- 

t i o n s  of o r d e r  2 .  

a .  I f  w e  simply i m i t a t e  t h e  technique of t h e  l e c t u r e ,  w e  l e t  

from which w e  o b t a i n  

r x  
y '  = re 

and 


I f  w e  u s e  t h e  r e s u l t s  of (1), (2) , and (3)  i n  

w e  o b t a i n  


r2erx + 2rerx - 3erx = o 


r x  Since  e # 0 ,  w e  see from (5) t h a t  

from which it fol lows t h a t  

From (6)  w e  see t h a t  t h e  r o o t s  of ( 5 ' )  a r e  r e a l  and d i s t i n c t ,  s o  

t h e  g e n e r a l  s o l u t i o n  of ( 4 )  is  
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2.5.2 (L) continued 


Actually, we solve problems like this in the previous unit so that 


you could get adjusted to the technique as soon as possible. What 


we want to say now is that we may view (4) as 


where 


Notice that (8) makes sense even though it is not a differential 
equation. (It becomes an equation only when we equate (8) with 

some function of x.) 

So, just as we did in Exercise 2.4.1, we may compute L(u), from 


(8), where u is any twice-differentiable function of x. 


In particular, using (1) , ( 2 )  , and (3) , we see that with 
y (or u) = erx where r is a fixed but arbitrary constant 

The key point of (9) is that it shows us that we may view L(erx) 


as a function of r. That is, in (9) we may hold x fixed and see 


how L (erx) varies with r. In other words, and this shall become 


very important, for example, in Exercise 2.5.6, it makes sense to 


talk about such expressions as [In fact, with ~ ( e ~ ~ )  as 
ar 
. 
in (9), we may use the product rule to obtain: 


(n )  *Quite  i n  g e n e r a l ,  i f  L(y) = y + an-ly (n - l )+ .  . .+a2yW+ aly + 
a  y  where a o ,  . . . , a are  c o n s t a n t s ,

o  n  

rX
That i s ,  t o  compute L(erx)  , we w r i t e  e a s  one f a c t o r ,  and o b t a i n  
t h e  o t h e r  f a c t o r  by r e p l a c i n g  y by r i n  L(y) and t h e  d e r i v a t i v e  by 

an exponent (where i t  i s  understood t h a t  y i s  t h e  "oth" d e r i v a t i v e  
of  y  w i t h  r e s p e c t  t o  x ) .  
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2.5.2 (L) continued 


r x  
a L ( e  ) = er x  ( 2 r  + 2) + xerx* (r2 + 2 r  - 3) 


ar 

= erx (2r  + 2 + x r 2  + 2rx  - 3x1 .] 

Returning t o  our  main problem, w e  s e e  from (9)  t h a t  L(erx) = 0 * 
r = -3 o r  r = 1 s o  a s  f a r  a s  so lv ing  t h i s  e x e r c i s e  i s  concerned, 

s e t t i n g  (9) equa l  t o  0 i s  simply a compact form f o r  how w e  solved 

t h e  equat ion  previous ly .  

b. To emphasize t h e  r o l e  of equat ion  ( 9 ) ,  we see t h a t  

where 

From (11), w e  conclude t h a t  

L(erx) = erx(r2 - 1 4 r  + 49) 

r x  2= e  ( r - 7 )  . 

W e  conclude from (12) t h a t  


~ ( e ~ ~ )= o * r = 7


s o  t h a t  


7 x 
y = e  


r x 

i s  t h e  only s o l u t i o n  of (10) of t h e  form y = e . 
*Remember t h a t  we a r e  d i f f e r e n t i a t i n g  w i t h  r e s p e c t  t o  r s o  x i s  

rx
t h e  " c o n s t a n t "  i n  e . 
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2.5.2 (L) continued 


Thus, the 1-parameter family y = ce7X is a solution of (lo), but 

if we want the general solution of (lo), we need to find another 

solution which is not linearly dependent with e7X. As shown in the 

lecture, one such other solution is xe7X* 

What we would like to do here is derive the fact that y = xe7X is 

a solution of (10) in a way which is much different from our lec- 

ture procedure but which works more efficiently than our classroom 

procedure for higher order equations. 

