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Solutions
Block 2: Ordinary Differential Equations

Unit 1: The Concept of a General Solution

2.1.1(L)

At first glance, this problem may seem to be a bit beneath our
dignity. It is computationally very simple, yet it serves to
highlight the notion of what is meant by the general solution
of a differential equation.

To begin with, we see at once that

y =% 4+ ¢ (1)

implies that

= 2%, (2)

22

This tells us that every curve whose equation is given by (1)
has the property that its slope at any point (x,y) is twice the
value of the x-coordinate of the point.

In the lecture we shall tackle this same problem - but only
from the perspective of starting with (2) and deriving (1).

In essence, in the calculus of real-valued functions of a
single real variable, we started with a function, f(x,y) = 0;
and we then saw what the relationship was between x,y and the
various derivatives of y with respect to x. In differential
equations we start with the relationship between x,y, and the
various derivatives of y with respect to x; and we then try to
find out how x and y are related.

In general, the major problem is that many different functions
can satisfy the same differential equation and we must there-
fore come to grips with the problem of finding all solutions

to the given differential equation. This, in turn, gives

rise to a few sub-questions. For example, when do we know

that we have found all solutions? Intuitively, one would expect
that "the" solution to a first order differential equation (if
there is indeed a solution) should be a family of curves deter-

Sl2.1‘1
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2.1.1(L) continued

mined up to an arbitrary constant (such a family of curves is
called a l-parameter family of curves). More generally, since
each time we integrate (i.e., inverse-differentiate) we tack on
an additional constant, we should expect that the solution of
an nth order differential equation should contain n arbitrary

constants. In other words, if there is a solution to an nth

order differential equation, we expect that the solution is an n-

parameter family of curves.

The interesting point is that things are not always as simple
as our above discussion might seem to indicate. We have, for
obvious reasons, elected to begin with a problem to which there
is a "simple" solution, but as we shall see in the next few
exercises this is not always the case.

Returning to our present example, let us observe that (2)
represents a specific first order differential equation and (1)

represents a l-parameter family of curves which is a solution to

(2). [All we have done in this exercise is to start with a

"solution" and construct the corresponding differential equation.]

In Part 1 of our course we learned that any two differentiable
functions whose derivatives were identical could differ by at

most an additive constant.

Thus, in this exercise, if g is any function such that g'(x) =
2x, it follows that g(x) = x2 + c; and we see that every
solution of (2) is given by (l1). Conversely, every member of

(1) is a solution of (2).

We also see that the particular member of the family in (1) is
uniquely determined once we know a point (xo,yo} that is to be
on the curve. For example, if we want the solution of (2)

which passes through (2,1)* we go to (1) and replace x by 2 and

*In many important situations one wants a "local" solution to

the equation. That is, just as in ordinary calculus, we are
interested in what's happening 'mear'" a given point (x ,y ). We
may not care at all what's happening '"far away". As we develop

this topic we shall see how the concept of a general solution
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incorporates the fact that we are interested in "local" behaviour.
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2.1.1(L) continued

y by 1 to see if ¢ is determined. In this case, y = x2 + e

implies that 1 = 22 + c. Hence, c = -3, whereupon the desired

) 2
curve is y = x~ - 3.

To put things in different words, the only curve with the property
given in (2) and which passes through (2,1) is y = x2 - 3. More
generally, if we let {xo,yo) denote an arbitrary point in the plane
then the only member of (1) which passes through (xo,yo) must

satisfy ¥ = xo2 + ¢, whereupon

c=y =-x°. (3)

Notice that while X and Yy, are arbitrarily given numbers, once
they are chosen, the value of ¥o = x02 makes the choice of ¢ in
(3) a unique number. In particular,if this value of c¢ is intro-
duced into (1) we obtain

2 2
¥ =X ¥y = By (4)

and (4) represents the only curve which satisfies equation (2)

and passes through the point (xo,yo].

For the above reason, the family (1) is called the GENERAL
SOLUTION of equation (2). To put the concept of a general
solution in better perspective, what we really mean is the follow-
ing. Suppose that there is a (connected) region R in the xy-
plane for which a differential equation is defined [R need not
be the whole plane, although, as in this example, it may be.
For example if the equation is g% = Yy - x , we must have that
y > X, otherwise §¥ would be imaginary. Thus, R must be the
half-plane (or any subregion of it) y > x. Recall that y > x
is the portion of the plane on and above the line y = x].

Then a family of curves y is called the general solution of the

equation in R if and only if:

1. Each member of y satisfies the differential eqguation.
2. For a given point {xo,yo}eR, one and only one member of y

passes through that point.

5.2.1.3
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2.1.1(L) continued

3. No other curve which passes through (xo,yo) satisfied
differential equation.

Summarizing these three criteria in terms of equation (2):

1. The family y defined by y = {y = x°

the

+ c: ¢ is an arbitrary

constant } satisfies g% = 2x throughout the entire plane (R).

2., For any point {xo,yO]eR one and only one member of y passes

through (xo,yo). That member, as shown by (4), is y = x2

3. No curve other than y = x2 + Y = xo2

and still satisfy the given differential equation g§-= 2%,

2.1.2(L)

+ yo —xo .
can pass through (xo,yoi

The main purpose of this exercise is to show that the previous

exercise was sufficiently contrived so as to observe certain fine

points which occur when we define the concept of a general solution.

We have that our family y in this case is the set of curves
(hyperbolas)
y= o=, x#ec. (1)
Pictorially, a typical member of y is given by
Yy Y
A A
' i
I I
| i
| |
i
! I
I i
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I \x S
ra | —y S
| i 1
| i (0,3
| (c > 0) i (c < 0)
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—— (Figure 1)
S.2.1.4

A va

Gl D G Ga e




Solutions
Block 2: Ordinary Differential Equations
Unit 1l: The Concept of a General Solution

il P Ea

Il BE EE .

F3

- Pa BN P Ph D B B Eae

| -

2.1.2(L) continued

The "nastiness" of y is shown in Figure 1 by the fact that each
member of y consists of two disjoint branches, separated by the

line x = c. To emphasize our remark of the previous exercise
I

& = X

then (xo,yo) is on the upper branch of the curve if x < ¢ (since

concerning "localness", given any point (xo,yo) on y = »

then ¥ l/c - X is positive) and on the lower branch if X, > c.

If X, —= ¢, then (xo,yo) is not on y = 1/c - x.

So much for the introductory geometry concerning our l-parameter
family defined by (1). Let us now turn our attention to finding
the differential equation satisfied by (1). One technique is to
differentiate (1) directly with respect to x to obtain

dy _ 3l _ 1 2

x~ T o2 “lg=x xFc (2)
(c - x)

and replacing = by its value in (1), equation (2) becomes

QY = 5. (3)

dx

Thus, the family y defined by (1) is a l-parameter family, each

of whose members satisfies (3).

It is important to observe that (3) does not contain an arbitrary
constant. That is, from a geometric point if view, (3) describes
all curves with the property that the slope of the curve at each
point on the curve is equal to the square of the y-coordinate of
the point. What we have shown is that each member of y has this
property. We have not shown whether there are any other curves
with this property. At any rate the arbitrary constant arises

when we examine solutions, not when we look at the equation.

Now we picked this particular exercise, among other reasons,
because we know how to reverse the process and obtain (1) from
(3). Namely, as we saw in Part 1 of our course, we may separate
the variables in (3) to obtain

y_zdy = 'dik, (4)

and integrating (4) yields - y"l =x + cpor y_1= -x + ¢

5.2.1.5
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2.1.2(L) continued

(where c = -cl), or

» X # cC (5)

= Ak

so that indeed (5) agrees with (1).

There is, however, one subtlely that occurred in obtaining (4)
from (3) that is worth harping on. 1In going from (3) to (4) we
divided by y2 and since division by 0 is excluded, we may only
conclude that (3) and (4) are equivalent when y # 0. In other

words, %%
y = 0, & = y? is still well-defined but y “dy = dx is not.

y2 is equivalent to y_2dy = dx when y # 0; but when
2

]

Thus, (5) yields all the solutions of (3) as long as y # 0
[since then (3) and (4) are equivalent, and (5) yields all the

solutions of (4)]. What we must then do is look at y = 0 separa-
tely. Indeed with y = 0, g% = 0, so that y = 0 satisfies

equation (3) but y = 0 is not a member of the family y defined by
= 0 since

(1). That is, there is no constant c for which i =

the numerator of 5—%~§ is always 1.
Thus, in terms of the definition of the general solution given
in the previous exercise, (1) cannot be the general solution of
(3) since (3) possesses at least one solution (namely, y = 0)
which does not belong to (1).

1

Notice from Figure 1 the connection between y = 0 and y = —t

Namely no member of (1) contains even a single point whose y-

coordinate is 0. That is no member of (1) intersects y = 0

(the x-axis).

This is where the choice of restricting the equation to a parti-
cular region R is important., For example, suppose we choose R
so that for no point (xo,yo}eR does Xy = 0. In other words R

is a region which lies entirely above or entirely below the

X-axis.

Then what is true is that for each point (xo,yo)ER one and only
one member of (1) passes through {xo,yo}. In fact from (1) we

S5.2.1.6
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2.1.2(L) continued

see that ¢ - x = % (y # 0)
or
c=x+.]_'_.=£¥+_l (Y#O). (6)
y y
Letting x = X, and y = ¥s in (6) we see that
Xy + 1
o Pl (7)
Yo

which is a well-defined real number for each (xo,yo)eR since
for (xo,yo)ER, Yq # 0.

In summary, then, if R is any connected region which excludes
any points on the x-axis, one and only one member of (1) passes
through (xo,yo}aR. From (7) this member is

¥ = 2
Xy, t1 .
Yo
or
Y
o
y = ~ . (8)
X Y, + 1 VX

For example, letting X = 2 and Vi ™ 1l we see from (8) that

Y = 3—%x

is the only member of (1) that passes through (2,1).

What we have not yet proved (and the subtlety of this problem
will be discussed in the next exercise) is whether there can be
other solutions of (3) which pass through (2,1) but which do
not belong to the family y = E_%_i

If there are no other solutions of (3) which pass through
(xofyo)aR then (1) is the general solution of (3); otherwise

TE Hsnltit.
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2.1.2 (L) continued

From a more affirmative point of view, what we have shown for sure
in this problem is that given any point (xo,yo) in the plane, there

is at least one solution of (3) which passes through (xo,yo).
Namely, if ¥y # 0, one solution is given by (8); and if ¥s = G
then the line y = 0 is a solution.

In fact, for those of us who may have been a bit more astute, we
may have noticed that (8) covers the case ¥y = 0, even though it

was derived under the assumption that Yo # 0. Namely with Yo ™ a,

(8) becomes y = % = 0. In other words, for any point {xo,yo} in
the plane, equation (8) describes a curve which satisfies (3)
and passes through (xo,yo).

2.1.3(L)

Here we allow just about every possible subtlety to occur. We
begin by observing that for any real number c,

(x - c)2 + y2 =1 (1)

is the circle centered at (c,0) with radius 1.

In particular, the family defined by (1) is contained in the
region R = {(x,y):|y|< 1} . Pictorially,

So for any point (x,y) on any of the circles defined by (1),
=1 € 'y ¢ A,

S.2.1.8
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2.1.3(L) continued

Let us return to the geometry later, but for now let us find the
differential equation satisfied by each member of (1).

Differentiating (1) we obtain

2(x - ¢c) + 2y g% =0

or

X =gty %% =0

or

c=x+y 3 (2)

Taking the value of ¢ as determined from (2) and using it in
(1) we obtain

{x-[x+y%¥])2+y2=1

or

2,dy,2 , 2 _
Y (dx} tyr=i

or

2

y? G2+ 11 = 1. (3)
Equation (3) is of interest on at least two counts.

1. Since (%%}2 >0, (%%)2 + 1 > 1. Hence (3) cannot be
satisfied if y2 > 1 (since then yz[{g§}2 + 1] > 1). Therefore,
equation (3) does not make sense (i.e., it has no real solutions)
unless it is restricted to a region R which is contained between
the line y = 1 and y = -1.

More emphatically, there is no solution of (3) which passes
through (x_,y ) if |y0|> 1.

8.2.1.9




Solutions
Block 2: Ordinary Differential Equations
Unit 1: The Concept of a General Solution

2.1.3(L) continued

2. Equation (3) is of 2nd degree. That is, we have a quadratic
equation in %% . More explicitly we can solve (3) for g& to
obtain

§§ =+ -y

. : (4)
In terms of the convention about single valuedness, the right

side of (4) is not a (single-valued) function. Thus, (4) should
be treated as the two equations

(5)

Yy
and
§§ o e e e (R (6)
b4

where the right sides of both (5) and (6) are single-valued
functions (recall that /1 - y: means the positive root unless
otherwise specified).

3. Splitting (3), or equivalently, (4), into the two separate
equations (5) and (6) is of very great conceptual importance if
we are to understand the impact of our definition of general

solution,

For example, suppose we want to find the solutions of (3) which
pass through (0,0) and belong to (1). We solve for c by letting

X =y =0 in (1) to obtain (0 - )2 + 02 =1 or c® =1 or c = + 1.
Thus, the two circles

(x + 1)2 + y2 =1 (7)
and

x - 12 +y?=1 (8)

belong to (1), pass through (0,0), and satisfy (3). Pictorially,

Al s = .

A oE wa
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2.1.3(L) continued
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£ A

Notice, however, that only one of these curves satisfies (5)
and the other (6). For example, if y > 0 (but no greater than 1)
we see from (5) that ay 5 0 so that our curve should be rising

dx
as it passes through (0,0). S, has this property but S, doesn't.
In other words, while both S, and S, belong to (1) and satisfy

1 2
(3), only Sl satisfies (5) and only 52 satisfies (6). Thus, if

we require unique solutions we must treat higher degree equations

as unions of first degree equations. Algebraically, this is

often extremely difficult, perhaps even impossible explicitly.

4, The choice of (0,0) was not particularly a good one to illu-
strate the local property of a solution. Suppose we wanted to
find all members of (1) which passed through (l, LZ% ). We let

x = % and y = !I% in (1) to obtain

1 2 15 _
g~ el g1
or

1 2 1
(7_0} = Y%

Sl2‘1lll




Solutions
Block 2: Ordinary Differential Equations
Unit 1: The Concept of a General Solution

2.1.3(L) continued

or

or

That is,

or

Pictorially, y P
1, A5
2 4
Sy

N
7

1, _ A5

2 4
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2.1.3(L) continued

Since S, has positive slope at the given point, it is a solution

of (5};3and since S, is falling as it passes through (%, fzg ) AE
satisfies (6). Thus, S3 is the only solution if we view (S) as
the given equation, and S, is the only solution if we view (6)

as the given equation.

S, and S, also meet at (1 = ZIE ) but this may not be important
2 4 27 Z bl &

to us if all we care about is what happens "near" (%, —»I).

5. In summary, for any point (x_,y ) such that |y0] < 1 there is
one and only one member of (1) which satisfies (5); and one and
only one member of (1) which satisfies (6). More specifically,

if we let x = x0 and y = s in (1) we obtain (xo - c}2 + yoz = 1
or

Hence,

C=R ¥ CL=F," (9)
From (2)

seu wg 5 |
(xo,yo)

and comparing this with (9) yields

d
o=t To

and the ambiguous sign is determined by whether we want the curve
to be rising or falling at the given point. That is choosing
eith (5) or (6) removes the ambiguous sign from (9).

5.2.1.13
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2.1.3(L) continued

6. But now we come to still another subtle aspect not encountered
previously. Suppose we pick an arbitrary point {xo,l) on the line
y = 1. [A similar discussion applies to (xo,—l) on the line

y = -1.] 1In this case, there is no ambiguity as to whether we
view (3) as (5), since (9) shows that with .=k 1, c=x,.
In other words, (x - x0)2 + y2 = 1 is the only member of (1) which
satisfies (3) and passes through (xo,ll [and also (xo,—l}].

