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2.4.1(L) 


Notice that the notation 


implies that the "input" of the "L-machine" must be a twice- 

differentiable function of x [otherwise the right side of (1) is 

not defined]. That is, L is a function whose domain is the set of 

all twice-differentiable functions of x and whose range is the set 

of functions of x. In other words, L maps any twice-differentiable 

function of x into some function of x [but this mapping need not 

be onto, i .e., there may be functions g (x) such that L(y) # g (x) 
for all twice-differentiable functions y*]. 

Our main aim in this exercise is to supply you with sufficient 

drill so that you feel at ease with the new notation. Part (a) 

requires that we compute L(y), or L(f (x) I ,  for some specific 
twice-differentiable functions y = £(XI. Part (b) asks us to 

verify certain "linear" properties of L. 

a. 	 As usual, in our treatment of functions, we want to view the "in- 


put" independently of any specific "label." Thus, we view (1) as 


*This  may, o f  c o u r s e ,  b e  r e s t a t e d  w i t h o u t  r e f e r e n c e  t o  y ,  u s i n g  
o n l y  f u n c t i o n  n o t a t i o n .  That i s ,  ( 1 )  i s  e q u i v a l e n t  t o  w r i t i n g  

where f i s  any t w i c e - d i f f e r e n t i a b l e  f u n c t i o n  o f  x .  U l t i m a t e l y ,  
t h e  problem o f  s o l v i n g  l i n e a r  e q u a t i o n s  reduces  t o  f i n d i n g  f ( x )  
such t h a t  L [ f ( x ) ]  = g ( x )  f o r  a g i v e n  f u n c t i o n  g ( x ) .  We s h a l l  s a y  
more about t h i s  s h o r t l y .  
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2.4.1 (L) continued 


where [ I may be replaced on both sides of (2) by any twice- 
differentiable function of x.* 


At any rate, from (2), we have 


Z(i) L[sin XI = x [sin XI" - 3x[sin XI' + 3[sin x] 

L L(sin x) = x (- sin x) - 3x(cos x) + 3 sin x 

2 
= (3 - x )sin x - 3x cos x. 

[Notice that sin x is a twice-differentiable function of x and 


that the right side of (3) is a function of x. Reversing the 


steps involved in arriving at (3), what we have shown is that 

2
since L(sin x) = (3 - x )sin x - 3x cos x, then y = sin x is one 

solution of the linear differential equation 


2 2
x y" - 3xy' + 3y = (3 - x )sin x - 3x cos x. 

The (much) more difficult problem is to start with (4) and to try 


to deduce (3). This is the problem with which we must ultimately 


become concerned, but for now we are satisfied just to drill on 


the notation.] 


-3 
2

*For example,  i f  y = x , y" does  n o t  e x i s t  a t  x = 0 ;  hence  L (x
i s  undef ined a t  x = 0 .  N o t i c e  however,  a t  l e a s t  i n  t h i s  c a s e ,  

$1 
i f  we r e s t r i c t  x t o  an i n t e r v a l  R which does  n o t  i n c l u d e  0, L 

( x 4)
-3 

i s  d e f i n e d  on R ,  s i n c e  x 2  i s  t w i c e - d i f f e r e n t i a b l e  whenever x # 0 .  
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2.4.1 (L) continued 


2
(iii) L(x) = x (x) " - 3x(x) ' + 3 (x) 


2
= X  (0) - 3x(1) + 3x, 


2
[In other words, y = x'is a solution of x y" - 3xy' + 3y = 0.1 

2
(iv) L(X ) = x2(x2)" - 3x(x2) ' + 3(x2) 

[In other words, y = x3 is also a solution of 

b. 	 (vi) We could solve (vi) just as we did in part (a). Namely, 

~ ( e ~+ sin x) = x2(eX + sin x)" - 3x(eX + sin x)' + 

+ 3 (ex + sin x) 

X 
= x2 (ex - sin x) - 3x(e + cos x) + 

+ 3 (ex + sin x) 

(Notice the key step in going from (9) to (10). Namely, we used 

the fact that the derivative of a sum is the sum of the deriva- 

tives. More symbolically, [f (x) + g (x) 1 ' = f' (x) + g' (x); 
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2.4.1 (L) continued 


[f (x) + g (x) 1 " = [f' (x) + g' (x) l ' = f" (x) + g" (x) , etc. In this 

particular exercise, f (x) = e X and g(x) = sin x. ) 

Hence 

+ sin x) 2 	 X ~ ( e ~ = x2eX - x sin x - 3xeX -	3x cos x + 3e + 3 sin x 

2+ (3 - x )sin x - 3x cos x. 

The crucial point is to observe, however, that the right side of 

(11) is the sum of the right sides of (3) and (5). That is, we 


have verified by direct computation in this exercise that 


L(ex + sin x) = L(ex) + L(sin x) . 
Equation (12) is a special case of the result derived in our lec- 

ture that if L(y) = y" + p (x) y' + q (x) y* then for any twice- 
differentiable functions u (x) and v (x), 

L(u + v) = L(u + v). 

In this exercise, we have rederived the result of the lecture only 


more concretely for a specific choice of L, u, and v. 