The key to the new technique is that if , 

has constant coefficients, then 


(Again, the proof is saved for an optional exercise.) 


What (13) says is that if L(y) has constant coefficients, we may 


compute by moving inside the parentheses to differentiate. 
ar 


The significance of this is that since 


equation (13) tells us that 


Equation (14) is very powerful. In fact, if we now return to (12) 


we have from (12) that 
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-- 

2.5.2 (L) continued 


rx aL(eFrom (14), we may replace ar ) by L(xerx) so that (15) becomes 

Since r - 7 = 0 when r = 7, we may let r = 7 in (16) to obtain 

and, thus y = xe7X satisfies L (y) = 0. 

The fact that e7X and xe7X are linearly independent follows from 


the fact that their ratio is non-constant. 


Hence, we have shown that the general solution of (10) is 


A NOTE ON SECOND ORDER DIFFERENTIAL EQUATIONS WITH CONSTANT 

COEFFICIENTS 


Up to now, we have been concentrating on the second order linear 


equation. Suppose we now look at 


where 


rx Letting y = e , it is not difficult to see that equation (1) 
becomes 

rx and since e is never zero, we see that L(erx) = 0 if and only if 

r satisfies the equation: 

S.2.5.9 
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Now (2)  i s  a polynomial equat ion  wi th  r e a l  c o e f f i c i e n t s .  

I n  t h e  previous  block w e  saw t h a t  every polynomial wi th  complex 

c o e f f i c i e n t s  f a c t o r e d  l i n e a r l y .  Unfor tunate ly ,  t h e  same r e s u l t  

does no t  hold  f o r  r e a l  c o e f f i c i e n t s .  For example, 

has no l i n e a r  f a c t o r  a s  we r e s t r i c t  our  c o e f f i c i e n t s  t o  t h e  r e a l  

numbers, b u t  wi th  r e s p e c t  t o  t h e  complex numbers, it f a c t o r s  l i n -  

e a r l y  i n t o  ( x  + i)(x - i ) .  

What i s  n i c e ,  however, i s  t h a t  even wi th  r e a l  c o e f f i c i e n t s ,  t h e  

only  i r r e d u c i b l e  (unfac to rab le )  polynomials ,  o t h e r  than l i n e a r  

ones,  a r e  g u a d r a t i c s .  This fo l lows from t h e  f a c t  t h a t  s i n c e  (2)  

has r e a l  c o e f f i c i e n t s ,  t h e  complex conjugate  of any r o o t  of (2)  i s  

a l s o  a r o o t  of ( 2 ) .  What t h i s  means i s  t h a t  i f .  r = rl i s  a r o o t  

of (2) [so  t h a t  (r - r, i s  a f a c t o r  of t h e  l e f t  s i d e  of ( 2 ) ]  and 
I 
 -

r1 i s  n o t  r e a l ,  t hen  t h e  complex conjugate ,  rl,  of rl is  unequal 

t o  r l*  and i s  a l s o  a r o o t  of ( 2 )  . 
I n  o t h e r  words, i f  ( r  - rl) i s  a f a c t o r  of 

and rl i s  non-real ,  t hen  rl -
# rl,@ (r -- rl) i s  a l s o  a f a c t o r  of 

( 3 ) .  S ince  r - rl and r - r a r e  d i f f e r e n t  f a c t o r s  of ( 3 ) ,  t h e i r  1
product  i s  a l s o  a f a c t o r  of ( 3 ) . 
Hence, (3) i s  d i v i s i b l e  by 

