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Solutions
Block 2: Ordinary Differential Equations

Unit 4: Linear Differential Equations

2.4.1(L)

Notice that the notation
2 " 1
L(y) = x"y" = 3xy' + 3y (1)

implies that the "input" of the "L-machine" must be a twice-
differentiable function of x [otherwise the right side of (1) is
not defined]. That is, L is a function whose domain is the set of
all twice-differentiable functions of x and whose range is the set
of functions of x. 1In other words, L maps any twice-differentiable
function of x into some function of x [but this mapping need not
be onto, i.e., there may be functions g(x) such that L(y) # g(x)
for all twice-differentiable functions y*].

Our main aim in this exercise is to supply you with sufficient
drill so that you feel at ease with the new notation. Part (a)
requires that we compute L(y), or L[f(x)], for some specific
twice-differentiable functions y = f(x). Part (b) asks us to
verify certain "linear" properties of L.

As usual, in our treatment of functions, we want to view the "in-
put” independently of any specific "label." Thus, we view (1) as

h

[

L([ 1) = x20 1" = 3x[ 1' + 3[ ]

or (2)

2
_ .2 d ) - al 1
L([ 1) = x —d'iz— 3X'——dx + 3[ 1

*This may, of course, be restated without reference to y, using
only function notation. That is, (1) is equivalent to writing

LIECx)] = x2£"(x) - 3x £'(x) + 3 £(x) (1)

where f is any twice-differentiable function of x. Ultimately,
the problem of solving linear equations reduces to finding f(x)
such that L[f(x)] = g(x) for a given function g(x). We shall say
more about this shortly.
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2.4.1(L) continued

where [ ] may be replaced on both sides of (2) by any twice-
differentiable function of x.*

At any rate, from (2), we have

(i) Lilsin x] = x’[sin x]" - 3x[sin x]' + 3[sin x]
or
L(sin x) = xzt- sin x) - 3x(cos x) + 3 sin x
= (3 - xz)sin X = 3% cos X. (3)

[Notice that sin x is a twice-differentiable function of x and
that the right side of (3) is a function of x. Reversing the
steps involved in arriving at (3), what we have shown is that
since L(sin x) = (3 - xz)sin X - 3x cos x, then y = sin x is one
solution of the linear differential equation

x%y" - 3xy' + 3y = (3 - x%)sin x - 3x cos X. (4)

The (much) more difficult problem is to start with (4) and to try
to deduce (3). This is the problem with which we must ultimately
become concerned, but for now we are satisfied just to drill on

the notation.]

(11) LX) = x2(e¥) - 3x(e®)' + 3(e¥)
2 X X x
= X e - 3xe + 3e
“ (&2 & 3% ¥ 3 (5)

3 3
*For example, if y = xz, y" does not exist at x = 0; hence L(xz)

is undefined at x = 0. Notice however, at least in this case,
: 1)
if we restrict x to an interval R which does not include 0O, L(x2
3

is defined on R, since x2 is twice-differentiable whenever x # 0.

S.2.4.2
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Block 2: Ordinary Differential Equations
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2.4.1(L) continued

(iii) L(x) = x2(x)" - 3x(x)' + 3(x)

= x%(0) - 3x(1) + 3x,
or
L(x) =0 - 3x + 3x = 0. (6)
[In other words, y = X is a solution of xzy“ - 3xy' + 3y = 0.]
(iv) L(x%) = x2(x%) - 3x(x%) + 3(x%)

= x2(2) - 3x(2x) + 3x°

e (7)
W) Lxd) = x2xD)" - x|+ 30d)

x2(6x) - 3x(3x%) + 3x°

1

0. (8)

[In other words, y = x3 is also a solution of

xzy" - 3xy' + 3y = 0.1
b. (vi) We could solve (vi) just as we did in part (a). Namely,
L(e® + sin x) = xztex + sin x)" - 3x(e” + sin x)' +
X .
+ 3(e” + sin x) (9)
= xztex - sin x) - 3x(ex + cos xX) +
X :
+ 3(e” + sin x) (10)

(Notice the key step in going from (9) to (10). Namely, we used
the fact that the derivative of a sum is the sum of the deriva-
tives. More symbolically, [f(x) + g(x)]' = £'(x) + g'(x);

S.2.4.3
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2.4.1(L) continued

[E(x) + g(x)]" = [£'(x) + g'(x)]" = £"(x) + g"(x), etc. 1In this

particular exercise, f(x) = e* and g(x) = sin x.)

Hence

L(ex + sin x) = xzex - xzsin X - 3xeX - 3x cos x + 3e* + 3 sin x
= eX(x® - 3x +3) + (3 - x))sin x - 3x cos x.  (11)

The crucial point is to observe, however, that the right side of
(11) is the sum of the right sides of (3) and (5). That is, we
have verified by direct computation in this exercise that

X . X .
L(e” + sin x) = L(e”) + L(sin x). (12)
Equation (12) is a special case of the result derived in our lec-
ture that if L(y) = y" + p(x)y' + g(x)y* then for any twice-
differentiable functions u(x) and v(x),

L(u + v) = L{u + v).