However the point (xo,l} lies on y = 1 and conversely every point
(c,1) on y = 1 belongs to a member of (1); namely (x - c}2 + vy =
Thus, since every point on each member of (1) satisfies (3), and
since each point on y = 1 belongs to a member of (1), it follows
that the line y = 1 is itself a solution of (3) which passes
through (xo,l). There is no way of choosing c¢ in (1) to obtain

y =1 [among other things, y = 0 is a line while (1) represents a
circle for each choice of c¢]. Thus, for any point on the line

y = 1, there are two solutions of (3) which pass through this
point. One of these can be accounted for by either solving (5)
or (6); but the other, y = 1, is a "mongrel" of sorts that sneaks
in by virtue of the fact that each of its points happens to
belong to some member of (1). The solution y = 1 is called a

singular solution. The concept of a singular solution will be

treated in more detail in the lecture as well as in the exercises

which follow the lecture.

For now, however, let's summarize the results of this exercise

pictorially.

113
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2.1.3(L) continued

Since Pl(xl,yl) has the property that ¥q 2 1, no solution of (3)
passes through Pl‘

Two members of (1) are solutions of (3) which pass through
P2(x2,y2) since —l'<y2 < 1. To construct the two solutions,swing
an arc of radius 1 centered at P, and this arc will meet the x-
axis at two points, (01,0] and (cz,o). The circles centered at
these two points with radius 1 are the required members of (1).

Sl is the solution corresponding to equation (5) (since the slope
is positive at P2L while 52 is the solution which satisfies (6).
In other words there are two solutions through P, from the
family (1) because (3) is a second degree equation. Once we
restrict our attention to either (5) or (6), there is only one
member of (1), either §, or S, which passes through P,.

There are two curves that we know of which satisfy (3) and

pass through P3(x3,1). One is the member of (1), (x - x3)2 +

Y2 = 1; and the other is the line y = 1.%*

As a final note, keep in mind that we are as yet unequiped to
determine whether there are solutions of (3) which pass through
{xo,yo), |yo| < 1, other than those described by the family
(1) and the lines y = + 1.

2.1.4(L)

In the previous three exercises we introduced the notion of a
general solution of a differential equation by beginning with a
l-parameter family of curves and then finding the differential

equation which the family satisfied.

In this exercise we shall revisit the same topic, but now from

the more conventional point of view of beginning with the first

*This should not be confused with our discussion of y = 0 and
y = 1/c -~ x of the previous exercise. There, a member of

y = 1/c - x passed through (x ’ya) if y # 0 and y = 0 passed
through (x_,y ) if y_ = 0. B8t 1o poin® (x,,y,) was satisfied
by both y = 0"and v = 1/¢ - x.

5.2,1.15
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2.1.4(L) continued

order differential equation and then finding a l-parameter family
of curves which is a solution of the equation. We shall then
discuss whether the family of solutions is the general solution
and in the cases in which it is not we shall talk about what the
family lacks.

If we proceed mechanically in the same manner by which we solved

this type of equation in Part 1 of our course, we obtain

%-;‘;- = x2y — > (1)
%1 = x%dx. (2)
Note #1:

We must now remember to check the case y = 0 later. Namely, the
validity of going from (1) to (2) hinges on the fact that y # 0
since we are not allowed to divide by 0. Thus, (2) does not
apply when y = 0. 1In other words, to be more precise, (2)
should be replaced by (2') where:

= x%ax, y #£0 (2')

<

Integrating (2') we obtain

e, (v # O (3)

1
Note #2:

A common error is to write: 1In y = % x3 + cq rather than (3).

That is, one tends to say that for u # 0,

fd_u=1nu+c
u

rather than the more accurate statement that

8.2:1.26
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2.1.4(L) continued

In many physical situations, u turns out to be positive (e.g., u
is mass or absolute temperature, etc.), in which case there is no
harm in replacing |u| by u since for u > 0, |u| = u. However,

to be on the safe side one should use (3) and not lny = 3 x> + cy-

From (3) we conclude that

eIn vyl 2 o 3%+ x (4)

and since eln Y = u for all u # 0, conclude from (4) that

|yl = expl1/3 x> + c;1 (v # 0) or
i x3 &
eF & (y # 0). (5)

lyl

Since c; is an arbitrary constant (positive, negative, or zero),

e = ¢, is an arbitrary positive constant.

Note #3:

For any real number, u, e¥> 0 so that (5) may be written as

I 3
X
ly| = c,e 3 , where c, is an arbitrary positive constant
(y # 0). (6)
Then, since |u| = v —> u = + v for any real numbers u and v,

we conclude from (6) that

1.3
y=+cye3d (y # 0). (7)

Since c, was an arbitrary positive constant, -c, is an arbitrary
negative constant. Hence, + c, denotes an arbitrary non-zero
constant. That is, we may write (7) in the form

y =ce (y # 0), where c is an arbitrary non-zero

(8)

constant.

5a2alel?
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2.1.4(L) continued

Note #4

Ironically the person who writes ln y = % %3 4 ¢, rather than (3)

usually obtains (8) much more quickly than we did, through the

fortunatastroke of luck that two conceptual errors cancel each

other. Namely, from 1ln y = % x3 +cg he concludes that
i1 .3 1.3
ZF + g c X
eln Yo 3 1 _ o le 3 :
g, =&
hence that y = e “e . His finalsgep is to say that sigce cy

is an arbitrary constant so also is e * (forgetting that e &
cannot be negative) and concludes that y = c e 1/3 x3 just as

we did in (8). Notice, however, that if y < 0, ln y is not even
real, hence 1ln y = % x3 + ¢ in terms of real numbers is a meaning-

less equation when y < 0.

Remembering that equation (8) applies only on the condition that
y # 0 (which is why we augmented each equation in our derivation
with the phrase "y # 0"), we must now look at the case y = 0
separately. We see that since y is identically zero so also
is g% . Thus, with y = 0, equation (1) reads: "0 = 0"; so we see
that y = 0 is a solution of equation (1).

L
We next observe that y = 0 can be written in the form: y = Oe
so that the case y = 0 may be included in equation (8) provided

only that we remove the restriction that c # 0.

That is, the family defined by
1,3

y = ce3 , where c is an arbitrary (real*) constant (9)

is a l-parameter family of solutions for equation (1).

*After all our talk about complex numbers in the previous

Block, it may be difficult to remember that our present discussion
usually is introduced in the calculus of real variables. Hence,
unless otherwise specified, all numbers are assumed to be real

in our treatment of Block 2.
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Block 2: Ordinary Differential Equations
Unit 1: The Concept of a General Solution

2.1.4 (L) continued

As a check on equation (9) we see that

1. .3
§x
y=ce —
1 .3
X
S
i =8
2 i
= x“(c e )

]

x2y (including the case y = 0).

b. In the language of sets we have shown that
1.3
3 X 2
{y: y=ce , ¢ arb.const.} ¢ {y: y' = x"y} ;
or stated in terms of functions (where y = f(x)) we have shown
that every function of the form:
T 3
g .
f(x) = ce where ¢ is an arbitrary constant is a solution of

the differential equation

i _ o
f'(x) = x“f(x), (10)
where (10)is obtained by replacing y by f(x) in (1).
What has not yet been done by us is to investigate whether
equation (1) [or (10)] can have solutions which are not of the

form y = f(x) = cexpl[l/3 x3].

It is at this point that we invoke the theorem (stated without
proof in the lecture), which we shall use as an axiom in our

course, that: If

E = glx,y) (11)

and if g(x,y) and gy{x,y) are defined and continuous in a

region R, then for each (xo,z JER there is one and only one

curve that satisfies (11) and passes through (x,,yo) -

& O |- 09 0O e 0h A A8 A O O .
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2.1.4(L) continued

In our present exercise the role of g(x,y), as defined in (11),
is played by xzy. That is, from (1)

5

= %’y = glx,y).

Therefore,

g(x,y) = xzy and gy(X,y} = x2.

Since xzy and x2 are continuous functions of x and y, the theorem
tells us that through each point (xo,yo) in the xy-plane there is

one and only one curve whose equation satisfies eguation (1).

c. With this in mind we choose an arbitrary point {xo,yo) in the
plane and see if there exists a value of c¢ which ?akes a member
of the family in (9) [i.e., the family y = cel/3x

(xo ;Yol .

] pass through

Note #5:

By our "axiomatic theorem" if there is a member of (9) which
passes through (xo,yo} then no other curve which satisfies (1)

can pass through (xo,yo). On the other hand, if we find a point
(xo,yo} with the property that no member of (9) passes through
it, then there must be a different curve which satisfies (1)

and passes through (xo,yo}, since every point {xo,yo), must

have a solution of (1) which passes through it. Thus, our
strategy in this part of the exercise will be try to show

that at each (xo,yo} in the plane there is a member of (9) which
passes through (xo,yo}, whereupon the theorem "blocks out" the
existence on any other solution which passes through the given

point (xo,yo).

At any rate, letting x = Xq and y = y in (9) we obtain that
1.3

3 %
Yoy = C€

so that

S.2.1,20
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Block 2: Ordinary Differential Equations
Unit 1: The Concept of a General Solution

2.1.4(L) continued
-3 &,
&= Y e . (13)

1 3
b 3
Obtaining (12) from y_ = ce? © required that we divide both
sides of the equation by

1 3
X
ej o

and since

i 3
X
e? o

can never be 0 for any real number x , the validity of (12) holds
for every choice of X-

Substituting (12) into (9) we obtain the result that

1 3 X T
_ =y Ey  T%
y = (yoe Je
or
Y3 3 1 3 1.3
{3 = a3 7Y - = x X
y = yge ° ' (ye 3%y . (13)

By our key theorem, then (13) names the only curve which passes

through (xo,yo) and satisfies (1).

Now we can say that the l-parameter family:
1 x3
3 (9)

y = ce , ¢ is an arbitrary,

is the general solution of the differential equation

d
&=y, (1)
since,

1. each member of (9) is a solution of (1);
2. for each point (xo,yo} in the plane, one and only one

member of (9) passes through this point, namely

S.2.1.21
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2.1.4(L) continued

3

1
- = X
3 "o )

y = {yoe e ; and

3. no other curve which passes through {xo,yoj can satisfy (1),
or from a different perspective, if another curve satisfies (1)
it doesn't pass through {xo,yol.

2.1 515)

Under the heading of ignorance is bliss, the present exercise
would have been early disposed of back in Part 1 of our course.

Namely, given
Y . 3y (1)

we would separate variables to obtain

2
%—y 3 ay = ax. (2)
Hence,
1
yj =x + c,
or
y = (x + c)3. (3)

To be sure, going from (1) to (2) required that y # 0, so that
the more careful among us might have recognized that

y =0 (4)

is a solution of (1), but is not a member of (3). [This should
not be confused that for each member of (3), y = 0 when x = -C.
In other words, each member of (1) meets the x-axis at (-c,0),

but y = 0 means y = 0 for all x; i.e., the x-axis.]

S.2.1.22
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2.1.5(L) continued

Pictorially,
p 4
/N
A typical member of (3)
when ¢ < 0.
(-C'O)
/ (0,c?)
¥ (Figure 1la)
N
A typical member of (3)
when c > 0.
(0,c3)
} b3
(c,0)
(Figure 1b)

Thus, no member of (3) is the x-axis (y = 0).
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2.1.5(L) continued
Moreover, if we wanted the member of (3) which passed through a
given point (xo,yo), we would let x = x, and y = ¥s in (3) to

obtain

_ 3
¥ = {xo + c)

or
P A= % 46
o (o]
or
c=34" - x. (5)
(o] o

Equation (5) shows that there is one member of (3) which passes
through (x_,y_), namely

= 3 3
y = (x + /§; = " (6)

This much is hopefully old-hat. What we learned in the lecture
is that since

2 2
33 3(323)
Y and
ay
exist and are continuous except when y = 0 (in which case
: !
3 3
.a..i-gﬁ.—) = 2y = ),

our fundamental theorem quarantees that (3) is the general solu-
tion of (1) provided that (1) is defined in a region R which
includes no points on y = 0.

What this means, for example, is suppose we want a solution of
(1) which passes through (2,1). Then from (6) we see that

y = (x + 31 - 2}3

or

S.2.1.24
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2.1.5(L) continued

y = (x=1)3 (7)
is one such solution.

Moreover, from the theorem of the lecture we know that if we
stay "sufficiently close" to (2,1) [i.e., in a neighborhood R

which doesn't touch the x-axis] then (7) is the only solution of
(1) which passes through (2,1), as long as we stay within R.

What happens if we leave R? This is where (4) becomes crucial.
Namely, vy = 0 is a solution of (1). What we may then do is take
the curve y = (x - 1)3, chop it off when it meets the x-axis at
(1,0), then "run" along the x-axis in the negative sense from
(1,0) to any point (c,0) where ¢ < 1. Then at (c,0), we pick up
the curve y = (x - c}3. Pictorially,

'
PN
y=(x-1)°3
(2,1)
= X
(c,0) (1,0)
y = (x - )’ (Figure 2)

Every curve of the type depicted in Figure 2 is a solution
of (1) and passes through (2,1). This doesn't contradict
our fundamental theorem, however, since each curve of the

type in Figure 2 contains at least a portion of y = 0.

R PN oam BN S PN A A AR A A B PE S e e B Bm e
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2.1.5(L) continued

What is true is that the infinitely many solutions of (1) which
pass through (2,1) all look the same (namely they are all y =
(x - 1)3} if the solution is restricted to a neighborhood R of
(2,1) which does not include a segment of the x-axis.

As for any point {xO,O) on the x-axis there are many solutions
of (1) that pass through {xo,ﬂ}. One of these is y = (x - xo)3.
The rest have the form

x

if o

In most real life situations we are given a point {xo,yoj and a
particular differential equation and what we seek are all
solutions of the equation "near" (xo,yo) which pass through

(xofyo) .

Summarized pictorially, let Po(xo,yo) by any point not on the
x-axis and let R be any neighborhood of Py which includes no

part of the x-axis.

b 4
AN
» L s ale i J ~
'_"l'l'll," /x
L
Fd
”
' d
/
/
/

1. Equation (1) has only one solution in R which passes through

(x. :¥.)
o'fo o .
2. Several solutions may exist but they are indistinguishable

when restricted to R.

S.2.1.26
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x & - 3y =0 (1)

we may write

22
2

" (x # 0 ) (2)

Letting f(x,y) = 3y/x we have that fy(x,y) = 3/x; and since both
3y/x and 3/x exist and are continuous except when x = 0, we may
conclude from the theorem that if R is any region of the xy-plane
which does not intersect the y-axis (i.e., x = 0); then for each
{xo,yo)gR there is one and only one curve c which passes through
(x,,y,) and satisfies (1

b. If we separate variables in (2) we obtain

d d
ST G FOF (3)
Hence,

In [x]| + ¢ = % 1n |y|
or
In |y| = 3 1In [x]| + c,

or

3
o1n [x] + ¢ c, Jln|x|

-3 1n |x| +¢c 2 - e

ly] 2 =

Hence,

ly| = ¢4 |x|3, cy > 0 (since cy = e 2y

*The condition that x # 0 is already tacitly assumed by
assuming that we are in a region R for which the general
solution exists.
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2.1.6 continued
Therefore,
y = cx3' where c = + Cys Or, C # 0 is an arbitrary constant. (4)

By observing,y = 0 is handled by letting ¢ = 0 in (4). We see
that

y = cx3, c an arbitrary constant (5)

is the general solution of equation (1) in R provided that R
includes no points on the y-axis.

In particular, for the general point {xo,yol with X, # 0, we
see from (5) that Y, = cx03, whence

€= — (6)
[and notice in (6) how glaringly it stands out that X, # 0].

That is, for (xo,yo)eR, the only solution of equation (1) which
passes through (xo,yo) is

_ Yo 3
y = —3 X (xo # 0). (7)
Letting X =, = 1 in (7) we see that the curve c¢ is defined by

v = x°. (8)

Note:

Returning to the case x = 0, let us observe that y=0 is trivially

a solution of equation (1). Thus, if we let R intersect the y-

axis, we find that (8) is not the only solution of (1) which passes

through (1,1). 1In particular, if we define the curve cy by

x° if x50
y:

0 if x <1

then c; also satisfies (1), passes through (1,1) but it is not

the same curve as c.

5.2.1.28
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2.1.6 continued

Pictorially,

\’ ke
VW o
v
"

C, passes through (1,1) and satisfies equation (1).