(vii) Again we could write 


2L(6 sin x) = x (6 sin x)" - 3x(6 sin x)' + 3(6 sin x) 


2 
= x (-6 sin x) - 3x(6 cos x) + 18 sin x 

2 
= 6[(3 - x )sin x - 3x cos x]. 


or, again by (31, 


*In  t h e  l e c t u r e ,  we wrote  t h e  s tandard 	(2nd order)  l i n e a r  e q u a t i o n  
i n  t h e  form yl' + p ( x ) y '  + q ( x ) y  = f ( x ) .  	 I t  could j u s t  a s  e a s i l y  
have been r ( x ) y "  + p ( x ) y '  + q ( x ) y  = f ( x ) ,  but  a s  long a s  r ( x )  $ 0 ,  
we can d i v i d e  by r ( x )  t o  o b t a i n  y" + p 1 ( x ) y V  + q l ( x ) y  = f l ( x )  , 

-p(x>where p l ( x )  - (  )  q l ( x )  = , and f l ( x )  = fo.r ( x )  
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2.4.1 (L) cont inued 

L(6 s i n  x )  = 6 L ( s i n  x)  . 


Equation (13) v e r i f i e s  t h e  r e s u l t  of our  l e c t u r e  t h a t  


2 
a t  l e a s t  f o r  t h e  c = 6 ,  u = s i n  x ,  and L(u)  = x u" - 3xu' + 3x. 

Moreover, t h e  g e n e r a l ,  a b s t r a c t  proof i s  e x a c t l y  t h e  same a s  our  

procedure i n  d e r i v i n g  (13). 

( v i i i )  The proof g iven i n  t h e  l e c t u r e  tel ls  us t h a t  


~ ( 7 e ~  + 	6 s i n  x )  = ~ ( 7 e ~ )  + L(6 s i n  x )  


s o  aga in  by (3) and (5), 

2
~ ( 7 e ~+ 6 s i n  x)  = 7eX (x2 - 3x + 3) + 6 [ ( 3  - x ) s i n  x  -

-	3x cos  X I .  

That (14) ag rees  wi th  t h e  r e s u l t  of  using ( 2 )  t o  compute 


~ ( . 7 e ~ 
+ 	6 s i n  x) is  l e f t  t o  the i n t e r e s t e d ( ? )  s tuden t .  

The p roper ty  t h a t  f o r  a l i n e a r  L ,  

hinged on t h e  f a c t s  t h a t  (ul + u 2 ) '  = ull  + u2 ' and (cu) ' = cu' 

provided c is  cons tan t .  I f  c i s  n o t  c o n s t a n t ,  ( c u ) '  i s  n o t  cu '  

b u t ,  r a t h e r  by t h e  product  r u l e ,  ( c u ) '  = cu'  + -c 'u .  

Hence, t h e  luxury of us ing (15) r e q u i r e s  t h a t  cl and c2 be  con-

s t a n t s .  The aim of t h i s  p a r t  of t h e  e x e r c i s e  i s  t o  show t h a t  when 

c1 o r  c2 i s  no t  c o n s t a n t ,  then  (15) need n o t  apply. I n  p a r t i c u -  

l a r ,  i f  y = xe X , then  y '  = xeX + e X and y" = xeX + 2eX , s o  w e  ob-

t a i n  from (2)  t h a t  
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2 . 4 . 1  	(L) continued 


2 x " X ' 
L(xeX) 	 = x (xe ) - 3x(xe ) + 3 h e X )  


= x2 (xeX + 2eX) - 3x (xeX + ex) + 3 (xeX) 


= (x3 - x2) ex. 


On t h e  o ther  hand, from ( 5 ) , 


x ~ ( e ~ )xeX(x2 - 3~ + 3)
= 

= ex(x3 -	JX2 + 3x1 . 

Comparing (16) and (17) shows t h a t  

L(xeX) + 	x ~ ( e ~ ) .  

That i s ,  i f  c is no t  constant  ( i n  t h e  present  example, c = x) then 


~ ( c e ~ )need no t  equal CL(ex). [The "sophis t icated"  way of mem-


o r i z ing  t h i s  is t o  say t h a t  t h e  product r u l e  f o r  d i f f e r e n t i a t i o n  


is not  l i nea r . ]  


2.4.2(L) 


Here our aim i s  t o  s t r e s s  t he  f a c t  t h a t  t he  n ice  proper t ies  t h a t  


L(ul + u2) = L(ul) + L(u2) and L(cu) = cL(u) depend on L(y) 


denoting an expression of the  form 


and t h a t  once t h e  coef f ic ien ts  of y ,  y ' ,  . . . , and y ( n )  a r e  not a l l  


functions of x alone,  these  proper t ies  need not  hold. 


Here w e  have 


[Note t h a t  t h e  coe f f i c i en t  of y '  i s  not  a function of only x. In  


f a c t ,  it is a function of y alone,  bu t  t h i s  is  not  what 's  r e a l l y  


important. What's r e a l l y  important i s  t h a t  t he  c o e f f i c i e n t  of y '  
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2.4.2 (L) continued 


is not a function of x alone; consequently, L(y) as defined in (1) 


is not linear.] 


Letting y = x3 in (1) we obtain 

Letting y = 2x3 in (1) yields 


3 L(2x = (2x3)11- 3(2x3) + 3(2~1 


3 2 3 

= 12x - 6~ ( 6 ~  ) + 6~ 

= 6x(2 + x2 - 46x 1 .  