In this exercise, we have rederived the result of the lecture only
more concretely for a specific choice of L, u, and v.

(vii) Again we could write

L(6 sin x) = x2(6 sin x)" - 3x(6 sin x)' + 3(6 sin x)

x2(—6 sin x) - 3x(6 cos x) + 18 sin x

6[(3 - xz)sin X - 3x cos x],

or, again by (3),

*In the lecture, we wrote the standard (2nd order) linear equation
in the form y" + p(x)y"' + q(x)y = £(x). It could just as easily
have been r(x)y" + p(x)y' + q(x)y = f(x), but as long as r(x) # 0,
we can divide by r(x) to obtain y" + pl(x)y' + ql(x)y - fl(x),

(x) ., Elw
where py () = B ¢ (0 = £, ana £,0 = 1

S.2.4.4
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Block 2: Ordinary Differential Equations
Unit 4: Linear Differential Equations

2.4.1(L) continued
L(6 sin x) = 6L(sin x). (13
Equation (13) verifies the result of our lecture that

L(cu) = cL(u)

at least for the ¢ = 6, u = sin x, and L(u) = xzu“ - 3xu' + 3x.

Moreover, the general, abstract proof is exactly the same as our

procedure in deriving (13).
(viii) The proof given in the lecture tells us that

L(7eX + 6 sin x) = L(7e*) + L(6 sin x)

?L(ex) + 6L(sin x),

so again by (3) and (5),
L(76X + 6sin %) = 7eX(x2 - 3x + 3) + 6[(3 - xV)sin x -
- 3x cos x]. (14)

That (14) agrees with the result of using (2) to compute
L(7e* + 6 sin x) is left to the interested(?) student.

(ix) The property that for a linear L,
L(cqu; + cyu,) = cyL(u;) + c,L(u,) (15)
hinged on the facts that (ul + uz}' - ul' + uz' and (cu)' = cu'

provided c is constant. If c is not constant, (cu)' is not cu'

but, rather by the product rule, (cu)' = cu' + c'u.

Hence, the luxury of using (15) requires that ¢y and c, be con-
stants. The aim of this part of the exercise is to show that when

c, or c, is not constant, then (15) need not apply. In particu-

1
iaf, If ¢ = xex, then y' = xe* + e* and y" = xe® + 2ex, so we ob-

tain from (2) that

8.2,4.5
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2.4.1(L) continued

xz(xex)" - 3x(xex)I + 3(xex)

I

L (xeX)

xz(xex + Zex} - 3x(xex + ex) - 3{xex}

[

(x5 - x%) e, (16)
On the other hand, from (5),

xex(x2 - 3x + 3)

I

xL(ex)

3 2

ex(x - 3x° + 3x). (17)

Comparing (16) and (17) shows that
L(xe™) # xL(e¥).

That is, if c is not constant (in the present example, ¢ = x) then
L(cex) need not equal cL(e¥). [The "sophisticated" way of mem-
orizing this is to say that the product rule for differentiation

is not linear.]

2.4.2(L)

Nl 9 S S o B0 B 9 =2 =

Here our aim is to stress the fact that the nice properties that
L(u1 + uz) = L(ulj + L[uz) and L(cu) = cL(u) depend on L(y)
denoting an expression of the form

pn(x)y(n)(x) + pn_I(X)y(nil)(x) + ..o+ py(x)Y" + po(X)y,

(n)

and that once the coefficients of v, y', ..., and y are not all

functions of x alone, these properties need not hold.

Here we have
L(y) = y" - 3yy' + 3y. (1)
[Note that the coefficient of y' is not a function of only x. 1In

fact, it is a function of y alone, but this is not what's really
important. What's really important is that the coefficient of y'

S.2.4.6
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2.4.2(L) continued

is not a function of x alone; consequently, L(y) as defined in (1)
is not linear.]

Letting y = x3 in (1) we obtain

L(x3) H' S ) o+ 3D

(x

6x - 3(x3) (3x2) + 3x°

6x + 3x3 - 9x5 = 3x(2 + x2 - 3x4). (2)

Letting y = 2x3 in (1) yields

L(2x0) = (2x0) - 3(2x7) (2x7) " + 3(2x°)

= 12x - 6x°(6x%) + 6x°

= 6x(2 + %2 - 6x4). (3)
From (2)
2L{x3} = 6x(2 + x2 - 3x4), (4)

and comparing (3) and (4) shows that

- a P il B B m PR e S P PE oa

IS s @ea B e M,

L(2x3) # 2L(x3)".