* R e c a l l  from Block 1 that z = * z is r e a l  ( i . e . ,  a + b i  = 
a - b i  * 2bi = 0 * b  = 0). 
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b u t  s i n c e  R e  (rl) and 1 rll a r e  r e a l  even when rl i s  non-real ,  we 

see from ( 4 )  t h a t  rl and Fl a r e  r o o t s  of t h e  r e a l  q u a d r a t i c  

equat ion  

In  summary, t h e n ,  i f  r = rl i s  any (complex) r o o t  of (2) , then  

e i t h e r  ( r  - rl) i s  a r e a l  f a c t o r  of (3)  i f  rl i s  r e a l ,  o r  

r2 - 2Re(rl)  + lrl12 i s  a r e a l  f a c t o r  of (3)  i f  r1 i s  non-real.  

[Notice t h a t  f o r  h igher  degree  equa t ions ,  w e  may n o t  know how t o  

s o l v e  f o r  t h e  r o o t s  of (2) , o r ,  e q u i v a l e n t l y ,  t h e  f a c t o r s  of (3) , 
b u t  whatever t h e  f a c t o r s  a r e ,  t h e  only i r r e d u c i b l e  ones a r e  those  

of f i r s t  o r  second degree  ( l i n e a r  o r  q u a d r a t i c )  . I  

Hence, i n  theory ,  a t  l e a s t  given t h a t  t h e  equat ion  L(y)  = 0 is  an 

n th  o rde r  l i n e a r  d i f f e r e n t i a l  equat ion  wi th  cons tan t  r e a l  c o e f f i -  

c i e n t s ,  t h e  problem of f i n d i n g  s o l u t i o n s  i s  e s s e n t i a l l y  no worse 

than s o l v i n g  n th  o r d e r  equat ions .  

The fo l lowing o p t i o n a l  e x e r c i s e  is designed t o  make t h e  remarks i n  

t h i s  no te  more concre te ,  b u t  t h e  s t u d e n t  who wishes t o  ignore  t h i s  

n o t e  a t  t h i s  p o i n t  i s  f r e e  t o  do so .  

2.5.3 (Opt ional )  

W e  know t h a t  rl = 3 ,  r2 = 4 + 3 i r  and r3 = 5 - 2 i  a r e  r o o t s  of a 

5 th  degree  polynomial equat ion  wi th  r e a l  c o e f f i c i e n t s .  Since E-

-r e a l  r o o t s  of such polynomial equat ions  occur i n  p a i r s  of complex 

conjugates  w e  see t h a t  r = 4 - 3 i  ( s i n c e  4 - 3 i  i s  t h e  complex 

conjugate  of t h e  non-real r o o t  4 + 3 i )  and r = 5 + 2 i  a r e  a l s o  

r o o t s  of o u r  f i f t h - d e g r e e  polynomial equation.  

S ince  a f i f t h - d e g r e e  polynomial equat ion  c a n ' t  have more than f i v e  
-

r o o t s ,  t h e  f i v e  r o o t s  rl = 3 ,  r2 = 4 + 3 i ,  r2 = 4 -- 3 i ,

r3 = 5 - 2 i ,  and r3 = 5 + 2 i  a r e  t h e  only r o o t s  of P 5 ( r )  = 0 .  

Hence, t h e  l i n e a r  f a c t o r s  ( inc lud ing  those  wi th  non-real c o e f f i -

c i e n t s )  of P5 (r) a r e  (r - 3) , (r - [4 + 3 i l )  , ( r  - [4 - 3 i l )  , 
(r - [5 - 2 i ] ) ,  and ( r  - [5 + 2 i l )  [where w e  a r e  us ing t h e  usual  

r e s u l t  t h a t  i n  any polynomial equat ion  
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2.5.3 continued 


x = x is a root of (1) * (x - xo) is a factor of P(x).] 
0 

SO that up to a constant multiple [i.e., the leading coefficient 


of p5(r) I ,  


The key now is that 


Similarly, 


If we now assume that the coefficient of r5 is 1 in P5 (r) , putting 
(3) and (4) into (2) yields 


It is needless busy work to expand the right side of (51 ,  but it 

should be noticed that the two real quadratic factors of P5(r) in 

(5) are irreducible if we insist on real coefficients. 