From (2) 


32L(x ) = 6x(2 + x2 - 43x ) ,  


and comparing (3) and (4) shows that 


Moreover, since 2x3 = x3 + 3 3x3 and 2L(x ) = L(x ) + 3L(x ) , we may 
rewrite (5) as 

Equations (5) and (6) show us that with L defined in this exercise 

it need not be true that 

*Do n o t  b e  m i s l e d  by t h e  f a c t  t h a t  ( 3 )  and ( 4 )  l o o k  " a  l o t  a l i k e . "  
To s i m p l i f y  t h e  v a r i o u s  c o m p u t a t i o n s ,  we c h o s e  u r a t h e r  c o n v e n i -

3e n t l y  t o  b e  x . Had u ( o r  L) b e e n  more i n v o l v e d ,  t h e  d i f f e r e n c e  
b e t w e e n  L ( c u )  and c L ( u )  c o u l d  h a v e  b e e n  much more  d r a s t i c .  What 
i s  i m p o r t a n t  i s  t h a t  L ( c u )  need  n o t  e q u a l  c L ( u ) .  
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2 . 4 . 2  (L) continued 

and 


For this reason, we reserve the notation L to mean 


and in this way, whenever we see 


where cl and c2 are constants and ul and u2 are n-times differen- 

tial functions of x (in the lecture we viewed the special case 

n = 2 for computational brevity, but the results hold for any 

order n) we may replace it by 

As a final note on the importance of linearity, notice how closely 


L(y) in this exercise resembles L(y) of the previous exercise (the 


only difference is that we replaced x by y in the coefficient of 


y . Yet this rather "small" change was enough to "nullify" the 

linearity of L(y). 

2.4.3(L) 


Our aim here is to emphasize what is meant by the general solution 


of a 2nd order (linear) differential equation. 


We want to find all solutions of 
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2.4.3(L) continued 

From p a r t s  (iii)and (v)  of Exerc ise  2.4.1. we saw t h a t  y  = x  and 

y  = x3 w e r e  two s o l u t i o n s  of (1).* That is. l e t t i n g  

L  (y)  = xLy" - 3xy1 + 3y 

w e  know t h a t  

3L ( x ) = O  and L ( x ) = O .  

3 
Therefore.  s i n c e  L(clx) = clL (x) and L(c2x ) = c 2 ~  (x3). we see

from (2)  t h a t  i f  cl and c2 a r e  a r b i t r a r y  cons tan t s  

L(clx) = 0 and 

Then s i n c e  L  (u + v )  = L  (u)  + L(v) w e  o b t a i n  from (3)  t h a t  

To g i v e  ( 4 )  more concre teness ,  w e  s h a l l  a c t u a l l y  test whether 

y = clx + c x3 s a t i s f i e s  (1) [which is t h e  " t r a n s l a t i o n "  of ( 4 )  1 .  2

From 

w e  o b t a i n  

* I n  a  m a n n e r  o f  s p e a k i n g ,  we h a v e  " c h e a t e d "  b y  s t a r t i n g  w i t h  a n  
e q u a t i o n ,  some o f  w h o s e  s o l u t i o n s  we f o u n d  ( b y  b e i n g  g i v e n  them)  
i n  a p r e v i o u s  e x e r c i s e .  T h i s  i s  f i n e  s i n c e  a l l  we w a n t  t o  d o  h e r e  
i s  d i s c u s s  w h a t  i s  m e a n t  b y  t h e  g e n e r a l  s o l u t i o n  o f  a n  e q u a t i o n  
w i t h o u t  w o r r y i n g  a b o u t  t h e  t e c h n i q u e s  f o r  f i n d i n g  p a r t i c u l a r  s o l u -
t i o n s .  A s  m e n t i o n e d  e a r l i e r ,  we s h a l l  s e e  l a t e r  how o n e  c o u l d  h a v e  

d e d u c e d  t h a t  y = x  a n d  y  = x  3 w e r e  s o l u t i o n s  o f  ( 1 )  d i r e c t l y  f r o m  ( 1 ) .  

**It i s  c r u c i a l  t o  s t r e s s  t h a t  d e r i v i n g  ( 4 )  f r o m  ( 3 )  r e q u i r e d  
l i n e a r i t y ,  n o t  s i m p l y  " e q u a l s  a d d e d  t o  e q u a l s  a r e  e q u a l . "  T h a t  
i s ,  e v e n  i f  L  h a d  n o t  b e e n  l i n e a r ,  b y  e q u a l s  a d d e d  t o  e q u a l s ,  we 

c o u l d  c o n c l u d e  t h a t  L ( c l x )  + 3L ( c  x  ) = 0. I t  i s  l i n e a r i t y  w h i c h  
2 

3 3
a l l o w s  u s  t o  r e p l a c e  L ( c l x )  + L ( c 2 x ) b y  L ( c l x  + c 2 x ) t o  o b t a i n  
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2.4.3 (L) continued 


and 


From (5), ( 61 ,  and ( 7 ) I we have 

so that from (8 )  we see that (5) satisfies (1). 

Now that we know that every member of the 2-parameter family (5), 


i.e. . y = c x + c2x3, is a solution of (1), we now want to see 1 

whether for a given point (x ,yo) and a given number yo' we can 


0 


choose cl and c2 in one and only one way so that a member of (5) 


passes through (xoIy0) with slope yo'. 