(5)

Moreover, since 2x3 = x3 + x3 and 2L{x3} = L(x3) + L(x3}, we may

rewrite (5) as
L{x3 + x3} 2 L(x3) + L{x3}. (6)

Equations (5) and (6) show us that with L defined in this exercise
it need not be true that

*Do not be misled by the fact that (3) and (4) look "a lot alike."
To simplify the various computations, we chose u rather conveni-

ently to be x3. Had u (or L) been more involved, the difference
between L(cu) and cL(u) could have been much more drastic. What
is important is that L(cu) need not equal cL(u).

5.2.4.7
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2.4.2(L) continued
L(cu) = cL(u)
and

L(ul + uz) = L(u1} + L(uz}.

For this reason, we reserve the notation L to mean

n
Lly) = pn(x}§—§ +een +p OE + p (R)y
X

and in this way, whenever we see

+ c,u,)

Lcju; + cyu,

where ¢ and c, are constants and uy and u, are n-times differen-
tial functions of x (in the lecture we viewed the special case
n = 2 for computational brevity, but the results hold for any

order n) we may replace it by
clL(ulJ + ch(uz).

As a final note on the importance of linearity, notice how closely
L(y) in this exercise resembles L(y) of the previous exercise (the
only difference is that we replaced x by y in the coefficient of
y'). Yet this rather "small" change was enough to "nullify" the
linearity of L(y).

2.4.3(L)

Our aim here is to emphasize what is meant by the general solution

of a 2nd order (linear) differential equation.

We want to find all solutions of

x2y" - 3xy' + 3y =0 (x #0). (1)

S.2.4.8
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2.4.3(L) continued
From parts (iii) and (v) of Exercise 2.4.1, we saw that y = x and
y = x> were two solutions of (1).* That is, letting

L(y) = xzy“ - 3xy' + 3y

we know that
L(x) =0 and L(x3} = 0 (2)

Therefore, since L(clx} = clL(x) and L(c2x3} = 02L(x3), we see
from (2) that if c¢; and c, are arbitrary constants

= 3, _
L{clx) = 0 and L(czx ) = 0. (3)

Then since L(u + v) = L(u) + L(v), we obtain from (3) that

L(clx + c x3) = Q. ** (4)

2

To give (4) more concreteness, we shall actually test whether

y = ¢;x + czx3 satisfies (1) [which is the "translation" of (4)].

From

- 3
Yy = ¢1X + c,x (5)

we obtain

*In a manner of speaking, we have "cheated" by starting with an
equation, some of whose solutions we found (by being given them)
in a previous exercise. This is fine since all we want to do here
is discuss what is meant by the general solution of an equation
without worrying about the techniques for finding particular solu-
tions. As mentioned earlier, we shall see later how one could have

deduced that y=x and y:=x3 were solutions of (1) directly from (1).
*%Tt is crucial to stress that deriving (4) from (3) required

linearity, not simply "equals added to equals are equal." That
is, even if L had not been linear, by equals added to equals, we

could conclude that L(clx) + L(c2x3} = 0. It is linearity which

allows us to replace L(clx) + L(c2x3) by L(clx + c2x3) to obtain
(4).

S.2.4.9
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2.4.3(L) continued

2

Yl = Cl + 3C2X (6)
and
Fo = 602x. (7)

From (5), (6), and (7), we have

2

x“y" = 3xy' + 3y x3)

xz(sczx) - 3x(c1 + 3c xz) + 3(clx + c

2 2

_ 3 _ = 3 3
= Gczx 3clx 9c2x + 3clx + 3c2x

i
(=]

(8)

so that from (8) we see that (5) satisfies (1).

Now that we know that every member of the 2-parameter family (5),
i.e., ¥y = C X e c2x3, is a solution of (1), we now want to see
whether for a given point (xo,yo} and a given number yo' we can
choose ¢ and <, in one and only one way so that a member of (5)

: "
passes through (xo,yo) with slope Yo *

Well from (5) and (6), letting x = x _, y = Yoo and y' = yo', we

[e]
have
V. = e ¥ E.X 3
o 150 2o
(9)
¥.'" =g + 3c,X s
o 1 2o

Notice that in (9) we have two linear algebraic in two unknowns

"

where cy and c, are the "unknowns," since X r Yoo and yo' are
given constants. Thus, from our previous theory of linear alge-
braic equations, we see that equation (9) has one and only one

solution for < and c, provided the determinant of coefficients

S.2.4.10

Ul S U U TS A @9 oA = =m

l Ol o oE .

i3

HE h e




[ . |

Solutions
Block 2: Ordinary Differential Equations
Unit 4: Linear Differential Equations

= r

| . |

S S o oW o,

1

ra

™ M

al N 8 s ™

ra

2.4.3(L) continued

or
3x T - x " #0. (10)

Now (10) will be satisfied unless i = 0.%

What we have now shown is that there is one and only one member of
(5) which passes through a given point {xo,yo} with slope yo' and
which satisfies (1).