(1,1)

C passes through (1,1) and satisfies equation (1).

Notice, however, that in any region R which does not contain a
segment of the x-axis we cannot distinguish between c and Cq-
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2.1.7(L)

Our main purpose of introducing the concept of an envelope here is

to show one source of a singular solution to a differential

equation. Namely, if the one parameter family of curves, y = f(x,c),

possesses an envelope E, say y = g(x); then if the l-parameter

family is a solution of a first-order differential equation, so also

is the envelope, since each point on the envelope is also a point
on at least one of the members of the l-parameter family.

Before we begin to compute the envelope of a given family, let us
first indicate the plausibility of the recipe for computing the
envelope. Briefly outlined, if we assume that the family has an

envelope, we look at any point {xo,yo) that belongs to the envelope,

E. Since the equaton for E is y = g(x), we have that

Yo = 9(x) (1)
since (xo,yo} must satisfy the equation for E.

But we also know that there exists a value for c such that

Yo = £(x,,0) (2)

since the definition of envelope requires that each point on E

be a point on at least one member of the l-parameter family.

Notice that we may look at (2) as a function of c. That is, for
a fixed {xo,yo) on E, we may replace x by X5 and y by Y in each
member of the l-parameter family. For example, if the l-parameter
family is given by y = cx - cz, then if we replace x and y by X
and Y, we obtain

= - &t (3)
Y, = exX, c
which is an implicit function of c. Moreover, if we differentiate
(3) with respect to c, remembering that X and ¥y, are constants,

we obtain

0 = X, - 2C.

$.2.1.30
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2.1.7 (L) continued

As illustrated in our parenthetical remark, we may differentiate
(2) with respect to ¢ [and this is why we assume that f(x,c) is
differentiable. That is, the requirement of differentiability is
not necessary to talk about the envelope of a family, but the
technique to be used for finding the envelope will use the
differentiability property] to obtain

0 = £'(x_,c) (4)
where in (4) the differentiation is taken with respect to c.

Of course, we do not know the point {xo,yo} explicitly as yet
since we are only assuming that there is an envelope (so even

if the envelope does exist we do not know its equation - in fact
that is what we are trying to find in this exercise) and that
{xo,yo) named an arbitrary point of the envelope. Thus, X

and y, are actually "unknowns" and are better written as x and
Y-

If we now revisit equations (2) and (4) in this light, we see that
since (x,y) must satisfy both (2) and (4), if the envelope exists,
it must be that the equation of the envelope is obtained by

solving the following pair of equations simultaneously:

y = f(x,c) and 0 = £_(x,c). (5)

Note #1:

Since x is not a constant we must replace f'(xo,c) by fc(x,c).

Note #2:

Notice that equation (5) makes no reference to g. This is as it
should be,since it is f that is explicitly given,while g is used
only to refer to the envelope, assuming in the first place that
such an envelope exists.

Note #3:
Observe that (5) only tells us that if the envelope E exists it
must satisfy the conditions stated in (5). It does not say that

if we solve (5) by eliminating and finding y as a function of x

8§432:1:31
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2.1.7(L) continued
that the resulting curve is the envelope of the family y = £(x,c).
All we are saying is that if the envelope exists, it is defined by

(5).

At any rate, with the hope that (5) now seems more than just a

memorizable formula, we turn our attention to the exercise.

Since y = cx - c2, we have, using the notation of (5), that

f(x,c) = cx - cz. (6)
Hence,
fc{x,c) = x - 2c. (7)

Using (6) and (7) in (5), we see that if there is an envelope E,
it is defined by

y cxX = cz’
0 =x - 2¢

(8)
From the second equation in (8) we see that ¢ = x/2, and replacing
¢ by x/2 in the first equation [thus eliminating c from (8)] we
obtain

y=3% & - &?

or

Y=-IX. (9)
Notice that the Clairaut equation used in the lecture had

y = ¢cx - cz as a l-parameter solution while (9) shows that the
singular solution y = 1/4x2 is indeed the envelope of the family.
Let us point out first that if the l-parameter family is in the

more implicit form f(x,y,c) = 0, then (5) is replaced by the
system

S.2.1.32
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2.1.7(L) continued

-

f(er;C) =0 (5')
fc(X:Y.C) =0

With this in mind, the equation (x - c)2 + y2 = 1 may be written in
the form

x-a2+y2-1=0 (10)

whereupon in the language of (5'),

£(x,y,¢) = (x - c)% + g% = 1. (11)
Hence,
fc{errc) = = 2(x - C),

so that equating fc(x,y,c) to zero yields -2(x - ¢c) = 0 or
X = c. (12)

By virtue of (12), we may substitute x for c in (10) to obtain

02 + y2 - 1=0 or y2 =1 or

y = + 1. (13)

Deriving (13)-from (10) and (12) is equivalent to solving (5').
We thus see that the lines y = 1 and y = -1 are envelopes to
the family (x - c)2 + y2 = 1. This accounts for the fact that
y = + 1 was a singular solution of the differential equation
satisfied by (x - c)2 + y2 = 1 in our discussion of Exercise

2103
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2.1.7(L) continued

Pictorially,
y
AN
(c,1)
(c,0) X
k j (x-c)? + y
y =-1 (c,-1)
2.1.8(optional)
a. Differentiating
(x - c}2 + y2 = 4c + 4 (1)
with respect to x yields
2(x - o) + 2y 3L = 0.
Hence,
d
X = ed Yy 3% =0,
or
s dy (2)
c=x+y 3% -
Replacing c in (1) by its value in (2) yields,
2 d
x - (x+y 312 +y? =ax+yFhH + 4,
or
@2 4 y? < ax o+ ay Fo+ o4 (3)
S.2.1.34
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2.1.8 continued

We rewrite (3) so as to emphasize that it is a quadratic equation in

B S e e

= £

- S =a L

[ .

[ -

E fh Eh 0 & Em e

dy/dx. Namely,

v (@2 - ay@) + % - ax - 1) = 0. (4)
Applying the quadratic formula to (4), we obtain
dy _ 4y + /iﬁyz - 4y2(y2 - 4x - 4)
dx 2 A
2y
or
dy _ 4y + 2y /4 - (y> - 4x - 4)
dx P 2
y

or

————
d 2 + /% - + 4x
=== Y e ly #0). (5)

Y

Equation (5), of course, is equivalent to the two first order,
first degree equations:
dy _ 2 + V8 - y= + 4x
and

——
dy _ 2 - /8 - y° + 4x
== i ; (y #0). (7)
To apply the fundamental theorem, we let

2
¥
so that (6) becomes
d
3= = £(x,y).*
*Analogous results will hold, of course, if we let f(x,y) =
2 - V8 - y4 + 4x/y and use equation (7).
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2.1.8 continued

Since f(x,y) will not be real unless 8 - y2 + 4x > 0, we see that

we must first restrict our region R to obey

8 - y° + 4x > 0, for all (x,y)eR. (9)
Equation (9) may be written in the somewhat more suggestive form

y2 < 4x + 8, (10)

from which we conclude that R is within the parabola y2 = 4x + 8,
including the parabola itself.

While this restriction of R as above makes f(x,y) real and
continuous, the theorem requires that fy(x,y] as well, be real
and continuous. Now from (8),

1
yl %‘(8 = y2 + 4x) i(-Zy)] - (2 + /8 - y2 + 4x)
f (x,y) = 5
Y
Yy
—
o V8 = y" ¥ g = (2 % /8 = y2 + 4x)
y2
= ‘Y2 ~ 2 {8~y + 4x -(8 - y2 + 4x)' (11)

v2 /8 - y2 + 4x
and since y2 = 4x + 8 makes the denominator of (1l) vanish, we
must make the additional restriction that y2 # 4x + 8 so that
fy(x,y) will be real and continuous.

Combining this with (10) we see that the largest region R in

which the general solution exists is y2< 4x + 8, y # 0; which
2

defines R to be the interior of the parabola y~ = 4x + 8.

S.2.1.36
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2.1.8 continued

Pictorially,

~
/"<

No solutions here
since, if

y“>4x + 8, . // /
dy/dx is / /

not real.

(_230} R

‘\
~
»

For each point {xo,yo) in R there is one and only one solution
of (6) which passes through (xo,yol.*

c. Since (3,4)eR,we expect that ¢ will be determined once we let
x=3andy =4 in (1). This yields (3 - c)2 + 4% = 4c + 4 or

9 - 6c+c2+ 16 =4c + 4 or c® - 10c + 21 = 0, or

(c = 3)(c - 7) = 0. (12)
From (12) we see that either ¢ = 3 or ¢ = 7.

With ¢ = 3, equation (1) becomes

(x = 3)% & g2 = 1§, (13)
while with ¢ = 7, equation (1) becomes

tx = 7)% + ¢* = 32. (14)

*Similarly one and only one solution of (7) passes through

(x ,vy ). Since these two solutions need not be the same we see
that for a unique solution of (3) we must restrict our attention
to either (6) or (7) but not both.
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2.1.8 continued

Both (13) and (14) represent circles which pass through (3,4).
The slope of (13) at (3,4) is

2(x—3)+2y‘—ii-|

= 0
dx (3,4)
or
dy R = 0.
ax: (3.4) Y (3,4)

This agrees with the value of

%

(3,4)

as given by (7). On the other hand the slope of (14) at (3,4)
is given by

d
2(x - 7) + 2y X | =0
dx (3,4)
so that
dy | e, A R, I =1
= 13,4 Y (3,4)

which agrees with the value of

o7
»

13,4)

as given by (6).

In summary, then, the circle (14) is the only solution of (6)
which passes through (3,4); while the circle (13) is the only
solution of (7) which passes through (3,4). Since the only solu-
tioms of (3) are solutions of either (6) or (7), we have that

(13) and (14) are the only solutions of (3) which pass through
(3,4). The ambiguity vanishes once we agree to replace equation

5.2.1.38
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2.1.8 continued
(5) by the two separate equations (6) and (7).

Pictorially,

(x = 3)%+ y°= 16 (3,4)

satisfies (7)

N

(x = 1)+ g% = 32

“ satisfies (6)

d. We rewrite (1) as

x-c)?+y?2-4tc-4=0 (15)

and let

£(x,y,c) = (x - C)2 + y2 - 4c - 4. (16)

Then

£, (x,y,c) = -2 (x - c) - 4. (17)

Using (16) and (17) in the system

f(x,y,c) =0 }

fC(x,y,c) =0

yields

fx = 0% % 9® = B A w0 (18)
8.2,1.39
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2,.1.8 continued

and

0. (19)

I

-2(x - ¢c) - 4

From (19), x - ¢ = -2 or ¢ = x¥x + 2, whereupon (18) becomes

4 + yz - 4(x + 2) -4 =0 or

y2 = 4(x + 2) = 4x + 8. (19)

Thus, y2 = 4(x + 2) must also satisfy (3) since it is the envelope
of a family of solutions of (3). As a check, (19) yields

2y

ke

or
d
y =2
whereupon (3) becomes
4+ y% =
y = 4x + 8 + 4

or

y2 = 4x + 8
which checks with (19).

Again, pictorially, we have drawn the members of (1) with
c=20,0,1,2,3,4,5,6, and 7 to obtain

S.2.1.40
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2.1.8 continued

Y.

N
At each —'——)O
point(x ,
outside YO} -7 L
y2= 4x + 8,
equation (3)
has no
solutions.

~

\
)

L) \

QN

\
L
~
A Y
N
~
~
-
~
~
S
~
-

At each paint

on y2= 4x + 8,
there are two
solutions of

(3) which pass
through (x _,y ).
One of these ©
belongs to (1)
[since in this case
(6) and (7) are the
same curve because
8 - y2 + 4x = 0];
and the other is

y2 = 4x + 8, which
is called a singular
solution.

. At each point

(X0,Yo) ,» inside

y< = 4x + 8, equation
(3) is satisfied by
two members of (1).
One satisfies (1) in
the form of (6) and
the other in the form
of (7). These are
the only two solutions
of (3) which pass
through (xo,yol.
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2.1.9 (optional)

Given the Clairaut equation

_ . d dy, 4
y =x gL~ 750 (1)

|

we know from the lecture that we may replace dy/dx by ¢ in (1) to
obtain

y = cx - % c4 (2)
which is a l-parameter family of solutions of (1).
. _ 1 4
Letting f(x,c) = cx - 7 C 1 we see that
_ 3
fc(x,c) =x - c”. (3)
Hence, using (2) and (3) in the system

y = f(x,c)
fc(x,c) =0

we obtain

and ) (4)

1
The bottom equation in (4) indicates that c = xi, and replacing c
1/3 in the top equation of (4) [i.e., in (2)], we obtain

1 1
(xg}x - %—(xgl 4
4 4

=x§-—%‘-x§

by x

I

¥

so that

Wl

3
y=gzg%x (5)

S.2.1.42
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2.1.9 continued

is the envelope of (2).%*

should also be a solution of (1).

To check this we see from (5) that

Al
dy _ 3
== x
whereupon
- 4
dy _ ldy,4 _ 3 _1 3
Xgg~ gy —F¥ g%
4
—. 3 .3
=y [by (5)].

1. y=3/4x3 =343/ *%, > 0 for all x. Hence, y = 3/4x"/3

never goes below the x-axis.

Il

2. ayrax = x3 =3 & .

Hence, dy/dx and x have the same sign for each x. Consequently,
y = 3/¢1x4/3 rises when x > 0 and falls when x < 0.

*Actually, all we have shown is that if (2) has an envelope, it is
given by (5). Technically speaking, we must still check that (5)
is the envelope and this is laborious. However in part (e) we
prove indirectly that (5) is the envelope of (2) since it satisfies
the same differential equation as each member of (2); and in part
(d) we show directly that (5) is the envelope of (2).
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2.1.9 continued

2
2 - 2
< g—%—= %x T —1_ ., X # 0, so d is never negative.
dx 3 (3/}—':-}2 dx
3 _4/3 " "
Hence, y = 7 X always "holds water". Therefore,
3
3 .3
¥ = qL =
These tangent lines
< have the form
4
y = CX - %c i
as will be discussed
below.
Since dy/dx = xl/3, the slope of y = 3/-‘1}:'4/3 at (xo,yo) is given
4
by x01/3. Hence, the equation of the line tangent to y = 3/4x /3
at (xo,yo) is
1
Y - ¥, 3
=% = %%
o
or
1 4
3 3
Y =¥ T % X7 %
or
1 4
y = xoik - xo3+ s (6)

4/3
and since for (xo,yo) on y = 3/4x4/3, Yos = 3/4xo / , (6) becomes

5.2.1.44
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2.1.9 continued

| =
Wl

=x3x—%{x0) ! (7)

Then, since x_1is fixed, so also is xol/B. Therefore, letting

c = xol/3 in (7) we obtain y = cx - 1/4c4 which is certainly a
member of (2).

Conversely, the fact that c = xol/3[from (4)] implies that X = 03,
whereupon it is easier seen that y = cx - 1/4c4 is tangent to

y = 3/4::4/3 at {c3, 3/404): thus establishing that (5) is the

envelope of (2).

In particular,

1. Equation (1) has at least* one solution that passes through
(xo,yo) if (xo,yo} lies below y = 3/4x4/3. Namely there is a
member of (2) that does the job.

2. Equation (2) has at least two solutions that pass through

473 4/3

{xo,yo) if (xo,yo} is on y = 3/4x Namely y = 3/4x ”

itself, as well as a member of (2).

Here we present a general attack for solving the general
Clairaut equation. The attack works for all such equations
but our specific illustration is restricted to the equation in
the present exercise. The key idea is to differentiate the
equation with respect to x, and for the sake of notational

convenience to let u = dy/dx. Thus, from

*The fundamental theorem of the lecture requires that our
equation has the form dy/dx = f(x,y). Our present equation

is of the 4th degree and such equations are difficult to write
in this form (and even worse, if the degree exceeds 4, there

is no guarantee that the equation can be written in the
required form). This uniqueness is harder to come by, but this
is discussed in the next part of this exercise.
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2.1.9 continued

we obtain

y=xu-21u (8)
and differentiating (8) with respect to x yields:

1 4

dy _d d
a%--a;(xu)+d—x(-zu)
or

dy _ _ du 3 du

Then, since u = dy/dx, (9) becomes

u=xg§+u-u3g%

or
0= e = B0) g%. (10)

From (10) it follows that either

du _

b el (11)
or

X - u3 = 0, (12)

If (11) holds, u = ¢ and since u = dy/dx, we conclude that

dy _
e =c

yields a solution of (1); and a trivial check verifies that
this is indeed correct.