Well from (5) and (61, letting x = xOI Y = Yo, and Y' = yolt we 

have 

Notice that in (9) we have two linear algebraic in two unknowns 

where cl and c2 are the "unknowns," since x0, yo, and y ' are 
0 


given constants. Thus, from our previous theory of linear alge- 


braic equations, we see that equation (9) has one and only one 


solution for cl and c2 provided the determinant of coefficients 
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2.4.3(L) continued 

Now (10) w i l l  be  s a t i s f i e d  un less  xo = O.* 

What we have now shown i s  t h a t  t h e r e  i s  one and only one member of 

(5)  which passes  through a g iven p o i n t  (x  o  'yo ) with  s l o p e  yo' and 

which s a t i s f i e s  (1). 
The nex t  ques t ion  i s ,  can t h e r e  i s  o t h e r  s o l u t i o n s  of (1)which 

a r e n ' t  members of  ( 5 ) ?  Here w e  invoke t h e  "Crucia l  Theorem" of 

t h e  l e c t u r e  by no t ing  t h a t  a s  long a s  x  # O,** w e  may r e w r i t e  (1) 

a s  

L e t t i n g  F(x ,y ,z )  = -3z - 3 [SO t h a t  (11)has  t h e  form 
X 

3y" = F ( x , y , y ' ) ] ,  w e s e e  t h a t  F  = - - 2  and FZ = - Hence, a s  long x ' x 

a s  x  # 0 ,  F. FYI and FZ e x i s t  and a r e  continuous.  Therefore,  t h e  

2" c r u c i a l  theorem" t e l l s  us  t h a t  x  y" - 3xy' + 3y = 0  has one and 

only  one s o l u t i o n  through a g iven p o i n t  ( x o , y o ) ~ Rwith  s l o p e  yo' 

a s  long a s  x f 0 i s  excluded from R. 

2I f  x = 0  then  x  y" -	 3xy' + 3y = 0  reduces t o  y  = 0. Hence, i f  
2 x = 0,  t h e  equat ion  x  y"  - 3xy' + 3y = 0 i s  s a t i s f i e d  a t  t h e  

s i n g l e  p o i n t  (0,O).  For obvious reasons ,  w e  demand t h a t  a solu-

t i o n  e x i s t  i n  a neighborhood of  a p o i n t .  More s t r o n g l y ,  i f  a 

s i n g l e  p o i n t  ( o r  a  union of i s o l a t e d  p o i n t s )  s a t i s f y  a  d i f f e r e n -  

t i a l  equa t ion ,  w e  do not c a l l  t h i s  set  of p o i n t s  a s o l u t i o n  of t h e  

equat ion .  Namely, t h e  ve ry  concept of a d e r i v a t i v e  a t  a given 

p o i n t  r e q u i r e s  t h a t  w e  know what i s  happening " j u s t  before' '  and 

" j u s t  a f t e r "  t h e  p o i n t .  In  o t h e r  words, t h e  concept  of d e r i v a t i v e  

r e q u i r e s  t h a t  w e  know what i s  happening i n  a non-zero neighborhood 

of a p o i n t  (no mat t e r  how smal l  t h i s  neighborhood i s ) .  

*This  was p a r t i a l l y  t h e  h i n d s i g h t  t h a t  had us  d e f i n e  ( 1 )  i n  a  
( c o n n e c t e d )  r e g i o n  R which e x c l u d e d  x = 0. The o t h e r  p a r t  of  our 
h i n d s i g h t  w i l l .  b e  shown i n  a moment. 

**This  i s  t h e  o t h e r  f a c t  t h a t  m o t i v a t e d  us  t o  w r i t e  x # 0 i n  (1). 
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2.4.3(L) continued 


At any rate, we may summarize this exercise by saying that in any 

region R which excludes x = 0, there is one and only one curve 

which passes through (xo,yo)~R with slope y ' and this curve is a 
0 


member of (5). 


2
If xo = 0, then x y" - 3xy' + 3y = 0 cannot be satisfied at any 

point (xo,yo) unless yo also equals 0 (since this is the only way 

that 3y = O), and if yo = 0, the "solution" consists of the single 

point (0,O) which is not called a solution of the equation. 

As a final point, notice that we have shown that the given equa- 


tion has no singular solutions. In other words, one and only one 


curve can pass through (xo,yo) with slope yo' and satisfy the 


given equation. Since the family defined by (5) supplies us with 


one such curve, there can be no others. This is an important 


property of linear differential equations. Namely, they possess 


no singular solutions. 


2.4.4 


Since 


implies 


we see that letting x = 1, y = 4, and y' = 2 in (1) and (2)* 

yields 

* N o t i c e  h e r e  t h a t  we a r e  r e p e a t i n g  our t h e o r e t i c a l  d i s c u s s i o n  of 
e q u a t i o n s  ( 9 )  and (10) of t h e  p r e v i o u s  e x e r c i s e ,  b u t  o n l y  i n  terms 
o f  a  c o n c r e t e  i l l u s t r a t i o n .  
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2.4.4 continued 

Hence, 

C1 = 5 

and 

C2 =. -1. 

Therefore ,  

3 y = 5 x - x  

i s  t h e  only  curve  which passes  through ( 1 , 4 )  wi th  s l o p e  2  ana 
2s a t i s f i e s  x  y" - 3xy' + 3y = 0.  

Here w e  i n v e s t i g a t e  t h e  d i f f e r e n c e  between a r b i t r a r y  cons tan t s  and 

"independent" cons tan t s  i n  a f a i r l y  t r i v i a l  way. (More s o p h i s t i -  

c a t e d  remarks a r e  reserved f o r  t h e  Supplementary Notes.) 

2C e r t a i n l y  s i n c e  x  y" - 3xy' + 3y = 0 i s  l i n e a r  and y  = x is a 

s o l u t i o n ,  s o  a l s o  a r e  y = c x and y = c x where cl and c 2  a r e  1 2
a r b i t r a r y  c o n s t a n t s .  