The next question is, can there is other solutions of (1) which
aren't members of (5)? Here we invoke the "Crucial Theorem" of
the lecture by noting that as long as x # 0,** we may rewrite (1)

as

- 3y’ _Ex
y __XL' x2- {11)

Letting F(x,y,z) = 3z _ 2% [so that (11) has the form

N %
y" = F(x,y,y')], we see that FY = ——% and ¥, = %. Hence, as long
X
as x #0, F, F_, and Fz exist and are continuous. Therefore, the
"crucial theorem" tells us that xzy“ - 3xy' + 3y = 0 has one and

only one solution through a given point (xo,yo}eR with slope yo'

as long as x # 0 is excluded from R.

If x = 0 then xzy" - 3xy' + 3y = 0 reduces to y = 0. Hence, if
x = 0, the equation xzy“ - 3xy"' + 3y = 0 is satisfied at the
single point (0,0). For obvious reasons, we demand that a solu-

tion exist in a neighborhood of a point. More strongly, if a
single point (or a union of isolated points) satisfy a differen-
tial equation, we do not call this set of points a solution of the
equation. Namely, the very concept of a derivative at a given
point requires that we know what is happening "just before" and
"just after" the point. In other words, the concept of derivative
requires that we know what is happening in a non-zero neighborhood

of a point (no matter how small this neighborhood is).

*This was partially the hindsight that had us define (1) in a
(connected) region R which excluded x = 0., The other part of our
hindsight will be shown in a moment.

**This is the other fact that motivated us to write x # 0 in (1).

§.2.4.11
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2.4.3(L) continued

At any rate, we may summarize this exercise by saying that in any
region R which excludes x = 0, there is one and only one curve
which passes through (xo,yOJsR with slope yo' and this curve is a
member of (5).

If X, = 0, then xzy“ - 3xy' + 3y = 0 cannot be satisfied at any

point (xo,yoj unless ¥ also equals 0 (since this is the only way
that 3y = 0), and if y_ = 0, the "solution" consists of the single
point (0,0) which is not called a solution of the egquation.

As a final point, notice that we have shown that the given equa-
tion has no singular solutions. In other words, one and only one
curve can pass through (xo,yo) with slope yo' and satisfy the
given equation. Since the family defined by (5) supplies us with
one such curve, there can be no others. This is an important
property of linear differential equations. Namely, they possess

no singular solutions.

2.4.4
Since
Yy = c,X + ¢ x> (1)
1 2
implies
' = oe # 30,%° (2)
Y 1 2
we see that letting x =1, v = 4, and y' = 2 in (1) and (2)*
yields
4 = cq =+ 02
(3)
2 = c + 302
or

*Notice here that we are repeating our theoretical discussion of
equations (9) and (10) of the previous exercise, but only in terms
of a concrete illustration.

S.2.4.12
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2.4.4 continued

12 = 3cl + 3c2
2 = c + 3c2

Hence,

cq = 5

and

c, = =L

Therefore,

y = 5x - x3

is the only curve which passes through (1,4) with slope 2 and
satisfies xzy" - 3xy' + 3y = 0.

2.4.5(L)

Here we investigate the difference between arbitrary constants and
"independent" constants in a fairly trivial way. (More sophisti-
cated remarks are reserved for the Supplementary Notes.)

Certainly since xzy“ - 3xy' + 3y = 0 is linear and y = x is a
solution, so also are y = c X and y = Cyx where ¢y and c, are
arbitrary constants.

Hence, the family
y = clx + czx (1)
is a solution of

xzy“ - 3xy'" + 3y =0 (2)

and (1) contains two arbitrary constants.

S.2.4.13
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2.4.5(L) continued

The trouble with (1) is that the two arbitrary constants are "de-
pendent" in the sense that they behave like one constant. That

is, we may rewrite (1) as
Yy = cx where c = ¢y * ey (3)

The "bad thing" about (3) is that since we have only one "free"
constant at our disposal we "use it up" by either specifying the
value of y when x = X, or the value of y' when x = X In general,
we will arrive at a contradiction if we wish to specify both y and
y' at x = X e

For example, in this particularly simple contrived exercise, we
see from (3) that

y' = ¢ (4)

so that given the value of y' at x = X, (in fact, in this simple
example, equation (4) shows us that y' can't even vary with x) is
the value that ¢ must have.

But once c = yo', equation (3) becomes
Y= ¥,'% (5)

and we see from (5) that y is no longer arbitrary once x = Xq is
specified.

For example, suppose we want to find a member of (1) which passes
through (1,4) with slope equal to 2.

From (1) we have

y' =c¢y +cy, (6)
so letting x =1, y =4, and y' = 2 in (1) and (6), we obtain
4 = cy + Cy

(7)
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2.4.5(L) continued

and the equations in (7) are incompatible.

What happened here was that the family (1) was a "pseudo - 2 para-
meter" family in the sense that it was identical to the 1-
parameter family given by (3).