*With r 2  = 4 + 3 1  and T2 = 4 - 3 1 ,  2 R e ( r 2 )  = 8  and  lr212 = 

42 + 3 2  = 25.  Hence ,  ( 3 )  a g r e e s  w i t h  t h e  g e n e r a l  more a b s t r a c t  
r e s u l t  of  e q u a t i o n  ( 4 )  i n  t h e  n o t e  a t  t h e  end  of  t h e  p r e v i o u s  
e x e r c i s e .  

**Had t h e  c o e f f i c i e n t  of  r5  i n  P 5 ( r )  b e e n  m ,  t h e n  ( 5 )  would  b e  

r e p l a c e d  by  

P 5 ( r )  = m ( r  - 3 ) ( r 2  - 8 r  + 2 5 ) ( r 2  - l o r  + 2 9 ) .  
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2.5.4 


Given t h a t  


w e  have t h a t  

r x 2 2= e  r ( r + l ) ( r - 1) . 

From (2) , w e  s e e  t h a t  

-X X
s o  t h a t  y  = eoX= 1, y = e , and y  = e a r e  t h r e e  l i n e a r l y  inde- 

pendent s o l u t i o n s  of (1). 
Since  r = 1 and r = -1 a r e  double r o o t s  of r ( r  + 2 

1) (r - 2 
1) = 0 ,  

we have t h a t  y  = xe X and xe -X a r e  two a d d i t i o n a l  l i n e a r  indepen- 

d e n t  s o l u t i o n s  of (1). Hence, t h e  genera l  s o l u t i o n  of (1) i s  

given by 

i s  t h e  g e n e r a l  s o l u t i o n  of (1). 
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2.5.5 


Since the curve satisfies the differential equation 


rx we see that the solutions of (1) of the form y = e are deter- 

mined by the polynomial equation 

r = 0 is a double root of (2) ; hence, 


OX y = e = 1 and y = xeoX = x 


are solutions of (1) . 

The other roots of (2) are given by 


Hence, the real and haginary parts of e + i)x are also solu- 


tions of (2) . 

Since 


X 
= e (COS x + i sin x) 


this means that 


X X 
y = e cos x and y = e sin x 


are also solutions of (1). 


S.2.5.14 
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2.5.5 continued 

Combining t h e  r e s u l t s  of (3)  and ( 4 )  , w e  s e e  t h a t  

X X 
y = c1 + c X + c e cos  x + c4e  s i n  x2 3 

i s  t h e  g e n e r a l  s o l u t i o n  of (1). 

From (5)  , w e  see t h a t  

X X X Xy '  = c2 + c 3 [ e  cos x - e s i n  x] + c 4 [ e  s i n  x + e cos X ]  

X X X Xy" = c 3 [ e  cos x - e s i n  x - e s i n  x - e cos X I  

X X X X+ c 4 [ e s i n x + e  c o s x + e c o s x - e s i n x l  

X Xy" = -2c e s i n  x + 2c e cos  X ,3 4 

and 

X X X Xy"' = -2c3 [e  s i n  x + e cos  x] + 2c4[e  cos x - e s i n  X I .  

Assuming t h a t  y = yo, y '  = yo I ,  y n  = y o n l  and y" = yo'" when x = 0 ,  

equat ions  (5), ( 6 ) ,  ( 7 ) ,  and (8) y i e l d  t h e  l i n e a r  a l g e b r a i c  system 

Equation (9)  should be emphasized wi th  r e s p e c t  t o  t h e  meaning of 

"genera l  s o l u t i o n . "  I n  p a r t i c u l a r ,  a t  l e a s t  a t  x = 0 ,  t h e  system 