Hence, t h e  family 

i s  a s o l u t i o n  of 

and (1)c o n t a i n s  two a r b i t r a r y  cons tan t s .  
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2.4.5 (L) continued 

The t r o u b l e  wi th  (1) is t h a t  t h e  two a r b i t r a r y  cons tan t s  a r e  "de-

pendent" i n  t h e  sense  t h a t  they behave l i k e  one cons tan t .  That 

is ,  w e  may r e w r i t e  (1)a s  

y = cx where c = cl + c2. 

The "bad th ing"  about (3) is  t h a t  s i n c e  w e  have only one " f r e e "  

cons tan t  a t  o u r  d i s p o s a l  w e  "use it up" by e i t h e r  spec i fy ing  t h e  

va lue  of y when x = xo or t h e  va lue  of y '  when x = x I n  g e n e r a l ,  
0' 

we w i l l  a r r i v e  a t  a  c o n t r a d i c t i o n  i f  w e  wish t o  s p e c i f y  both y and 

y '  a t  x = xo. 

For example, i n  t h i s  p a r t i c u l a r l y  simple contr ived e x e r c i s e ,  w e  

see from ( 3 )  t h a t  

s o  t h a t  given t h e  value  of y '  a t  x = x ( i n  f a c t ,  i n  t h i s  s imple 
0 

example, equat ion ( 4 )  shows us t h a t  y '  c a n ' t  even vary wi th  x)  is  

t h e  va lue  t h a t  c must have. 

B U ~once c = ' , equat ion (3) becomes 
yo 

and w e  see from (5) t h a t  y i s  no longer a r b i t r a r y  once x = xo is 

s p e c i f i e d .  

For example, suppose w e  want t o  f i n d  a member of (1) which passes  

through (1 ,4)  wi th  s l o p e  equal  t o  2. 

From (1)we have 

y '  = C1 + C 2 ,  

s o  l e t t i n g  x = 1, y = 4 ,  and y '  = 2 i n  (1) and ( 6 ) ,  w e  o b t a i n  
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2.4.5(L) cont inued 

and t h e  equa t ions  i n  (7) a r e  incompatible.  

What happened h e r e  was t h a t  t h e  family (1)was a "pseudo - 2 para- 

meter" fami ly  i n  t h e  sense  t h a t  it was i d e n t i c a l  t o  t h e  1-

parameter fami ly  g iven by (3) . 
With y = cx ,  y '  = c s o  t h a t  y '  = 2 * c = 2, s o  t h a t  t h e  only mem-

b e r  of (3)  which i s  e l i g i b l e  t o  be  a s o l u t i o n  of (2)  i s  

b u t  t h i s  f a i l s  on t h e  ground t h a t  when x = 1, y = 2 r a t h e r  than 

4.  

S ince  t h e  only  e l i g i b l e  member of (3)  has  been e l imina ted ,  t h e r e  

i s  no member of (3)  which i s  a s o l u t i o n  t o  t h e  given problem. 

Again f u r t h e r  d e t a i l s  a r e  l e f t  f o r  t h e  supplementary no tes ,  b u t  

f o r  now n o t i c e  t h a t  t h e  number of i n i t i a l  cond i t ions  t h a t  can be  

s p e c i f i e d  a t  x = x ( i . e . ,  t h e  va lues  of y '  , y " ,  e t c .  a t  x = xo)
0 

depend not on t h e  number of a r b i t r a r y  c o n s t a n t s  b u t  r a t h e r  on t h e  

number of independent a r b i t r a r y  cons tan t s .  

2.4.6 


Using t h e  technique  of t h e  l e c t u r e ,  w e  l e t  


s o  t h a t  y '  = re r x  

and 

2 r x  y l 1 = r e  . 

S u b s t i t u t i n g  ( 1 1 ,  (21, and (3) i n t o  

y" + 7y' - 8y = 0 

w e  o b t a i n  
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2.4.6 continued 


r2erx + 7rerx - 8erx = 0 

Since erx is never 0, equation (5) implies that 


From (6), we see that the only solutions of (4) which have the 


form of (1) are 


l r  = e -8x and y = e x. 

Note that (7) has given us the eligible members of (1) which may 

-8x x


satisfy (4). It still remains to be seen that y = e and y = e 

are solutions of (4), but the verification is trivial. Namely, 

Hence 


y' + 7yI - 8y 64e-8X - 56e-8X - 8e-8X E 0n 

Hence 


Referring to the L(y)-notation, we may let ~ ( y )  = y" + 7y' - 8y in 

which case (4) becomes 
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2 . 4 . 6  continued 

Equation (7) says that ~ ( e - ~ ~ )  0 and L(eX) = 0. Hence, by = 

linearity 


From (9) , we see that the family 

is a solution of ( 4 )  . 
Moreover, from (10) 

Hence, if we require that (10) and (11) be satisfied with y = yo 

and y' = yot* when x = x we obtain the system 
0 


* P e r h a p s  t h i s  s h o u l d  h a v e  b e e n  m e n t i o n e d  e a r l i e r  b u t  y  ' i s  s i m p l y
0 

a c o n s t a n t  w h i c h  d e n o t e s  t h e  v a l u e  o f  y '  when x = x . I t  s h o u l d  
0 

n o t  b e  c o n s t r u e d  t o  mean t h e  d e r i v a t i v e  of  y s i n c e  t h e  d e r i v a t i v e  
0 

of  a c o n s t a n t  i s  a l w a y s  z e r o .  I n  o t h e r  w o r d s ,  we u s e  y  ' , yo1' e t c .  

s u g g e s t i v e l y  t o  d e n o t e  t h e  v a l u e s  of  y ' ,  y " ,  e t c . ,  a t  t h e  i n i t i a l  
c o n d i t i o n  x = x . 