With v = cx, y' = ¢ so that y' = 2 «+ ¢ = 2, so that the only mem-
ber of (3) which is eligible to be a solution of (2) is

y = 2%

but this fails on the ground that when x = 1, yv = 2 rather than
4,

Since the only eligible member of (3) has been eliminated, there
is no member of (3) which is a solution to the given problem.

Again further details are left for the supplementary notes, but
for now notice that the number of initial conditions that can be
specified at x = Xy (i.e., the values of y', y", etc. at x = xo)
depend not on the number of arbitrary constants but rather on the
number of independent arbitrary constants.

2.4.6

Using the technique of the lecture, we let

vy =e (1)
so that y' = re™™® ' (2)
and

y" = rzerx. (3)

Substituting (1), (2), and (3) into

y" + 7y' -8y =0 (4)

we obtain

8.2.,4.15
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2.4.6 continued

r2erx + 7rerx - Berx =0
or
eT* (2 + 7¢ - 8) = 0. (5)

Since e™ is never 0, equation (5) implies that

r2 + 7r - 8 =0

or
(r +8)(xr -1) = 0. (6)

From (6), we see that the only solutions of (4) which have the
form of (1) are

s e 8 and y = e&~. (7)

Note that (7) has given us the eligible members of (1) which may
satisfy (4). It still remains to be seen that y = E-Bx and y = e
are solutions of (4), but the verification is trivial. Namely,

X

(1) y=e 8 syt = —ge™8% 4 yn = 64e78%

Hence

y" + 7y’ - By = 64e °X _ 568X ga PX = g

(ii) y=e5»y' =y" =¥

Hence

y" + 7y' - 8y = e° + 7e* - 8e* = 0.

Referring to the L(y)-notation, we may let L(y) = y" + 7y' - 8y in
which case (4) becomes

L(y) = 0. (8)

S.2.4.16
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2.4.6 continued

Equation (7) says that L(e_ax) = 0 and L(ex) = 0. Hence, by
linearity
L(c a 0% 4 o ey =0 (9)
1 2
[i.e.,
Ile.e % & 0.6%) = Lle.e ™) + L(c.e¥)
1 2 1L 2
= o ia™ ) 4 o Lte®)
1 Z
= clO + 020
= 0‘]
From (9), we see that the family
-8x s
y = cle + c2e (10)
is a solution of (4).
Moreover, from (10)
— -8x %
¥ = —Bcle + cye”. ¢11)

Hence, if we require that (10) and (11) be satisfied with y = Yo
and y' = yo'* when x = X, we obtain the system

"

*Perhaps this should have been mentioned earlier but Vs is simply

a constant which denotes the value of y' when x = X - It should

not be construed to mean the derivative of Yo since the derivative

of a constant is always zero. In other words, we use yo', ¥ etc.

suggestively to denote the values of y', y", etc., at the initial

condition x = xo.

$.2.4.17
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2.4.6 continued

i (12)

which cannot be zero for any value of X

Hence, we see from (12) that there is one and only one way of
determining ¢ and c, so that y = cle-8x + czex satisfies (4) and

passes through (xo,yo) with slope yo'.

To show that no other curve can pass through (xo,yoJ with slope
yo', we invoke the "crucial theorem" of the lecture by rewriting
(4) as

y" =8y - 7y' = F(x,y.,v")

where F(x,y,z) = 8y - 7z. Hence, Fy = 8, R, = -7 and we see that

the equation has a unique solution [since F, Fy, and Fz exist and

are continuous always].

%]

347

Given
y* = 8y' ¥ 15y =8, (1)
we let y = e™ to obtain

e (x? - gr 4 15) = 0. (2)
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2.4.7 continued

Since e™ # 0, it follows from (2) that r = 3 or r = 5. Hence,
3x
¥=e

linear, we may conclude that

and y = eSx are both solutions of (1). Since (1) is

e3x 5x (3)

is a family of solutions of (1).*

From (3)
y' = 3cle3x + 502e3x. (4)
Letting x = 0, y =1, and y' = -3 in (4), we obtain
1= ¢ + C,
-3 = 3cl + 5c2
whence
3 = 301 + 3c2
-3 = 3c1 * 502
or
*Again, be careful to note that we've used linearity. For example,

consider the nonlinear equation %ﬁ ” y2 = 0 for which the vari-
1

ables are separable and we obtain the general solution y = T

(yo # 0) and y = 0 (if s ™ 0). Thus, both y = 1 } =~ and

y = :T;%#; are solutions of %ﬁ - y2 =0 (y # 0). The sum of these
‘ - 1 _ 1 1 _ _ 2x
two solutions is y = 77— + 7 - T Tk ;2 but
2
y = ——23—3 does not satisfy %Z o y2 = 0. Namely, Q1_= Zil_i_ﬁ_l
1 - % . A = wH*
2
while y2 = 3x 2 2"
(1 - x7)
S$.2.4.19
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2.4.7 continued

or

Therefore,

3x

y = 4e3% - 3%

passes through (0,1) with slope -3 and satisfies (1).