(9)  may be  solved uniquely t o  determine c l r  c2 ,  c3 ,  c 4  f o r  any 

g iven va lues  of yo, Y o l r  yon t  Yo ' In  f a c t ,  t h e  determinant  of 

c o e f f i c i e n t s  i n  (9)  i s  
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2.5.5 continued 

I n  t h i s  e x e r c i s e ,  w e  a r e  t o l d  t h a t  

= 2, yo1 = 0 , yon = 2,  and yon = 0 .Yo 


Hence, (9 )  becomes 

(i) 2 = c1 + c3 

(ii) 0 = c2 + c3 + cq 

(iii) 2 = 2c4 

( i v )  0 = -2c3 + 2c4 

From (iii), 

and wi th  c4 = 1, ( i v )  impl ies  c j  = 1. 


With c3 = c4 = 1, w e  see from (ii)t h a t  c2 = -2; and from (i)t h a t  


2 = c1 + 1, s o  t h a t  cl = 1. Thus, t h e  curve i n  ques t ion  has  (5)  


a s  i t s  equation wi th  cl = c3 = c4 = 1 and c2 = -2. That i s ,  


y = 1 - + X X2x e cos  x + e s i n  x. 

By t h e  fundamental ex i s t ence  theorem, t h e r e  can be no o t h e r  solu-  

t i o n  of (1)which s a t i s f i e s  t h e  given i n i t i a l  condi t ions .  

*For those who may be a bit weak on determinants, have patience 

until we treat this topic in Block 3 .  




Solutions 

Block 2: Ordinary Differential Equations 

Unit 5: Linear Equations with Constant Coefficients 


Here we wish to establish the following important result. 


Suppose that L(y) = 0 is an nth order linear differential equation 

with constant coefficients. Suppose also that r = rl is an m-fold 

root of L(erx) = 0, meaning that L(erx) is divisible by (r - m 
rl) , 

m+l (n) 
but not by (r - rl) . [For example, if L(y) = y + 

+ ... + + , rx ("'l) aly' aoy we are saying that L (e = 
an-lY 


+ n-1 + ... + + - m erx (rn an-lr a r ao) and that (r rl) is a factor 
1 


of rn + n-1 an-lr + ... + alr + a. but (r - rl)m+l isn't.] 

Our technique extends the method given in Exercise 2.5.2(L). 


Namely, it turns out that 


may be generalized to include 


Thus, in the given exercise, we have 


Hence 


L ( ~ ~ ~ )= erx(r3 - 3r2 + 3r - 1) 

From (3) , we see that 

L(erx) - o * r = 1. 
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2 .5 .6  (L) continued 

Hence 

i s  a s o l u t i o n  of (1)and because r = 1 is  a 3-fold r o o t  of ( 2 ) ,  w e  

might expect  by " i n t u i t i v e "  induc t ion  t h a t  from (5)  we may a l s o  

conclude t h a t  

X 2 x y = x e  and y = x e  

a r e  a l s o  ( l i n e a r l y  independent) s o l u t i o n s  of (1). 

W e  may v e r i f y  t h a t  our  c o n j e c t u r e  i n  (6) i s  c o r r e c t  by t a k i n g  t h e  

p a r t i a l  d e r i v a t i v e  of (2)  wi th  r e s p e c t  t o  r t o  o b t a i n  

Since 

we have from ( 7 )  t h a t  


L (xerx) = ( r  - 1)2erx(2 + x + r) , 


and l e t t i n g  r = 1 i n  (8)  y i e l d s ,  


X s o  t h a t  y = xe i s  a l s o  a s o l u t i o n  of (1). 