0 
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2.4.6 continued 

f o r  which t h e  determinant of coe f f i c i en t s  i s  

which cannot be zero f o r  any value of xo. 

Hence, w e  see from (12) t h a t  t he re  i s  one and only one way of 

determining cl and c2 s o  t h a t  y = cle -8x + c2ex s a t i s f i e s  ( 4 )  and 

passes through (xo,yo) with s lope  yor .  

To show t h a t  no o ther  curve can pass through (xoryo) with s lope  

Yo I ,  w e  invoke t h e  "c ruc ia l  theoremn of t h e  l e c t u r e  by rewr i t ing  

( 4 )  a s  

where F(x,y,z) = 8y - 72. Hence, F = 8 ,  FZ = -7 and we see that
Y 

t he  equation has a unique so lu t ion  [s ince F, F
Y'  

and FZ e x i s t  and 

a r e  continuous always]. 

Given 


y" - 8y' + 15y = 0 ,  


we l e t  y = e rx  t o  obtain  


e rx ( r2  - 8r  + 15) = 0. 
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2.4.7 continued 

Since  e r x  # 0 ,  it fol lows from ( 2 )  t h a t  r = 3 o r  r = 5. Hence, 

y = e3x and y = e5Xa r e  both  s o l u t i o n s  of (1). Since (1) i s  

l i n e a r ,  w e  may conclude t h a t  

is  a fami ly  of s o l u t i o n s  of (1).* 
From (3)  

L e t t i n g  x = 0, y = 1, and y '  = -3 i n  ( 4 ) ,  we o b t a i n  

1 = C1 + C 2  

-3 = 3c1 + 5c2 I

whence 

3 

r ..f.. 
A,. 
FA.. 


L?. c 
" A  
* -

21, 
1 .-8 

* A g a i n ,  b e  c a r e f u l  t o  n o t e  t h a t  we '<e  u s e d  l i n e a r i t y .  F o r  e x a m p l e ,  

c o n s i d e r  t h e  n o n l i n e a r  e q u a t i o n  - y 2  = 0 f o r  w h i c h  t h e  v a r i -  
d  x  

I
a b l e s  a r e  s e p a r a b l e  and we o b t a i n  t h e  g e n e r a l  s o l u t i o n  y  = -c - x  

Y =  2 d o e s  n o t  y 
1 - x 

4xLw h i l e  y 2  = 
2 2 '

( 1 - x )  

( y o  # 0 )  and  y 

y = - 1 - x  a r e  

two s o l u t i o n s  

2x 

= 0 ( i f  y o  = 0 ) .  T h u s ,  b o t h  y = -and  

2
s o l u t i o n s  of 2 - y 

1 1i s  y = -
1 - x + - 1 - x  

2
s a t i s f y  2 -

1 - x  

= 0 (y  # 0 ) .  The sum of  t h e s e  

= 1 - 1 -- 2x 
1 - x  l + x  2 ' b u t  

1 - x  
n 

+ x')= 0 .  Namely,  * = d x  2 2 
( 1 - x )  
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2 .4 .7  continued 

Hence, 


CI = 4. 

Theref ore 


)r = 	4e3x - 3e5x 

passes through (0,l) with slope -3 and satisfies (1). 


By rewriting (1) as 


where F(x,y,z) = 82 - 15y may we conclude from the crucial theorem 

that (5) is the only curve with the required properties. 

2 . 4 . 8 ( L )  

a. 	 This exercise is a learning exercise only in the sense that we are 

dealing with a third-order linear equation. In the lecture, we 

mentioned that all the techniques worked for any n but that for 

the sake of simplicity, we limited ourselves to n = 2. 

In this exercise, since our coefficients are constants, we again 


try for solutions of 


in the form 
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2.4.8 (L) continued 


From (2) , 

so that with y = erx, (1) becomes 

3 rx - rerX = 0r e 


Since e rx is never zero, we conclude from ( 3 )  that 

and, since 


we conclude that 


OX X -x 
y = e  [=I], y = e  , a n d y = e  


are solutions of (1) . 
Hence, again by linearity, 

is a family of solutions of (1). 


S.2.4.21 
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2.4.8 (L) continued 


Moreover (4) implies that 


and 


Thus, if we want a member of (4) for which y = yo, y' = yo1, and 

yn = Yo " when x = xo, we see from (4), ( 5 ) ,  and ( 6 )  that we must 

be able to solve the system of equations. 

In (7 )  the unknowns are cl, c2, and c3, and the determinant of 

coefficients is 


and expanding (8) along the first column (to take advantage of the 

0 entries), we see that (8) is 
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2.4.8 (L) continued 

f o r  each x. 

Hence, t h e r e  is  one and only one member of (4)  which passes  

through (x0 ,yo) such t h a t  when x = xO, y '  = yo1 and y" = yot1. 