By rewriting (1) as

y" = 8y' - 15y = F(x,y,y")

(5)

where F(x,y,z) = 8z - 15y may we conclude from the crucial theorem

that (5) is the only curve with the required properties.

2.4.8(L)

a. This exercise is a learning exercise only in the sense that we
dealing with a third-order linear equation. In the lecture, we
mentioned that all the techniques worked for any n but that for
the sake of simplicity, we limited ourselves to n = 2.

In this exercise, since our coefficients are constants, we agai

try for solutions of

Ym_ Y| =0

in the form

are

n

(1)

(2)

S.2.4.20
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2.4.8(L) continued

From (2),
y' = ref¥
y" = r2erx
" = r3erx

so that with y = erx’ (1) becomes

r3erx - rerx =0
or
(r3 - r)erx = 0.

2 rx .
Since e is never zero, we conclude from (3) that

and, since

3

2
r - r =r(r

-1) =r(r + 1)(r - 1)

we conclude that

y = eox[= 11, v = ex, and y = e ¥

are solutions of (1).
Hence, again by linearity,

= e%* + & %
vy cq c,e cqe

or

_ X -X
y = ¢y tcye” + cqe

is a family of solutions of (1).

(3)

(4)
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2.4.8(L) continued

Moreover (4) implies that

Y' = czex " C3e_x (5)
and
y" = czex + c3e-x. (6)

Thus, if we want a member of (4) for which y = ¥s
y" = y," when x = x_, we see from (4), (5), and (6) that we must
be able to solve the system of equations.

r Y. = Yo.p and

-
*o o
yo =c + c,e + 038
Xq X,
| J— -
Yo = €3¢ cqe S (7)
X =%,
" o
Y, = ©3¢ + c,e
B

In (7) the unknowns are Cqr Cos and Cys and the determinant of

coefficients is

*o )

1 e e
*s “*o

0 e -e (8)
X “X

0 e (=

and expanding (8) aleng the first column (to take advantage of the

0 entries), we see that (8) is

o e @
= *o %o o %o
x, % | =e"e - (-e “& )
e e ©
=1+1
=2.r
S.2.4.22
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2.4.8(L) continued

for each x.

Hence, there is one and only one member of (4) which passes

-— L] ek L} " - "
through {xo,yo) such that when x = ooy =y, and y Yo"

Finally, by writing (1) in the form

¥y = ¥

we see that one and only one solution of (1) satisfies y = Yor
] _ L] L - n _

gt e P and y Y5 when x X,

[The general uniqueness theorem says that if

(n)

Y = F(X,¥/¥Y" "¢ oeey Y{n_l)l (9)

and if F, F_ , FY , and F all exist and are continuous in a re-
y 2 n
gion of n-space R [where F(x,yl,yz, P yn_l) is obtained from

FSyart 5 caa ay Y(n-l)) by letting Ve = y(k}} then there is one and
only one solution of (9) that passes through each point (xo,yo} in
the plane with prescribed values for y ., yo', Yo"' s ARG

(n-1) ¢ x =x .]

L:tting X - 0, 30 =1, yo' = 3, and yo“ = 5, we see from (7) that
1= c, * c, + 03*
3 =c, - cy L (10)
5 = 02 + c3 J

Adding the last two equations in (10) yields c, = 4, from which we

conclude that cy = 1. Letting c, = 4 and cy = 1l in the first

equation of (10), we obtain

l=c1+4+l
so that
¢, = -4,
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2.4.8(L) continued

Hence, the required solution, from (4), is

y = -4 + 4e* + 7%, (11)
Note

What seems to be happening is that as the order of our linear
equation increases, we can make it "behave better" (i.e., by

prescribing more derivatives) in the neighborhood of a given

point.

2.4.9(L)

In the last several exercises, we have restricted our attention to
linear equations of the form L(y) = 0.

We now wish to conclude this unit with the case L(y) = f(x) where
f(x) is not identically zero.

To simplify matters, we have elected to solve a problem in which
the constituent parts have already been handled.

. . X .
From equation (5) of Exercise 2.4.1, we have that y = e is a

particular solution of
e
L(y) = e (x" - 3x + 3)
where
p 2 n 1
L(y) = x"y" - 3xy' + 3y.
In the notation of our lecture
y. = e . (1)
In Exercise 2.4.3, we saw that
3

Y = ¢qX + c,x (2)

was the general solution of L(y) = 0.
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2.4.9(L) continued

Hence, again in the notation of our lecture, we conclude from (2)

that

_ 3
¥ = clx + c2x i (3)
Since Yy, + Yp is then the general solution of L(y) = £(x), we have

from (1) and (3) that

_ 3 b4
y = clx + c2x + e (4)

is the general solution of

xzy“ - 3xy' + 3y = ex{x2 - 3x + 3). (5)

Notice that the crucial existence theorem of the lecture is essen-
tially of the same form as in Exercise 2.4.3. That is, the "cru-
cial theorem" when applied to

y" + px)y' + gx)y = £(x) (6)

requires only that p, q, and f be defined and continuous in some
region R. Thus, if we replace f(x) by any other continuous func-
tion of x, the region R in which the general solution exists
doesn't change.