I f  we now r e t u r n  t o  (7 )  and again  t a k e  t h e  p a r t i a l  d e r i v a t i v e  with 

r e s p e c t  t o  r ,  w e  o b t a i n  
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2 .5 .6  (L)  continued 

a 2 r xL ( e  ) = 2 ( r  - l l e r x ( 2  + x + r )  + ( r  - 112xerx(2 + x + r)  +
2 ar 


+ 2  rx* 
(r  - 1) e 

The important  p o i n t  i s  t h a t  

(i) t h e  r i g h t  s i d e  of (9)  i s  0 when r = 1 

and 

(ii) t h e  l e f t  s i d e  of (9)  i s  equal  t o  

Using (i)and (ii)i n  (9)  y i e l d s  

s o  t h a t  y = x2eX is a l s o  a  s o l u t i o n  of  (1). Hence, s i n c e  

x 2 x 
(ex ,  xe , x e i s  l i n e a r l y  independent and each member i s  a so lu-

t i o n  of t h e  t h i r d  o rde r  l i n e a r  d i f f e r e n t i a l  equat ion  ( 1 1 ,  t h e  

g e n e r a l  s o l u t i o n  of (1) is  

*Where we h a v e  o b s e r v e d  t h a t  t h e  r i g h t  s i d e  of ( 7 )  i s  a p r o d u c t  o f  
t h r e e  f a c t o r s  i n v o l v i n g  r ,  and  a c c o r d i n g l y  we u s e d  t h e  p r o d u c t  
r u l e  f o r  t h e  p r o d u c t  o f  t h r e e  f u n c t i o n s  of r ( w h e r e i n  we w r i t e  t h e  
p r o d u c t  . t h r e e  t i m e s ,  e a c h  t i m e  d i f f e r e n t i a t i n g  a d i f f e r e n t  
f a c t o r )  
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2.5.6 (L) continued 


-Note 
This exercise, together with our note at the end of Exercise 2.5.2, 


tells us the form of every possible solution of the general nth 


order linear differential equation with constant coefficients 


Namely, 


(1) 	We look at L(erx) to find the values of r for which L (erx) = 0. 

(2) If r = rl yields a solution of ~ ( e ~ ~ )  = 0 and rl is real then, 

rlx
of course, y = e is a real solution of (1). 

( 3 )  	 If r = rl yields a solution of ~ ( e ~ ~ )  = 0 and rl is non-real 

then L (erx) has the real quadratic factor (r - rl) (r - -
rl) = 

axr2 -	2Re (rl)r + 1rll', in which case y = e sin Bx and 

y = 	eDXsin Bx (where r = a + iB) are both solutions of (1). 

( 4 )  	 If rl is an m-fold root of L(erx) = 0 then in addition to 

r x r x 2 "lX 	 lX 
y = e we also have y = xe , y = x e , ..., and y = xm-'e 

as linearly independent solutions of (1). 

In summary, then, 


(A) 	 If rl is real and an m-fold root of i(erx) = 0, then 

are all linearly independent solutions of (1). In particular, 

then, if rl = 0 these solutions (since eox = 1) take the form 

2 	 m- 1 

y = 	1, y = X, y = x , ..., and y = x . 
Thus, if rl is real our solutions can only be of the form 
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2.5.6 (L) continued 


[where (10) takes the form y = xk if rl = 01. 


(B) If rl is non-real and an m-fold root of ~ ( e ~ ~ )  
= 0, then the 

solutions still have the form 

but are now non-real. 


If we write rl = al + iB1, these solutions become 


(a1 + iB1)x 
y = e  = ealX(cos B1 x + i sin B ~ X ,  

(a1 + iB1)x alXy = xe = xe (cos Blx + i sin Blx) 

Remembering that L(u + iv) = 0 * L(u) = L(v) = 0, we conclude 

from (11) that the only possible real solutions in this case have 

the form 

In other words, only functions of the form 


where k is a whole number 

and 


and al and B1 are real 
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2  .5.6 (L) continued 

can be  s o l u t i o n s .  In  t h e  case  t h a t  rl i s  r e a l ,  B1 = 0; hence, 

y = xkeUIXcos B x reduces t o  1

which is  a l s o  t h e  s o l u t i o n  found i n  ( 8 ) .  