1/3 and replacing dy/dx

If (12) holds, we have that dy/dx = u = x y,

by x1/3 in (1) yields y = x(x*/3) - 1743 or y = 3/4 x
which agrees with our earlier-found envelope of the family given

¢Ea L 1
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Solutions
Block 2: Ordinary Differential Equations
Unit 1l: The Concept of a General Solution

il S Bl P s

s F3 3 M

H Ba &l

My N S em Bl e

M

| B |

2.1.9 continued

by (2).

Since (11) and (12) are the only possible solutions of
y=x gk - gad

we see that every solution of (1) comes from (2) and (5). 1In
other words;

1. No solution of (1) passes through {xo,yo) 3 (xo,yo} is

above y = 3/4x4/3.

2, There are exactly* two solutions of (1) which pass through

; 3 4/3
(Xo,yo} if (xo,yo) is on y = 3/4x / .

3. There is one solution of (1) if (x_,y ) is below
4/3 o'fo
y = 3/4x 5

Since we are not always able to solve for dy/dx explicitly, the
safest way to state the result is:

L. IE (xo,yo] is above y = 3/4x4/3,equation (1) has no solutions
which pass through {xo,yo).

; 4/3 ; ;
2, If (xo,yo) is below y = 3/4x , every solution of (1) which
passes through {xo,yo) belongs to the l-parameter family defined
by (2).

. IE (xo,yo) is on y = 3/4x4/3 then there is in addition to
any members of (2) which pass through {xo,yo), the solution
y = 3/4x%/3,

*Here we are assuming that we have solved (1) for dy/dx and are
restricting our answer to one such factor (just as we did in
the previous exercise).

S.2.1.47




N A P N S G S e S EE G P AE fm e e A e e

Solutions
Block 2: Ordinary Differential Equations

Unit 2: Special Types of First Order Equations

2.2.1(L)

2 2

(2xy + x3)dx + (x2 + y2 + 1)dy = 0

has the form Mdx + Ndy = 0 with

M = 2xy + x3 and N = x2 + yz s L

From (2) it follows that MY = 22X = Nx so that (1) is exact.

Hence, there exists f(x,y) such that

df = (2xy + x3)dx + {x2 + y2 + 1)dy

and since

df = fdx + fydy

we may equate (3) and (4) to conclude that

£f_ = 2xy + x3

£ = x° + y2 + 1.

From (5) we see that

fix,y) = xzy + % x4 + gly).,

whence
2 '
fy(x,y) = x" + g'l(y).

Equating fy in (6) to its value in (7) yields X & g'ly) =

<2 + Y2 + 1 or g'(y) = y2 + 1. Hence,

_ %3
q(y]~§y +Y+Cl.

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)
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2.2.1(L) continued

Replacing g(y) in (7) by its value in (9), we conclude that

B

2 1 1: 3
fix,y) = Xy + IX +3Y +y+cy. (10)
Moreover, since (1) and (3) together imply that df = 0; or
£ix,y) = c,, we see from (10) that
2
x°y + % 2+ % y3 +y+oc =c, (11)

is a solution of (l1). Moreover, since both cy and c, are
arbitrary constants we may "amalgamate" them and thus write (11)
as

x%y + % x? + % vy +y = cy (where c; = ¢, - c,). (12)

To clear (12) of fractions, we may multiply both sides by
twelve to obtain

12x2y + 3x4 + 4y3 + 12y = ¢ (where c = 1203). (13)

To find the member (s) of (13) which pass through the point
(xo,yo) we replace x by x, and y by yg in (13) to obtain

4

2 3
12xo Y ¥ 3xo % 4yo & 12yO = c (14)

whence we conclude that

2 4 3 ~ 3 4 3
12x%y + 3x7 + 4y + 12y = 12x "y + 3x_~ + 4y " + 12y (15)

is the only member of (13) which passes through {xo,yo).
Moreover, since (xo,yo) could denote any point in the plane and
since (15) is uniquely determined and well-defined for each
choice of X and Y, We may conclude from (15) that there is
one and only one member of (13) which passes through a given
point (xo,yo}; and this member is defined by (15).

Up to this point, our discussion has been a review of exact
differentials which we did earlier in our course. To tie in

the concept of general solution as discussed in the previous

5.2.2.2
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2.2.1(L) continued

section, we observe that (1) may be written equivalently as

dy _ _ (2xy + x°) (16)
dx x2 - y2 + 1

where the equivalence of (1) and (16) hinges on the fact that

x2 + y2+ 1l is never 0%,

Applying the theorem of Lecture 7.010 to (16) with

3
Elx,y) = - ZXL +X)
x“ 4+ vy~ + 1

we see that since fy(x,y) exists and is continuous (since £

is the quotient of two continuously differentiable functions
whose denominator never vanishes) in the entire plane, there
is one and only one solution of (16) [or, equivalently, of (1)]
which passes through (xo,yo).

Since (15) is such a solution, it is the only one and we
therefore conclude that (13) is the general solution of (1).

As a final note, let us observe that in any region R where M/N
and 3 (-M/N) /3y exist and are continuous, the equation

-

has a general solution. However, (17) and the equation Mdx +
Ndy = 0 are not equivalent if the region R includes points for
which N(x,y) = 0. In such a case, once we solve (17) we must
tackle separately those special cases for which N(x,y) = 0.

*In the more general case, when we re-write Mdx + Ndy = 0 in
the form dy/dx = -M/N, we must be prepared to expect singular
points wherever N(x,y) = 0.

S.242.3
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2.2.2(L)

A very special case of a first order exact differential equation
is the equation

f(x)dx + g(y)dy = 0 (1)

in which the variables are already separated. Trivially (1) is
exact since with M = f(x) and N = g(y) we have

M o=2af(X) _ 4 _239y) _ g
b4 ay ax b

Indeed when (1) holds, a solution is F(x) + G(y) = c where
F'(x) = f(x) and G' (y) gl(y).

A more sophisticated version of (1) is seen in
2 2
(1 + y¥)dx + (1 + x%) dy = 0. (2)

Namely,as (2) now stands, it is not exact, since

2

3 (1l + y7) _ 2y
oy
and
2
3 (1l + x°) - Dt
ax

so that MY £ Nx'
In particular, then, the variables in (2) are not separated.

However, the variable in (2) are separable. That is, there is
an equivalent way of writing (2) in which the variables are
separated. Namely, we multiply both sides of (2) by

1
(1 + x2) (1 + y2)

to obtain

5.2.2.4
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2.2.2(L) continued

dx dx
+ = 0. (3)*
14 %0 L+
Note:

In the language used in the text as well as in the lecture, the
fact that multiplying both sides of (2) by 1/(1 + x2)(l + y2)
yielded an equivalent exact differential equation (namely (3)),
means that 1/(1 + xz)(l + yz) is called an integrating factor of
(2).

We may now integrate (3) by sight to obtain
arc tan x + arc tan y = c;. (4)

Note:

A knowledge of various trigonometric identities allows us to
re-write (4) more "algebraically" if we so desire. Namely,
letting tan u = x and tan v = y (i.e., u = arc tan x and

v = arc tan y) we have:

tan u + tan v (5)

tan(u + v) = 1l - tan u tan v

but from (4) u + v = ¢ Hence, (5) implies

1*

tan c =H_.Y_

1 1 - xy
or letting tan c, = ¢, we obtain
X +y=c(l - xy) (6)

which is equivalent to (4).

*In general, the process of rewriting f(y)dx + g(x)dy = 0 in the
form dx/g(x) + dy/f(y) = 0 does not yield an identity since those
points at which either g(x) = 0 or f(y) = 0 must be investigated
separately. We have avoided this problem in our use of 1 + x2 and
L '+ y2 since neither of these two expressions can ever be zero.
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2.2.2(L) continued

The fact that (4) [or (6)] is the general solution of (2) follows
from the fundamental theorem when we write (2) in the form

f_lzz_(l_+ﬁi
= (1 + x2)

2.2.3(L)

If the first order equation can be written in the special form

dy _ g(¥

[i.e., dy/dx is a function of both x and y but the variables
occur only in the form y/x; so that we may view f as a function
of the single variable v where v = y/x]

it seems suggestive* to let v = y/x in (1). If we do this then
y = xv, whereupon dy/dx = x dv/dx + v, and (1) becomes

xg—‘;+v=f(vj. (2)

Equation (2) happens to have the variables separable - a solution
which we can already handle! 1In particular, from (2) we obtain
x dv + v dx = f(v)dx

or

x dv = [f(v) - wv]dx. (3)

Then, provided x # 0 and f(v) - v # 0, (3) is equivalent to

*¥Much of the technique for solving differential equations involves
trying certain substitutions - some fairly obvious, others rather
sophisticated - in the hope of replacing the given equation by

an equivalent equation which happens to be easier for us to
handle.

S.2.2.6
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2.2.3(L) continued

dv dx *

tWv) - v T x (4)

and in (4) the variables are separated.

We then integrate (4) and find v in terms of x. Once this is
done we need only replace v by y/x to obtain the final result.

It should be noted that there is no need for memorizing (4)

I

since in a problem of type (1) the substitution v = y/x (or y
xv) leads us to (4) directly.

Thus, in the present exercise, with

g

2
= L
1+ L4 ﬁg (5)
we let v = y/x. Hence , y =vx and therefore

dy = v + X dv
dx

dx

so that (5) becomes

v + X av _ 1l + v+ v2
dx
or
dv _ 2
Xa—l'l'vo

Therefore,

dv dx

= —= (x # 0),
1+ v2 x
so that
arc tan v = 1n|x| + ¢ (6)
*We must remember, however, that if x = 0 or f(v) - v = 0, (3)

is still defined but (4) isn't. Hence, these special cases,
as usual, must be treated separately.

S.2.2.7
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2.2.3(L) continued
and since v = y/x, (6) may be written as

arc tan % = In|x|+ c. (7)

In particular, if we let x y = 1 in (7) we obtain

arc tan 1 =1n 1 + ¢

. S
Hence, with this value of c, (7) becomes
' L]
arc tan % 1n|x|+ T (8)

and if we now take into account that R is the half-plane x > 0,
(8) becomes

' I LS
arc tan < in x + 7 -

2.2.4 (optional)

a. Here we have an equation which almost has the form dy/dx = f (y/x)
but it is spoiled only by the fact that cy and c, do not have
to be zero. The technique here is to try for a change of
variables in the form
y=yl+k
Geometrically, this is equivalent to translating our coordinate
system for (0,0) to (h,k). Pictorially,

5.2.2.8

¢t 3 % €3 g ¥ a §Ea

€E3 3 ™

€3 £33 &2




Solutions
Block 2: Ordinary Differential Equations
Unit 2: Special Types of First Order Equations

S B

F3

-

F3y M

| . |

I l A PN Pa P D e

| S B S |

2.2.4 continued

v Ao

The method fails if alb2 - a2b1 =0 (i.e., if the lines are
parallel) but in that case, letting u = a;x + b;y works well
for us (see part (c)).

At any rate, replacing x and y in

ay _ alx 4+ bly R cl

(2)
dx asx + b2y +cy

by then values in (1), we obtain

d(yl + k) al(xl +°h) + bl{yl + k) + cy
d(x; + h) = ay(x; + h) + by(y; + k) + c,

or

dyl _ a;x; + blyl + (alh + blk + cl) (3)
dxl asxy + byy; + (ajh + bk + ¢,)

Looking at (3) we see that if we choose h and k such that

ajh + bk + ¢ = o} (4)
a2h + b2k +c, = 0
then, equation (3) has the effect of eliminating cq and c,

from equation (2).

8.2.2,9
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2.2.4 continued

In other words, if alb2 - a,by # 0, we may solve (4) uniquely
for h and k to obtain

~ blc2 - bzcl
b= a.b, - a,b (5)
S i 2=1

~ aycy - a;c,
k=35, -ab, (6
172 271

With h and k as given by (5) and (6), equation (3) becomes
dy, a x; + by,

= . (7)
dxl ale + bzyl

Dividing numerator and denominator of (7) by x,, we obtain

2,
dyl ~ a, + bl Xy
dx, ~

1 i
a2 * bz (EI)

¥

Equation (8) is then solved by letting v = yl/x1: after which we
replace Xq and Y1 by x - h and y - k where h and k are as given
in (5) and (6).

b. Given
dy _ 10 - 2x + 2y 9
il s ol (9)
we first observe the right side of (9) is continuously differen-
tiable except when 3x - y - 9 = 0 (or in more familiar form,
y = 3x - 9). 1In other words (9) has no solution on the line
y = 3x - 9 but in any region R,which excludes this line,it has
a unique general solution.
In particular using the notation in (a) we have

5.2.2.10
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2.2.4 continued

I

-2, bl
3 b2 = -1, c,

= 2L c, = 10
-9

R
a5

so that from (5) and (6),

byc, = by
R = e —ab
APy = BgPy
_ 2(=9) - (-1) (10)
(-2) (-1) - 3(2)
=2 (5")
and
k _ azc - Ellcz
ab = u.b,
a;b, - a;b;

3(10) - (-2)(-9)
(=2) (-1) - 3(2)

= -3. (6')

Thus, (7) becomes

Y1
d - P, F 2 -2+ 2&)
1 4 R 1 (10)
dx, 3%, - ¥4 s (Zi}
*1
and letting v = yl/xl, or y; = vXy, (10) becomes
dv _ - 2 + 2v
v + xl a§1 R T
or
2 dv. _ - 2 + 2v _
3 a;l T T3 - v
_— 2+ 2v - 3v + v2
- 3 -v
2
VvV -v-2 _ (v=-2)(v + 1)
3 - v - 3 - v .
S5.2.2.11
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Block 2: Ordinary Differential Equations
Unit 2: Special Types of First Order Equations

2.2.4 continued

Hence,

dx
(3 -v) dv _ 71
-2+ - x (11)

Applying partial fractions to 3 - v/(v - 2)(v + 1), we obtain

(12)

A + B _ 3 -v
v - 2 v+ 1 T (v-2)(v+1)

so that with v # 2

B(v - 2) _ 3 -vw
& % v + 1 T v + 1

and letting v + 2, we obtain
=S
A=3x. (13)

Similarly if v # -1, (12) may be written as

and letting v + -1,

_ 4
B == (14)

Combining (13) and (14) with (12) we have

1(1 ) - 4 _ 3 -v
3 ‘v - 2 v+ 1) (v-2)(v+1) *

so that (l1l1) becomes

1 dv_4fdv_dx1+c
3Jv-2 3J)v+1 J x 1

or

4
% In |[v-2| -31n |v + 1] = ln|x1| + 1n c; (c; > 0)

or

S5.2.2.12
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Solutions
Block 2: Ordinary Differential Equations
Unit 2: Special Types of First Order Equations

2.2.4 continued

1 4
In [v-2[ 2-1n|v+1] 3=1nc |x]
or
1
v - 2 3
1n = 1n c; |x;]
|v + 1] 3
or
3
v = 2
=c; x| s g >0
lv+ 1|3
or

|V - 2] 3 3 3
B cl lel ' Cl > 0

v + 1|4

and if we remove the absolute value signs, we have

_!—:_E_T =c xl3, where c = + cla. (15)
(v + 1)
Remembering that v = yl/xl, (15) becomes
Yy
(=~ 2)
1 - xS
Y 1
=+ 1
1
or
Y1 — 2%
[ =5—1N
1 = @ 3
4 1
(yl + xl)
xl4
or
¥y ~ 2%y x14 3
=== 11 7l = ¢ x4
1 (yl + le
or
Se2.2,13
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Block 2: Ordinary Differential Equations
Unit 2: Special Types of First Order Equations

2.2.4 continued

4
Yy - 2xl = c(xl + yl) . X e ¥q £ 0., (16)

Finally recalling that x = x; + hand y = y; + k and using the
fact that from (5') and (6'), h
becomes

2 and k = -3, equation (16)

[y + 3 - 2(x-2)] =c[(x~-2) + (y + 3)1%
or

y -2x+7 =c(x +y + l)4

While the computation is itself somewhat involved, notice that
our main message is that we are trying to show how we modify
existing recipes to find new recipes for solving problems which
are different from the usual ones. In other words, much of the
idea behind solving differential equations hinges on the ability
(be it logical or hit-and-miss) of reducing unsolved equations
to equivalent, more familiar equations which we have already
solved.