Hence, we need only show that we can determine cl-and c, so that
at any given point (xo,yo), we can find a member of (4) which
passes through (xo,yo) with a prescribed slope yo' and that (4)
really does satisfy (5) [as the theory claims].

Well, from (4),

y' = ¢, + 3c2x2 # (7)
and
y" = 602x + &%, (8)

Hence from (4), (7), and (8), we have
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2.4.9(L) continued

X +e%) - 3x(c1 + 3c x2 + e*) +

x2{6c 5

x’y" - 3xy' + 3y 2

x3 + e

+ 3(clx + 02

]

3 2 x 3 x
602x + x"e” - 3clx - 9c2x - 3xe” + 3clx +

& 3c2x3 + 3e¥

2%

= x"e - 3xex

X
+ 3e

ex(xz - 3x + 3)

I

which agrees with (5).
Again, it would have been quicker, once we have the confidence, to

use the properties of linearity directly. That is,

3 + ex)

L(c.,x + c.x L(c.,x) + L(c x3) + L(ex)*
1 2 1 2

o L(x) + c2L(x3) + L(eX) (9)

and since in this problem L(x) = L(xs) = 0 and L(ex} =
ex(x2 - 3x + 3), we conclude at once from (6) that

3465 =0+ L) = Fx? - 3x + 7).

L(clx + c,x
Finally, to show that cq and ¢, may be chosen uniquely to find a
member of (4) which passes through (xo,yo) with slope yo', we see
from (4) and (7) that we must have a unique solution of the system

*It is easy to prove inductively that if L is linear,
L(ul T - un) = L(ul) *= waar P L(un). For example, L(ul + u, +

u3) = L([u1 + u2] + u3) = L(ul + u2) A+ L(u3) = L(ul) + L(uz) +
L(u3). We have given the definition with the assumption that

n = 2 knowing that the results can be easily extended by
induction.
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2.4.9(L) continued

3 %o
Yo = ©1%, + CorXy + e
2 *o (o)
+ 3czxo + e
The key point in (10) is that since X1 Yy and yo' are given
constants, €1 and c, are still the only unknowns. Hence, the

determinant of coefficients is still

just as in Exercise 2.4.3. In other words, the determinant of

coefficients depends only on cyu; + ... + cu =y and is un-
changed when yp is added to Yy
2.4.10 (Optional)

a. Since L(y) = 0 is particularly convenient when the coefficients in

L are constant, we often try to reduce linear equations with non-

constant coefficients to ones with constant coefficients.

One very convenient type is the so called equidimensional equation

which has the form

ny(n) xn-ly(n—l}

+ c

' —
c X n-1 L CyXy + c Y 0 (1)

(k)

i.e., the coefficient of vy is a constant times xk: the equation

is called equidimensional because the power of x equals the order
of the derivative in each term.

In the special case that n = 2 and ch # 0, equation (1) takes the
form

x2y" + axy' + by = 0 (x > 0). (2)
The substitution

g=Inx (x *»0) (3)
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2.4.10 continued

yields
dz . 1
dx X (4)

so that we get a hunch, at least that the substitution (3) may
reduce (2) to constant coefficients (at least the 2axy' term has x

it dy - dz
eliminated when we replace T by %! °

Thus, the trick is to rewrite (2) in such a way that y becomes the
independent variable and z the dependent variable. For example,

dy _ dy dz

dx dz dx

or by (4),

dy _ 14

T=:E (5)
From (5)

Il

dx2 dx ‘dx dx 'x dz
2
- -1dy  1dydz
x2 dz x dz2 dx
dy
d (%) 2 2
; d ; d d d d .
L. —-%%—-= E;% so by the chain rule E;(EE) = E;% a%] or, again
by (4),
2 2
112“Lg+;e%;
dxz x2 dz % dzz X
2
=i2(d2-§1). (6)
z
x"\dz
a a®
Putting the values of a% and ——% as given by (5) and (6) into (2),
dx

we obtain
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2.4.10 continued

2
2(1fd”y _ dy 1dy -
X xz(dzz dz) - ax[x 3% + by =0

or

2
dy _ dy dy -
dzz dz +a dz +by =0

or
a’y dy
dzz + (a - 1}dz + by =0

where (7) is linear in y and has constant coefficients. We can
then solve (7) to find v as a function of z and then use (3) to
replace z by 1ln x.