Thus, t h e  most g e n e r a l  s i n g l e  term which can be a s o l u t i o n  of (1) 

is 

k "lX y = x e s i n  Blx 
 1 k whole 


al,  B1 r e a l  

Hence, t h e  g e n e r a l  s o l u t i o n  of (1)c o n s i s t s  of appropr ia t e  l i n e a r  

combinations of terms of t h e  form (12) .  

k 
A s  s p e c i a l  c a s e s ,  (12) con ta ins  t h e  s o l u t i o n s  y  = x , "lX y = e , 
y = s i n  B x ,  y = cos  B1x, y = e "lXcos B1x, etc.,  b u t  nothing o t h e r  1
than l i n e a r  combinations of t e r m s  which have t h e  s p e c i f i c  form 

(12) can be  s o l u t i o n s  of L(y) = 0 ,  provided t h e  equat ion  has  con-

s t a n t  c o e f f i c i e n t s .  

For example, y  = & cannot  be  a s o l u t i o n  of any l i n e a r  d i f f e r e n -  

t i a l  equat ion  wi th  cons tan t  c o e f f i c i e n t s  s i n c e  t h e r e  i s  no way of 

p icking a  whole number k  and r e a l  numbers al and B1 s o  t h a t  any 
l i n e a r  combination of t h e  t e r m s  having t h e  form (12) can equal  
1 
Z 

X .  

I t  is  i n  t h i s  sense  t h a t  w e  may say  t h a t  w e  know everyth ing t h e r e  

i s  t o  know about  s o l u t i o n s  of L(y) = 0 when t h e  equat ion  has  con-

s t a n t  c o e f f i c i e n t s .  
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2.5.7 (Optional) 


We want y = xeZXcos 3x to be a solution of 


where (1) has constant coefficients . 
We know that y = e2Xcos 3x can be a solution of (1) if and only if 

y = e(2 + 3i)x is a solution of (1). 

That is, the real part of e (2 + 3i)x is e2Xcos 3x and the imagi- 

nary part is e2xsin 3x. 


Now, if L[e(2 + 3i)x] = 0, r = 2 + 3i must be a root of 1 

~ ( e ~ ~ )= 0. Moreover, rl = 2 + 3i must be at least a double root 

of (erx) = 0 since it is x (e2Xcos 3x) , not just eZXcos 3x, which 
is a solution of (1). Hence, (r - rl) must be a factor of L(erx) , 

where rl = 2 + 3i. [It is possible that (r - rl) 3, etc., is a 

factor. For example, x2eZXcos 3x might also be a solution of (1) 

but we are looking for the lowest order equation that has 


y = xe 2Xcos 3x as a solution. I 


Since the polynomial factor of ~ ( e ~ ~ )  
is the only factor which can 

equal 0 and since the polynomial has real coefficients, we see 
rx
 -

that each time r = rl is a root of L(e ) = 0, so also is r = rl. 

Thus, L (erx) , in this case, must have, at least, 

as a factor. 


Now 


- - 
We see from (2) that with rl = 2 + 3i (so rl = 2 - 3i, rl + rl = 4, 

1rll2 = 13) 
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2.5.7 continued 


is a factor of L (erx) . 

Therefore, in (3), replacing r by y and exponents by derivatives, 


we obtain that 


is the lowest order (homogeneous) linear differential equation 


with constant coefficients which can have y = xeZX cos 3x as a 


solution. We humanely spare the reader the details of checking 


the result, as well as ourselves the embarrassment of uncovering 


an error in the derivation of ( 4 )  . 


Letting 


we see that 


rx~ ( e ~ ~ )= e (r6 - 2r3 + 1) 

rx 3 
= e (r6 - 2r + 1) 

Thus 


~ ( e ~ ~ )0 * r6 - 3 
= 2r + 1 = 0.