Recognizing that 2(2x + 3y) = 4x + 6y, we let u = 2x + 3y. 1In

this way
(2x + 3y + 4)dx - (4x + 6y + 1)dy = 0 (17)
becomes
(u + 4)dx - (2u + 1)dy = 0 (18)

and since u = 2x + 3y, du = 2dx + 3dy

or

o 0= 587

so that (18) becomes

(du - 3dy)

(u + 4) (Zu + 1)dy = 0

52,214
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2.2.4 continued

or

(u + 4) (du - 3dy) - 2(2u + 1)dy = 0

or

udu + 4du - 3udy - 12dy - 4udy - 2dy = 0

or

(u + 4)du - (7u + 14)dy = 0

or

1 u+ 4
dy = 7 (E—:~§]dy (u # -2)
or

dy = %(1 + u—-f—f )du.

Hence,
=1 (u+2 In|u + 2|) + ¢
1

and since u = 2x + 3y, we have

y=7(@x+3y+21In|2x+3y+2]) +c

f &
or
7y = 2x + 3y + 21n|2x + 3y + 2|+ 7¢y
or
4y = 2x + 2 1n|2x + 3y + 2 |+ ¢,
or
In|2x + 3y + 2| =2y - x + C (c = - % cy) (19)
5.2:2.15
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Block 2: Ordinary Differential Equations
Unit 2: Special Types of First Order Equations

2.2.4 continued

d. Here we simply wish to reinforce how particular solutions are
obtained from the general solution. With x = -2 and y = 1,
equation (19) becomes
In|-4 + 3 + 2| =2 - (-2) + ¢
or
In 1 =c + 4.
Hence, ¢ = -4 so that (19) becomes
In|2x + 3y + 2|= 2y - x - 4.
More generally, if we let x = Xq and y =y in (19) we obtain
ln|2xo + 3y, + 2] = 2y, = X, e
or
gi= lnlzxo + 3y + 2|+ Xy = 2y,
which is well-defined except when 2xo + 3y° + 2 = 0. This is
the reason that u + 2 = 0 (i.e., 2x + 3y + 2 = 0) is excluded.
In summary, then, in any region R which does not contain a

portion of the line 2x + 3y + 2 = 0 , (19) is the general
solution of (17).

2:2.5{8)

The problem with finding integrating factors is that we must
solve a partial differential equation rather than an ordinary
differential equation. That is, if Mdx + Ndy is not exact, the
test for finding u such that uMdx + uNdy is exact requires that

o (uM) _ 2 (uN) (1)
9y 9x -
S.2.2.16

Al N E S e E e

LY ¢ 693

. =

- BN s e e 3

L1




ay N B BN B B B ew oW

Fa

;s Pl M e s

/a Ehm =a e

Solutions .
Block 2: Ordinary Differential Equations
Unit 2: Special Types of First Order Equations

2.2.5(L) continued

Since, in general, u, M, and N are functions of x and y, equation

(1) means that

uMY + uyM = uNx + uxN &

(2)

In this part of the exercise we try to determine u knowing

that u = u(x); i.e. 9u/dy = 0. With this knowledge,

becomes:

&

du .
uNx+a;N

N = = u(M_ - N_)

or

u(M_ - N_)

or
M. - N
Q% = [_X_ﬁ__i lax.

Equation (4) is not even meaningful unless MY

function of x alone. 1In this even, if we let

M - N
P(x) =_L-_x i

N
we obtain from (4) that

9%: P (x)dx

whence

fP(x)dx + c

Il

1n|u] 1

- N /N is a

(2)

(4)

*If u

u(x), then u, o= du/dx.

S.2-2.l?
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Block 2: Ordinary Differential Equations
Unit 2: Special Types of First Order Equations

2,.2.5(L) continued

or

(5)

Since all we require is a single integrating factor, we may let

c =1 in (5) to obtain
o & eJ%(x)dx_ (6)
b. Given
(y - xe¥)dx - xdx = 0, (7)
we let
{M =y - xe*
N = - x.
Then
M =1
{y
Nx*--l,
so (7) is not exact.
However.
My~ B 1o (=) 2
N -x - x
so that from (6),
2dx
Pt -2
i X _ o~2|In|x _ _In|x|"" _ l?
X
is an integrating factor of (7).
Indeed, if we multiply both sides of (7) by 1/x2 we obtain
S.2.2.18
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2.2.5(L) continued

X
Yy - & jax - 2 dy = 0 (8)
X X

and

1
~ 8- 5

= o
x2 X

so that (8) is exact.

In fact, we may write (8) as

X
(I%E - = dy) - edx . g
X X
b4
or
X
-1, _ e'dx
d(- yx 7) = =
or

or

X
y=-x [ E_%Ef T s (9)

e

(9) is called the solution of (7) even if we do not evaluate

x
fe dx

. X

more explicitly. The point is that (except at x= 0) e’ /x is a
continuous, hence integrable, function which defines a function
f(x) implicitly by

o X
SR s

- T B
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Block 2: Ordinary Differential Equations
Unit 2: Special Types of First Order Equations

2.2.5(L) continued

A first order differential equation of the form

g% + P(x)y = Q(x)

is said to be linear in y. (This will be explained in more detail

later in the Block.)

We may rewrite (10) in the form

[P(x)y - Q(x)] dx + dy = 0.

Letting

M
N

P(x)y - Q(x)
1

we see that

=
I

P(x)

b=
]
o

so that (11) is not exact unless P(x) = 0 .

Yet,

so that

5 [P (x)dx

is an integrating factor for (11), hence also for (10).

In fact, if we multiply both sides of (10) by /P (x)dx

efP(x)dx dy JP(x)dx

SP(x)dx
dx le

+ P(x)e y = Q(x

or

gﬁlyeIP(x)dx] = Q(x)efP(x)dx

(10)

(11)

(12)

(127)

$.2.2.20
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Block 2: Ordinary Differential Equations
Unit 2: Special Types of First Order Equations

2.2.5(L) continued

so that
ye R imyas: o fQ(x)eJ-P () ik ax + c. (13)

One should never memorize (13) [which could easily be a traumatic

experience]. Rather, one should perform the various operations
as they occur. For example:

With

F-f-x x>0 (14)
We have that P(x) = - % whence [P(x)dx =-1n |x| = 1n [x|-1

so that

/P (x)dx _ eln[xr1 _

I

or since x > 0, efP(x)dx = .

b

Multiplying both sides of (14) by % yields

1 gx _ . 4
= 3=~ if = x (15)
or
diyx H*_ 4
X
Hence,
-1 L 5
yX = i 4+ e

*As a quick way of getting from (15) to (16), compare the
process of getting from (12) to (12'). That is, once we
multiply both sides by integrating factor

efP(x)dx

d SP(x)dx

the left side of the equations is precisely ax [y e e

S.2.2.21
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2.2.5(L) continued

Therefore,

y = % %% + cx. (17)
Moreover, for each (xo,yo) in the plane, (17) yields

-, I 6

Hence,
1 6
Yy - X
c = —9——;5——3- (provided X #10)s
o

Thus, (14) has a solution of the form (17) through each point

(xo.yo) provided x # O

If we write (14) as

and let f£(x,y) = x5 + %, we see that both fx(x,y) and f(x,y) are
continuously differentiable except when x = 0, so that (17) is the

general solution of (14).

2.2.6(L)

Given

+ p(x)y = qg(x).

Then

ay _ ¢
dx (e, y)

where

f(x,y) = g(x) + p(x)y. (1)

8.2.2.22
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Block 2: Ordinary Differential Equations
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2.2.6(L) continued
Thus, f(x,y) is continuous provided p(x) and g(x) are continuous.
Moreover, from (1) fy(x,y] = p(x), which is also continuocus if

p(x) is continuous.

Hence,

g% + p(x)y = g(x)

has a general solution in any region R in which p(x) and g(x) are

continuous.
b. Given
y = £(x) + ¢ g(x), (2)

where f and g are differentiable, we see from (2) that

dY - £1(x) + cg' (%)

dx
so that

& £r(x)
c = —}—{—ém-)'—— , where g" (x) % 0. (3)
Putting (3) into (2) yields

d
- £'(x)
y = £(x) + [é"g—r-(m‘—] g(x)
or
Gy LW L W oo, 900 £ 0
or
d ] L]
a& _ g LX} 5 = f{;)% x) £'(x). (4)
S.2.2.23
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2.2.6(L) continued

f(x)g' (x)
g X

. - _ g9'(x)
Letting p(x) = o
(4) takes the form

and g(x) = + f'(x), we see that

d
H% + px)y = g(x)
which is linear in y.

Note:
What (b) shows is the structure of the first order linear

differential equation. In the previous exercise we essentially
showed that every first order linear differential equation had its
solution in the form f(x) + cg(x).

In part (b) we have shown that the converse is also true. That is,
if y = £(x) + cg(x) is a l-parameter family of curves. Then, if
suitable restrictions are made on f and g, this l-parameter family
is the solution of a first order linear differential equation.

c. Notice that

dx X 6
Iy Ty (y > 0) (5)

is linear in x (rather than y).

We solve such an equation just as before, only now efp(y}dy

-
r

el

is the integrating factor. In the present exercise, p(y) =

so that fp(y)dy = 1n y. Consequently, efp(y)dY -el® ¥ m Yy (y > 0).

Multiplying both sides of (5) by y we obtain

dx _ .7
y ay T XK= Y

or

dy

or

S.2.2.24
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2.2.6(L) continued
¥YX = gy + cC.
Hence,
I
x—-gy + Cy.
d. Given
d y _ 3,4
T+ I=xy (6)

(which is not linear since the right side depends on y as well as
on x), we divide both sides of (6) by y4 to obtain

-4 a =¥ 3

v a¥+¥§-=x (y # 0). (7)
-3 -4 a4 -4 a 1 du

If we now let u = y ~, then %% = -3y a%, or, y 3% = = x =

Hence (7) becomes

1 du u _ _3
"I txTX
or
du 3 _ 3 *
x-xucs -k

and (8) is linear in u. In fact, an integrating factor of (8)
is

3
f-= dx -3
e * = ¥ inx_ Jdox" . 9 {% = 0).

Multiplying both sides of (8) by x~3, we obtain

4

x o Q8 _ 34" u= -3

dx

*In our discussions on linear equations, it is crucial that we
use the form dy/dx + p(x)y = q(x). For example, given

r(x) dy/dx + p(x)y = q(x) we could write this as dy/dx +
p(x)/r(x) v = q(x)/r(x), but then we must worry about where
r(x) = 0 since this case can lead to singular solutions,

m

S.2.2.25
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2.2.6(L) continued

or
d(ux"3) - -3
ax - *
Therefore, ux"3 = -3x + c, or
u = -3x% + ex°. (9)
Then, since u = y_3, (9) becomes y"3 = ~3%% 4 ox°

or

Note:
The general form of the Bernoulli equation is

53

+ p(x)y = q(x}yn, where n # 0 or 1 (10)
[i.e., when n = 0 or n = 1, the equation is linear).

The technique for solving (10) is to multiply both sides by
v ™ to obtain

y P H® s pay ™t = qw. (11)
We then let u = y 0 oE in (11) [so that g% = (-n + 1)y-n %% ,
or, Y_n g% = T_%_ﬁ g% (and sincen # 1, 1 - n # 0)] to obtain
== o+ plxu=q

or

W4 p&IL-nlu= (1 -nglx (12)

J(1 - n)p(x)ax
n+1l

which is linear in u. We solve (12) using e as an

integrating factor; after which we replace u by vy to obtain

the first answer.

5.2.2.26
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2.2.6(L) continued
From a learning point of view, notice how a bit of clever maneuver-

ing allows us to transform a Bernoulli equation into the more

familiar linear equation.

2.2.7 (optional)

s TS 0l & By S s A fEm T e PR A m B PE Bam e

The main aim of this exercise is to indicate how we often (when we
are lucky enough) may guess a proper substitution even if the
equation doesn't have a familiar form.

In the present example, we have

(2 g & 44y = dx -1 (1)
which is a quadratic equation in %% . In fact, equation (1)

happens to be solvable for %% even more conveniently in this case.

Namely, we may rewrite (1) as
dy, 2 d _
(33;"’ —2H§+1-4x-4y
so that
dy _ 1y2 = -
(dx 1) = 4(x v)
or

F_1=-+2/&-7 .,

and this leads to

=1+2 /K-y . (2)

gie

In order to keep things single-valued, we, as usual, elect to

view (2) as the two separate equations

=1+ 2 Vx - y (3)

g2

and

[ o |
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Solutions
Block 2: Ordinary Differential Equations
Unit 2: Special Types of First Order Equations

L3

2.2.7 continued

¥o1-2/-7. (4)
The major point of this exercise is simply that in either (3) or
(4) , the right side includes x and y only in the form x-y. Thus
while (1), in either the form (3) or form (4), does not fall into
any previously-studied category of first order equations, we
might perhaps expect the substitution, u = x-y, to be helpful.
Making this substitution, we see that g% . ; or dy - 1l =

da dx dx
ax ° With this in mind, equation (3) becomes

I

du _
1-gz=1+2 yu

or

%:-2/6; (3")

while (4) becomes

L (4v)

Thus, from either (3') or (4') we see that the substitution
u = x - y has reduced (1) to two first order, first degree

differential equations in which the variables are separable.

From the point of view of what we are trying to teach in this
exercise (i.e., the "clever" use of change of variables),
equations (3') and (4') are sufficient to make our point.

Nevertheless, to reinforce some of earlier ideas and practice

various computations, let us carry this exercise further, if
only as a review.

From (3') we obtain

du
2/1

= - dx

so that

5.2.2,.28

ml oS =N 05 5 S 05 B UE DD BA B

“




B e S e 8 & B & U BB BN Pm Ba el =

M ra

Solutions
Block 2: Ordinary Differential Equations
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2.2.7 continued

Yu=-x+c . (5)
Recalling that u = x - y, equation (5) becomes

VK -y =-X+ cC (6)
so that (6) is a l-parameter family of solutions of (3).

Notice from (6) that c is not real unless x - y > 0. That is,
no member of (3) rises above the line y = x.

This is in accord with the fundamental theorem of Lecture 7.010
since with f(x,y) =1 + 2/X - y, we see from (3) that x - y >0
for f(x,y) to exist. Moreover, since fy{x,y] = -1/ /X - y we see
that x - y may lead to a (possibly) singular solution of (3).
Indeed, with y = x equation (3) is satisfied and y = x does not
belong to the l-parameter family defined by (6).

In summary:

1. If {xo,yo) is above the line y = x, equation (3) [or for that
matter, also (4)] has no solution since then g% is non-real.

2, IEf (xo,yo) is below the line y = x [i.e., Tk 0], then
by the fundamental theorem, one and only one curve satisfied (3)
and passes through (xo,yo). This curve is a member of (6) and
corresponds to the value of ¢ when x = X5 and y = ¥os That is,

with x = X and y = Yo+ €quation (6) yields
EREE N P -
or

G=x *aX =9 (7)

¢}

Replacing ¢ in (6) by its value in (7) we conclude that if
8 > X then

VR =y = =g kR VK- ¥ (8)

| |
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2.2.7 continued
is the only curve which passes through (xo,yo} and satisfies (3).

3o If Xy = ¥ then (7) indicates that c = x,. Hence,

passes through {xo,yo} and satisfies (3); but in addition so also
y = x. In fact, y = x is the envelope of (6) as we shall show

shortly.

Our results concerning the solutions of (3) may be easier to
grasp in terms of a graph.

To begin with, (6) might be easier to recognize without the
square root. Thus, let us square both sides of (6) to obtain

x -y = (-x + c)z = x% « Pox c:2
or
y = X ® (L + 2¢)x - 2. (9)

We must be careful to note that (9) includes more than (6).
Namely, if a = b and we square both sides to obtain a2 = bz,

notice that the latter eguality includes a = -b as well.