F i n a l l y ,  by w r i t i n g  (1) i n  t h e  form 

w e  see t h a t  one and only  one s o l u t i o n  of (1) s a t i s f i e s  y = yo 

y 1  = yo ' ,  and y" = yon when x = x0 ' 

[The g e n e r a l  uniqueness theorem says  t h a t  i f  

and i f  F ,  F , and F a l l  e x i s t  and a r e  continuous i n  a  re-
yl. F ~ 2  Yn 

g ion  of  n-space R [where ~ ( x , y ~ , y ~ ,  is  obta ined from ..., Y, ,~)  

F ( ~ I Y , Y ' ,. . . ,  Y - ) 1 by l e t t i n g  yk = y'k)  ) then  t h e r e  i s  one and 
o n l y  one s o l u t i o n  o f  ( 9 )  t h a t  passes  through each p o i n t  (xo,yo) i n  

t h e  p lane  wi th  p r e s c r i b e d  va lues  f o r  yo, yo' yo1', ..., and 
("-1) a t  x = x 1Yo 0' 

b. L e t t i n g  xo = 0 ,  yo = 1, yo1 = 3 r  and yo" = 5,  w e  s e e  from (7)  t h a t  

Adding t h e  l a s t  two equat ions  i n  (10) y i e l d s  c2  = 4 ,  from which w e  

conclude t h a t  c3 = 1. L e t t i n g  c2 = 4 and c3  = 1 i n  t h e  f i r s t  

equat ion  of (10), w e  o b t a i n  

s o  t h a t  
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2.4.8 (L) continued 


Hence, the required solution, from (41, is 


-Note 
What seems to be happening is that as the order of our linear 


equation increases, we can make it "behave better" (i.e., by 


prescribing more derivatives) in the neighborhood of a given 


point. 


2.4.9(L) 


In the last several exercises, we have restricted our attention to 

linear equations of the form L(y) = 0. 

We now wish to conclude this unit with the case L(y) = f (x) where 

f(x) is not identically zero. 

To simplify matters, we have elected to solve a problem in which 


the constituent parts have already been handled. 


X
From equation (5 )  of Exercise 2.4.1, we have that y = e is a 

particular solution of 


where 


In the notation of our lecture 


X 
= e . 

Y~ 


In Exercise 2.4.3, we saw that 


was the general solution of L(y) = 0. 
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2.4.9 (L) continued 

Hence, again  i n  t h e  n o t a t i o n  of our  l e c t u r e ,  we conclude from (2) 

t h a t  

S ince  yh i s  then t h e  g e n e r a l  s o l u t i o n  of L(y)  = f ( x ) ,  w e  have 
+ Y~ 

from (1)and (3)  t h a t  

i s  t h e  genera l  s o l u t i o n  of 

Notice t h a t  t h e  c r u c i a l  e x i s t e n c e  theorem of t h e  l e c t u r e  i s  essen-

t i a l l y  of t h e  same form a s  i n  Exerc ise  2.4.3. That  i s ,  t h e  "cru- 

c i a l  theorem" when app l i ed  t o  

r e q u i r e s  on ly  t h a t  p ,  q ,  and f be  de f ined  and continuous i n  some 

reg ion  R. Thus, i f  w e  r e p l a c e  f ( x )  by any o t h e r  continuous func-

t i o n  of x ,  t h e  r eg ion  R i n  which t h e  genera l  s o l u t i o n  e x i s t s  

doesn 't change. 

Hence, w e  need on ly  show t h a t  w e  can determine cl.and c2 s o  t h a t  

a t  any given p o i n t  (xo,yo) , w e  can f ind '  a m e m b e r  of ( 4 )  which 

passes  through (xo,yo) wi th  a p resc r ibed  s l o p e  yo' & t h a t  (4)  

r e a l l y  does s a t i s f y  ( 5 )  [ a s  t h e  theory  c la ims] .  

W e l l ,  from (41, 

and 

Hence from ( 4 1 ,  (71, and (81, w e  have 
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2 . 4 . 9  (L) continued 

which agrees with ( 5 )  . 
Again, it would have been quicker ,  once w e  have t h e  confidence, t o  

use  t h e  proper t ies  of l i n e a r i t y  d i r e c t l y .  That is ,  

and s ince  i n  this problem L(x) = L(x3 ) = 0 and L (ex) = 

eX(x2 - 3x + 3).w e  conclude a t  once from (6)  t h a t  

F ina l ly ,  t o  show that cL and c2 may be chosen uniquely to find a 

d e r  of (4) w h i c h  passes through (xa,yo) w i t h  slope yo1, w e  see 

firom (4)  anti ( 7 )  t h a t  w e  m u s t  have a unique s a l u t i a n  of the system 

* I t  i s  easy t o  prove induct ive ly  that  i f  L i s  l i n e a r ,  

L(ul + ... + un) = L(ul )  + ... + L(un). For example, L(ul + u2 

+ 

U3) = L([ul + U 2 ]  + U3) = L(ul + u*) + L(u3) = L(ul) + L(u2) + 
L(u3) .  We have g iven  the  d e f i n i t i o n  with the  assumption that  

n  = 2 knowing that  the  r e s u l t s  can be e a s i l y  extended by 
induction.  
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2.4.9 (L) continued 

The key point in (10) is that since xo, yo, and y ' are given 
0 


constants, cl and c2 are still the only unknowns. Hence, the 


determinant of coefficients is still 


just as in Exercise 2 . 4 . 3 .  In other words, the determinant of 

coefficients depends only on clul + ... 'nun -- yn and is un- 
+ 

changed when y is added to yh 

P 


a. 	 Since L(y) = 0 is particularly convenient when the coefficients in 

L are constant, we often try to reduce linear equations with non- 

constant coefficients to ones with constant coefficients. 

One very convenient type is the so called equidimensional equation 


which has the form 


i .e. , the coefficient of (k) is a constant times x k ; the equation 

is called equidimensional because the power of x equals the order 

of the derivative in each term. 

In the special case that n = 2 and cn # 0, equation (1) takes the 
form 

2
x y" + axy' + b y  = 0 (x > 0). 