Now 


r6 - 3 + 2 2r 1 = (r3 - 1)
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2 .5 .8  continued 

t h e  f a c t o r s  of r3 - 1 come from t h e  r o o t s  of r3 = 1 and t h e s e  a r e  

4 IT 1r3 = cos  -4 T  + i s i n  -= -- - FJsi = 23 3 - J 
[Of course ,  (3)  i s  j u s t  showing o f f  our knowledge of how t o  ex-

t r a c t  r o o t s  us ing  complex numbers. A more mundane, b u t  perhaps 

less f r i g h t e n i n g  a technique  i n  t h i s  case  would be  t o  f a c t o r  

r3 - 1 a s  (r - 1)(r2 + r + 1) and use  t h e  q u a d r a t i c  formula on 

r2 + r + 1 = 0 .1  

A t  any r a t e ,  from (3)  , we have t h a t  

1 1 

x (-2 + iZfi)x 
e and e 

a r e  s o l u t i o n s  of our  equat ion .  

Next observe t h a t  

(-2.1 1  + Tf i i )~  1 
e = e-'x [cos q x  + i s i n  qx], 

1 1 
--x --x 
s o  t h a t  e cos  q x  and e s i n  $x a r e  a p a i r  of r e a l  s o l u t i o n s .  

But from (2)  we know t h a t  each r o o t  i s  a double r o o t  s o  i n  addi-  

t i o n  t o  t h e  s o l u t i o n s  

1 1 
--x
X 2 fi -2" 


y = e  , y = e  c o s y ,  a n d y = e  s i n - x2 

w e  a l s o  have t h e  s o l u t i o n s  

1 1 

y = x e , y = x eX '2" cos TX, /3 and y = xe-2"s i n  -X* fi
2
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2.5.8 continued 

Thus, t h e  r equ i red  g e n e r a l  s o l u t i o n  is  

2.5.9 (Optional)  

a .  (xerx) ' = xrerx + erx 

= (1+ r x )  rerx + r x  re

b. From ( I ) ,  ( 2 ) ,  and (3)  it seems a " n a t u r a l "  con jec tu re  t h a t  

To e s t a b l i s h  ( 4 )  i n d u c t i v e l y ,  s i n c e  w e  know from (1), (2) , and 

( 3 ) ,  t h a t  i t ' s  t r u e  f o r  k = 1, 2, 3, w e  must show t h a t  ( 4 )  impl ies  

W e l l ,  us ing  ( 4 )  and d i f f e r e n t i a t i n g  wi th  r e s p e c t  t o  x -  w e  o b t a i n  
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2.5.9 con t inued  

which a g r e e s  w i t h  (5). Thus w e  conclude  by i n d u c t i o n  t h a t  

* 
f o r  k = 0 , 1 , 2 , 3 , - - -

Hence, from (7)  

Comparing (6)  and (8) , we see t h a t  

k 

i n  t h e  s p e c i a l  c a s e  t h a t  L(y)  = q.


dx 


*We n e v e r  c h e c k e d  k = 0 ,  b u t  w i t h  k = 0 ,  ( 4 )  r e d u c e s  t o  

rx rx 
x e  = x e  . 
**We u s e  ( 6 )  e v e n  t h o u g h  i t  l o o k s  t h e  same a s  ( 4 )  s i n c e  ( 4 )  was 
o n l y  a c o n j e c t u r e .  



Solu t ions  
Block 2: Ordinary D i f f e r e n t i a l  Equations 
Uni t :  Linear  Equations wi th  Constant  C o e f f i c i e n t s  

2.5.9 continued 

The beauty i s  now t h a t  by l i n e a r i t y  t h e  g e n e r a l  r e s u l t  i s  es tab -

l i s h e d  s i n c e  

Equation (9)  shows t h a t  t h e  t r u t h  OL 

i s  guaranteed a s  soon a s  w e  know t h a t  it i s  t r u e  whenever L(y)  is  
k 

t h e  s i n g l e  t e r m  qIk = OIl12, . . .  
dx 
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