In other words, (9) contains the result of squaring both sides
of YXx —~y=-(-x+c) orvx -y =x-c, as well. To keep
track of what's happening, notice from (3) that since

VX -y >0, %% must be at least 1.

With this in mind, we may now graph a typical member of (6).
Namely, each member of (9) is a parabola. In particular, we ob-

tain from (9) that

y' = =-2x + (1 + 2¢) (10)

§.2.2.30
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2.2.7 continued

¥y = =24 (11)

From (11) we see that our parabola always "spills water". From

(10) we see that y' > 1 «~»

-2x + (1L + 2¢c) > 1 ==

-2x > 2c +>
c

X < (12)

Recall that each member of (6) is the corresponding member of
(9) limited to g% > 1. In other words, from (12) we see that
for a given c, only that portion of (9) for which x < c belongs

to (6).

In any event, continuing to plot the member of (9) first we

have that y' = 0+» x = 1—*2'—2—3 ; and when x = 1 + 2c, (9) yields

2 2
— (L + 20 | (4 20y 2 ; 2¢) _ 2_ (1 z 2c)” _ 2
_ 1 + 4c
= =0
In any event,
YA y =X
31 c =2
59
("r—}
2 (2,2) 274
|
11 /)
/ |
|
/ s %
]/ 2 1 3 > X
I
/ |
/ |
|/ .
/ |
1/
/
+ (0,-4)
l (Figure 1)
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2.2.7 continued

y = —xz + (1 + 2¢c)x - c2 for ¢ = 2. Only the hatched portion
makes up the graph of (6); i.e., VX =y = =-x + 2,

Using Figure 1 as a hint, coupled with the fact that y = x is a

solution of (3), let us replace y by x in (9)

[on in(6)] to obtain

that vy = x intersects vx - y = -x + ¢ only at (¢,c). Moreover,
when x = ¢ we see from (10) that y' = 1 so that y = x is tangent
to ¥x -y = -x+ c at (c,c). We also see that the high point of
y = sx® 4 (1 + 2c)x - 02 occurs at (1 ; 4c z z : de ) = (e + % y
1
c + T ). Thus:
YA yo==
This line is the
graph of
(c,c) #//, VX =y = X%=¢C; €>0
This line is the graph !
of ¥vyx =y = -x + ¢ ——_| 72
c >0
/ Cal x
/
/ (0 !"cz)

Total line is the graph of

y = —x2 + (I 4 2e)x = c2

(Figure 2a)

Y¢

Graph of
/E_g*§ = -x + ¢
when ¢ < 0 \\
{e,c) (0,-c”)
4 g =
7

(Figure 2b)

/

=X

2

3 X

Graph of yx -y =x-c¢, ¢ <0

Total line is the graph of

+ (1 + 20)x - c2
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2.2.7 continued

Figure 2 shows that each point of y = x belongs to a member of
(6); hence, y = x is a solution of (3).

A similar analysis holds for (4). 1In fact for (4), since
Yx =y > 0, dy/dx < 1. More specifically, solving (4') yields

Yu=x+ ¢

1

so that
VX -y = X + cy- (13)
Squaring both sides yields

i 2
X—3 =g + 2xc1 + cq
or

2 2
y = -x" + (1 - 2cl)x -c”. (14)
Notice that (14) is the same as (9) with ¢ = -Cy-

In other words, the dotted portions of the curves in Figure 2
correspond to the graphs of (18) while the solid portions
correspond to the graphs of (6).

As a final concrete example, let us find all solutions of (1)
which pass through (1,0).

Letting x = 1 and y = 0 in (6) yields

vI = 0 =-1+c¢

or

l=-1+ c.

Hence ¢ = 2,

em om & S 00 0 00 fm 0 B B B BN AN BN BN B el Ew
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2.2.7 continued

Therefore,

/K=y =~x + 2 (15)

is the only member of (6) which satisfies (3). Hence, equation
(15) is the only solution of (3) which passes through (1,0).

In terms of (a), (15) is the appropriate portion of the parabola
y = -x? + 5% - 4,

Similarly letting x = 1 and y = 0 in (13) yields

vi-0=1+ cq

so that ¢, = 0.

Therefore, vx - y = x 1is the only member of (13) that satisfies
(4) ; hence, the only solution of (4) which passes through (1,0).

Notice from (14) that c, = 0 yields y = -x* X.

1

2

Graphing y = -x? + x and y = -x~ + 5x - 4 in a single diagram,

we have:
b4 Yy = X

. This point is the
curve
VX-y = =x+2

(2,2)

\
///’; ’////,’k = 2, 5x = 4

y = x°“ + x This point is the |\— Y = ¥
curve VX — y = x

5.2.2.34
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2.2.7 continued

Thus, while two parabolas are solutions of (1) which pass through
(L,0), at (1,0) only one of the solutions satisfies (3) while
the other satisfies (4).

2.2.8(L)

The main aim of this exercise is to show how certain second order
differential equations may be reduced to two successive first
order equations. The general second order equation is a relation-
ship between x, y, y', and y"; and the technique we have in

mind is one that works when either x or y (and it works even

better if both x and y are missing) is missing from the equation.

In either case, if we let p = y', then p' ( = %& ) = y".

Hence, if y is missing, this substitution gives us a relation-

g% , which is a first order equation

involving p as the dependent variable and x as the dependent

ship between x, p, and

variable. We then solve this equation to find p in terms of x;
and once this is done we replace p by y' and solve the resulting

first order equation for y in terms of x.

If x is missing, we must be a bit tricky, since then the
resulting equation involves vy, p, and g& , where both p and y
are functions of x. To resolve this dilemma of too many

i i i ite 3P dp, (dy,,
variables, we invoke the chain rule to rewrite 3= as (35,(de’

and observing that p = %% , we see that we may write

*
g&-as pgg , and the resulting equation now involves only Vv, P,
and gg—. This is the technique that we shall examine in this

exercise.

*For those who remember our elementary physics course,
recall that in the usual kinematics problems, we either wrote
the acceleration as dv/dt or as v dv/dx [i.e., dv/dt = dv/dx

v
d%/dt] depending on whether the acceleration was given in terms of
Xx or in terms of t. The method being described in this exercise
is simply a generalization of this technique.

BE S Em e 6.
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2.2.8(L) continued
a. We are given that
y'e? = e, (1)

Letting p = y'(= dy/dx), we have that y" = p' so that (1)

becomes

p-eP = @~

or

g& eP = X, (2)

eP =X+ ¢ (3)
or

dy
e dx _ e* + c. {3")
Thus,
dy _ x
5%- In(e* + c). (4)

Integrating (4) yields y as the desired function of x¥*.

Since we do not want to be bogged down at this stage of the
game with techniques of integration, we use the fact that
dy/dx = 1 when x = 1. From (3'), this implies el = el + c so0

that ¢ = 0 and with ¢ = 0, equation (4) is simplified to

glx = x, (5)

*When the integration is performed we obtain a second arbitrary
constant. Thus, our final solution has the form y = f(x,c,cl),
and this shouldn't be too surprising since we are solving a

2 nd order equation (by integrating twice).

5,2.2.36
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2.2.8(L) continued
from which
¥ = % x2 + Gy (6)

and since (1, % ) is to be on the curve, we see from (6) that

y=?x £ I (7)

Note #1

All we know about (7) is that it's a curve which passes through
(1, 3/2) with slope 1, and satisfies equation (1). Since (1) is

a second order equation, we do not know anything about the general
solution of (1). However, we are sure that (7) is one such

curve and that's all that's asked for in this problem.

Note #2
Equation (1) is a special case of the more general equation

yUE(y') = £(x) (8)

which becomes

d —

& £p) = £(x) (9)
under the substitution p = dy/dx.

While we may always separate variables in (9) to obtain

f(p)dp = f(x)dx, this equation may be difficult to solve,
depending on the choice of f, Symbolically, the solution
always has the form

F(p) = F(x) + ¢, where F' = f (10)

and knowing that there is a value X for x at which x = p;

S.2.2.37
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E: S F(xo) = F(po), we see from (10) that F(po) = F(xo) + c
so that ¢ = 0. Hence (10) becomes

F(p) = F(x). (11)
If F happens to be 1-1 as in this case where F(x) = ex, we
deduce from (11) that p = x or dy/dx = x. Even if F is not

1-1, one solution of (11) is p = x. In other words, y = l/2x2 +
c is always a one family of curves which satisfies y"f(y') =
f(x) and passes through at least one point where the slope
equals the x-coordinate.

b. Given
yy" = (y')z (12)
we let p = y' whereupon (12) becomes
v %g = pz. (13)
If we write dp/dx as dp/dy dy/dx = dp/dy p, (13) becomes
yp %5 = Pz- (14)
If we assume that p # 0%, (14) becomes
¥ g% = P
and separation of variables then yields
dp _ dy
P Yy
or
P = cy- (15)
*If p = 0, then y = constant and this clearly satisfies (12).
S.2.2.38
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2.2.8(L) continued

Therefore, dy/dx = c;y or dy/y = c,dx.

Hence,
In |y| = cx + ¢,
or
c X
y = cje 5 (16)

As a check that (16) is a 2-parameter (i.e., ¢, and c, are both
arbitrary constants) family of solutions of (12), we have

(17)

=
|
Q
=
0
w
0]

Hence,
CyX ciX
| | N 1 2 l
vy (cqe )(cl cje )
_ .39 264X
-clc3e
C.X
1 2
= [clc3e ]
2

I
<

Finally, to find the member of (16) which passes through (0,2)

with slope 4, we have from (16) that 2 = c3e° or

cy = 23 (18)

while from (17), 4 = c103e°.

5.2,2.39
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Hence

and since cy = 2,
c; = 2, (19)

Using the values of ¢y and Cq given by (18) and (19) in (16),
we obtain

y = 232x.

5.2.2.40
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2:3:1.015)

Up to now, we have been starting with a differential equation
and then finding its solution. The point is that in many cases,
part of the problem is to develop the appropriate differential
equation. That is, in real-life situations we are often given a
certain situation which, hopefully, can be translated into a
differential equation; after which, we hope that the equation is
solvable.

The aim of this exercise is to give a brief glimpse into this
aspect of differential equations.

We are told to find the family of orthogonal trajectories to the

l-parameter family of curves
y =x + ce™ %, (1)

That is, we want that family of curves (if it exists) with the
property that every intersection between a member of this
family and a member of (1) is at right angles. Since two
curves meet at right angles if and only if their slopes at the
point are negative reciprocals of one another (except in the
case where one of the lines is vertical since in that case we
do not refer to the slope of the line, except to say that the
soope is infinite), the procedure is to find dy/dx from (1) in
a form that is free of the parameter c. Once this is done we take
the negative reciprocal of dy/dx and use this as the slope of

a member of the desired family. This procedure leads us to the

differential equation which must be solved.

It is only after we have the equation that the discussion of
this Unit becomes important. 1In still other words, as far back
as part 1 of this course we knew how to write the differential
equation for the family of orthogonal trajectories for a given
l-parameter family of curves. If, however, the equation was
anything different from variables separable, we did not have the
"technological know-how" to solve the equation. All that is

5.2.3.1
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2.3.1(L) continued

happened with our discussion of this unit is that we are now able
to solve a wider range of first order differential equations
than we could have solved before.

a. Returning to (1) we have
c=e*ly - x), (2)
and differentiating (2) implicitly with respect to x yields
0=ex(y—x)+ex(§1-l)
X
: X
or since e™ # 0,
- - dy _
0=(y -x + (F-1.
That is,
¥ < -
He=ltx-y (4)
is the differential equation satisfied by the l-parameter
family (1).
Since the negative reciprocal of 1 + X - y is I—%ii—:—g , we
see from (4) that the orthogonal trajectories must satisfy the
differential equation
dy - -1
dx T+x-y° (5)
From the fundamental theorem of Lecture 2.010, we see from (5)
that there is one and only one solution of (5) that passes
through an arbitrary point (xo,yo) unless possibly when (xo,yo)
ison 1l + x -y =0 (that is we must be on our guard when we
deal with the line y = x + 1, but we shall say more about this
later).
Assuming then for the moment that the region R on which (5)
is defined excludes any point of the form {xo, X, + 1) we know
5.2.3.2
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that (5) possesses a unique general solution and we must now try
to find this solution.

Our point now is that in previous exercises we would have

begun with equation (5) given. In this exercise we first had to
derive equation (5). The so-called "cook-book technique" begins
once (5) is derived in the sense that we try to match (5) with a

specific type of equation for which we already have a "recipe".

One technique for solving (5) is to write it in the form Mdx +
Ndy = 0 and see if it's exact*. Equation (5) then becomes

dx + (L +x -y) dy =0 (6)
in which case M = 1 and N = 1 + x + y. Therefore M_ = 0 and
N_= 1 so that (6) is not exact. Hopefully, however, we notice
that
N - M

X - Y oo

so that eJidY = eY is an integrating factor of (6)**, In fact, if
we multiply both sides of (6) by e¥, we obtain e¥dx + €Y (1 + x - y)
dy = 0 or e¥dx + eydy + xe¥dy - ye¥dy = 0 or (e¥dx + xe¥dy) +

eydy - yeydy = 0*%** or d(xe¥) + d(e¥) + d(e¥Y - yey) = 0. Hence,
d(xe¥ + ¥ + (Y - ye¥]) = 0, or xe¥ + &Y + &Y - yey = ¢, or

xe¥ + (2 -y) &¥ = ¢ (7)
is the desired solution of (5).
[Aside:

There is no priority on the way of solving an equation. For
example, one might have elected to write (5) as

*Unless another technique suggests itself,this approach is always
a good idea, for if the equation is exact, we're home free. If it
isn't, we might be able to "predict" an integrating factor. Even
if this fails the time for the trial is not very great so we have
not lost much as we now set out trying to find a different
technique.

**Recall the result of Exercise 2.2.5,.

***When in doubt, the longer technique of equating f_with M and f
with N may always be used to obtain the same result. =

Em &om s A E e .
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2.3.1(L) continued

X -1+ x-y)

which is linear in x and which has eY as an integrating factor.
Thus,

ey g% + xe¥ = e¥(y - 1)

or

Y
d_%;_l=yen’-e¥

or
xe¥ = ye¥ - 2e¥ + ¢
which agrees with (7).]

Equation (7) can, if we wish to, be written in the more explicit

form
x=(y - 2) + ce” ¥, (8)
b. If y =x + ce * passes through (0,4) we have 4 = 0 + ce® so
that ¢ = 4, and our member of (1) is
y = x + 4e” %, (9)
. ’ - -4
Similarly, if (0,4) satisfies (8) we have 0 = (4 - 2) + ce or
-2e4 = c¢c. Hence, x = (y - 2) - 2e4e-y, or
x=y-2-2%"Y (10)
is the. nember of (8) which passes through (0,4). As a check,
we see from (9) that
5.2:3.4
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2.3.1(L) continued

=1 - 4% =1 - 4e° = -3 (11)
(0,4) (0,4)

Kb

and from (10) that

dx , 4 -y
a‘i (0,4) 1+ 2e

]
w

=1+ 2

Il

(0,4)

so that

dy l

(0,4)

(12)

W

A comparison of (11) and (12) shows that (9) and (10) intersect
at right angles at (0,4).

We proceed as in (6), letting x = 0 and y = 1 in (1) to obtain
1=0+ce®or c=1. Hence,

Yy =X + e (13)
is the member of (1) that passes through (0,1).

Similarly, if we let x = 0 and y = 1 in (8), we obtain 0 =
(L - 2) + ce-l so that ¢ = e, whereupon

X = (y - 2) + g = (14)
is the member of (8) which passes through (0,1).

Again, as a check, we see from (13) that

% =:|_—e_x =l-l=0; (15}
(0,1) (0,1)
while from (14) we have
%i l % L st Y | =1-¢e°=1-1=0
Y (0,1) (0,1)
or
8:253%5




Solutions
Block 2: Ordinary Differential Equations
Unit 3: Some Geometric Applications of First Order Equations
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% | = W W (16)

(0,1)

Thus, (13) and (14) intersect at right angles at (0,1).