The substitution 
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2.4.10 continued 

y i e ld s  

s o  t h a t  we g e t  a hunch, a t  l e a s t  t h a t  t he  subs t i t u t i on  ( 3 )  may 

reduce (2) t o  constant  coe f f i c i en t s  ( a t  l e a s t  t h e  2axy1 term has x 
dzeliminated when we replace 2 by = I .  

Thus, t he  t r i c k  i s  t o  rewr i te  (2) i n  such a way t h a t  y becomes t h e  

independent va r i ab l e  and z t h e  dependent var iab le .  For example, 

From (5 )  

= A(*) = a(&2)
d x d x  d x x d zdx 

d d 22 dz
[ i . e . ,  -= s o  by t h e  chain r u l e  =(&)= =I o r ,  again 

dz 

Put t ing  t he  values of 2 and 32 
as  given by ( 5 )  and (6) i n t o  (2), 

dx 
w e  obtain  
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2 .4.10 continued 

where (7) i s  l i n e a r  i n  y and has  cons tan t  c o e f f i c i e n t s .  We can 

then  s o l v e  (7) t o  f i n d  y a s  a func t ion  of z and then use (3) t o  

r e p l a c e  z by I n  x. 

b .  Using a = -3 and b = 3, w e  see from (7) t h a t  z = I n  x t ransforms 

i n t o  

L e t t i n g  y = erz,  w e  see t h a t  (8) y i e l d s  

s o  t h a t  r = 1 o r  r = 3. 


Hence, t h e  g e n e r a l  s o l u t i o n  of (8) i 


and s i n c e  z = I n  x, (9) becomes 
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2.4.10 continued 

2.4.11 (Optional)  

Given 

any s u b s t i t u t i o n  of t h e  form z = f ( y , y W )is  recommended. 

More e x p l i c i t l y ,  i n  t h e  p r e s e n t  e x e r c i s e ,  w e  a r e  asked t o  see what 

happens t o  (1)under t h e  s u b s t i t u t i o n  

o r  


y '  = zy. 


From ( 2 ' 1 ,  


y" = zy' + z ' y ,  


and r e p l a c i n g  y '  and y"  i n  (1)by t h e i r  va lues  i n  ( 2 ' )  and (3)  w e  


o b t a i n  

Equation ( 4 )  is  nas ty  i n  t h a t  it inc ludes  t h e  t h r e e  v a r i a b l e s  x ,  

y ,  and z and t o  h e l p  a l l e v i a t e  t h i s  s i t u a t i o n ,  w e  d i v i d e  both  

s i d e s  of ( 4 )  by y (y # 0) t o  o b t a i n  
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2.4.11 continued 

and s i n c e  L!- = z ,  (5)  becomes 
Y 

and equat ion  (6)  is  a f i r s t  o r d e r  d i f f e r e n t i a l  equat ion  involving 

x and z. 

b. 	 I n  g e n e r a l ,  had w e  s t a r t e d  wi th  (6) , w e  would have a mess (mean-

i n g  a r a t h e r  nas ty  f i r s t  o r d e r  nonl inear  equa t ion) .  The p o i n t  i s  

t h a t  t h e  s u b s t i t u t i o n  z = 2 t ransforms ( 6 )  i n t o  (1). Therefore,
Y 

i f  w e  can s o l v e  (1), w e  can a l s o  s o l v e  (6) . 
~ h u s ,  r eve r s ing  t h e  s t e p s  (1) through (61, w e  s e e  t h a t  t h e  non-

l i n e a r  f i r s t  degree  equat ion  

becomes t h e  l i n e a r  second-order equat ion  

under t h e  s u b s t i t u t i o n  z = 2.
Y 


Thus, i f  it happens t h a t  w e  can s o l v e  ( I ) ,w e  can a l s o  s o l v e  ( 6 ) .  

I n  t h i s  p a r t i c u l a r  problem, w e  have r igged t h i n g s  a l i t t l e  by 

p icking 

s i n c e  i f  w e  w r i t e  t h i s  i n  t h e  form ( 6 ) ,  w e  o b t a i n  

3 	 3-,
and (8)  i s  (6)  wi th  p (x) = and q (x)  = 	7. Hence, t h e  s u b s t i t u -  
X 

t i o n  z = 2 t ransforms (8)  i n t o  
Y 
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or, equivalently since x # 0, 

2x y" - 3xy' + 3y = 0. 

But we already know the general solution of ( 9 ) ,  namely, 

3y = c x + c x . 
1 2 


From (lo), 


y' = C1 + 3c2x2 

and since z = , we have from (10) and (11) that 
Y 


If we now divide both numerator and denominator on the right side 


C2
of (12) by cl and let c = 	--I we obtain 
C1 

To check that (13) is a solution of (7)  , we have from (13) that 
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Also from (13) 


Using (13), (14) and (15) in ( 7 1 ,  we obtain 

which completes our check. 


Lest we have lost of our accomplishment, we have exhibited here an 


example where a change of variables transforms a quite possibly 


difficult nonlinear first-order equation into a second order 


linear equation, and since a great deal is known about second- 


order linear equations, we replace our unsolved problem by a sim- 


pler unsolved problem. 


In particular, we have seen here that any first-order equation of 


the form 


is equivalent to 
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under the change of variable z = YL.
Y 


Of course, (16) denotes just one particular type of nonlinear 


equation, and we might not be as fortunate in other types. This 


is one reason that differential equations gets its "cookbook" 


reputation. 


From our point of view, the main aim of this exercise is to open 


avenues for you to see how the solution of linear differential 


equations can sometimes help us solve certain types of nonlinear 


equations. 
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