(7)

b. Using a = -3 and b = 3, we see from (7) that z = 1ln x transforms

xzy“ - 3xy' +3y =0

into

a2 a

¥ - 43X+ 3y=o0.
dz z

Letting y = e'?, we see that (8) yields

T2 (x2 = 4r + 3) = 0

so that r = 1 or r = 3.

Hence, the general solution of (8) 1is

y=c a% & s e3z
1 2

and since z = 1ln x, (9) becomes

(8)

(9)

5.2.4
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2.4.10 continued

I
0
"
+
o}
]

2.4.11 (Optional)

Given

y" + p(x)y' + glx)y =0 (1)

any substitution of the form z = f(y,y') is recommended.

More explicitly, in the present exercise, we are asked to see what

happens to (1) under the substitution

g = %r_ (2)
or

y' = zy. (2")
From (2'),

y" = zy' + z'y, (3)

and replacing y' and y" in (1) by their values in (2') and (3) we
obtain

zy' + z'y + p(x)zy + gq(x)y = 0. (4)
Equation (4) is nasty in that it includes the three variables x,

y, and z and to help alleviate this situation, we divide both
sides of (4) by v (v # 0) to obtain

5.2.4.30
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2.4.11 continued

ZYY_'+z- + p(x)z + q(x) = 0 (5)

L
and since I;.= z, (5) becomes

22 + z' + pi(x)z + g(x) =0 (6)

and equation (6) is a first order differential equation involving

X and z.

In general, had we started with (6), we would have a mess (mean-

ing a rather nasty first order nonlinear equation). The point is
]

that the substitution z = %7 transforms (6) into (1). Therefore,

if we can solve (1), we can also solve (6).
Thus, reversing the steps (1) through (6), we see that the non-

linear first degree equation

z2 + z' + plx)z + g(x) =0

becomes the linear second-order equation
y" + p(x)y' + q(x)y =0

"
under the substitution z = %7'
Thus, if it happens that we can solve (1), we can also solve (6).
In this particular problem, we have rigged things a little by
picking

d 2 3
dz -3z _, -5 A0, (7)

since if we write this in the form (6), we obtain

2 - 3z 3 _
- o -_}:{—+_-2-—0 (8)
X
and (8) is (6) with p(x) = -% and qg(x) = i%. Hence, the substitu-
X

L]
tion z = %? transforms (8) into
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2.4.11 continued

-3 g+ 3,
' % Y + xz Yy = of

or, equivalently since x # 0,
2 "o _ 1 =
X"y 3xy' + 3y 0.

But we already know the general solution of

B 3
y = c)X + c X7,

From (10),

_ 2
y' = cy + 3c2x

(9)

(9) , namely,

(10)

(11)

1]
and since z = %;, we have from (10) and (11) that

(12)

If we now divide both numerator and denominator on the right side

c

of (12) by ¢, and let ¢ = Ea' we obtain
1
1 * 30x2
. B
X + cx

(13)

To check that (13) is a solution of (7), we have from (13) that

(x + cx3}[scx} - (1 + 3cx2)(1 + 3cx2)

2
(x + cx3)
_ Scx2 + 6c2x4 = ok = ch2 - 902x4
- 2
xz(l + cxz)
2.4
-3c™% s 12 (14)
xz(l -+ cxz)
8.2,4,32
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2.4.11 continued
Also from (13)

2 2.4
z2 _ 1. ¥ Gex <+ 9c2x . (15)

xz(l + ox?

Using (13), (14) and (15) in (7), we obtain

2. 4 2.4

3% -1 P31+ 3ex®) (L + 6ox? + ocxY) 3
2~ 2 2 2 2

x2 1: #+ cx2 x7(1 + cx7) xz(l + cxz) =

? 3+ 9cx?) (1+cx?) - 1- 6ex? - 9c®x? - 301+ 20x® + x?)

2
xz(l 4 cxz)
j 3+ 12cx2 & chx4 w I, = chz- 9c2x4 - 3 = chz-3c2x
- 2
xz(l + cx2)

—-302;{4 = 1

2)2'

xz(l +. OX

which completes our check.

Lest we have lost of our accomplishment, we have exhibited here an
example where a change of variables transforms a quite possibly
difficult nonlinear first-order equation into a second order
linear equation, and since a great deal is known about second-
order linear equations, we replace our unsolved problem by a sim-

pler unsolved problem.

In particular, we have seen here that any first-order equation of

the form

i 2
z' + z° + p(x)z + g(x) =0 (16)
is equivalent to

y" + p(x)y' + g(x) =0
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2.4.11 continued

L]
under the change of variable z = %?'

Of course, (16) denotes just one particular type of nonlinear
equation, and we might not be as fortunate in other types. This
is one reason that differential equations gets its "cookbook"
reputation.

From our point of view, the main aim of this exercise is to open
avenues for you to see how the solution of linear differential
equations can sometimes help us solve certain types of nonlinear
equations.
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