The interesting fact is that (0,1) belongs to the line y = x + 1,
and we have seen that under this condition the solution to (5)
need not be unique. For example, let us notice that (15) tells
us that the line x = 1 also meets y = X + e X at right angles.
More generally, y = x + ce ~. Therefore,

X

y' =1- ce (17)
and
y" = ce . (18)

Since ¢ > 0, (18) tells us that y = x+ce * always "holds water".

(17) tells us that dy/dx = 0 «»> 1 - ce X =0 +>e X =1/c «>

X
e = ¢ +*x = 1ln c*,

For x = 1n ¢ we find that

In c + ce'ln €

o
Il

1n %
1n ¢ + ce

lnc+c(%), (c > 0)

lnc + 1

x + 1.

In other words, for c > 0, vy = x + ce ™ has a minimum value (hence,
a horizontal tangent) at (ln ¢, 1ln ¢ + 1) which is on the 1n c

y = x + 1.

*If ¢ < 0, 1n ¢ is non-real. Hence dy/dx would never by zero, but
this is discussed in more detail in the optimal remarks at the end
of this lecture.
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2.3.1(L) continued

Some Geometric Detail

The Graph of y = x + ce

Case 1l: c =0
We then have the line y = x.

y =¥

S~ graph of y = x + ce ~ when c = 0.

) x

(Figure 1)
Case 2: ¢ > 0
Then y = x + ce © =
Y =g .- a8 ¥
dx
d2 -X -X
~—¥-= ce (> 0 for all x since ¢ > 0 and e > 0).
dx

Thus, the curve always holds water, has its y-intercept at
0

y=0+ce " =c¢, i.e., at (0,c); and its minimum occurs
-X -X
when 1 - ce =0 or e = % or e¥ = ¢ or x = 1n c*.
] -X . : -1ln c
With x = In ¢, v = X + ce implies y = 1ln c + ce or
In 1/¢c

y =1ln c + ce = 1ln ¢ + ¢(lfe) = 1n ¢ + 1. Hence, the
minimum of y = x + ce ™ (¢ > 0) occurs at the point (ln ¢, 1ln ¢
+ 1) which is on the line y = x + 1, the special case we

mentioned earlier in the problem.

*Notice In ¢ is non-real if ¢ < 0 so it is crucial that Case 2
requires that ¢ > 0.

S5.2.3.7
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Graphically, Case 2 is illustrated by

y
~
y=x+1
}/
’
/
; Yy =X
for large x, X + ce A x
so y = X is an asymptote
(0,c) / for y = x + ce “(c+0) as x
’ minimum is at
ra #
p S/ (In ¢, In ¢ + 1) on the line
7
/ y =X+ 1
Vs ////
s /(
s
/ /
. 4 > X
i 4
# (Figure 2)
.'j..'
b4
&= o y=x+1
\(0’3) /:'
c=2‘- // ,y=x
osT % p
%’_/ //
P ,7 each curve has a horizontal
- // tangent at (ln ¢, 1ln ¢ + 1) on
7
#  |041) # the line y = x + 1
Y s
e
= /
/
2 7
v
"4
/
=" v ) X
7
/
Va
(Figure 3)
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2.3.1(L) continued

Figure 2 is reproduced in Figure 3 for the special cases c =1, 2
and 3.

Case 3: c <« 0

In this case we still have

y =x + ce ¥
y' =1-ce X
Y" = ce"'x

but since c < 0, y" < 0 for all x, so now our curve always

R o,

hence y' > 0 for all x so our curve is always rising. Finally,

"spills water". Moreover, since -c > 0 and g 0, 1 - ce”

-X . =X
for large x, x + ce % x but since ¢ < 0, x + ce < x. Thus,

we have that for a typical c < 0, the graph of y = x + ce * is

given by
Y
~
Yy =X
/
¥
Vi
/
7 ﬂ““\\ P
s/ This point is difficult to locate algebrai-
/ =
cally since it involves solving 0 = x + ce .
but there are numerical methods (Newton's
0 ; ; . .
(0.7) method) for approximating this point.
(Figure 4)
We reproduce Figure 4 for the special cases ¢ = = %, c = -1,
and ¢ = =2,
5.2.3.9
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(Figure 5)

We may next combine Figure 1, 3 and 5 to obtain:

c

y= X
(Figure 6)

S.2.3.10
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Rather than draw the line y = x + 2(in Figure 6)in a separate
diagram, we have added it to Figure 6 and we hope that it seems
clear that y = x + 2 meets every member of y = x + ce® (c > 0)

at right angles.

In a similar way we discuss the Graph of x =y - 2 + ce ¥

Case 1: ¢ =0
We then obtain x =y - 2 or y = x + 2.

dx _ _ y

3§ = 1 ce >

dx = (1-ce o

2 -
gy -(1 - ce ¥Y) 2(ce Y %%J
dx
= =(1 - ce ¥Y) 2ce-ytl— ce_y)_l

- ce ¥

1 - ce-y)3

Since ¢c< 0, -c> 0. Hence, -ce¥ and 1 - ce™¥ are both positive.

Thus, our curve is always rising and holding water.

Y
N

x=y-2+ce ¥, c<0

d

(Figure 7)

8.2.3.11
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We illustrate Figure 7 for the case ¢ = -1. We obtain

=¥

i ¥
5
»

(Figure 8)

For the case ¢ > 0, 1 - ce Y can be positive, zero, or negative.
In fact,

1-ce? =0 « y = 1ln c

-1ln c in %
[in which case x = 1ln c - 2 + ce =1lnc - 2 + ce =
In ¢ - 1 so that dy/dx = @ at (ln ¢ - 1, 1n c) which is also on

y = X + 1]
¥ -y , 1
1l - ce < 0 > e » =
«r e¥ < ¢
++ vy < 1ln c
and

1-ce Y >0 ++y > 1n c.

Thus,

S.2.3.12
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(Inc -1, 1n c)

/(-2,0)
(0-210)

—— "]

c>0

X=y -2+ ce ¥

(Figure 9)

Letting ¢ = 1 and ¢ = 2, Figure 9 becomes

h

(Figure 10)
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2.3.1(L) continued

Y
0
y =x + 2
a4 I8
77
/fk’/ /
~L 7%
7
P
i . P /
—~ / N
.--"', /
—~ =

(Figure 11)

Dotted curves are members of x =y - 2 + ce Y. Solid curves

are members of y = x + ce *.

Finally, we see that for a given ¢ # 0, x = 1ln c meets

y = X + ce ™™ at right angles, but it intersects other members

of y = x + ce ® not at right angles. That is,

5.2.3.14
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y
o= 3 X=1lngc, c=2

N

not a
c 2 Xright le

=\\

c \1\i;;;;:

P / : *

e

7
cc= /

1
= 2

(Figure 12)

Thus, while the role of y = x + 1 is an interesting one,
disregarding this case would not affect our answer to the
problem since the family x = ln ¢ is not orthogonal to the

family v = x + ce ¥,

Yy = cx (1)

we obtain

2y & = . (2)

S.2,3.15
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2.3.2 continued
Replacing ¢ in (1) by its value in (2) yields
2 d
y© = (2y Fix (3)

so that if y # 0* , equation (3) becomes y = 2x %ﬁ or

g% - %; (provided x # 0%**) ., (4)

From (4) the differential equation for the orthogonal trajectories

is given by

dy _ 2x
a% - (5)

In (5) the variables are separable and we obtain

ydy = -2xdx

1 2
jy = =X +Cl, Cl>0 (6)

y© = =2x" + C o

2x% + y? = Cyr Gy > 0 *k2 (7)

*If y = 0, we simply have a particular solution of (1) given by
(‘.=0.

**We must beware of the case x = 0, but from (3) if x = 0 then
y = 0 and we have already disposed of this case.

***Notice that since 1}’2yZ > 0 and -x2 < 0, equation (6) requires

that ¢ > 0. Hence, in (7), ¢ is an arbitrary positive constant.
With c,= 0, (7) is the single point (0,0).
025316
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2.3.2 continued

is the family of orthogonal trajectories, and this is a family
of ellipses. In fact, in more "traditional" form equation (7)

becomes

2% | 2 :

2 SR | - (where we have elected to write c

c c rather than c, to facilitate notation.

Notice that this ¢ is not the same
or as the c given in the exercise.)
x2 2
f ot = 1. (8)

(J% )2 (Va) 2

(8) represents the ellipse

L

(/59 K 5

A few notes:

T.. I£ {xo,yol is any point in the plane, we see from (1)
that

so that if X, # 05

5.2.3.17
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2.3.2 continued

Thus, if (xo,yoj is any point not on the y-axis (i.e., Xq # 0)
one and only one member of equation (1) passes through (xo,yo)
and this member is given by

2 yo2
ye = (ESH.)X (9)

and this member, as do all members of (1), passes through (0,0).

Notice, however, that if ¥ # 0, no member of (1) passes
; ; 2
through (O,YO) since from (1) X, = 0 implies ¥ = 0 or ¥ ™ 0.

Hence, if X # 0, one and only one member of (1) passes through
(xo,yojg and if X, = 0, every member of (1) passes through
(xo,yo) ify, =0, but no member of (1) passes through (xo,yo}
if 0 # 0.

2. As for family (7), given any point {xo,yo) we see that

2xo2 + yo2 = ¢c. Hence, c is a well-defined number for all

points (xo,yo). Thus, for each point (xo,yo) in the plane
(excluding the origin since c¢ ; 0) one and only member of (5)
passes through (xo,yo) and this is given by

2 2 _ 2 2 -
2x” + y" = 2x "+ y ", (10)

3. As a check on (9) and (10), let us pick a peint, (1,2) and
see what happens. Letting X = 1 P = 2, equation (9) becomes

yz = 4x (11)

and equation (10) becomes
2% + yz = 5, (12)

From (11),

S.2.3.18
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2.3.2 continued

2yg¥| = 4

(1,2)
or
& s ¥ (i)
From (12),
4x + 2y g% =0
SO
dy _ 2x
i
or
oy | 2. (14)
dx (1,2) 2

Comparing (13) and (14) we see that (11) and (12) intersect at
right angles at (1,2).

4. Solving (11) and (12) simultaneously we get

2x% + 4x = 6 (since yz = 4x)

or

x2 + 2x = 3 = 0,

Hence, x = 1 or x = -3.

We may discard x = -3 since it does not satisfy (11). But
when x = 1 we see that in both (11) and (12) y = 2 or y = -2,

Thus, (11) and (12) also intersect at (1,-2). To be ortho-
gonal trajectories, every intersection must be at right angles.

-a e &m S B Py Bm s B Em el
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2.3.2 continued

The symmetry of both yz = 4x and 2x2 + y2 = 6 with respect to the

X-axis guarantee this result, but it is still important that we

understand this idea.

Graphically,

> <

2X2+ y2= 6 {lrz)

(1,-2)

5. We must not be blinded by looking at individual curves.

Wherever any member of y2 = cx meets any member of 2x2 + y2 = <,
r
the intersection is at right angles. In the diagram below,
y2 = cx and 2x2 + y2 = c, are drawn for c and <, equal to 1/4,
1, and 4.
Y
A 2

8.2.3.20
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2.3.2 continued

Notice that as ¢ » © and x * 0 y% = cx implies y + & =, I.e.,
the special case x = 0 is a "degenerate case" of v® = cx. Also

notice that all points of intersection are at right angles

2

including where 2x° + y2 =c, meets the y-axis.

&am IE Bl

ra

2.3.3(L)

Bl TE oW

| Bl

- M E M

o B = B S

Here we generalize the first two exercises to show that orthogo-
nality is not a crucial requirement - and we also hope to show
how polar coordinates can be advantageous to us in the solving of

certain differential equations.

To begin with, we observe that if ¢, - ¢ = 45°, then tan{¢2 —¢l}= 1

or

tan ¢, - tan ¢,

I + tan ¢, tan ¢, = 1. (1)

Letting tan ¢l denote the slope of the given family, we have

d d
ST TLESEE 23
Hence,
=dy _ ¥y
tan ¢l-a§(’-_x (x # 0) (2)
describes the members of y = mx.
Then letting tan ¢, denote the slope of each member of the required

family, we see from (1) and (2) that the differential equation of

the given family is

dy _ ¥
dx X s
y dy
1+ X dx
or
aY . ¥ =1 4 X 8Y
dx X x dx

M

S.2.3.21
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2.3.3(L) continued

or

= dy _ Y.
(1 i"’aﬁ’z-l*x-
Hence,
gy__l+5¥:'
dx_ -

We solve (3) by letting v = y/x, and this leads

dv _ 1 v
vV + X Tl g
or
g l¥v L létv-vyt vi _ 1+ v
dx I -v - I -v I-v -
Hence,
(1 -v)dv _ dx
1+ vz X
Integrating (4) yields
dv vdv
- = In|x| + ¢
1+ v 1+ v2 1
or
1 2
arc tan v - 3 1n (1 + v%) = In|x| + c;.
Hence,
2 arc tan v - 1In (1 + v2) = 2 1n [x] + ¢

or

Il

2 arc tan v - 1n (1 + v7) 1n x° + Cq-

(3)

to

(4)

§.2.3.22
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Letting v = y/x, we finally obtain

2
X = ?
2 arc tan - In (1 + if) In x° + Cyr

or
2 2
2 arc tan % - 1n (x * ) = 1n x2 + Cqr
b3
or
2 arc tan % - [1n (x2 + yz} - 1n x%] = 1n x% + Cys
or
Y 2 2% _
2 arc tan £ - In (x° + y°) = c;. (5)
’ . : 2 2 2
Equation (5) suggests polar coordinates with r® = x° + y~ and
arc tan y/x = 6. Thus, 26 - 1n r2 = ¢y or 1n r2 = 206 - Cq-
Hence,
28 -c -C
rP=e e 1= k% 2@ (since e ' > 0). (6)
e B
From (6), r = ke  or r = -ke . Thus,
r = ca? (where ¢ = + k is an arbitrary constant) (7)

Equation (7) suggests that polar coordinates might have yielded
a better approach to this problem. Notice that in the language
of polar coordinates, y = mx is the ray 6 = + tan-lm. The
point is that it is the radius angle {§ which is 45°. Hence

tan ¥y = + 1, and since

X
dr
de

we see at once that dr/dé = + r, or dr/r = + de.

I

tan P

We thus obtain the polar form

In [r| =+ 68 + ¢

rma M

S.2.3.23
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2.3.3(L) continued

or

*
r=cet?®

very quickly using polar coordinates.

2.3.4

Since ¢1= 28 and ¢ = ¢1— 8, pictorially,

AN
p\&
6 ¢1 <
\\ 7
we have that
tan ¢ = tan(¢1 - 8)
= tan(20 - 0)
= tan ©
and since
tan ¢ = 5
dae
this means
r 99 _ tan e. (1)
dr
+ 6
*Since @ can be positive or negative r = ce— says the same
as r = ce®. It does, perhaps, emphasize that there are two
curves r = ce® and r = ce~® rather than one.
S.2.3.24
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2.3.4 continued

We may separate the variables in (1) to obtain

cos ©de dr
sin 8 ¥

Hence,

In|sin 8|= 1n|r|+ 1n c, = ln(c,|r|) (where c; = 1n c,)
or
|sin 8| = c, |r|
or
sin 8 = c3r (cy3 = + c,).
Therefore,
r = c sin 8 (c = l—)
C
3
is the required solution.

Note:

From (2) we have r? = cr sin 6 or x% + y2 - cy =0 or

oty - 92 = (2

(2)

which is a family of circles centered at (0, %) with radius %.

One such member is

S5.2.3.25
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2.3.4 continued

R4
"

Pick any point P on this circle, let Q denote the point at which

the tangent to the circle at P meets the x-axis and then, for
any choice of P, ¥ PQR is twice ¥ POQ (i.e., AOQP is isosceles).

which is linear with e
e4x %% + e4xy = 3xe4x

or

4x

(1)

(2)

as an integrating factor. Thus,

8:2.3:26
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2,.3.5 continued

Therefore,

ye4x =./;xe4xdx * e

or
y = 3e-4x xe4xdx + Ce-dx. (3)
Integrating by parts with u = x and dv = e4xdx we obtain du = dx
and v = 1/4 e** so that
4x _ 1 4x 1 4x
j:-ce dx—-4-xe -?./:3 dx
4x 1 4x
= z Xe e TG e

_ ~-4x 1 4x _ 1  4x -4x
y = 3e (T xe ig © ) + ce
or
y = % x - %ﬁ + el (4)

We may observe that one and only one member of (4) passes through
a given point (xo,yo). Namely with x = X, and y = Yor We find c
from (4) by

3 3 .. %
c = {yo -7 % + Ig)e .

Moreover, the right side of (1) tells us that one and only one
solution of (1) passes through a given point (xo,yo). Thus (4)
yields every solution to (1), etc.

Thus, if we let x = 0 and y = 13/16 in (4), we see that

13, _ 3 o
Ie=-"16 * ce

4x

or c = 1. Hence, y = 3/4 x - 3/16 + e is the only curve which

passes through (0, 13/16) and satisfies (1).

5253527
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2.3.6(L)

The main reason for calling this a learning exercise is so that we

can, as a note at the end of this exercise, list a few nice formulas

and introduce a few technical terms.

We have
Y L

(x,v)

~

/(-x,OJ (x,0)

The diagram hinges not on whether x is positive or negative,
but only that x # 0 since x = 0 implies -x = x and L is not
then determined.

From our diagram the slope of L is on the one hand dy/dx and

on the other hand, y - 0/x -(-x) = y/2x. Hence the differential

equation we must solve is

%% = %; x # 0.

We may separate the variables in (1) to obtain

dy _ dx
S a5
so that

1
In|y|= %—1n X + ¢y = ln|x|f + ¢

or
1 1
2 2
e Inlyl_ o In|x|® + c1 _ _c1g In|x|®
S+2.:3.28
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2.3.6(L) continued

Hence,

™

c
lyl= ¢, x (where c, = e L0

and squaring both sides yields

2 2

y" = c|x| (where ¢ = c,” > 0), x # 0. (2)
Since
x if x>0
Ix|=
-x 1if x < 0
we see that equation (2) may be written as
2 ;
y° = cx, if x> 0 (3)
and
2 ;
vy = -cx, if x < 0. (4)
The graph of (3) for a typical c > 0 is
y
y2 =cx, x >0
> X
while the graph of (4) is
> X
2
Yy = -c¢x,
x <0
5.2.3.29
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2.3.6(L) continued

Thus, as long as we are restricted to a region R where x # 0,
there is one and only one curve and this is a member of (2).

This passes through (xo,yo) and satisfies (1l).

In still other words, if R includes no portion of the y-axis
and {xo,yo)eR, then there is one and only one curve which passes

through (xo,yo) and satisfies (1). This curve is obtained by
letting y = Yo and x = X in (2) to obtain
2
& Yo (5)
Ix0|

so that ¢ is a well-defined real number since X # 0.

Using the value of ¢ from (5) in (2) yields

2
2

Yo | x| (6)
y = T——T X
*o
as the required curve.
In particular, if X, = 1 and ¥ = 2 and R = {(x,y): x > 0}
. 2 3
we see from (6) that y2 = 4|x| or since x > 0, y° = 4x is the

only curve which passes through (1,2) and satisfies (1).

Geometrically,

4x

<
]

(1,2)

v
»
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2.3.6 (L) continued

Pick any point P on y2 = 4x and draw the tangent to y2 = 4x at P.
If Q denotes the point at which this line meets the y-axis and R
where it meets the x-axis, then RQ = QP.

Notice that if we allow x to be 0 we may combine the upper half of

y2 = 4x (x > 0) with the lower half of y2 = -4x (x < 0) to obtain

4
N

~
-

and this curve also passes through (1,2) and satisfies (1).
Again, the extra solution stems from allowing R to include part
of %x.= 0.

A few helpful facts that are useful in geometry related problems

and which may be read from the diagram are given below:
¥y
A

(x,y)

A

» X
0 A(a,O) D C (C,U)

B(0,b) |
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2.3.6(L) continued

1. Equation of AP is

X =W

X - a dx

so
x < a .1
y y'
or
X - a= %,
or
a=x - %, = xX-intercept of tangent line.

or

Hence, b = y - Xy' = y-intercept of tangent line.
¥ o gx
2. g==% dy
x_c=—§x=—.
% ax - ¥

or

e =y + X g% =y + ;, = y-intercept of normal line.
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2.3.6(L) continued

3. B = fa® # (x - a)?

and since a = x - y/y', x —a=x-x + y/y' = y/y'. Hence,

B =4 iy & {%,)7

]

|¥: /’{y')2 + 1 |= length of tangent line from P to x-axis.

3. B = /x% o+ (y - b)z
and b =y - xy'. Hence, y - b=y -y + xy' = xy'. Therefore,

sz + xzy'2

BP

Il

]

|x V1 + (y')2 |= length of tangent from P to y-axis.

4, PC = /ﬁx -0+ y2 and ¢ = X + yy'. Hence x - ¢ = X - X-
yy', and (x - c)2 = y2(y')2. Thus,

BC = A2y +y2 =y A+ (y92 |

I

length of normal line from P to x-axis.

4, FE_:=/x2+(y-e)2 ande=y+$,. Hence, y - e =
y -y - x/yv', so (y - e}2 = x2/(y')2. Therefore
_ 2 X
(y")
X 2
= 1% Jgn? s

I

length of normal line from P to y-axis.

5. The projection of AP on the x-axis is called the subtangent.
That is the subtangent is AD. Now, AD = AP cos ¢

= AP

a8l
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2.3.6(L) continued

= ¥, /iy + 1| Ly|
¥ ly vT+ y7*|
= ]§,| = length of subtangent.

6. Similarly the projection of PC on the x-axis, DC, is called
the subnormal. Hence,

bc =/ﬁ2 - Pp2 =/y2(1 + 1912 - y? = IyI[+ (y? -1

= |yy'| = length of subnormal.

If we prefer to use polar coordinates, then

We let COD be perpendicular to OP at 0. Then CP is defined
to be the polar tangent; DP , the polar normal; CO , the
polar subtangent; and OD, the polar subnormal

tan ¢ = =, (r' means g% )
but
tan Y = gg = §g .
OoP
Hence,

2
oC = [r tanw|= T§TT-= length of polar subtangent.

S.2.3.34
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2.3.6(L) continued

Similarly

0D _ I

== T (cos Y = >

so that

OD = |r'| = length of polar subnormal, etc.
2367

The y-intercept of the tangent line is given by
y - xy' (1)

and since the slope of the tangent line is y', we see from (1)
that our differential equation is given by

y' =y - xy' (2)
or in differential form

dy = ydx - xdy

ydx - (x + 1l)dy = 0. (3)

The variables are separable in (3), and we have

f—ﬁf-§1=0 (x# -1, y # 0). (3")

Hence,

In |x + 1| = 1n |y|= ¢4

or

WL | =c (4)
S.2.3.35
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2.3.7 continued

Hence,

and removing the absolute value sign

c
ﬁ:ie]':cz (5)
Y

e
: ’ s 1
where ¢, is an arbitrary non-zero constant since e is an

arbitrary positive constant. Taking reciprocals in (5) we obtain

ety = (where c = %é)'
That is
y = c(x + 1), ¢ # 0. (6)

The restriction ¢ # 0 may be removed by observing that from (6),
c = 0 implies y = 0. Certainly the x-axis has the property that
at each point, its slope (=0) equals y-intercept of its tangent

(=0, since the x-axis is its own tangent).

Thus, (6) may be rewritten as

y = c(x + 1), ¢ an arbitrary constant. (7)

Note:

;;;_;hose who may be a bit curious, notice that we made the
restriction x # -1 in (3'). What does this mean? Well, notice
that when x = -1, equation (7) shows that y = 0 for each choice
of ¢. In other words the x-intercept of each member of c is -1.

Pictorially,

S.2.3.36
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2.3.7 continued

(Figure 1)

Notice that once we have (7), it is trivial to vary geometrically
that each member of (7) is a solution of (2). Namely,

[ o
(0,c)
A
A(-1,0) 0(0,0)
tan y = L = o€ _c-0 _ c,
X o 0-(-1)

i.e., the slope

of AC is equal to its y-intercept.
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2.3.7 continued
b. Letting x = X and y = ¥s in (7) we obtain

P = c{xo + 1)

so that
yO
e - T ) (8)

so ¢ is uniquely determined and exists unless X, = =L

Thus, if X # 0 , the member of (7) which passes through (xo,yo)
is

Yo

y=——-—
xo + 1

(x+ 1). (9)
In particular with 2 - 2 and Yo = 9, we see from (9) that
y =3+ 1) (10)

is the only member of (7) which passes through (2,9) with the
desired property.

If x = -1, then every member of (7) passes through (-1,0) but
no member of (7) passes through (~l,yo} if Yo # 0.

Note:
In terms of the basic existence theorem, we see from (2) that

E-1t (11)

so that the only thing we have to worry about is when x = -1
since then the denominator vanishes. The line x = -1 is a
"degenerate" solution of our problem (as in any vertical line)
since then both the y-intercept and the slope both "equal = ".

With respect to (10) notice that since (2,9) is not "near"

x = -1, then no matter what other solutions might exist

when x = -1, none of these can pass through (2,9). Namely,
we can pick a region R which includes (2,9) but which doesn't

S.2.3.38
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2.3.7 continued

intersect the line x = -1 and from (ll) we can conclude that in R
(10) is the only solution of our problem which passes through

(2r9) . //.r
Y J—
/N

(2,9)

~

||___Xk__________ s =

b

Any solution of (2) which passes through (2,9) must coincide
with y = 3(x + 1), at least throughout R.

2.3.8 (optional)

Here, in addition to the usual rules of geometry, we also need the
physical fact that "the angle of incidence equals the angle of
reflection". Otherwise, this problem is no different from any
other exercise we have tackled in this unit.

To begin with, we have

b 4
N

(Figure 1)
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2.3.8 continued

1. Figure 1 emphasizes the local nature of our eventual
differential equation. We assume that P is a fixed, but arbi-
trary, point on our mirror. By the given data, the light ray
which emanates from 0 and strikes our mirror at P is reflected
parallel to the x-axis.

2. The angles of incidence and reflection, being measured from

the normal, tell us that the normal to our mirror at P must be

the angle bisector of { OPR (since these two angles are equal).

Thus, Figure 1 becomes

¥

T

7 X

(Figure 2) Q

Angle of incidence equals angle of reflection means oy = 0y

where PQ is the normal to the mirror at P.

3. By definition of the normal line, the tangent line to our

mirror at P is perpendicular to PQ at P. This leads to Figure 3.

Yy
90--0;2

3 > R
% 8 y
(0]

1\*2
N

Q

v

(Figure 3)
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2.3.8 continued

SP is tangent to the required mirror at P. Notice that 0,¢, and
Y have their usual meanings (i.e., tan¢ = dy/dx, tany=r/ dr/de,
etc.).

From this point, the problem requires no further physical know-
ledge, only geometry. First of all, since o; = a, and QP | sp,
it follows that

90 - 0y = Y. (1)

But, since PR is parallel to the x-axis,
90 - ay = ¢ . (2)
Comparing (1) and (2), we conclude that
b =9 . (3)

If we now elect to use Cartesian coordinates, we have that
tan ¢ = dy/dx and tan 6 = y/x.

From A SOP, 8 = ¢ + 1, or by (3),

8 =29¢ . (4)
Hence,
tan 8 = tan 2 ¢

2 tan ¢

i r

1 - tan2¢
or
X = _EXL__Z (5)
X 1-y'

*Perhaps Figure 3 is a good place fo us to emphasize the local
nature of differential equations. At a particular moment, Figure
3 is interested only in how our mirror behaves at a particular
point P [which may be labeled P(x,y) or P(r,0), depending on
whether we elect to use Cartesian or polar coordinates in our
analysis].
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Clearing (5) of fractions and solving the resulting quadratic
equation for y', we obtain

X + ¢x2 + yz

= (6)

y':..

Equation (6) has the form

dy _
dx f{§)'

if we divide numerator and denominator on the right side of (6)

by x, but it also happens to be exact. Namely, (6) may be
written as

xdx + ydy = dx
i/x + vy

or

v al A2 + yo) = dx.

+ /X% + y° =x 4+ c. (7)

Squaring both sides of (7) we obtain

x2 + y2 = xz + 2cx + c2
or
y2 = 2cx + 2 (8)

which is a family of parabolas with focus at the origin.

Aside:
Equation (8) is double-valued and occurs because equation (6) is
double-valued. Had we written (6) as the two single-valued

S5.2.3.42
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differential equations:

X+v‘x2+y

y' o= = (6")
and
2 2
i e -y .
vy > (6")

Then our fundamental theorem would tell us that unless ¥s = 0,
there is one and only one solution of (6') or (6") which passes
through (xo,yo). Otherwise notice that unless L 0,
equation (8) allows 2 values of c for each {xo,yo). Namely

2 2
T = 2cxo + c -
2 2
c” + 2xoc = ¥s = 0o -
2x  + V4x + 4y
& = o o i
2
c=-x,* fxoz + Yoz -
c has two distinct real values unless xoz + Y02 =0 (i.e.,
B Wi 0). The point is that one of these values satisfies

(6') and the other (6").

2.3.9 (optional)

Here we have an elementary illustration of a famous applied type
of differential equation known as pursuit problems. Again, once
the problem is set up it becomes another geometric example, but

in this case the computation does beccme a bit more overwhelming.

Let us use time, t, as our parameter, beginning with t = 0 when
A is at (0,0). What we know for sure then is that at any time
t, A is at (0, at) while B is at some Point P(x,y). [It is

the relationship between x and y which we seek in this exercise].
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Pictorially, we have

Q(0,at)

P(x,y)

(Figure 1)

Since the direction of motion always has B pointed toward A
and since at a given moment, the direction of a curve is
measured by the direction of its tangent line, we have from
Figure 1 that the slope of PQ is (y - dt)(x - 0),

but since this line is also tangent to the path traced out
by P, the slope of PQ is also the slope of our required
"present curve", and this slope is denoted by dy/dx.

Equating these two expressions for the slope of PQ we obtain

y -dt _ dy
X dx
or
y - at = xy'. (1)

To eliminate t from (1) we may differentiate (1) with respect
to x (remembering that x and t are dependent) to obtain

y' - at' = xy" + y'

or

S.2.3.44
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n

e o= 2L (2)
-a
We can also compute t' = dt/dx another way. Namely,
dt _ dt ds
dx ~ ds dx
ds
_ dx
o & (3)
dt
NOW;
ds _ / T2
ax 1 # (Y)

and ds/dt = b since ds/dt is the speed along the desired curve
(which is the speed of B) or b. Thus (3) becomes

o =% A+ g2 (4)

and equating the values of t' as given by (2) and (4) we obtain

xy" + 21+ y9? =0, (5)

Since the y term is missing from (5) we use the substitution
P = yv' to obtain from (5) that

vl + p© = 0. (6)

dp
x 3£+

o

We may then separate variables in (6) to obtain

+Pp

oip
|OJ
ES

or

S PN P 6B & P S ) EE e
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sin h™t p = - % 1n |x| + ¢

or

p = sin h(- % 1n |x| + c) (7)
or

%X = sin h(- 2 1n |x| + ¢;) (7")
X b p

We may simplify (7') by letting r = a/b and ¢ = 1n Cy- Then,

I

% In [x| + ¢

-rln |x| + In ¢

2

iIn [x|] ¥ + 1n c,

In c, |x| 4
Hence,

sin h(- & 1n |x| + ¢;)

sin h(ln c, |x] 5y

- -r

In c, |x| ¥ -1ln c, |x|
_ e -

2

1 -r i &

=3 V%2 |x | - -r
Cs le
\

W J N0

x* c3
*Where cy = % <, and |xl = X [since we are assuming that

the present curve is in the right half plane (i.e., x > 0).]
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Thus, our final differential equation is given by

dy _ = r
dx C3¥ ZE—
c
3
Hence,
1-r
9 % _ X", c,, if rtl (i.e., if A and B
I-r 4c3lI+ri have unequal speeds)
y =
x2 o
031nx - Bc3 + Cyr ikr= L
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